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Abstract. A challenging task in systems biology is to decipher cell reg-
ulation mechanisms. By comparing networks observed in two different
situations, the differential network analysis approach enables to high-
light interaction differences that reveal specific cellular responses. The
aim of our work is to study the role of natural anti-sense transcription
on cellular regulation mechanisms. Our proposal is to build and compare
networks obtained from two different sets of actors: the “usual” sense
actors on one hand and the sense and anti-sense actors on the other
hand. Our study only considers the most significant interactions, called
an Extended Core Network; therefore our differential analysis identi-
fies important interactions that are impacted by anti-sense transcrip-
tion. This paper first introduces our inference method of an Extended
Core Network; this method is inspired by C3NET, but whereas C3NET
only computes one interaction per gene, we propose to consider the most
significant interactions for each gene. Secondly, we define the differen-
tial network analysis of two extended core networks inferred with and
without anti-sense actors. On a local view, this analysis relies on change
motifs that describe which genes have their most important interactions
modified when the anti-sense transcripts are considered; they are called
AS-impacted genes. Then from a more global view, we consider how the
relationships between these AS-impacted genes are rewired in the net-
work with anti-sense actors. Our analysis is performed by computing
Steiner trees that represent minimal subnetworks connecting the AS-
impacted genes. We show that the visualisation of these results help the
biologists to identify interesting parts of the networks.

1 Introduction

Gene regulation is a key issue in bioinformatics. As micro-array produce large-
scale expression datasets, gene network inference is a useful approach to study
gene interactions, and a lot of methods have been proposed in the literature for
this reverse engineering task [1-4]. Differential network analysis [5-7] proposes
to study the cellular response to different situations. In medicine, differential
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network analysis is used to compare healthy tissues and diseased tissues in or-
der to reveal network rewiring induced by the disease [8]. In these approaches,
the comparison is made by using the same set of genes to construct the gene
networks.

Our work has the particularity to study gene networks with sense and anti-
sense transcripts. Anti-sense RN As are endogenous RNA molecules whose partial
or entire sequences exhibit complementarity to other transcripts. Their differ-
ent functional roles are not completely known but several studies suggest that
they play an important role in stress response mechanisms [9]. For instance,
a significant effect is the post-transcriptional gene silencing: the self-regulatory
circuit where the anti-sense transcript hybridizes with the sense transcript to
form a double strand RNA (dsRNA) that is degraded in small interfering RNAs
(siRNA). Previous studies on Arabidopsis Thaliana showed that sense and anti-
sense transcripts for a defense gene (RPP5) form dsRNA and generate siRNA
which presumably contributes to the sense transcript degradation in the absence
of pathogen infection [10].

Our work focuses on apple because a recent study [11] suggests that a large
majority of protein coding genes of this organism are actually concerned by anti-
sense transcription. The authors have combined microarray analysis with a ded-
icated chip and high-throughput sequencing of small RNAs to study anti-sense
transcription in eight different organs (seed, flower, fruit, ...) of apple (Malus x
domestica). Their atlas of expression shows several interesting points. Firstly, the
percentage of anti-sense expression is higher than that reported in other stud-
ies, since they identify anti-sense transcription for 65% of the sense transcripts
expressed in at least one organ, while it is about 30% in previous Arabidop-
sis Thaliana studies. Secondly, the anti-sense transcript expression is correlated
with the presence of short interfering RN As. Thirdly, anti-sense expression levels
vary depending on both organs and Gene Ontology (GO) categories. It is higher
for genes belonging to the “defense” GO category and on fruits and seeds.

The work described in this paper proposes a large-scale analysis of apple
transcriptomic data, with measures of anti-sense transcripts in the context of
fruit ripening. The fruit ripening is a stress-related condition involving “de-
fense” genes. To highlight the impact of anti-sense transcription, we propose to
compare context-specific gene networks that involve two kinds of actors, on one
hand the sense transcripts that are usually used in gene networks and on the
other hand the sense and anti-sense transcripts. However gene network inference
methods generally find many false positive interactions, and some authors have
proposed to study the core part of a gene network [2], by only computing for
each gene the most significant interaction with another gene. This constraint
seems too restrictive and we developed a method where we extend the core net-
workby considering for each gene a small number of significant interactions. We
call our gene network inference method the Fxtended Core Network. Then we
use this inference method in order to discover which interactions of the core
network are modified when we integrate the anti-sense transcripts. We define
the notion of AS-impacted genes to describe sense genes whose interactions are
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highly impacted by the integration of anti-sense transcripts in the data. It is also
interesting to study the relationships between these AS-impacted genes and we
explain how the rewiring around AS-impacted genes can be computed by Steiner
trees.

In section 2, we present the Extended Core Network Inference method and
we evaluate it on artificial datasets. In section 3, we present our workflow to
compare two core gene networks built on different sets of actors and we define
the change motifs that highlight significant differences between the interactions.
For each step of our workflow, we provide results obtained for the apple data.

2 Extended Core Network inference method

2.1 Motivations

Several methods have been proposed to infer gene networks from transcriptomic
data. Reviews of these reverse engineering methods can be found in [1,3,4]. Some
inference methods reconstruct pairwise gene interaction networks by measuring
with a statistical criterion whether two genes are co-expressed or co-regulated.
This statistical measure can be Spearman or Pearson correlation [12], or mutual
information [2,13], that enables the detection of non-linear relationships. These
methods need a step of thresholding to decide which values of the statistical
measure are significant. One major drawback of these methods is that many of
the predicted interactions are false positives. We can differentiate two types of
false positive interactions: an interaction that does not biologically exist, and
an indirect interaction. If two genes go and g3 are regulated by g1, then mutal
information (as well as correlation) between go and g3 is high and an indirect
interaction is put in the inferred network. Indirect interactions lead in large
gene networks difficult to interpret by biologists and they must be pruned from
the output networks [13,14]. To avoid false positives, the Conservative Causal
Core Network (C3NET) [2] proposes to compute the core of a gene network,
by selecting for each gene a unique interaction defined by the maximal mutual
information value. Our aim is to compare two inferred networks to identify sig-
nificant changes in the interactions when we take into account the anti-sense
actors. Therefore only considering the maximal interaction for each gene is too
restrictive, since several mutual information values may be very close to the
maximum, and a strict comparison of the maximal values in two situations is
not relevant to compare two networks. So we propose a gene network inference
method, based on C3NET and named Eztended Core Network (ECN), where for
each gene the most significant interactions are put in the inferred network.

2.2 Preprocessing

The microarray data we use are intensity values of each gene in each sample. We
first normalize the data using quantile normalization [15,16]. We also copula-
transform the data [17,18] before estimating the mutual information for each
pair of genes.
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Extended Core Network uses the mutual information in order to estimate
the connections between genes. Given the expression vectors I and J of genes
i and j respectively, we estimate the mutual information M[i, j] with the same
estimator used in C3NET:

9197

Mii.g) = g lox(TE)

where o7 and o3 are the variance of I and J respectively, and |C] is the deter-
minant of the covariance matrix.

As C3NET or ARACNE [13], we test the statistical significance of pairwise
mutual information by re-sampling methods. All non-significant values are set
to 0 before applying the inference algorithm.

2.3 Algorithm

The Extended Core Network (ECN) algorithm computes an adjacency matrix
network for a set of genes G. We first initialize the matrix by considering that
there is no connection at all. Then, for each gene, we determine its neighbours.
The neighbours of a gene g are the ones with the best mutual information values
with g. We use an accepting rate r in order to identify the threshold value
that determine if a gene ¢’ has one of the best mutual information with g. The
threshold of g is fixed by the maximal mutual information of g with other genes,
and the accepting rate r. The accepting rate must be between 0 and 1; 0 means
that only the best neighbour will be selected and 1 means that all significant
interactions will be selected. When the accepting rate is 0, it is almost the same
as in C3NET: if two interactions share the best mutual information, both of
them will be selected in ECN whereas only one will be selected in C3NET.
When the accepting rate is 1, the interactions of the output network are all the
significant mutual information values. Non-significant values are set to 0 in the
preprocessing step, so that only non-null values are selected as interactions in
the output network. Mutual information is a symmetrical measure, that is why
the final step of C3NET is to transform the asymmetrical adjacency matrix into
a symmetrical one: the result is thus an undirected graph. Because we want to
compare two networks and see which interactions are modified, our algorithm
provides a directed network so that we can identify which significant changes
occur in the connexions of a gene when we integrate anti-sense actors in the
algorithm.

2.4 Evaluation on artificial datasets

We now evaluate our Extended Core Network algorithm on simulated data, and
compare it with C3NET. We use the same protocol to simulate the artificial data
as in [2]. We use biological networks from E. coli [19,20] and S. cerevisiae [21].
We generate our simulated data with sub-networks of these biological networks
thanks to SynTREN [22]. SynTREN allows us to simulate the activity of genes
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Fig. 1: Box plots of F; scores for C3NET (first left) and ECN with different
accepting rates. The number following ECN indicates the accepting rates. The
box plot next to the C3NET one is ECN_ 0.

from the selected network with noise. We simulate two different expression data:
one with FE. coli, the other with the yeast. SynTREN gives us two expression
datasets of 100 samples and 200 genes.

For each simulated expression data, we performed 500 simulations. For each
simulation, we selected randomly the samples used to infer the gene networks.

To evaluate the error rate of each inference method, we use the F; score®.

Figure 1 shows the box plots of the F} scores obtained by the simulations. We
use ECN that provides undirected network, as C3NET, to compare them. The
ECN__ 0 method corresponds to the Extended Core Network with a 0% accepting
rate. It differs from C3NET if there are several genes g’ which share the maximal
mutual information with the gene g. ECN has the same complexity as C3NET,
that is O(n?), where n is the number of genes. We can see that ECN is better
than C3NET when the accepting rate is low on E. coli (Figure la and b) and
yeast (Figure 1c and d). The score of ECN depends on the accepting rate used.
We can see that first, rising the accepting rate improves the inference method,
but quickly it degrades it. When we look closer between 0 and 20% of accepting
rate (Figure 1b and d), we can see that an accepting rate of 7% (ECN__0.07) is
acceptable on simulated data. We have tested our method on other simulated
data and we observed that an accepting rate between 5 and 10% is the best
compromise.

3 _ presicion-recall
Fl =2 precision+recall
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3 Differential Network Analysis

We now describe the differential analysis that we perform on two extended core
networks to explore the role of anti-sense transcription. We first describe the
sense and anti-sense data obtained in experiments about apple ripening. Then
we define the notions of change motifs and AS-impacted genes revealed by the
comparison of the two networks and we report the results for the apple data.
To complete this analysis, we study how the interactions between AS-impacted
genes are rewired.

3.1 Biological material

In order to study the impact of anti-sense transcripts, we use data of apple fruit
during fruit ripening. We analyse RNA extracted from apple fruits thanks to the
chip AryANE v1.0 containing 63011 predicted sense genes and 63011 comple-
mentary anti-sense sequences. This chip allows us to study the role of anti-sense
transcripts at the genome-wide level by supplying transcriptional expression on
both sense and anti-sense transcripts. We study the fruit ripening process de-
scribed by two conditions: harvest (H) and 60 days after harvest (60DAH), and
for each condition, 22 samples of apple fruit have been analysed. We first iden-
tify transcripts displaying significant differences between the two conditions (p-
val<1%). With a further threshold of 1 log change between the two conditions,
we found 931 sense and 694 anti-sense transcripts differentially expressed, with
among them, 200 transcripts for which both sense and anti-sense fulfil the con-
dition. We use these 1625 transcripts into our analysis. A differential functional
analysis has been performed in [23] with those transcripts. The differential func-
tional analysis reveals ontological terms that are significantly represented only
when anti-sense transcripts are considered in conjunction with the sense tran-
scripts. The fruit ripening is a stress-related condition involving “defense” genes,
and our analysis revealed terms such as hyperosmotic response and response
to cold, which are ontological terms related to a stress response. So this func-
tional approach has shown the importance of taking into account the anti-sense
information.

3.2 Change motifs and AS-impacted genes

Our differential network analysis compares the extended core network inferred
from the sense data (S) with the one inferred from the sense and anti-sense data
(SAS). We compare these two networks thanks to AS-impacted genes and change
motifs. We define an AS-impacted gene as a sense gene s that is linked to one or
many other sense actors in the S network, but these interactions are no longer
present in the SAS network. In other words, an AS-impacted gene is a sense node
s which has no outer link common to the S and the SAS networks. This change
of interactions occurs because in the SAS core network, the most significant
interactions (greatest values of the mutual information criterion) for this gene
s are interactions with anti-sense actors. By merging the S and SAS networks,
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Fig. 2: Tllustrations
of change motifs
with Extended
Core Network. A
sense node is rep-
resented in blue,
an anti-sense node
is represented in
purple. The orange
triangle-shaped
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Fig. 3: Extended Core Network with a 5% accepting rate
for sense-only 60DAH experiment. Orange triangle-shaped
nodes represent AS-impacted genes: they are connected to
one or several sense nodes in this graph, but in the SAS
network, they only have anti-sense neighbours.

we define a change motif [23,24] as an AS-impacted gene surrounded by all of
its neighbours from the S and SAS networks. The change motifs are identified
by comparing the two adjacency matrices of S and SAS.Change motifs allow us
to identify interactions that are “modified” by adding anti-sense actors into the
network inference. The information provided by these change motifs would be
omitted by a classical gene network inference relying only on sense data. Figure 2
illustrates what we define as a change motif. The S and SAS network are both
drawn in the same graph. A sense node is blue and an anti-sense node is purple.
A red link is a connection present only in S network, a green link is a connection
present only in SAS network and a gray link is a connection present in both
networks. Figure 2 represents a change motif because the node S1 has no outer
link common to the S network (S1 — S2 and S1 — S4) and the SAS network
(S1 — AS3). It means that S1 shares a greater mutual information with AS3
than with S2 and S4.

The accepting rate of Extended Core Network determines the number of
neighbours a node has, and consequently the number of change motifs. With an
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accepting rate of 5%, we identified 300 change motifs in the H experiment and
308 motifs in the 60DAH experiment. The number of change motifs shows that
anti-sense transcripts have a real impact because about 30% of sense actors are
AS-impacted genes.

Change motifs allow us to identify areas in the sense core network where
anti-sense transcription has a deep impact, and we can identify anti-sense actors
that modify the core network connections. The genes involved into a change
motif will be studied to analyse the impact of anti-sense transcription.

Figure 3 shows the graphical result of the differential network analysis for
the 60DAH experiment. The graph was drawn using Cytoscape [25]. We can see
that AS-impacted genes (orange triangles) are spread all over the network.

3.3 Steiner trees to compute the rewiring of AS-impacted
sub-graphs

Figure 3 shows that it is difficult to extract relevant information from the graph
visualisation. Therefore it is interesting to focus on some restricted parts of
the network to help the study of biological processes. We see on Figure 3 that
many AS-impacted genes are connected together and thus form a part of the
network on which the anti-sense transcription has a great impact. Therefore a
second stage of our differential analysis proposes a more thorough study of the
sub-networks containing many AS-impacted genes. This analysis relies on the
Steiner tree problem that we explain below, before presenting our approach.

Given an undirected graph G = (V, E) with a set of vertices V and a set
of edges F, the classical Steiner tree problem aims to find, for a set of vertices
S called terminal nodes, a sub-graph G’ of G containing S such that there ex-
ists a path between every pair of vertices of S and with a minimal number of
edges. The nodes of V — .S necessary in the Steiner tree G’ to obtain a connected
graph are called Steiner vertices. When dealing with weighted edges, the general
Steiner tree problem aims to find a minimal cost sub-graph spanning the ter-
minal nodes. In bioinformatics, the Steiner tree problem can be used to extract
information from the large databases of assessed molecular interactions. For ex-
ample, if a biologist wants to study the implication of a set of proteins in the
interactome, it can extract from a dedicated database a Steiner tree with these
proteins as terminal nodes. As this combinatorial optimization problem is known
to be NP-complete [26], several heuristic methods have been proposed to deal
with large graphs. A recent experimental study on a large human protein-protein
interaction network can be found in [27].

Our proposal to study the impact of AS-transcription on the gene interac-
tions is the following. Let us recall that we have computed two extended core
networks: the network S contains sense actors whereas the network SAS con-
tains sense and anti-sense actors. The comparison of these two networks leads to
identify AS-impacted genes, that are nodes of the network S strongly connected
to anti-sense transcripts in the network SAS. It is thus interesting to study the
impact of anti-sense transcription on groups of AS-impacted genes. We now de-
fine an AS-impacted sub-graph as a connected sub-graph of the sense network
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S restricted to AS-impacted genes and containing at least two such genes. If
SG is an AS-impacted sub-graph, that means that its nodes are connected in
the sense network S but as these nodes are AS-impacted, these interactions no
longer appear in the SAS network. Thus it is interesting to wonder what are the
relationships between these nodes in the SAS network. One way to answer this
question is to consider the Steiner tree problem. For each AS-impacted sub-graph
of S, we look for a Steiner tree in the SAS network connecting its AS-impacted
genes. If it can be found, this Steiner tree shows how the interactions present
in S between these AS-impacted genes are rewired in SAS. Different ways can
be proposed to the biologists to exploit this information. A visualisation of the
rewiring of the interactions can help to focus on interesting interactions. A func-
tional analysis of the AS-impacted genes can be realized to decipher the main
functions impacted by anti-sense transcription.

To compute the minimum Steiner tree, we use a heuristic approach called
the shortest paths based approximation [27]. The methods constructs the Steiner
tree ST by successive steps. The first step selects one terminal node as the first
node of the Steiner tree ST. Then each following step connects to ST, by a
shortest path, one terminal node n that is not yet in the current ST. The node
n is chosen as the closest node to all the nodes of the current ST'. The algorithm
stops when all the terminal nodes are in ST and the resulting tree is pruned by
a final step that computes a minimum spanning tree for ST

As shown experimentally in [27], the shortest paths heuristic is a good com-
promise between solution quality and computational speed for large graphs such
as the ones addressed in bioinformatics networks. SteinerNet is a R package
that implements four different approximate and one exact algorithms to solve
the minimum Steiner tree problem described in [27]. The SteinerNet package has
not been updated since 2013 but its dependencies have changed; so the Steiner-
Net package has been deleted from CRAN repository. We updated the package
in order to use it with R version 3.2.0. We will be pleased to share this updated
package upon request.

We use SteinerNet in order to compute Steiner trees of AS-impacted sub-
graphs from the H and 60DAH experiments. The Steiner tree from Figure 4 is
composed by 26 terminal nodes (orange) and 41 Steiner nodes (blue and purple).
This tree is the rewiring of the 26 AS-impacted genes from one AS-impacted sub-
graph of the 60DAH experiment. The 26 terminal nodes are the 26 AS-impacted
genes, meaning that all the genes from the AS-impacted graph were rewired. The
red links from Figure 4 are the connections from the S graph, that is the con-
nections from the AS-impacted sub-graph. This representation allows us to see
if the Steiner nodes connecting terminal nodes “replace” an existing connection
or “create” a new one between two AS-impacted genes.

Steiner trees allow biologists to identify the rewiring among AS-impacted
genes and thus the genes that are highly impacted by anti-sense transcripts. The
next question is to find if Steiner nodes that allow this rewiring share biological
functions with the AS-impacted genes. We identify GO terms associated with
each gene from the Steiner tree and we look for common terms between terms
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Fig.4: Steiner tree of an AS-impacted sub-graph from the 60DAH experiment.
Orange nodes are AS-impacted genes, blue nodes are Steiner sense nodes, purple
nodes are Steiner anti-sense nodes. Gray links are connections from the SAS
graph, red links are connections from the S graph.

associated with terminal and Steiner nodes. Then we can give to the biologists
a list of genes which are associated with the common terms.

From the Steiner tree of Figure 4, we identified 57 different terms associated
to the terminal nodes, and 143 associated to the Steiner nodes, with only 16
terms in common. Because the fruit ripening studied with the 60DAH experiment
is a stress for the fruit, the biologists want to study the response of stress. We
identify 4 common terms related to a stress response. Our method permits to
identify a set of genes which appear in the Steiner trees with a GO term related
to our biological function, the stress response. From the 29 AS-impacted sub-
graphs of the 60DAH experiment, we computed 35 Steiner trees and created a set
of 10 genes related to the response of stress.

4 Conclusion

In order to study on a large scale the impact of anti-sense transcription, we
propose to infer gene networks, with the particularity to integrate anti-sense
transcripts in the process. We extend the recent ideas introduced in the field
of differential network analysis, because in our framework, the main idea is to
compare a network inferred from sense data and a network inferred from sense
and anti-sense data. To achieve such a comparison, we first propose the Extended
Core Network inference method. Extending the idea proposed by C3NET, this
method builds a co-expression gene network where only the core of the network is
considered by selecting the most important interactions for each gene. Secondly
we extend the differential network analysis that we performed in [23] by using
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the Extended Core Network method instead of C3NET. The comparison of two
networks inferred on different sets of actors leads to define change motifs and AS-
impacted genes, that highlight the impact of integrating anti-sense transcription
in the gene network. We also propose to complete the differential analysis by
studying the rewiring of the AS-impacted sub-graphs.The Steiner trees computed
by our method provide a more global view to study the impact of anti-sense
transcription on biological functions.
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