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Abstract—A key issue in bioinformatics is to decipher cell
regulation mechanisms. By comparing networks observed in
two different situations, differential network analysis enables
to highlight differences that reveal specific cellular responses.
The aim of our work is to study the role of natural anti-sense
transcription on cellular regulation mechanisms. Our proposal is
to build and compare networks obtained from two different sets
of actors: the “usual” sense actors on one hand and the sense and
anti-sense actors on the other hand. Our study only considers the
most significant interactions, called an Extended Core Network;
therefore our differential analysis identifies important interac-
tions that are on the influence of anti-sense transcription. Our
inference method of an Extended Core Network is inspired by
C3NET, but whereas C3NET only computes one interaction per
gene, we propose to consider the most significant interactions
for each gene. We define the differential network analysis of
two extended core networks inferred with and without anti-sense
actors. This relies on change motifs that describe which gene-gene
interactions of the extended core network are modified when we
integrate anti-sense actors in the data. As our method focuses on
the most significant interactions, these motifs highlight the impact
of anti-sense transcription. The networks motifs obtained by our
workflow are then compared with assessed biological knowledge.
The study reported in this paper is realized on transcriptional
data from apple fruit in a context of fruit ripening; the change
motifs revealed by our analysis are matched on a protein-protein
interaction network and give a small set of interesting actors that
deserve further biological investigation.

I. INTRODUCTION

Gene regulation is a key issue in bioinformatics. As micro-
array produce large-scale expression datasets, gene network
inference is a useful approach to study gene interactions,
and a lot of methods have been proposed for this reverse
engineering task [1]–[4]. The differential network analysis
[5]–[7] proposes to study the cellular response to different
situations. In medicine, the differential network analysis is
used to compare healthy tissues and diseased tissues in order
to reveal network rewiring induced by the disease [8]. In these
approaches, the compared gene networks involve the same set
of genes.

Our work has the particularity to study gene networks
with sense and anti-sense transcripts. Anti-sense RNAs are
endogenous RNA molecules whose partial or entire sequences

exhibit complementarity to other transcripts. Their different
functional roles are not completely known but several studies
suggest that they play an important role in stress response
mechanisms [9]. Previous studies on Arabidopsis Thaliana
showed that sense and anti-sense transcripts for a defense gene
(RPP5) form dsRNA and generate siRNA which presumably
contributes to the sense transcript degradation in the absence
of pathogen infection [10].

A recent study [11] of anti-sense transcription in eight
different organs (seed, flower, fruit, ...) of apple (Malus ×
domestica) shows several interesting points. Firstly it identi-
fies anti-sense transcription for 65% of the sense transcripts
expressed in at least one organ, while it is about 30% in pre-
vious Arabidopsis Thaliana studies. Secondly, the anti-sense
transcript expression is correlated with the presence of short
interfering RNAs. Thirdly, anti-sense expression levels vary
depending on both organs and Gene Ontology (GO) categories.
They are higher for genes belonging to the “defense” GO
category and on fruits and seeds.

The work described in this paper proposes a large-scale
analysis of apple transcriptomic data, with measures of anti-
sense transcripts in the context of fruit ripening. The fruit
ripening is a stress-related condition involving “defense”
genes. To highlight the impact of anti-sense transcription,
we propose to compare context-specific gene networks that
involve two kinds of actors, on one hand the sense transcripts
that are usually used in gene networks and on the other hand
the sense and anti-sense transcripts. However gene network
inference methods generally find many false positive inter-
actions, and some authors have proposed to study the core
part of a gene network [2], by only computing for each gene
one significant interaction. In order to compare networks, this
approach is too restrictive and we propose to compute an
Extended Core Network where each gene is connected to
its most important neighbors. We use this inference method
in order to discover which interactions of the core network
are modified when we integrate the anti-sense transcripts. To
characterize these modifications, the notion of change motifs
for the comparison graph has been defined in [12]. Here we
redefine this notion to use it with our gene network inference



method. Our preliminary results on the apple datasets show
that relevant informations are provided by this approach.

In section II, we present the Extended Core Network In-
ference method. In section III, we present our workflow for
comparison of two extended core networks built on different
sets of actors and we define the change motifs that highlight
significant differences between the interactions. We provide
the results obtained for the apple data and assess their biolog-
ical relevance by the integration of a protein-protein network.

II. EXTENDED CORE NETWORK INFERENCE METHOD

A. Motivations

Several methods have been proposed to infer gene networks
from transcriptomic data [1], [3], [4]. Some inference methods
reconstruct pairwise gene interaction networks by measuring
with a statistical criterion whether two genes are co-expressed
or co-regulated. This statistical measure can be Spearman or
Pearson correlation [13], or mutual information [2], [14], [15],
that enables the detection of non-linear relationships. One
major drawback of these methods is that many of the predicted
interactions are false positives. To avoid false positives, the
Conservative Causal Core Network (C3NET) [2] proposes to
compute the core of a gene network, by selecting for each gene
a unique interaction defined by the maximal mutual informa-
tion value. Our aim is to compare two inferred networks to
identify significant changes in the interactions when we take
into account the anti-sense actors. Therefore only considering
the maximal interaction for each gene is too restrictive, since
several mutual information values may be very close to the
maximum, and a strict comparison of the maximal values in
two situations is not relevant to compare two networks. So we
propose a gene network inference method, based on C3NET
and named Extended Core Network (ECN), where for each
gene the most significant interactions are put in the inferred
network.

B. Inference of an extended core network

The microarray data we use are intensity values of genes
and antisense transcripts in biological samples. After a quantile
normalization [16] and a copula-transformation [17], Extended
Core Network uses a classical estimator of mutual information
in order to estimate the connections between each pair of
genes. As C3NET or ARACNE [14], we test the statistical
significance of pairwise mutual information values by re-
sampling methods and all non-significant values are set to 0
before applying the inference algorithm.

The network we obtain is represented by an adjacency
matrix. We first initialize the matrix by considering that there
is no connection at all. Then, for each gene, we will look
for his neighbours. The neighbours of a gene g are the ones
with the best mutual information. We use an accepting rate
r in order to identify the threshold value that determine if a
gene g′ has one of the best mutual information with g. The
threshold of g is fixed by the maximal mutual information of
g with other genes, and the accepting rate r. The accepting
rate must be between 0 and 1; 0 means that only the best

neighbour will be selected and 1 means that all significant
interactions will be selected. When the accepting rate is 0,
it is almost the same as in C3NET: if two interactions share
the best mutual information, both of them will be selected in
ECN whereas only one will be selected in C3NET. When the
accepting rate is 1, the interactions of the output network are
all the significant mutual information values. We have tested
our method on several simulated datasets thanks to SynTREN
[18]. We used precision and rappel to evaluate the performance
of our inference methods with different accepting rates and we
observed that an accepting rate between 5 and 10% is a good
choice.

Mutual information is a symmetrical measure, that is why
the final step of C3NET transforms the asymmetrical adja-
cency matrix into a symmetrical one: the result is thus an
undirected graph. Because we want to compare two networks
to decide whether the most important interactions on a gene
g are modified when we integrate anti-sense actors in the
algorithm, our inference method provides a directed network
so that we can identify which significant changes occur in the
connexions of a gene g.

III. DIFFERENTIAL NETWORK ANALYSIS

We now describe the differential analysis that we perform
on two extended core networks to explore the role of anti-sense
transcription. We first describe the sense and anti-sense data
obtained in experiments about apple ripening. Then we define
the change motifs revealed by the network comparison and we
report the results. To complete this analysis, we compare the
significant interaction changes with assessed knowledge about
protein-protein interactions.

A. Biological material

In order to study the impact of anti-sense transcripts, we
use data of apple fruit during fruit ripening. The fruit ripening
is a stress-related condition involving “defense” genes. We
analyse RNA extracted from apple fruits thanks to the chip
AryANE v1.0 containing 63011 predicted sense genes and
63011 complementary anti-sense sequences. We study the fruit
ripening process described by two conditions: harvest (H) and
60 days after harvest (60DAH), and for each condition, 22
samples of apple fruit have been analysed. We first identify
transcripts displaying significant differences between the two
conditions (p-val<1%). With a further threshold of 1 log
change between the two conditions, we found 931 sense (S)
and 694 anti-sense transcripts (AS) differentially expressed,
with among them, 200 transcripts (S ∩ AS) for which both
sense and anti-sense fulfil the condition.

B. Change motifs

Our differential analysis compares the network inferred
from the sense data (S) with the network inferred from the
sense and anti-sense data (S ∪AS, noted SAS). We compare
these two networks thanks to change motifs: change motifs
allow to highlight the part of the core network where anti-
sense transcripts have an impact. The notion of change motif



Fig. 1. Part of the graph of change motifs from the 60DAH experiment. A
blue node is a sense node, a purple node is an anti-sense node. A red link is
an interaction only in the S network, a green link is an interaction only in the
SAS network, and a grey link is an interaction in both S and SAS network.
Here we can see that S1 is linked by S2 with a red outer link, and by AS3
with a green outer link meaning those three genes form a change motif.

has been used in [12] in a restricted case where the networks
are computed with C3NET. When comparing Extended Core
Networks, we define a change motif as a sense actor s that is
linked to one or many other sense actors in the S network, but
these interactions are no longer present in the SAS network.
This change of interactions occurs because in the SAS net-
work, the most significant interactions (greater values of the
mutual information criterion) for this gene s are interactions
with anti-sense actors. So change motifs allow us to identify
interactions that are “modified” by adding anti-sense actors
into the network inference. The information provided by these
change motifs would be omitted by a classical gene network
inference relying only on sense data. In Figure 1 we have an
illustration of what we define as change motifs. The S and
SAS network are both drawn in the same graph. A sense
node is blue and an anti-sense node is purple. A red link
is a connection present only in S network, a green link is
a connection present only in SAS network and a gray link is
a connection present in both networks. A change motif is a
blue node with no gray outer link and at least one green outer
link.

The accepting rate of Extended Core Network determines
the number of neighbours a node has, so it changes the number
of change motifs in a network. Due to the experimentations
on simulated data, we decided to use the accepting rate of
5% and with this rate, we identified 300 change motifs in
the H experiment and 308 motifs in the 60DAH experiment.
The number of change motifs shows that anti-sense transcripts
have a real impact because about 30% of sense actors are
involved into a change motif. Figure 1 shows the graph of
change motifs from the 60DAH experiment. The graph of
change motifs is obtained by combining the S and SAS
network inferred with ECN 5%. By using directed graph
we can thus identify more modifications of interactions. The
graph of change motifs allows biologists to explore easily the
modifications that occurred in their experiment. Change motifs

Fig. 2. Part of the ECN 5% graph for sense-only 60DAH experiment. Orange
triangle-shaped nodes represent nodes involved in a change motif. A bold
green link represent a connection present in the interactome. A bold red link
represent a connection present in the interactome and involved in a change
motif.

allow us to identify areas in the sense core network where anti-
sense transcription have a deep impact, and we can identify
anti-sense actors that modify the core network connections.
The genes involved into a change motif will be studied to
analyse the impact of anti-sense transcription.

C. Biological knowledge integration

By exploring Figure 1, biologists can look for interesting
interaction modifications in their experiments. The analysis
we propose can be completed by the integration of biological
knowledge. More precisely we can compare the inferred
interactions and the change motifs with biologically assessed
interactions.

Here, we propose to match gene networks obtained by tran-
scription data with interactome knowledge. We look for every
interactions of the gene networks obtained thanks to Extended
Core Network into the interactome. All the interactions of
a co-expression network implies an interaction in a protein-
protein network. To identify the interactions that can be found
at the transcriptomic and molecular level is interesting. We also
identify if change motifs are involved in such interactions.

As an interactome is not available for the apple, we use
Arabidopsis interactome [19] and orthologs in order to in-
tegrate this biological knowledge in our analysis. The gene
networks are inferred with all the data, meaning the 931
transcripts for the S network and the 1625 transcripts for the
SAS network, then we filter the nodes of the networks to keep
only the ones which have an Arabidopsis ortholog. This step
changes the topology of the networks, because only 791 sense
transcripts have an ortholog, and 575 anti-sense transcripts
have an ortholog. The S network has now 791 nodes and the
SAS network has 1366 nodes.

We use Extended Core Network with an accepting rate
of 5% in order to create S networks in both H and 60DAH
experiments. We look if there exists a path in the interactome
between two directly connected genes in the ECN network.
For example, if g1 and g2 are directly connected in the



ECN network, we look for a path between g1 and g2 in
the interactome. We use the AI-1 version of interactome
composed by protein-protein interactions from the main and
repeat version, and also from literature. It represents a graph
of 4866 nodes and 11374 interactions.

We perform this differential network analysis only with the
S networks because anti-sense transcripts are not supposed
to interact with proteins. First, we kept only genes with
Arabidopsis orthologs and more than two-thirds of change
motifs are remaining. Second, we observe that only 3% of
edges from the ECN sense-only network can be found in the
interactome. However, we can note that some of these edges
are also involved in a change motif. If we find an edge of the
ECN sense only network in the interactome, it means that the
two sense actors are involved into a same pathway that allows
proteins to interact with each other. An edge of the ECN sense
only network in a change motif and in the interactome means
that the two sense actors are involved into a same pathway but
there is at least one of these sense actors that has a greater
mutual information with an anti-sense actor. This is why sense
and anti-sense actors linked by these edges are interesting to
study. Figure 2 shows the graphical result of the differential
network analysis for the 60DAH experiment. The graph was
drawn using Cytoscape [20]. We can see that sense nodes that
are involved in a change motif (orange triangles) are spread
all over the network. Some interactions involved in a change
motif which are found in the interactome are in the center of
the network and will be studied in the following of our work.

IV. CONCLUSION

In order to study on a large scale the impact of anti-
sense transcription, we propose to infer gene networks, with
the particularity to integrate anti-sense transcripts in the pro-
cess. We extend the recent ideas introduced in the field of
differential network analysis, because in our framework, the
main idea is to compare a network inferred from sense data
and a network inferred from sense and anti-sense data. To
achieve such a comparison, we first propose the Extended
Core Network inference method. Extending the idea proposed
by C3NET, this method builds a co-expression gene network
where only the core of the network is shown by selecting
the most important interactions for each gene. Secondly we
extend the differential network analysis that we performed in
[12] by using the Extended Core Network method instead of
C3NET. The comparison of two networks inferred on different
sets of actors leads to define change motifs that highlight
gene interactions that are impacted by anti-sense transcription.
The visualisation of these change motifs helps the biologist to
focus on interesting parts of the networks. We also propose to
complete the differential analysis by integrating the revealed
motifs in a biological network like a protein-protein network.
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