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Abstract

Background: Systems biology aims to analyse regulation mechanisms into the
cell. By mapping interactions observed in different situations, differential network
analysis has shown its power to reveal specific cellular responses or specific
dysfunctional regulations. In this work, we propose to explore on a large scale the
role of natural anti-sense transcription on gene regulation mechanisms, and we
focus our study on apple (Malus domestica) in the context of fruit ripening in
cold storage.

Results: We present a differential functional analysis of the sense and anti-sense
transcriptomic data that reveals functional terms linked to the ripening process.
To develop our differential network analysis, we introduce our inference method
of an Extended Core Network; this method is inspired by C3NET, but extends the
notion of significant interactions. By comparing two extended core networks, one
inferred with sense data and the other one inferred with sense and anti-sense
data, our differential analysis is first performed on a local view and reveals
AS-impacted genes, genes that have important interactions impacted by
anti-sense transcription. The motifs surrounding AS-impacted genes gather
transcripts with functions mostly consistent with the biological context of the
data used and the method allows us to identify new actors involved in ripening
and cold acclimation pathways and to decipher their interactions. Then from a
more global view, we compute minimal sub-networks that connect the
AS-impacted genes using Steiner trees. Those Steiner trees allow us to study the
rewiring of the AS-impacted genes in the network with anti-sense actors.

Conclusion: Anti-sense transcription is usually ignored in transcriptomic studies.
The large-scale differential analysis of apple data that we propose reveals that
anti-sense regulation may have an important impact in several cellular stress
response mechanisms. Our data mining process enables to highlight specific
interactions that deserve further experimental investigations.

Keywords: Differential network analysis; Anti-sense regulation; Functional
analysis

Background
Understanding cell regulation mechanism is a key issue in bioinformatics. In the last

two decades, large-scale gene expression profiling has led to considerable advances on

this topics. Many discoveries have been obtained by differential expression analyses.

In medicine, molecular classification of diseases may be achieved by looking for

differentially expressed genes when comparing microarray datasets from healthy

and disease samples [1]. Even if useful as prognostic tools, these approaches do not

provide explanations about the dysfunctional mechanisms that cause the disease.
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Therefore, as reviewed in [2], recent works move to differential networking in order

to identify cell regulations that are altered in disease samples.

Differential network biology [3, 4] refers to a set of works that rely on differential

network mapping to analyse interactions between components of a biological system.

These works study the changes that can be observed in the interaction networks

representing biological systems when different environmental conditions, different

tissue types, different disease states or different species are considered.

One type of approach in network biology is to integrate static interaction knowl-

edge with dynamic changes in gene expression or metabolic fluxes. In [5], the au-

thors propose to screen a known molecular interaction network to identify active

sub-networks; an active sub-network is a connected region of the network with an

unexpected high level of differential expression over particular sets of conditions.

The top-scoring active sub-networks help to uncover regulatory mechanisms that

control the expression changes in these experiments. In [6], the integration of a

static protein-protein interaction network with ageing-related gene expression data

is used to identify cellular changes related to age. An interaction from the reference

network is put in the network associated to age A if the two related proteins are

expressed in the datasets relative to A. The topologies of 37 different age-specific

networks are analysed. While the global network topology does not exhibit sig-

nificant changes with age, the measures of local topology (node degree, clustering

coefficient, graphlet degree, . . . ) reveal a small set of proteins whose centrality values

are correlated with age.

Another possible approach is to compare networks inferred from data. A lot of

methods have been proposed in the literature for the task of building an interaction

network from a collection of expression data [7, 8, 9, 10]. In these reverse engineering

methods, the network modelises gene interactions as static processes inferred from a

set of similar samples. To decipher the cellular response to different situations, more

recent studies propose to identify differential co-expression patterns by comparing

several networks [11, 12]. The comparison may be carried on pair-wise gene co-

expressions by quantifying the significant differences [13, 14]. The comparison may

also identify sub-networks containing significant changes of regulation; in [15], the

authors measure the preservation of network modules across a set of condition-

specific networks. Thus differential network analysis proposes to identify significant

interaction modifications when comparing networks involving the same set of actors

but related to different conditions.

The present work aims to study the impact of anti-sense transcription on gene net-

works by a method inspired by differential network analysis. Anti-sense RNAs are

endogenous RNA molecules whose partial or entire sequences exhibit complemen-

tarity to other transcripts. Their different functions are not completely known but

several studies suggest that they play an important role in the regulation of gene ex-

pression [16]. Mechanisms of anti-sense regulation can affect positively or negatively

the protein production through their impact on transcription [17], mRNA degra-

dation/stability [18] or final translation [19]. More recent works have also shown

that anti-sense RNA are involved in the chromatin architecture [20]. Among their

different functions, anti-sense genes can trigger the post-transcriptional gene silenc-

ing: it is a RNA-degradation mechanism creating small interfering RNAs (siRNA).
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The anti-sense transcript and the sense transcript hybridize themselves to form a

double strand RNA (dsRNA). For instance, in Arabidopsis thaliana, [21] found that

the RPP5 defence gene was affected by this phenomena: its sense and anti-sense

dsRNA are degraded in siRNA which presumably contributes to the degradation

of the sense transcript in the absence of pathogen infection. A similar mechanism

regarding the salt tolerance in Arabidopsis thaliana has been described [22]. The

description of these regulations and the results of genome-wide approaches [23, 24]

suggest that anti-sense genes and RNA are major actors of biological pathways and

must be integrated in the methods inferring gene networks.

The present work deals with apple data because a previous study [24] reveals

different interesting points about anti-sense transcription in this organism. The au-

thors used a dedicated microarray chip and RNA-Seq of small RNAs to analyse

anti-sense transcription in eight different organs of apple Malus domestica. In their

analysis, the three following points are important results about anti-sense transcrip-

tion. Firstly, their measures of sense and anti-sense transcription show that, when

considering the sense genes expressed in at least one of the eight organs, a significant

level of anti-sense expression is found for 65% of them. This observation is higher

than the previous studies performed on Arabidopsis thaliana [25, 26] that identified

only 30% of anti-sense expression. Secondly, the presence of short interfering RNAs

is correlated with the anti-sense transcript expression. Thirdly, the levels of expres-

sion of anti-sense transcripts vary depending on both organs and Gene Ontology

(GO) categories: genes related to fruits and seeds, and belonging to the ”defense”

GO class have higher levels.

The work described in this paper proposes a genome-wide analysis of apple tran-

scriptomic data, with measures of anti-sense transcripts, in the context of fruit

ripening and cold storage. To identify the impact of integrating anti-sense tran-

scription in gene network inference, we propose to achieve an original differential

network analysis where we compare two context-specific gene networks inferred from

two sets of actors: the first set is only composed by sense transcripts, it represents

a usual transcriptomic study; the second set is composed by both sense and anti-

sense transcripts. By computing the major differences between these two networks,

we aim to highlight interactions that are greatly impacted by anti-sense transcripts

and that would be neglected in a classical gene expression analysis.

The gene network inference methods based on statistical measures lead to infer

many interactions in the network. Some of them are noise or redundant, we call

them false positive interactions. A lot of works have been done to minimize such

false positive interactions [27, 28]. [8] proposes to study what they call the core part

of the gene network. The core network represents the most trustworthy part of the

network: it is computed by selecting only the most significant interaction for each

gene. However, the constraint of selecting only one interaction per gene seems too

restrictive. We propose to extend the core network by considering a small number of

significant interactions for each gene. Therefore, our gene network inference method

computes what we call an Extended Core Network (ECN). We use ECN in our dif-

ferential analysis to discover the interactions of the core network that are impacted

by the integration of the anti-sense transcripts. Our proposal is summarized by the

workflow presented in Figure 1. We then define the notion of AS-impacted genes to



Legeay et al. Page 4 of 22

identify the genes whose network neighbourhood is drastically different when the

anti-sense transcripts are considered. We also study the relationships between the

AS-impacted genes and we try to explain how their neighbourhood is rearranged

by computing Steiner trees.

The rest of the paper is organized as follows. In section Methods, we first present

the biological samples and the differential functional analysis that we propose to

study the impact of anti-sense data on functional enrichment tests. Then we intro-

duce the Extended Core Network Inference algorithm and we evaluate it on artificial

datasets. We also present our differential analysis of two core gene networks built

on different sets of actors, with the associated definition of change motifs and AS-

impacted genes. We finally explain the computation of Steiner trees to study the

relationships between AS-impacted genes. In section Results and Discussion, we

first present the results of the differential functional analysis ; the outputs are func-

tional terms clearly consistent with ripening in cold situation. We then present the

results of our differential network study, with a detailed biological analysis that

confirms the interest of taking into account anti-sense transcription in biological

experiments.

Methods
Biological material

We study the anti-sense transcription in the context of apple fruit ripening thanks

to microarray data. The AryANE v1.0 microarray is designed to detected 63,011

predicted sense genes and 63,011 complementary anti-sense sequences for the Malus

domestica genome [29]. With this microarray, we can identify the sense and anti-

sense expression for the whole predicted genome. We used data produced in order to

study the evolution of fruit in cold storage condition for different varieties. For each

22 genotypes we have two samples: one at harvest time (H) and one 60 days after

harvest time (60DAH) with fruits kept at 4◦C. The data produced by the microarray

are the intensity values of loci, a locus being associated to a gene. In order to analyse

the microarray data, we use the quantile normalization [30, 31]. Then we selected

differentially expressed transcripts (p-val<1%) between harvest and 60 days later.

Based on a previous study [24], we applied a further threshold of 1 log change

between the two conditions. We identified 931 sense transcripts and 694 anti-sense

transcripts differentially expressed between H and 60DAH. We found 200 couples (i.e.

sense and anti-sense complementary transcripts) among the differentially expressed

transcripts. We use all these 1,625 transcripts into our analysis.

Differential functional analysis

As we observe a significant number of anti-sense transcripts in the differentially

expressed probes, we first try to investigate the biological functions concerned by

these actors. For that, we perform a differential functional analysis [32] with the

particularity to analyse on one hand the sense data, and on the other hand the

sense and anti-sense data.

Functional enrichment is used in order to identify biological functions associated

to a set of genes. It relies on an ontology that regroups and hierarchizes a set of

terms associated to genes. An ontology is an acyclic oriented graph, linking terms
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with a subsumption relation. Terms are ordered from the most specific ones to the

most generic one.

The Gene Ontology Consortium provides three independent Gene Ontologies

(GO) : “molecular function”, “biological process” and “cellular component” [33]. In

a Gene Ontology, the most generic term is the one named after the ontology. The

biochemical activity of the gene’s product is stored in the “molecular function” GO.

It only specifies the activity, not where nor when it happens. A “biological process”

GO term refers to a process in which the gene is involved. A biological process is an

association of several molecular function via chemical or physical transformations.

The “cellular component” GO indicates where the product is active.

In order to identify biological functions, we will use the “biological process” Gene

Ontology and thus we associate each gene with a GO term. As anti-sense transcripts

are not annotated, we affect to each anti-sense the annotation of the corresponding

sense gene. This decision is based on the fact that due to its sequence complementar-

ity, an anti-sense transcript may interact with the corresponding sense transcript,

or at least with a very close member of the gene family. In [29], an apple gene is an-

notated using predicted orthologs (closest homolog) from Arabidopsis thaliana [34],

the most studied model plant genome. When an apple gene has no homolog, we

associate the term “unknown biological processes” to the gene and its anti-sense.

GO slim gives a broad overview of the ontology content without the detail of

the specific fine-grained terms which are not always known. The categories were

chosen to provide a broad representation of the distribution of biological roles. An

annotation file associating a GO slim and a GO term with each of the 126,022 apple

genes has also been created.

Once we can associate genes with GO terms, we can perform the functional anal-

ysis in which we identify statistically over-represented GO terms in a set of genes.

The test performed is a hypergeometric test. A GO term is considered as statis-

tically over-represented if the p-value is below a given threshold, generally set to

0.05.

Many tools were developed to identify the statistically over-represented GO cat-

egories in a set of genes. Among them, the Cytoscape App named BiNGO [35]

provides a visual representation of the ontology: one possible output of BiNGO is a

graph with nodes representing over-represented GO categories and arcs represent-

ing the hierarchy between them. The graph also represents the proportion of genes

associated to a GO category by the size of a node, and the colour of a node codes

for the associated p-value of the over-representation. BiNGO uses a Bonferroni cor-

rection on the hypergeometric test results. This correction is needed to compare the

p-values obtained for each GO categories.

Concerning the apple ripening condition that we study, we notice an important

proportion of anti-sense transcripts that are differentially expressed: the set AS is

composed of 694 different transcripts whereas the S set is composed of 931 different

transcripts. Therefore it is relevant to question the role of these anti-sense actors

in the ripening process under cold storage conditions. To explore this question, we

propose a differential functional analysis.

We perform the differential functional analysis as follows. We compute the

over-represented GO categories on the sense set (S), then we compute the over-

represented GO categories on the sense and anti-sense set (SAS = S ∪ AS). The
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use of BiNGO to perform the test gives us two sub-graphs of the GO. We propose

to compute the difference of these two sub-graphs. We define the revealed-by-AS

terms as the functional terms of this difference: they represent the functional terms

that are outputted from the ontological analysis only when the AS transcripts are

included.

Extended Core Network inference method

Motivations

Gene network inference from transcriptomic data has been studied in several works

[7, 9, 10]. Some inference methods propose to reconstruct pairwise gene interaction

networks by using a statistical measure to infer the co-expression or co-regulation

between two genes. This statistical criterion can be Pearson or Spearman correlation

[36], or mutual information [8, 27] to detect non-linear relationships. A threshold of

significance is used to keep relevant relations in the network. The inconvenient with

these methods is that they predict many false positive interactions. Among these

false positive interactions, we find interactions that are not biologically true, and

non-direct interactions. An indirect interaction can be observed if, for example, two

genes g2 and g3 are under the regulation of a third gene g1; in such a situation, the

statistical criterion value between g2 and g3 is probably high and thus the method

will infer an indirect interaction between g2 and g3. With these indirect interac-

tions, the network becomes more complex and difficult to interpret. Therefore some

pruning methods have been proposed to eliminate them [27]. In [8], the authors deal

with this problem by proposing the Conservative Causal Core Network (C3NET)

that computes the core of a gene network. The core of the network contains only

the strongest interactions of the gene network: for each gene, it selects the best in-

teraction (i.e. with the maximal mutual information) . The aim of our method is to

identify significant changes in the interactions when anti-sense actors are integrated

by comparing two inferred networks. Therefore, we can work with the core of a gene

network. However, the C3NET definition of a core network may be too restrictive

since several mutual information values may be close to the maximal. This is why

we propose a gene network inference method named Extended Core Network (ECN)

that considers for each gene the most significant interactions.

Algorithm

Extended Core Network estimates the gene connections using mutual information.

We first copula-transform [37, 38] the data to have a better estimation of the mutual

information. The mutual information M [i, j] between genes i and j is estimated with

the same estimator used in C3NET:

M [i, j] =
1

2
log(

σ2
Iσ

2
J

|C|
)

where σ2
I and σ2

J are the variance of the expression vectors I and J of genes i and

j respectively, and |C| is the determinant of the covariance matrix.

The statistical significance of pairwise mutual information is test by re-sampling

methods, as C3NET or ARACNE [27]. Values that are not significant are set to 0

before applying the inference algorithm.
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The Extended Core Network (ECN) algorithm infers a gene network represented

by an adjacency matrix. Given a set of genes G, the first step of the algorithm is

to create the zero matrix representing the fact that no genes are connected. The

second step aims to identify the neighbourhood of each gene, composed of all the

genes for which the mutual information value is maximal. In order to compute the

maximal values of the mutual information, we use an accepting rate r. Given a

gene g ∈ G, g′ ∈ G is a neighbour of g if the mutual information between g and

g′ is close to the best mutual information value of g with respect to the accepting

rate r. The accepting rate must be between 0 and 1 where 0 means that we accept

nothing but the best neighbour and 1 means that we accept every neighbour with a

significant interaction. With an accepting rate fixed at 0, ECN works approximately

as C3NET does, the difference is that C3NET selects only one interaction whereas

ECN accepts all the interactions in case of two identical best values. An accepting

rate fixed at 1 means that we define the core network by selecting all the significant

mutual information values of the matrix. This is why the preprocessing step of the

mutual information matrix sets all non-significant values to 0.

The mutual information between g1 and g2 is the same as the mutual information

between g2 and g1. So C3NET outputs a symmetrical adjacency matrix, leading in

an undirected graph. However we want to compare two core networks and be able

to identify the interactions that changed when the anti-sense transcripts are added

into the data. This is why our algorithm outputs a asymmetrical adjacency matrix,

allowing us to identify the significant modifications in the neighbourhood of a gene.

The complexity of the ECN algorithm is O(n2), where n is the number of genes;

it is the same as C3NET complexity [8].

Evaluation on artificial datasets

In order to compare our Extended Core Network algorithm with C3NET, we use

simulated data. The assessment of a network inference method requires a reference

biological network; for some organisms like E. coli [39, 40] and S. cerevisiae [41],

gene networks of reasonable size are considered as established knowledge and are

used as benchmarks in the following way. From the reference network, a sub-network

of the desired size is extracted; then artificial expression datasets are produced by

simulating the activity of the chosen sub-network; the inference method is applied

on these simulated data and produces a learned network that can be compared to

the original network.

We generate our simulated data with sub-networks of E. coli and S. cerevisiae

thanks to the SynTREN [42] generator and simulator. The sub-networks are ran-

domly generated using the neighbor addition method which creates a connected

network of n = 200 genes. We use SynTREN to create a dataset X of p = 100

samples by simulating the activity of the genes from the selected network.

To evaluate the error rate of each inference method, we compare the inferred edges

with the edges in the true gene network. This comparison gives us the precision =
true positive

true positive+false positive and recall = true positive
true positive+false negative of each method. The

precision and recall are used to compute the error measure named F1 score such

that F1 = 2 · presicion·recall
precision+recall .
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The inference methods are tested in S = 500 simulations. A simulation k ∈ [1..S]

is run with a specific dataset Xk formed by n genes and j ∈ [p2 ..p] samples randomly

selected from the dataset X generated by SynTREN.

We compare different accepting rates of Extended Core Network with C3NET on

two datasets, one from E. coli and another from S. cerevisiae. We test ECN with

accepting rates ranging from 20% to 100% with a 10% step and from 0% to 20%

with a 1% step.

Figure 2 shows the box plots of the F1 scores obtained by the simulations. To

enable the comparison with C3NET, ECN is used to produce an undirected network.

The ECN 0 method corresponds to the Extended Core Network with a 0% accepting

rate. The difference between ECN 0 and C3NET occurs when at least two genes

have the best mutual information with one gene. We can observe that ECN has a

higher F1 score than C3NET on E. coli (Figures 2a and 2b) and yeast (Figures 2c

and 2d) when the accepting rate is low. As expected, the F1 score of ECN depends

on the values of the accepting rate. For low values, a rate increase improves the

score, but when the accepting rate exceeds a certain value, the F1 score decreases.

As explained before, a high accepting rate entails an increased number of false

positives, and we observe that it greatly impacts the F1 score. We can see this

phenomena in Figures 2a and 2c once the accepting rate is higher than 10% and

20% respectively, the F1 scores drop down to 0. From empirical observations on

several simulated datasets, we can notice that an accepting rate between 5 and

10% is a good rate. In the Figures 2b and 2d, we can observe that the rate of 7%

(ECN 0.07) is the best rate value on those specific data.

Differential Network Analysis

In this section we present the methodology that we propose in order to decipher the

impact of anti-sense transcription on gene co-expression network. This methodology

relies on the comparison of two extended core networks that reveals AS-impacted

genes and change motifs that we define below. By computing Steiner trees, we also

observe how the interactions between AS-impacted genes are reorganized in the

network containing sense and anti-sense data.

AS-impacted genes and change motifs

We propose a differential network analysis where the extended core network inferred

from the sense only data (S) is compared to the extended core network inferred from

the sense and anti-sense data (SAS). We focus our analysis on a sense gene that has

no sense neighbour in the SAS extended core network. If a sense node has no sense

neighbour in the SAS network, it means that the interactions that exist between

this gene and others in the S network are not strong enough to be present in the SAS

core network. We say that this gene is an AS-impacted gene. An AS-impacted gene

is observed when the mutual information of this gene with an anti-sense transcript is

so strong that, even with the accepting rate, the mutual information between this

gene and the other sense transcripts are not significant enough. By representing

both S and SAS network in the same graph, we can define a change motif as a

sub-graph formed by an AS-impacted node, with all its direct neighbours in the

S and the SAS networks [32, 43]. We can identify the change motifs directly in
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the adjacency matrices of both networks. Change motifs allow us to identify local

changes on interactions when the anti-sense actors are integrated in the network

inference. The information contained in the change motifs shows the importance of

taking anti-sense into account because it reveals the interactions between sense and

anti-sense transcripts. Figure 3 represents a change motif designed from the AS-

impacted node S1; the outer links of S1 in the S network (S1 ( S2 and S1 ( S4)

are different than the outer link of S1 in the SAS network (S1 ( AS3).

A change motif surrounding an AS-impacted gene extracts from the data a small

set of genes and anti-sense transcripts that deserves a further study. We shall report

in the Results and Discussion section the detailed biological analysis that we have

done on these motifs.

Steiner trees to compute the rewiring of AS-impacted sub-graphs

Change motifs allow us to have a local view of the impact of the integration of

anti-sense actors to the inference method. We now want to have a more global view

on this impact. The AS-impacted genes are present all over the S network, but some

of them are connected, forming an AS-impacted sub-graph. Those AS-impacted sub-

graphs represent a part of the network strongly impacted by anti-sense actors. In

order to analyse this impact, we study the rearrangement of the AS-impacted gene

interactions in the SAS network. In other words, we look for indirect interactions

in the SAS network between AS-impacted genes that interacts directly in the S

network. This analysis is performed thanks to the Steiner tree problem explained

below.

Given an undirected graph G = (V,E) with a set of vertices V and a set of edges

E, and given a subset of vertices S ⊆ V , the minimal Steiner tree problem is to find

a sub-graph G′ of G such that S is contained in G′, all the vertices are connected by

a path, and the number of edges of G′ is minimal. For a weighted graph, the aim is to

minimize the total weight of the edges ofG′. The Steiner tree problem is used to solve

several problems, such as extracting information from a large database of molecular

interactions [44]. For example, for a given set of proteins, the Steiner tree problem

may be applied to the interactome graph with these proteins as terminal nodes to

compute a minimal set of relations connecting all these proteins. An experimental

study used the Steiner tree problem on a large human protein-protein interaction

network [45].

The minimum Steiner tree problem is a NP-complete combinatorial optimization

problem [46] and several heuristic methods have been designed to use it with large

graphs. In our workflow, we use the shortest paths based approximation [45] that

computes the Steiner tree ST step by step. The first node added to the Steiner tree

ST is one of the terminal node. Then, the shortest paths between all the remaining

terminal nodes and the nodes of ST are computed, and the closest terminal node

is connected to the Steiner tree ST with the shortest path. Once all the terminal

nodes are in the Steiner tree ST , the resulting tree is pruned thanks to the minimum

spanning tree method.

SteinerNet is a R package that allows to compute the minimum Steiner tree using

one exact algorithm, or find a solution using four different approximate algorithms

[45]. The shortest paths based approximation is one of the heuristic developed in
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SteinerNet that can be used on large graphs such as the protein-protein or gene net-

works. The SteinerNet package was last updated in 2013; then as the dependencies

were obsolete, it was removed from the CRAN repository. We updated the package

to the R version 3.2.0 and we will be pleased to share this updated package upon

request.

In order to analyse the rewiring of AS-impacted genes, we solve the minimum

Steiner tree problem with the subset of vertices composed by a AS-impacted sub-

graph. AS-impacted sub-graphs have a particularity: all the genes have a direct

connection in S, but because the genes are AS-impacted, all those connections are

not represented in the sense and anti-sense network SAS. Thus it is interesting to

wonder how these nodes rewired in SAS. If we can find a minimal Steiner tree for an

AS-impacted sub-graph, the tree show the relationships between the AS-impacted

genes of the sub-graph in the sense and anti-sense network. It shows how anti-sense

actors intervene in the relationships between connected AS-impacted genes. Several

exploitations of the Steiner trees can be done. In one hand, the Steiner tree can

be visualized to help focus on interesting interactions. In an other hand, we can

perform a functional analysis to identify the main biological functions impacted by

anti-sense transcription.

Results and Discussion
Differential functional analysis

We performed two functional analyses that, for a p-value threshold of 0.05, identified

GO categories for sense data in one hand and for sense and anti-sense data in

an other hand. This differential functional analysis provided 104 revealed-by-AS

terms. The list of the revealed-by-AS terms associated with their p-value is given

in Additional file 1, Table 1. Among those terms, we can see terms related to cell

wall (i.e. “cell wall organization or biogenesis”, p-value: 0.004), cold response (i.e.

“response to cold”, p-value: 0.035) and osmotic response (i.e. “water transport”,

p-value: 0.001). Those biological functions, related to response to stress and fruit

ripening, are consistent with our experimental context since fruits are stored in

cold chambers while the ripening continues (the different processes involved in this

experiment are more thoroughly explained below). Without the anti-sense data,

terms related to such conditions are not in the result of the functional enrichment

analysis.

Differential network analysis

The number of change motifs depends on the accepting rate used in the Extended

Core Network method, because this rate determines the neighbourhood size of

nodes, and consequently of AS-impacted nodes. We identified 308 change motifs

in the 60DAH experiment with an accepting rate of 5%. The number of change mo-

tifs is equal to the number of AS-impacted genes, and it represents about 30% of

sense actors.

We performed the differential network analysis on the 60DAH experiment. Figure 4

shows the graphical result of this analysis. We can see the repartition of the AS-

impacted genes (orange triangles) and note that they are spread in the network

which means that AS transcription impacts is not restricted to a specific set of

genes. The graph was drawn using Cytoscape [47] and features of Cytoscape may

be used to mine this graph.
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Enrichment analysis of change motifs

We identified 308 change motifs in the 60DAH experiment. Each change motif con-

tains an AS-impacted gene and its direct neighbors in the S network and in the

SAS network. For this analysis, each motif is enlarged by also considering the di-

rect neighbours of its anti-sense actors; as the anti-sense actors impact the central

gene of the motif, we want to consider the other interactions that they may have

in the SAS network. In the following, the expression “change motif” will refer to

an enlarged change motif. As a change motif is a gene set produced by our analysis

work-flow, it is interesting to know if some biological functions are over-represented

by this set. The change motifs are formed on average of 5 genes. Due to this small

set size, we perform an enrichment analysis of each change motif using the apple

GO slim, which contains 14 categories. Additional file 2, Table 1 presents the results

of this enrichment analysis.

The main post-harvest factors that influence apple softening include temperature,

atmosphere, relative humidity, calcium treatment, and ethylene [48]. Artificial pre-

vention of ripening process (and keeping quality) is the main goal of controlled

atmosphere storage (low oxygen and high carbon dioxide) and/or cold storage

(low temperatures). For cold storage, apples during post-harvest time are stored

at 0 − 4◦C. Low temperatures influence the post-harvest biology of apple fruits.

Chilling stress is a physiological disorder that limits the storage of chilling sensitive

fruits at low, but non-freezing temperatures [49]. Low temperatures disrupt the bal-

ance of reactive oxygen species (ROS), leading to its accumulation and oxidative

stress [50]. Therefore, in the particular case of the specific transcriptome of apple

after two months of cold storage, it is expected to find genes involved in: ripen-

ing/cell wall modifications, cold signaling/response to cold stress and response to

oxidative stress.

We identified 308 motifs as AS-impacted in the transcriptome of the two months

storage set (60DAH). Taking in account the homologies between apple and Arabidop-

sis genes when available, 72 of them displayed a significant enrichment in the GO

slim categories such as “developmental processes”, “response to abiotic or biotic

stimulus”, “response to stress” and “transport” (see Additional file 3, Table 1).

The 291 apple genes involved in the 72 enriched motifs correspond to 209 puta-

tive Arabidopsis orthologs. Interestingly, a closer identification of putative biological

functions based on the TAIR annotations [34] allowed to relate no less than 127 of

them (i.e. 61%) to the above cited processes, in summary: ripening, cold and oxida-

tive stress. They were found in 88% of the motifs (see Additional file 3, Table 1),

indicating that the majority of the genes belonging to change motifs can be directly

related to the biological process of fruit post-harvest conservation at low tempera-

ture.

Besides, 81 apple genes lack any information on their biological function and are

not considered in this analysis. Arabidopsis orthologs of some of them have been

cited in deregulated gene lists of various conditions of stress response, which is not

inconsistent per se, but not highlighted in this study. The consistency of the AS

impacted motifs with the apple maturation process under cold temperature can be

easily highlighted through the three following examples.
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The motif #1 (Figure 5a) contains 4 genes: MDP0000250286 is encoding for a pu-

tative superoxide dismutase responding to cold stress [51], MDP0000120044 is simi-

lar to the Cyt P450 monoxygenase CYP714A1 involved in gibberellic acid pathway

[52] and MDP0000251669 to a thioredoxin [53], all of them involved in the oxida-

tive stress response. Lastly, MDP0000813397 is encoding a brassinosteroid signaling

kinase [54], brassinosteroid being a plant hormone family involved in cold stress re-

sponse [55]. In this first example, the members of the motif are all directly related

to the cold stress response which occurs during the storage process.

Motif #2 (Figure 5b) contains two genes involved in the response to cold,

MDP0000205588, encoding an osmotic fatty acid desaturase [56] and MDP0000249561,

the BZIP44 transcription factor also putatively involved in the control of fruit mat-

uration through cell wall loosening [57, 58]; and two genes involved in response to

oxidative stress: MDP0000309881, similar to the hypoxia-induced gene domain 1

[59], and MDP0000920069, encoding a respiratory burst oxidase protein F [60]

also responsive to ethylene and abscisic acid. Within this motif, only the gene

MDP0000252890 encoding a rubisco subunit 3B, could not be directly related to

the studied process according to scientific literature.

Out of the eight genes of the Motif #3 (Figure 5c), five of them are perfectly

consistent with the fruit ripening process under cold temperature: MDP0000250138

is an ortholog of BIN2, a member of the ATSK (shaggy-like kinase) family which

acts in the cross-talk between auxin and brassinosteroid signaling pathways [61],

MDP0000797759, a glycine-rich RNA binding protein which increases stress toler-

ance under conditions of low temperature [62], MDP0000151721 is an ortholog of

Fro1 involved in cold acclimation and osmotic stress response [63], MDP0000263744,

a xyloglucan endotransglycosylase involved in cell wall modification and cold ac-

climation [64], and finally MDP0000917574, an aldehyde dehydrogenase 1A which

is a critical gene of the phenylpropanoid pathway involved in the production of

antioxidant components and the response to biotic and abiotic stresses [65].

In summary, these results show that the motifs obtained by taking in account

the AS transcriptome in the network inference highlights new actors. In this case

we clearly show that biological functions of these new actors can be related to the

studied biological question. Therefore the consideration of these new actors, either

sense transcripts, or anti-sense transcripts supposed to act as regulators of the

corresponding coding genes, sheds a new light of the putative regulation networks

underlying the studied processes.

Moreover, a synthetic view of the whole set of AS-impacted motifs can provide

new avenues of work to point pathways or genes whose importance could have been

underestimated without this input. In this case it is noteworthy that at least 11

occurrences of genes related to the brassinoids pathway appear in the set of 72

motifs. Brassinoids have been reported to be involved in a range of developmental

processes, such as stem and root growth, floral initiation, and the development of

flowers and fruits [55, 66]. Studies also revealed that brassinoids can confer resistance

of plants to various abiotic and biotic stresses, including cold stress [67, 68]. [69] even

reported that brassinolide mediates tolerance of plants to abiotic stress in general

and cold stress in particular. Brassinoids have also been reported as involved in

grape berry ripening [70] and early fruit development in cucumber [71], but their
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implication has not been reported yet in apple development and maturation. The

present study has shown that several genes involved in the brassinoid pathway might

play a role in the apple maturation and conservation at low temperature.

AS-impacted sub-graphs

In the 60DAH experiment we identify 29 AS-impacted sub-graphs, when considering

only graphs with at least three connected AS-impacted nodes. For instance, Figure 6

shows a Steiner tree containing the AS-impacted gene of the change motif #3.

This Steiner tree connect all the AS-impacted genes (drawn in orange triangle-

shaped nodes) thanks to sense (blue) and anti-sense (purple) nodes from the SAS

network. Red links are interactions from the S network impacted by anti-sense

transcription; they do not appear in the SAS network (nor in the Steiner tree). With

this visualization, we can see that the core of the network has been highly modified

by the integration of anti-sense actors, however AS-impacted genes that were direct

neighbors in the S network are still connected but in an indirect manner. The Steiner

tree from Figure 6 is composed by 26 AS-impacted genes and 82 Steiner nodes. We

perform a functional enrichment of AS-impacted genes in one hand and the whole

genes of the Steiner tree in an other hand using the GO slim. The 26 AS-impacted

genes are tagged with two GO slim categories: “other metabolic processes” (p-

value: 0.030) and “transcription, DNA-dependent” (p-value: 0.023). The functional

enrichment of the 108 genes of the Steiner tree are enriched by the “response to

abiotic or biotic stimulus” GO slim category with a p-value of 0.048, which is

consistent with our experimental context.

Conclusion

The original proposition of our work is to analyse the impact of anti-sense tran-

scription on a large scale. To achieve this goal, sense and anti-sense transcripts are

treated in the same way in our gene network inference method. By considering the

recent ideas of differential network analysis, our main proposal is to compare net-

work inferred from different sets of data: the sense data in one hand, and both the

sense and anti-sense data in an other hand. To compare the inferred networks, we

first propose the Extended Core Network inference method. Secondly we define the

differential network analysis that we performed with the Extended Core Network

method. The comparison of two networks inferred on different sets of actors shows

that the integration of the anti-sense data clearly modifies the network topology. We

define the AS-impacted genes and the change motifs, that identify those changes

in the network topology. The biological analysis of change motifs on apple data

highlights interesting actors and emphasizes the interest to take anti-sense data

into account in transcriptomic analysis. The differential network analysis identifies

subsets of new actors in the context of maturation and conservation of the fruit

that will be explored in further studies. We also propose to study the AS-impacted

sub-graphs to provide a more global view of the impact of anti-sense transcription

on biological functions.
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List of abbreviations
AS Anti-sense

C3NET Conservative Causal Core Network
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Figures

Tables
Additional Files
Additional file 1, Table 1 — List of the GO categories revealed by anti-sense data

List of the 104 revealed-by-AS terms. Column A: Identifier of the GO category. Column B: significant p-value.

Column C: significant corrected p-value below 0.05, the correction used is the Benjamini & Hochberg False

Discovery Rate (FDR) correction (Revealed-by-AS terms are ordered according to this criteria). Column D: Number

of apple genes from the sample tagged with the GO category. Column E: Number of apple genes from the genome

tagged with the GO category. Column F: Number of apple genes in the sample. Column G: Number of apple genes

in the genome. Column H: Name of the GO category. Column I: Apple genes from the sample tagged with the GO

category. Column J: Arabidopsis orthologs of the apple genes from the sample tagged with the GO category; here an

Arabidopsis ortholog with an anti-sense apple gene is identified by the “ AS” prefix.

Additional file 2, Table 1 — Change motifs enrichment

Results of the enrichment analysis of the 308 change motifs from the 60DAH experiment. Columns A to D: apple

genes, nodes of the change motif. Column E: GO slim category significantly over-represented by the genes present in

the change motif (“No enrichment” if there is no significantly over-represented category). Column F: significant

p-value below 0.05 (-1 if no enrichment). Column G: Apple genes from the sample tagged with the GO slim category.

Column H: Number of apple genes in the genome. Column I: Number of apple genes in the sample. Column J:

Number of apple genes from the genome tagged with the GO slim category. Column K: Number of apple genes from

the sample tagged with the GO slim category. Columns L to O: Arabidopsis orthologs of the apple genes of the

change motif. Column P: Arabidopsis orthologs of the apple genes from the sample tagged with the GO category.

Additional file 3, Table 1 — Functional annotation of change motifs significantly enriched according GO slim

classification

For each enriched change motif from Additional file 2, we associate functional keywords from the TAIR annotation.

Columns A to D: apple genes, nodes of the change motif. Column E: GO slim category significantly over-represented

by the genes present in the change motif. Column F: significant p-value below 0.05 (change motifs are ordered

according to this criteria). Column G: Arabidopsis orthologs tagged by the GO slim term associated with the change

motif. Columns H to N: Functional keywords from Arabidopsis orthologs (TAIR annotations), keywords consistent

with the biological context (fruit ripening in abiotic stress condition) are highlighted in orange. In columns H to N,

we use the following abbreviations: ABA: abscissic acid; SA: salicylic acid; JA: jasmonate acid; ROS: reactive oxygen

species. The three change motifs described in the manuscript (Figure 5) are highlighted in blue.

Additional file 4, Table 1 — H experiment — http://www.info.univ-angers.fr/%7elegeay/AF4%5fHarvest.zip

Normalized data (without background suppression) of the H (Harvest) experiment. The file contains the normalized

expression data of the 126,022 apple genes (rows) of the 22 samples (columns). The normalization method used is

the quantile normalization.

Additional file 5, Table 1 — 60DAH experiment — http://www.info.univ-angers.fr/%7elegeay/AF5%5f60DAH.zip

Normalized data (without background suppression) of the 60DAH (60 Days After Harvest) experiment. The file

contains the normalized expression data of the 126,022 apple genes (rows) of the 22 samples (columns). The

normalization method used is the quantile normalization.
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Graph of change motifs

Sense and Anti-sense 
(SAS) network

Differential Network 
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Figure 1 Differential network analysis. In order to identify change motifs, we realise a
differential network analysis from gene networks inferred by Extended Core Network on Sense data
in one hand, and Sense and Anti-Sense data in an other hand.
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(a) E. coli, accepting rates from ECN 0 (0%) to ECN 1 (100%).

(b) E. coli, accepting rates from ECN 0 (0%) to ECN 0.2 (20%).

(c) Yeast, accepting rates from ECN 0 (0%) to ECN 1 (100%).

(d) Yeast, accepting rates from ECN 0 (0%) to ECN 0.2 (20%).

Figure 2 Box plots of F1 scores for C3NET and ECN with different accepting rates. The
number following ECN indicates the accepting rates. The C3NET method is the first on the left,
then the ECN methods are sorted beginning with ECN 0. Box plots are obtained from 500
simulations on two datasets : E. coli (a and b) and S. cerevisiae (c and d). Accepting rates from
0% to 100% with a 10% step are tested (a and c), and from 0% to 20% with a 1% step (b and d).
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Figure 3 Illustration of a change motif in the Extended Core Network. A sense node is
represented in blue, an anti-sense node is represented in purple. The orange triangle-shaped node
is an AS-impacted gene. A red link is only present in the Sense network. A green link is present in
the Sense and Anti-Sense network. The link S1 ( S2 means that the mutual information
between S1 and S2 is maximal for S1.

Figure 4 Extended Core Network with a 5% accepting rate for sense-only 60DAH experiment.
Orange triangle-shaped nodes represent AS-impacted genes: they are connected to one or several
sense nodes in this graph, but in the SAS network, they only have anti-sense neighbors.
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(a) Changemotif #1. The AS-impacted gene is MDP0000251669 r.

(b) Changemotif #2. The AS-impacted gene is MDP0000205588 r.

(c) Changemotif #3. The AS-impacted gene is MDP0000917574 r.

Figure 5 Change motifs from the 60DAH experiment. Orange and blue nodes represent sense
nodes, an orange node being an AS-impacted gene. Purple nodes represent anti-sense nodes. A
red link is a link only from the sense network. A green link is a link only from the sense and
anti-sense network. A gray link is a link from both networks. Each apple gene (MDP) is associated
with its best homolog in Arabidopsis thaliana.
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Figure 6 Steiner tree of an AS-impacted sub-graph from the 60DAH experiment. Orange nodes
are AS-impacted genes, blue nodes are Steiner sense nodes, purple nodes are Steiner anti-sense
nodes. Gray links are connections from the SAS network, red links are connections from the S
network. Bigger nodes corresponds to the nodes from the change motif #3.
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