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Abstract. Several transcriptomic studies have shown the widespread
existence of anti-sense transcription in cell. Anti-sense RNAs may be
important actors in transcriptional control, especially in stress response
processes. The aim of our work is to study gene networks, with the par-
ticularity to integrate in the process anti-sense transcripts. In this paper,
we first present a method that highlights the importance of taking into
account anti-sense data into functional enrichment analysis. Secondly, we
propose the differential analysis of gene networks built with and with-
out anti-sense actors in order to discover interesting change motifs that
involve the anti-sense transcripts. For more reliability, our network com-
parison only studies the conservative causal part of a network, inferred
by the C3NET method. Our work is realized on transcriptomic data from
apple fruit.

1 Introduction

Understanding the regulation mechanisms in a cell is a key issue in bioinformat-
ics. As large-scale expression datasets are now available, gene network inference
(GNI) is a useful approach to study gene interactions [1], and a lot of methods
have been proposed in the literature for this reverse engineering task [2,3,4].
Going a step further, the field of differential network analysis [5,6] proposes to
decipher the cellular response to different situations. In medicine the compari-
son of interaction maps observed in cancerous tissues and healthy tissues may
reveal network rewiring induced by the disease [7]. In these approaches, the com-
parative analysis is performed on networks that involve the same set of actors,
namely the genes or proteins of the studied organism.

The aim of our work is to study gene networks, with the particularity to
integrate in the process anti-sense transcripts. Anti-sense RNAs are endoge-
nous RNA molecules whose partial or entire sequences exhibit complementarity
to other transcripts. Their different functional roles are not completely known
but several studies suggest that they play an important role in stress response



mechanisms [8]. A recent study with a full genome microarray for the apple has
detected significant anti-sense transcription for 65% of expressed genes [9], which
suggests that a large majority of protein coding genes are actually concerned by
this process.

The work described in this paper proposes a large-scale analysis of apple
transcriptomic data, with measures of anti-sense transcripts. To highlight the
impact of anti-sense transcription, we propose to compare context-specific gene
networks that involve different kinds of actors, on one hand the sense transcripts
that are usually used in gene networks and on the other hand the sense and anti-
sense transcripts. GNI methods generally find many false positive interactions,
and some authors have proposed to study the core part of a gene network [10], by
only computing for each gene the most significant interaction with another gene.
We follow this line in order to discover which interactions of the core network
are modified when we integrate in our GNI method the anti-sense transcripts.
To characterize these modifications, we define the notions of change motifs for
the comparison graph. Our preliminary results on the apple datasets show that
relevant information is provided by this approach.

In section 2, we present the motivations of this work and the apple datasets
that are used in our study. In section 3, we present a differential functional
analysis that reveals the interest of taking into account anti-sense data. In section
4, we present our method to compare two core gene networks and to detect motifs
that underline the role of anti-sense transcripts.

2 Motivations and biological material

Several studies have revealed the widespread existence of anti-sense RNAs in
many organisms. Anti-sense transcripts can have different roles in the cell [8].
A significant effect is the post-transcriptional gene silencing: the self-regulatory
circuit where the anti-sense transcript hybridizes with the sense transcript to
form a double strand RNA (dsRNA) that is degraded in small interfering RNAs
(siRNA). Previous studies on Arabidopsis Thaliana showed that sense and anti-
sense transcripts for a defense gene (RPP5) form dsRNA and generate siRNA
which presumably contributes to the sense transcript degradation in the absence
of pathogen infection [11].

In [9], the authors have combined microarray analysis with a dedicated chip
and high-throughput sequencing of small RNAs to study anti-sense transcription
in eight different organs (seed, flower, fruit, ...) of apple (Malus × domestica).
Their atlas of expression shows several interesting points. Firstly, the percentage
of anti-sense expression is higher than that reported in other studies, since they
identify anti-sense transcription for 65% of the sense transcripts expressed in at
least one organ, while it is about 30% in previous Arabidopsis Thaliana studies.
Secondly, the anti-sense transcript expression is correlated with the presence of
short interfering RNAs. Thirdly, anti-sense expression levels vary depending on
both organs and Gene Ontology (GO) categories. It is higher for genes belonging
to the “defense” GO category and on fruits and seeds.



In order to study the impact of anti-sense transcripts, we use data of ap-
ple fruit during fruit ripening. The fruit ripening is a stress-related condition
involving “defense” genes. We analyse RNA extracted from the fruit of apple
thanks to the chip AryANE v1.0 containing 63011 predicted sense genes and
63011 complementary anti-sense sequences. This chip allows us to study the role
of anti-sense transcripts at the genome-wide level by supplying transcriptional
expression on both sense and anti-sense transcripts. We study the fruit ripen-
ing process described by two conditions: harvest (H) and 60 days after harvest
(60DAH), and for each condition, 22 samples of apple fruit have been analysed.
We first identify transcripts displaying significant differences between the two
conditions (p-val<1%). With a further threshold of 1 log change between the
two conditions, we found 931 sense (S) and 694 anti-sense transcripts (AS) dif-
ferentially expressed, with among them, 200 transcripts (S∩AS) for which both
sense and anti-sense fulfil the condition. In the following, these 1625 transcripts
will be called transcripts of interest for our study of apple ripening.

3 Differential functional analysis

A lot of tools are available to identify which GO categories are statistically over-
represented in a set of genes. The Cytoscape plugin BiNGO [12] performs this
task in a flexible and interactive way and moreover, the output of BiNGO is
a graph where nodes represent GO categories and arcs represent the hierarchy
between categories. In this visualisation, the size of a node is proportional to the
number of genes in the test set annotated by this category, and the color of a node
codes the over-representation: dark orange categories are most significantly over-
represented, whereas white nodes are not significant but are included to show
the hierarchy linking the dark categories.

In our experiment about apple ripening, the analysis of probes that are dif-
ferentially expressed shows an important proportion of anti-sense actors: 694 AS
probes for 931 S probes. Therefore it is relevant to question the role of these
anti-sense actors in the ripening process. To look at this point, we propose a
differential functional analysis where we compare the functional categories over-
represented in the set of S probes and the functional categories over-represented
in the set of probes S ∪ AS. Anti-sense probes are not associated with a GO
category. We decided to associate an anti-sense probe with the category of its
corresponding sense probe3. This decision is based on the fact that due to its
sequence complementarity, an anti-sense transcript may interact with the cor-
responding sense transcript, or at least with a very close member of the gene
family.

The differential functional analysis is performed as follows. We apply BiNGO
on the set S containing 931 genes, and we apply BiNGO on the set SAS (S∪AS)
containing 494 supplementary genes. These 494 genes are the genes associated
with the AS probes of interest for which the corresponding sense probe is not
3 Because there is no GO category for apple transcripts, we use Arabidopsis Thaliana
orthologs in order to associate apple transcripts with GO categories.



differentially expressed. We thus obtain two sets of GO categories represented
as two sub-graphs of the GO. Our proposal is then to compute the difference of
these two sets; this provides a set of functional terms that are over-represented
only when we include the AS probes in the functional analysis and we call these
terms the revealed-by-AS terms.

Fig. 1: BiNGO outputs for SAS probes (left), the revealed-by-AS terms (right)
with a zoom (bottom) of the red square of the revealed-by-AS terms. Node size
denotes the number of genes in the GO category. Node color denotes the over-
representation of the GO category (yellow : low, orange : high). Arcs denote the
hierarchy between nodes.

Figure 1 shows the SAS ontology and the difference with the S ontology
that gives the revealed-by-AS terms. We can see on this representation that the
nodes of the difference occur on many branches of the SAS ontology, meaning
that the revealed-by-AS terms are not specific to a GO category.



GO category p-value # genes Most specific
hyperosmotic response 4.4644e-05 30 yes
response to cold 5.4256e-05 56 yes
multicellular organismal process 1.1794e-04 225 no
response to high light intensity 5.2641e-04 25 yes
growth 1.6007e-03 56 no
cellular biosynthetic process 1.6007e-03 329 no
cell growth 1.8010e-03 51 no
regulation of response to stimulus 1.8376e-03 58 no
salicylic acid mediated signaling pathway 2.0524e-03 30 yes
jasmonic acid mediated signaling pathway 2.2286e-03 27 yes

Table 1: Top 10 of revealed-by-AS terms, sorted by p-values. For each term, we
indicate the number of genes associated to transcripts of interest, and if the term
is a most specific revealed-by-AS term.

This differential analysis gives us 125 revealed-by-AS terms, associated with
their p-values. We present the top 10 terms in Table 1, where we report how
many genes are associated with the terms. As pointed out by the authors of
BiNGO, due to the interdependency between GO categories in the hierarchy,
the most relevant terms of the output are the terms located farthest down the
hierarchy, that correspond to more specific functions. Therefore the interpreta-
tion will focus on the most specific terms according to the ontology hierarchy,
as indicated in Table 1. These revealed-by-AS terms highlight biological func-
tions that are over-represented in our probes of interest only when we include
AS informations. Our experiment concerns the complex process of apple ripen-
ing. In this experiment, between harvest (H) and 60 days after harvest (60DAH),
fruits are stored in cold rooms and have to react to cold stress. We notice that
the response to cold term is a revealed-by-AS term. Therefore, if we do not
consider the anti-sense data, we loose important information for a functional
analysis. Moreover, the response to cold term is represented by 56 sense or
anti-sense actors in our probes of interest; if we examine the differential expres-
sion of these transcripts, we notice that 24 of them are anti-sense probes with
a diminution of their expression between H and 60DAH, while the corresponding
sense probes have no differential expression. The differential functional analysis
that we propose is thus a way to focus on interesting anti-sense transcripts that
deserve a further biological study.

4 Network comparison

4.1 Inference of the core part of a gene network

Many models have been proposed to infer gene networks from transcriptomic
data. Reviews of the reverse engineering methods can be found in [2,3,13]. A



family of inference methods reconstruct pairwise gene interaction networks by
measuring with a statistical criterion whether two genes are co-expressed or co-
regulated. This statistical measure can be the Spearman or Pearson correlation
[14], or the mutual information [10,15]. Mutual information enables the detection
of non-linear relationships. These methods need a step of thresholding to decide
which values of the statistical measure are significant. One major drawback of
these methods is that many of the predicted interactions are false positives. We
can differentiate two types of false positive interactions: an interaction that does
not biologically exist, and an indirect interaction. If two genes g2 and g3 are
regulated by g1, then mutal information (as well as correlation) between g2 and
g3 is high and an indirect interaction is put in the inferred network. Indirect
interactions lead in large gene networks difficult to interpret by biologists and
they must be pruned from the output networks [15,16]. To avoid this pitfall, the
method C3NET proposes to compute the conservative causal core of a gene net-
work, by selecting for each gene a unique interaction. Figure 2 decomposes the
C3NET algorithm, that we use in this work. From the mutual information ma-
trix, for each line corresponding to a gene g, the algorithm identifies the maximal
mutual information which defines the best neighbor that will be connected to
g in the network. Experiments have shown the good ability of this conservative
method to capture the causal structure of a regulatory network.

MI g1 g2 g3 g4

g1 1.0 0.7 0.8 0.7
g2 0.7 1.0 0.6 0.5
g3 0.8 0.6 1.0 0.1
g4 0.7 0.5 0.1 1.0

1
⇒

MI g1 g2 g3 g4

g1 0 0.7 0.8 0.7
g2 0.7 0 0.6 0.5
g3 0.8 0.6 0 0
g4 0.7 0.5 0 0

2
⇒

MI g1 g2 g3 g4

g1 0 0.7 0.8 0.7
g2 0.7 0 0.6 0.5
g3 0.8 0.6 0 0
g4 0.7 0.5 0 0

3
⇒

Adj g1 g2 g3 g4

g1 0 0 1 0
g2 1 0 0 0
g3 1 0 0 0
g4 1 0 0 0

4
⇒

Adj g1 g2 g3 g4

g1 0 1 1 1
g2 1 0 0 0
g3 1 0 0 0
g4 1 0 0 0

Fig. 2: C3NET procedure from the mutual information matrix to the network
adjacency matrix. The mutual information matrix is computed from transcrip-
tomic data. Step 1: non-significant and diagonal values are suppressed. Step 2:
the maximal mutual information is identified for each row. Step 3: the matrix
is transformed into a boolean matrix. Step 4: the resulting adjacency matrix is
made symmetric because mutual information does not provide directional infor-
mation. This is the adjacency of the computed network.



4.2 Comparison of Core Networks : Change motifs

To study the role of anti-sense transcripts in gene regulation networks, we pro-
pose to compare two networks obtained by C3NET, the NS network using only
sense actors, and the NSAS network using sense and anti-sense actors. Our goal
is to identify which direct interactions are modified in the core network when
we consider anti-sense transcripts. To achieve this, we need the first three steps
of C3NET (we do not need the symmetric matrix). Figure 3 illustrates modifi-
cations of interactions in the matrix. In NS for s3 the direct interaction occurs
with s1 but in NSAS , the direct interaction occurs with as2. This is this type of
modification that we want to identify.

MI s1 s2 s3 s4

s1 0 0.7 0.8 0.7
s2 0.7 0 0.6 0.5
s3 0.8 0.6 0 0
s4 0.7 0.5 0 0

MI s1 s2 s3 s4 as1 as2 as3 as4

s1 0 0.7 0.8 0.7 0.6 0.5 0.7 0.6
s2 0.7 0 0.6 0.5 0.4 0.6 0 0.5
s3 0.8 0.6 0 0 0.8 0.9 0.3 0
s4 0.7 0.5 0 0 0.6 0 0.5 0.6
as1 0.6 0.4 0.8 0.6 0 0.6 0.4 0.7
as2 0.5 0.6 0.9 0 0.6 0 0.6 0.4
as3 0.7 0 0.3 0.5 0.4 0.6 0 0.5
as4 0.6 0.5 0 0.6 0.7 0.4 0.5 0

Fig. 3: Mutual information matrices from S (left) and SAS (right). With anti-
sense data, the maximal mutual information changes (green values). s3 is con-
nected with s1 in NS (red value) and with as2 in NSAS .

When we integrate anti-sense actors in the core network computation, we
focus on sense nodes which become connected with an anti-sense node. It means
that an arc from NS between two sense nodes is now an arc from a sense to an
anti-sense in NSAS .

In order to highlight those modifications, we construct a comparison graph
G by adding NS arcs to NSAS . We visualize this graph with Cytoscape [17],
where we color arcs of G depending on the network they belong to: an arc is
green if it only exists in NSAS , red if it only exists in NS and grey if it exists in
both networks. With this color code, an interaction from NS replaced in NSAS

is represented by a sense node with a green and a red arc (Figure 4a).
Around this elementary motif, named M0, we observe richer configurations

represented in Figure 4b. M1 motif denotes a strong link between a sense and an
anti-sense. M2 motif reveals that the interaction between S1 and S2 observed
in NS is in fact an indirect one that involves the anti-sense AS3.

We have constructed comparison graphs from H and 60DAH experiments. The
60DAH comparison graph can be visualized in Figure 4c. This visualization allows
biologists to explore what gene links are impacted by the anti-sense transcripts.
In a more quantitative way, we give in Table 2 the count of the motifs existing
in each of the graphs. The most important information is the number of M0



M0

(a)

M1 M2

(b)

(c)

Fig. 4: Motifs and comparison graph of a Sense network with a Sense and Anti-
sense network. Blue nodes denote sense nodes and purple nodes denote anti-sense
nodes. (4a) Elementary motif. (4b) Richer motifs observed. (4c) Comparison
graph between NS and NSAS networks from 60DAH experiment.

motifs that indicates how many sense actors are connected to an anti-sense. We
notice that there are about 380 M0 motifs, which means that 40% of the 931 S
transcripts are involved in a M0 motif, for 50% of the 694 AS transcripts. Among
these M0 motifs, about 30% are M1 motifs, where sense and anti-sense are
strongly connected. Richer motifs M2 are less represented. As the core network
tries to capture the most important gene interactions, the fact that 40% of S
network is impacted by anti-sense actors shows that anti-sense transcripts play
a role in fruit ripening.

4.3 Change motifs and functional analysis

In Section 2 we have proposed a differential functional analysis and defined
the revealed-by-AS terms. We now combine the information provided by the
functional analysis with the information provided by motifs. To illustrate this,
we select in Table 1 the most specific GO categories from the top 10 revealed-
by-AS terms and study what kind of motifs are related to these terms. Table 2
counts, for each term, the number of motifs which contain at least one transcript
associated to the term, and the number of transcripts associated to the term
present in the motifs. We notice that in both experiments, for each term, around
40% of the transcripts are involved in a M0 motif. This observation encourages



Experiment H 60DAH
Motif M0 M1 M2 M0 M1 M2

Global # motifs 371 107 18 384 116 19
hyperosmotic response # motifs 18 3 1 21 8 0
(37 transcripts) # transcripts 17 3 1 18 8 0
response to cold # motifs 25 4 2 32 12 1
(63 transcripts) # transcripts 24 4 2 29 13 1
response to high light # motifs 14 5 1 13 7 0
intensity (31 transcripts) # transcripts 12 5 2 12 7 0
salicylic acid mediated # motifs 17 3 0 14 3 1
signaling pathway (36 transcripts) # transcripts 15 3 0 13 3 1
jasmonic acid mediated # motifs 14 2 0 13 3 0
signaling pathway (31 transcripts) # transcripts 13 2 0 12 3 0

Table 2: Number of motifs, number of motifs containing at least one revealed-
by-AS transcript and number of these transcripts being in motifs. The number
of revealed-by-AS transcripts associated with the term is noted in parentheses.

us to study the gene regulatory networks related to the revealed-by-AS terms,
which will be the next step of this work.

5 Conclusion

The aim of our work is to study gene networks, with the particularity to integrate
in the process anti-sense transcripts. Firstly we propose a method that highlights
biological functions impacted by anti-sense transcription. Biological functions
are identified by computing the difference between two ontologies. Secondly we
propose a differential gene network analysis allowing to identify which direct
interactions are modified. We combine these two methods to submit limited sets
of anti-sense transcripts to the biological interpretation.

The field of differential network analysis is certainly a promising approach to
study context-specific regulation networks. For example, the method proposed in
[18] compares two networks computed by C3NET corresponding to different cell
conditions (disease versus normal). The aim is to identify the disease network,
that is the interactions that only appear in disease-related cells. This method
can not be applied in our case. In fact, we rely on the same algorithm to compute
a network of direct interactions. But in our case, we compare two networks that
involve different actors, the sense transcripts in one hand and the sense and
anti-sense transcripts in the other hand. These two networks concern the same
experimental condition and the change motifs that we compute aim to highlight
potential anti-sense actions.
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