
A Graphical Language to Query Conceptual Graphs

David Genest, Marc Legeay, Stéphane Loiseau, Christophe Béchade
LERIA – Université d’Angers 2, Boulevard Lavoisier - 49045 Angers cedex 1 - France

Email: {firstname}.{name}@univ-angers.fr

Abstract—This paper presents a general query language for
conceptual graphs. First, we introduce kernel query graphs. A
kernel query graph can be used to express an “or” between two
sub-graphs, or an “option” on an optional sub-graph. Second,
we propose a way to express two kinds of queries (ask and
select) using kernel query graphs. Third, the answers of queries
are computed by an operation based on graph homomorphism:
the projection from a kernel query graph.

Keywords-Conceptual graph ; Query language ; SPARQL.

I. INTRODUCTION

The conceptual graph model [1][2] provides a way to
represent knowledge using labelled graphs. This model uses
visual graphical representations in order to improve under-
standing of knowledge by an end-user but this model is also
associated to a reasoning mecanism with several operations
based on graph theory. Its querying method is based on its
main operation, a graph homomorphism called projection:
this operation determines if knowledge in a conceptual graph
called query graph can be deduced from the knowledge base
which is a conceptual graph called factual graph. Several
extensions have been defined [3]. Inference rules [4] are
used to represent implicit knowledge. These rules have a
graphical representation, and rules operations are defined
as graph operations. Constraints [2] are used to validate
knowledge and, just like rules, they are defined as graphs.
Software tools have been developed. For example, Cogui1

is a well-known visual editor for building conceptual graph
ontologies, facts, queries, rules and constraints. Cogitant2

is a well-known reasoning engine allowing to easily build
applications based on conceptual graphs since it provides a
complete implementation of the model [5].

The basic querying method of the model is often too
simple, that is why some extensions of the querying method
have been proposed. [1] proposes to identify some nodes
in a query graph to easily exploit the projection result. [6]
proposes to express queries in a simple language composed
of keywords to construct conceptual graph queries with
the keywords representing pre-written query patterns. [7]
proposes a solution to select what they call the smart answer
of the projection result by using contextual knowledge from
the base to distinguish between equivalent answers. These
extensions are useful for certain kinds of applications, but,

1http://www.lirmm.fr/cogui
2http://cogitant.sourceforge.net

no general language to query conceptual graphs has been
proposed. That is the reason why we propose to define a
new query language that borrows ideas from Semantic Web.

Semantic web tools share with conceptual graph tools the
aim to represent a knowledge base in a simple semantic
network and to provide ways to exploit it. In Semantic Web
tools, knowledge is represented with languages such as RDF
[8] or OWL [9], and this knowledge is usually queried using
SPARQL [10]. SPARQL provides more flexibility compared
to conceptual graph to query. First, SPARQL allows to
express a disjunction between several parts of a query
(SPARQL uses the word “union” for that) and to identify
some parts as required or as optional. Second, SPARQL
provides four kinds of queries: ask, select, describe and
construct queries. This paper proposes to extend Cogitant to
improve conceptual graph query expressiveness by combin-
ing the simplicity of visual representation from conceptual
graphs with the powerful querying model of Semantic Web.
First, our language is based on graphs: a query has a
graphical representation and answers are obtained by graph
operations. Second, this query language allows disjunctions
and optional parts in a conceptual graph query but also
several kinds of conceptual graph queries.

The contribution of this paper is threefold. First, we
introduce kernel query graphs that extend conceptual graphs.
The notion of kernel query graph enables one to express dis-
junction conditions (an “or” between two of its subgraphs)
and option conditions (a subgraph is preferred but not
necessarily existing). Second, kernel query graphs provide
a way to propose a conceptual graph query language that
provides several kinds of queries. Ask query allows to know
if the graph of the query is deducible from the factual graph.
Select query allows to find and extract from the factual graph
some nodes identified in the query graph as important. Third,
the computing operation used to query and obtain answers
is introduced: the projection from a kernel query graph to
a factual graph. This projection is defined using the classic
projection from a conceptual graph to a factual graph.

The paper is organized as follows. Section II provides
background definitions on the conceptual graph model and
the projection. Section III presents the kernel query graph
model. Section IV presents the projection from a kernel
query graph to a factual graph. Section V presents the ask
query. Section VI presents the select query.

>

Human

Man Woman

Naming Attribute

relation2
(>, >)

naming
(Human, Naming)

name
(Human, Naming)

firstname
(Human, Naming)

nickname
(Human, Naming)

att
(Human, Attribute)

hasParent
(Human, Human)

hasFather
(Human, Man)

parentOf
(Human, Human)

I = {M1, M2, M3, W1, Adult, Minor, Emancipated, John, Jennifer, Jenny, Smith}

Figure 1. Vocabulary (TC , TR, I, σ) with TC represented by the tree on the left, TR represented by the tree on the right, and the signature σ of each
relation is precised under each relation type.

II. CONCEPTUAL GRAPH MODEL

The conceptual graph formalism used in this paper is
based on the formalism defined by [2]. The vocabulary is
a simple ontology representing some domain knowledge. It
defines an ordered set of concept types, and ordered sets of
relation types - one for each arity of relations. Every set is
ordered by a specialization relation. Two types of entities
are introduced: a specific entity is referred by an individual
marker and an unspecific entity is referred by a generic
marker. Relation type has a signature which specifies the
arity and the most general concept type for each argument.

DEFINITION 1 (Vocabulary). A vocabulary is a 4-tuple
(TC , TR, I, σ), where:
• TC , the set of concept types, is partially ordered by a

relation ≤ and has a greatest element >.
• TR, the set of relation types, is partially ordered by a

relation ≤ and is partitioned into subsets T 1
R, . . . , T

k
R

of relation types of arity 1, . . . , k, respectively.
• I is the set of individual markers. ∗ is called generic

marker, I ∪ {∗} represents the set of markers and is
ordered as follows: ∗ is greater than any element of I
and elements of I are pairwise incomparable.

• σ is a mapping, which to every relation type r ∈
T j
R, 1 ≤ j ≤ k assigns a signature σ(r) ∈ (TC)j .

Fig. 1 is the vocabulary used in the following examples.
A conceptual graph is a bipartite multigraph defined over

a vocabulary. One set of nodes is called the set of concept
nodes, and the other is called the set of relation nodes,
representing links between concepts. A relation node is
labelled by a relation type and a concept node is labelled by
a pair formed by a concept type and a marker.

DEFINITION 2 (Conceptual graph). Let V = (TC , TR, I, σ)
be a vocabulary. A conceptual graph defined over V is a 4-
tuple G = (C,R,E, l) satisfying the following conditions:
• (C,R,E) is an undirected and bipartite multigraph. C

is the set of concept nodes, R is the set of relation
nodes, E is the set of edges.

• l is a labelling function of the nodes and edges of
(C,R,E) satisfying: A concept node c is labelled
by a pair l(c) = (type(c),marker(c)), in which
type(c) ∈ TC and marker(c) ∈ I ∪ {∗} ; Two
different concept nodes cannot be labelled by the same
individual marker ; A relation node r is labelled by
l(r) ∈ TR and the degree of r is equal to the arity of
l(r) ; Edges incident to a relation node r are totally
ordered and they are labelled from 1 to the arity of
l(r) ; If there is an edge between a concept node c
and a relation node r labelled by i, then type(c) must
respect the type of the i-th argument of σ(l(r)).

Two conceptual graphs, defined over the vocabulary of
Fig. 1, are represented in Fig. 2. In order to simplify the
reading of graphs presented here, we use a visual simpli-
fication: edges labelled 1 (resp. 2) are represented by an
arrow from the concept (resp. relation) to the relation (resp.
concept). The generic marker is not displayed. Gf represents
the fact that the man M1 has the man M2 as father, and M2
has a man as father (who is unknown).

The projection is the query operation used in the con-
ceptual graph model. Giving a conceptual graph Gq (query
graph), and another conceptual graph Gf (factual graph),
defined over the same vocabulary, there is a projection from
Gq to Gf if the information represented by Gq can be
deduced by the one represented by Gf .

DEFINITION 3 (Projection and image). Let Gq =
(Cq, Rq, Eq, lq) and Gf = (Cf , Rf , Ef , lf) be two con-
ceptual graphs defined over the same vocabulary.
A projection π from Gq to Gf is a mapping from Cq ∪ Rq

to Cf ∪ Rf such that: ∀c ∈ Cq,∀r ∈ Rq , if rc ∈ Eq then
π(r)π(c) ∈ Ef and lq(rc) = lf (π(r)π(c)) ; ∀n ∈ Cq ∪
Rq, lf (π(n)) ≤ lq(n). Note that the label of concept nodes
is ordered as follow : (t,m) ≤ (t′,m′)↔ t ≤ t′ ∧m ≤ m′.
Nodes of Gf corresponding to nodes of Gq are called the
images of Gq by π.

In Fig. 2, there is a projection from the query graph Gq

to the factual graph Gf (represented with bold arrows).

Man : M1 Man : M2 Man

Human Human

hasFather hasFather

hasParent

Gf

Gq

Figure 2. Projection from Gq to Gf .

III. KERNEL QUERY GRAPH

In the conceptual graph model, the query graph is a
conceptual graph, this paper proposes to construct more
complex queries by using a richer query than a conceptual
graph, these queries are based on kernel query graphs.
A kernel query graph enables one to precise disjunction
conditions or option conditions in a conceptual graph. It is
built with a hierarchy of blocks which structure a conceptual
graph: a block contains a part of the conceptual graph and
is used to describe a disjunction, an option or simply a
standard part of the conceptual graph. A block is defined
as a set of nodes of a conceptual graph associated with a
block type. Every concept node in the set must have its
linked relation nodes in the set: thus a concept node of
the block is characterized by all the relations it is linked
to. The different block types proposed precise the condition
of the block: Disjunction, Option or Standard. A
disjunction block is composed of child blocks and expresses
a disjunction between its child blocks, i.e., it is used to
search for at least one of the child blocks in the factual
graph. An option block expresses that the part of the graph
it contains is facultative, i.e., it is used to search for a graph
with the option part in the factual graph, but, if it is not
possible, a graph without the option part is suitable.

DEFINITION 4 (Block of a graph). Let G = (C,R,E, l) be
a conceptual graph. A block of G is a pair b = (N,T)
where: N ⊆ C ∪ R is the set of nodes of the block such
that: ∀c ∈ N ∩ C, ∀r ∈ R, if rc ∈ E then r ∈ N ; T ∈
{Standard,Option,Disjunction} is the block type.

The conceptual graph in Fig. 3 has five blocks. Blocks are
represented by labelled frames, nodes of the block belong
to the frame and a label specifies the type of each block.

A tree is used to hierarchize the blocks of a conceptual
graph. Blocks are the nodes of the tree. Root block, parent
block, ancestor blocks and child blocks are defined thanks
to the vocabulary of trees. The hierarchy imposes that the
parent-child relation between blocks verifies the set of nodes
of the child block is included in the set of nodes of the parent
block, and if one block has a node in common with another
one, then one is the ancestor of the other. The root block
of the hierarchy is a standard block which contains all the
nodes of the graph. A disjunction block is used to express
an “or” between its children, it must have at least 2 child
blocks and all the nodes of its set of nodes are in the sets
of its child blocks.

Human

Attribute : Emancipated

Naming

Naming

Naming

Attribute : Adult firstname

name

nickname

att

att

StandardDisjunction

Standard

Option
Standard

Figure 3. A kernel query graph Gk .

DEFINITION 5 (Hierarchy). Let G = (C,R,E, l) be a
conceptual graph. A hierarchy H of G is a tree (B,A, r)
where the root r is the block (C ∪ R,Standard), the set
of nodes of the tree B is the set of blocks of G, and A is
the set of arcs. The hierarchy is such that:
• Let b = (Nb, Tb) ∈ B \ {r}, if parent(b) = (Np, Tp)

then Nb ⊆ Np.
• Let b = (Nb, Tb) ∈ B, b′ = (Nb′ , Tb′) ∈ B if Nb ∩
Nb′ 6= ∅ then Nb ⊆ Nb′ or Nb′ ⊆ Nb.

• Let b = (Nb,Disjunction) then |children(b)| ≥ 2
and Nb =

⋃
(Nc,Tc)∈children(b)

Nc.

The hierarchy of the conceptual graph in Fig. 3 appears
on the graph by the inclusion of blocks.

DEFINITION 6 (Kernel query graph). A kernel query graph
Gk = (G,H) is a pair where G is a conceptual graph and
H is a hierarchy of G.

Fig. 3 represents a kernel query graph Gk = (G,H). It
will express a search for an adult or emancipated human who
have a first name, a last name and, if it exists, a nickname.

IV. PROJECTION FROM A KERNEL QUERY GRAPH

A kernel query graph can be developed into a set of
conceptual graphs. This set of conceptual graphs, called the
set of developed graphs of the kernel query graph, defines
the semantics of a kernel query graph. This set represents
the set of conceptual graphs which we are looking for. This
set enables one to define a projection from a kernel query
graph to a factual conceptual graph as a projection from a
developed graph to the factual graph. The idea to obtain a
developed graph from a kernel query graph is to a create
kernel query graph with only standard blocks. It is made by
a sequence of developments that change block types only
in Standard, remove option blocks, and remove some
children of disjunction blocks. Note that when a block is
removed from a kernel query graph, not only the nodes of the
block and connected edges are removed from the conceptual
graph, but the block and all its descendants are also removed.

DEFINITION 7 (Development operation). Let Gk = (G,H)
be a kernel query graph with H = (B,A, r).
• Let b ∈ B be an option block.

The graph Gk, in which the type of b is changed in

att Naming

Naming

Naming

Attribute : Adult firstname

name

nickname

Human

G1

Attribute : Adult att

G2

Naming

Naming

firstname

name

Human

Attribute : Emancipated att

G3

Naming

Naming

Naming

firstname

name

nickname

Human

G4

Attribute : Emancipated att

Naming

Naming

firstname

name

Human

Figure 4. Developed graphs from Gk .

Standard, is a development of Gk. The graph Gk,
in which b is removed, is a development of Gk.

• Let b ∈ B be a disjunction block.
The graph Gk, in which the type of b is changed in
Standard and in which every child of b except one
is removed, is a development of Gk.

DEFINITION 8 (Set of developed graphs). Let Gk = (G,H)
be a kernel query graph. The set of developed graphs DG
of Gk is the set of all the conceptual graphs associated
with the kernel query graphs containing only standard blocks
obtained by a sequence of developments from Gk.

The conceptual graphs in Fig. 4 form the set of developed
graphs DG = {G1, G2, G3, G4} of the kernel query graph
Gk from Fig. 3.

In order to define the projection from a kernel query graph
to a factual graph, we first search for the projections from
each developed graphs (which are conceptual graphs) to
the factual graph. The projection from a developed graph
is generally a projection from the kernel query graph. The
exception is due to the option: the optional part of a graph
is required if this part belongs to the factual graph. In this
case, the projection which does not contain the option block
is not a projection from the kernel query graph. Note that
this projection is a restriction3of the projection containing
the optional information. The set of projections from a
kernel query graph to a factual graph is defined as the set
of projections from developed graphs of the kernel query
graph, except for the projections that are restrictions of
others projections.

3Reminder: a function f : D → I is a restriction of f ′ : D′ → I ,
denoted f ⊂ f ′, if D ⊂ D′ and ∀d ∈ D, f(d) = f ′(d).

Man : M1

Naming : John

Naming : Smith

Attribute : Emancipated

firstname

name

att

Figure 6. Image of an answer to an ask query.

DEFINITION 9 (Projection from a kernel query graph). Let
Gk = (G,H) be a kernel query graph, Gf be a conceptual
graph defined over the same vocabulary than G, and ΠDG

be the set of projections from the developed graphs DG of
Gk to Gf . The set of the projections from Gk to Gf is:
Π = {π ∈ ΠDG|@π′ ∈ ΠDG, π ⊂ π′}.

To compute the set of projections from a kernel query
graph to a conceptual graph, a naive algorithm computes the
set of developed graphs, their projections to the factual graph
and remove those that are restrictions. For performance rea-
sons, the algorithm we implemented computes the projection
block by block following the hierarchy from the root, testing
the alternatives of disjunction and testing if the option part
of option blocks is in the factual graph.

There is only one projection π from the kernel query graph
Gk in Fig. 3 to the conceptual graph Gf in Fig. 5. The image
of the projection is pictured in Fig. 6. It is a sub-graph of
Gf and it corresponds to a projection from the developed
graph G4 in Fig. 4 to Gf .

V. ASK QUERY

An ask query allows to know if the kernel query graph
of the query is deducible from the factual conceptual graph.
This type of query corresponds to the classic querying of
the conceptual graph model with disjunction and option
conditions added. An ask query is only a kernel query graph.
An answer to an ask query is a projection from the kernel
query graph to the factual graph.

DEFINITION 10 (Ask query and its answer). Let Gf be a
conceptual graph defined over the vocabulary V . An ask
query is a kernel query graph Gk = (G,H), with G defined
over V . An answer to an ask query Gk is a projection π
from Gk to Gf .

The kernel query graph Gk in Fig. 3 can be used as an
ask query. As explained earlier, the answer to the query can
been seen in Fig. 6.

VI. SELECT QUERY

In an ask query, the image of some nodes can not be
more important than others, but, we would like to express
that some nodes are more important than others. This paper
proposes the select queries which allow to find and extract
from the factual conceptual graph some nodes identified as
important in the query.

Man : M1

Attribute : Emancipated

Man : M2Man : M3

Woman : W1

Attribute : Minor Naming : John

Naming : Smith

Naming : Jennifer

Naming : Jenny

firstname

name
att

hasFather

hasFather

firstname

name

nicknamehasFather

att

name

Figure 5. Conceptual graph Gf .

nickname

Naming

Naming

Naming

firstname

name
Human

Standard

Option
?nick

?first
Gk

Naming : Jean

?first

?first ?nick

Naming : John

Naming : Jennifer Naming : Jenny

Figure 7. Select query and its two answers.

DEFINITION 11 (Select query). Let SN be a set of names. A
select query is a pair Qs = [Gk, sel], where Gk = (G,H)
is a kernel query graph with G = (C,R,E, l), and sel is a
naming function defined over the set of selector names SN

as follows: sel : SN → C ∪R.

An answer to a select query is a function which associates
each name of the set of selector names to a node of the
factual graph. For a projection from the kernel query graph
to the factual graph, each name is associated to the image
(if it exists) in the factual graph of the node of kernel query
graph that is linked to the name. A node may have no image
by the projection due to disjunction or option condition.

DEFINITION 12 (Answer to a select query). Let Gf =
(Cf , Rf , Ef , lf) be a conceptual graph, Qs = [Gk, sel] be
a select query with sel defined over the names SN , and π
be a projection from Gk to Gf . An answer to the select
query Qs is a partial function from SN in Cf ∪ Rf which
associates to s ∈ SN the node π(sel(s)) of Gf if it exists.

Fig. 7 presents the select query Qs = [Gk, sel],
where the naming function sel, defined over SN =
{?first,?nick}, is directly represented on Gk and its
two answers on Gf (Fig. 5). The query allows to know the
first name, and if it exists the nickname, of every human
who have a first name and a last name in the factual graph.

VII. CONCLUSION

This paper introduced the kernel query graphs that are
used to query a factual conceptual graph, representing a
knowledge base, by means of the projection from kernel

query graph to conceptual graph. Kernel query graphs are
used in two kinds of queries, and we have defined two other
kinds of queries. They allow to obtain describing information
from the factual conceptual graph linked to a particular node
of the query, and also to deduce new facts using knowledge
extracted from the factual conceptual graph [11]. These
four kinds of queries provide a general language to query
conceptual graphs. The graphical and visual aspect of the
querying model is an important choice, which has been made
to be close to conceptual graphs. This query language has
been implemented as an extension of the Cogitant library.

REFERENCES

[1] J. F. Sowa, Conceptual Structures: Information Processing in
Mind and Machine. Addison-Wesley, 1984.

[2] M. Chein and M.-L. Mugnier, Graph-based knowledge rep-
resentation: computational foundations of conceptual graphs.
Springer, 2009.

[3] J.-F. Baget and M.-L. Mugnier, “The SG family: Extensions
of simple conceptual graphs,” in Proceedings of IJCAI 2001,
B. Nebel, Ed. Morgan Kaufmann, 2001, pp. 205–212.

[4] E. Salvat, “Theorem proving using graph operations in the
conceptual graph formalism,” in Proc. of the 13th European
Conf. on Artificial Intelligence (ECAI’98), 1998.

[5] D. Genest, “Cogitant 5.3.0 - reference manual,” http://
cogitant.sourceforge.net/files/cogitant.pdf, Mar. 2014.

[6] C. Pradel, O. Haemmerlé, and N. Hernandez, “Expressing
conceptual graph queries from patterns: how to take into ac-
count the relations,” in Conceptual Structures for Discovering
Knowledge. Springer, 2011, pp. 229–242.

[7] N. Moreau, M. Leclère, and M. Croitoru, “Distinguishing
answers in conceptual graph knowledge bases,” in Conceptual
Structures: Leveraging Semantic Technologies. Springer,
2009, pp. 233–246.

[8] F. Manola, E. Miller, and B. McBride, “RDF primer,” W3C
recommendation, 2004.

[9] D. L. McGuinness, F. Van Harmelen et al., “OWL web
ontology language overview,” W3C recommendation, 2004.

[10] E. Prud’Hommeaux, A. Seaborne et al., “SPARQL query
language for RDF,” W3C recommendation, 2008.

[11] M. Legeay, “Interrogation de connaissances exprimées en
graphes conceptuels,” Master’s thesis, Université d’Angers,
France, 2013.

