
Under consideration for publication in Theory and Practice of Logic Programming 1

ASPeRiX, a First Order Forward Chaining
Approach for Answer Set Computing ∗
Claire Lefèvre, Christopher Béatrix, Igor Stéphan, Laurent Garcia

LERIA, University of Angers,
2 Boulevard Lavoisier,

49045 Angers Cedex 01, France

Email: {claire,beatrix,stephan,garcia}@info.univ-angers.fr

submitted 24 March 2014; revised 24 November 2014; accepted 25 February 2015

Abstract

The natural way to use Answer Set Programming (ASP) to represent knowledge in Ar-
tificial Intelligence or to solve a combinatorial problem is to elaborate a first order logic
program with default negation. In a preliminary step this program with variables is trans-
lated in an equivalent propositional one by a first tool: the grounder. Then, the proposi-
tional program is given to a second tool: the solver. This last one computes (if they exist)
one or many answer sets (stable models) of the program, each answer set encoding one
solution of the initial problem. Until today, almost all ASP systems apply this two steps
computation.

In this article, the project ASPeRiX is presented as a first order forward chaining ap-
proach for Answer Set Computing. This project was amongst the first to introduce an
approach of answer set computing that escapes the preliminary phase of rule instantiation
by integrating it in the search process. The methodology applies a forward chaining of
first order rules that are grounded on the fly by means of previously produced atoms.
Theoretical foundations of the approach are presented, the main algorithms of the ASP
solver ASPeRiX are detailed and some experiments and comparisons with existing systems
are provided.

KEYWORDS : Answer Set Programming, solver implementation, grounding on the

fly, first order, forward chaining.

1 Introduction

Answer Set Programming (ASP) is a very convenient paradigm to represent knowl-

edge in Artificial Intelligence (AI) and to encode combinatorial problems (Baral

2003; Niemelä 1999). It has its roots in nonmonotonic reasoning and logic program-

ming and has led to a lot of works since the seminal paper (Gelfond and Lifschitz

1988). Beyond its ability to formalize various problems from AI or to encode com-

binatorial problems, ASP provides also an interesting way to practically solve such

problems since some efficient solvers are available. In few words, if someone wants

∗ This work was supported by ANR (National Research Agency), project ASPIQ under the ref-
erence ANR-12-BS02-0003.

2 Claire Lefèvre, Christopher Béatrix, Igor Stéphan, Laurent Garcia

to use ASP to solve a problem, he has to write a logic program in term of rules in a

purely declarative manner in such a way that the answer sets (initially called stable

models in (Gelfond and Lifschitz 1988)) of the program represent the solutions of

his original problem.

Illustration of ASP formalism Let us take two typical examples for which ASP

is suitable: the first example is devoted to knowledge representation in Artificial

Intelligence and the second one is a combinatorial problem.

KR problem This first example deals with default reasoning on incomplete infor-

mation. It consists in describing knowledge about birds.
bird(titi).

ostrich(lola).

bird(X)← ostrich(X).

f ly(X)← bird(X), not ostrich(X).

non fly(X)← ostrich(X).
The meaning of the two first rules is that we have two objects: titi which is a

bird and lola which is an ostrich. The meaning of the other rules is that an ostrich

is a bird, a bird which is not an ostrich flies and an ostrich does not fly. Here,

we are interested in deducing some properties about titi and lola. Intuitively, we

want that titi flies, lola is a bird and lola does not fly. Concerning the information

that lola does not fly, let us notice that it is obtained by applying the last rule

since lola is an ostrich and, then, the next to last rule cannot be applied in pres-

ence of ostrich lola due to the part not of this rule, called default negation. Here,

there is only one answer set which contains all the deduced pieces of information:

{bird(titi), f ly(titi), ostrich(lola), bird(lola), non fly(lola)}.

CSP problem The second example deals with the representation of a combinatorial

problem: possibles worlds are represented by nonmonotonic “guess” rules and choice

between these worlds is expressed by constraints. The problem is then to find (at

least) one solution corresponding to a world verifying the constraints. This example

is about graph 2-coloring.
vertex(1).

vertex(2).

edge(1, 2).

red(X)← vertex(X), not blue(X).

blue(X)← vertex(X), not red(X).

← red(X), red(Y), edge(X,Y).

← blue(X), blue(Y), edge(X,Y).

This represents a graph with two vertices and an edge between them (three first

rules). The two following rules are guess rules. The fourth (resp. fifth) rule means

that a vertex which is not colored in blue (resp. red) has to be colored in red (resp.

blue). The two last rules are constraints. They mean that two adjacent vertices

can not have the same color. Here, we want to find how the two vertices should be

colored (knowing that two colors are available). Intuitively, we have two solutions:

ASPeRiX 3

one with vertex 1 colored in blue and vertex 2 colored in red and the other one with

vertex 1 colored in red and vertex 2 colored in blue. This corresponds to the two

answer sets of the program: {vertex(1), vertex(2), edge(1, 2), blue(1), red(2)} and

{vertex(1), vertex(2), edge(1, 2), red(1), blue(2)}. However, let us note that, in this

kind of problem, we are often interested in finding one solution rather than finding

all the possible solutions (and the determination of only one answer set is enough).

As regards the form of the rules, we can notice that a program usually contains

different kind of rules. The simplest ones are facts as (bird(titi).) or (vertex(1).) rep-

resenting data of the particular problem. Some ones are about background knowl-

edge as (bird(X)← ostrich(X).). Some others can be nonmonotonic as (fly(X)←
bird(X), not ostrich(X).) for reasoning with incomplete knowledge. In other cases,

especially for combinatorial problems, nonmonotonic rules can be used to encode

alternative potential solutions of a problem as (red(X)← vertex(X), not blue(X).)

and (blue(X)← vertex(X), not red(X).) expressing the two exclusive possibilities

to color a vertex in a graph. Last, special headless rules are used to represent con-

straints of the problem to solve as (← red(X), red(Y), edge(X,Y).), here, in order

to not color with red two vertices linked by an edge.

With the examples above we can point out that knowledge representation in ASP

is done by means of first order rules. But, from a theoretical point of view, answer

set definition is given for propositional programs and the answer sets of a first order

program are those of its ground instantiation with respect to its Herbrand universe

(i.e. without variables). The first order program has to be seen as an intensional

version of the grounded propositional corresponding program.

ASP systems Concerning the ASP sytems, their main goal is how to compute

answer sets in an efficient way. Let us recall some of their main features. Until

today, almost all systems available to compute the answer sets of a program follow

the architecture described in Fig. 1.

Fig. 1. Architecture of answer set computation

An ASP system begins its work by an instantiation phase in order to obtain a

propositional program (and, as said above, the answer sets of the first order program

will be those of its ground instantiation). After this first grounding phase realized

by a grounder the solver starts the real phase of answer set computation by dealing

4 Claire Lefèvre, Christopher Béatrix, Igor Stéphan, Laurent Garcia

with a finite, but sometimes huge, propositional program. The main goal of each

grounding system is to generate all propositional rules that can be relevant for a

solver and only these ones, while preserving answer sets of the original program.

Current intelligent grounders simplify rules as much as possible. Simplifications can

lead to compute the unique answer set of some programs (for instance, programs

that does not contain default negation) but it is no longer possible once the problem

is combinatorial. Anyway, the grounding phase is firstly and fully processed before

calling the solver.

For the grounder box we can cite Lparse (Syrjänen 1998) and Gringo (Gebser

et al. 2011), and for the solver box Smodels (Simons et al. 2002) and Clasp (Geb-

ser et al. 2012). A particular family of solvers are Assat (Lin and Zhao 2004),

Cmodels (Giunchiglia et al. 2006) and Pbmodels (Liu and Truszczynski 2005), since

they transform the answer set computation problem into a (pseudo) boolean model

computation problem and use a (pseudo) SAT solver as an internal black box. In

the system DLV (Leone et al. 2006), symbolized in Fig. 1 by the dash-line rectangle,

the grounder ((Calimeri et al. 2008) describes a parallel version) is incorporated

as an internal function. In the same way, WASP (Alviano et al. 2013) uses the DLV

grounder (Faber et al. 2012).

Grounding The main drawback of the preliminary grounding phase is that it may

lead to a lot of useless work as illustrated in the following examples.

The first examples illustrate the fact that the separation between the instantiation

phase and the computation phase can prevent the (efficient) use of information

relevant to the computation.

Example 1. Let P1a be the following ASP program:

P1a =


a← not b.,

b← not a.,

← a.,

p(0).,

p(X + 1)← a, p(X).


Grounding of P1a is infinite (if an upper bound for integers is not fixed) while it

has a unique (and finite) answer set {b, p(0)}.
Let P1b be the following ASP program:

P1b =


p(1)., p(2)., . . . , p(N).,

a← not b., aa(X,Y)← pa(X), pa(Y), not bb(X,Y).,

b← not a., bb(X,Y)← pb(X), pb(Y), not cc(X,Y).,

pa(X)← a, p(X)., cc(X,Y)← aa(X,Y), X < Y.,

pb(X)← b, p(X)., ← a.


From the program P1b, current grounders generate roughly 2.5×N2 rules.

In both programs, because of the constraint (← a.) that eliminates from the

possible solutions every atom set containing a, it is easy to see that rules (p(X+1)←

ASPeRiX 5

a, p(X).) for P1a and (pa(X)← a, p(X).) for P1b are useless since they can never

contribute to generate an answer set of the corresponding program. In P1a these

useless rules are infinite (p(X + 1) ← a, p(X).) while they are “only” large in P1b:

N rules with positive body containing a, like (pa(1)← a, p(1).), and then, the N2

rules with pa(X) in their positive body are useless too. In defense of the actual

grounders, their inability to eliminate these particular rules is not surprising since

the reason justifying this elimination is the consequence of a reasoning taking into

account the semantics of ASP. Thus, if we want to limit as much as possible the

number of rules and atoms to deal with, we have not to separate grounding and

answer set computing.

Example P1a is a typical situation for planning problems where step i+1 must be

generated only if the goal is not reached at step i. Such situations are not tractable

by grounders. That is the reason why the number of steps needed to reach the goal

(or at least the maximum number of allowed steps) is given as input of planning

problems (in ASP competition for example). Yet it is rather counterintuitive having

to know the step number to solve the problem before solving.

The next example illustrates that the grounding phase generates too much infor-

mation regarding the computation of one answer set.

Example 2. Let P2 be the program, as given in (Niemelä 1999), encoding a 3-

coloring problem on a N vertices graph organized as a bicycle wheel (see below). v

stands for vertex, e for edge, c for color, col for colored by, ncol for not colored by.

P2 =



v(1)., . . . , v(N)., c(red)., c(blue)., c(green).,

e(1, 2)., . . . , e(1, N).,

e(2, 3)., e(3, 4)., . . . , e(N, 2).,

col(V,C)← v(V), c(C), not ncol(V,C).,

ncol(V,C)← col(V,D), c(C), C 6= D.,

← e(V,U), col(V,C), col(U,C).


.

From P2, current grounders generate about 18N rules. If N is even then P2 has

no answer set and if N is odd then it has 6 answer sets.

Suppose that P2 has an answer set in which there is col(1, red). Obviously, all the

N − 1 constraints like (← e(1, U), col(1, red), col(U, red).) for all U ∈ {2, . . . , N}
are necessary because they have to be checked. But, all the other constraints like (←
e(1, U), col(1, blue), col(U, blue).), and (← e(1, U), col(1, green), col(U, green).)

for all U ∈ {2, . . . , N} can be considered as useless since vertex 1 is not colored by

blue or green. However, all these 2N − 2 constraints have been generated. So, the

time consumed by this task is clearly a lost time and the memory space used by

these data could have been saved. Thus, if we are searching for a single answer set,

a lot of work would be done for nothing since the grounded program contains the

enumeration of all solutions when only one is searched.

The last exemple shows that when the number of solutions is very important

ASP solvers have more difficulty to find one solution due to the grounding phase

generating a lot of information concerning all the solutions.

Example 3. Let P3 be the program, inspired from one given in (Niemelä 1999),

encoding the Hamiltonian cycle problem in a N vertices complete oriented graph. v

6 Claire Lefèvre, Christopher Béatrix, Igor Stéphan, Laurent Garcia

stands for vertex, a for arc, hc for in Hamiltonian cycle, nhc for not in Hamiltonian

cycle, s for start and r for reached.

P3 =



s(1)., v(1)., . . . , v(N)., a(X,Y)← v(X), v(Y).,

hc(X,Y)← s(X), a(X,Y), not nhc(X,Y).,

hc(X,Y)← r(X), a(X,Y), not nhc(X,Y).,

nhc(X,Y)← hc(X,Z), a(X,Y), Y 6= Z.,

nhc(X,Y)← hc(Z, Y), a(X,Y), X 6= Z.,

r(Y)← hc(X,Y).,

← v(X), not r(X).


This program has (N − 1)! answer sets. Whatever the number of desired solutions,

current grounders generate about 2N2 rules with hc predicate as head and about

2N3 rules with nhc predicate as head. Thus, even if we restrict our attention to the

computation of one answer set, all the ASP solvers preceded by a grounding phase

consume a huge amount of time when the graph has a few hundred vertices.

This previous example illustrates another strange phenomenon. Sometimes, solv-

ing a trivial problem, as finding one Hamiltonian cycle in a complete graph, is

impossible for ASP systems. This is very counterintuitive since, in whole general-

ity, in combinatorial problem solving the more solutions the problem has, the easier

it is to find one of them. Again, the bottleneck for ASP systems seems to come from

the huge number of rules and atoms that are generated in first, delaying and making

the resolution more difficult than it should be.

Beyond these particular examples, the point to stress is that grounders generate in

extension all the search space (for all potential solutions) that they give then to the

solver. But, this is clearly not the approach of usual search algorithms. A classical

coloring algorithm does not firstly enumerate, in extension, all possible colorations

for every vertex in the graph. A finite domain solver makes choices by instantiating

some variables, propagates the consequences of these choices, checks the constraints

and by backtracking explores its search space. Following this strategy it instantiates

and desinstantiates variables describing the problem to solve all along its search

process. But, it does not build, a priori and explicitly, all the possible tuples of

variables and constraints representing the problem to solve. That is why we think

that if we want to use ASP to solve very large problems we have to realize the

grounding process during the search process and not before it.

Is is important to notice that few works advocate the grounding of the program

during the search of an answer set and not by a preprocessing. Some aim at solving

the grounding bottleneck by combining ASP to constraint programming: (Baselice

et al. 2005) proposes to reduce the memory requirements for a very specific class of

programs, i.e. multi-sorted logic programs with cardinality constraints, (Balduccini

2009) proposes an algorithm to make cooperate an ASP solver and a Constraint

Logic Programming solver in such a way that ASP is viewed as a specification

language for constraint satisfaction problems and (Ostrowski and Schaub 2012) de-

scribes the Clingcon system which is a tight cooperation between the ASP solver

Clasp and the Constraint Programming solver GeCode. The theory solvers (mainly

arithmetic solvers) forbid instances that are in conflict with the constraints reduc-

ASPeRiX 7

ing by this way the size of the grounding image. Some others works use a forward

chaining of rules that are instantiated as and when required: GASP (Dal Palù et al.

2009) and ASPeRiX (Lefèvre and Nicolas 2009a; Lefèvre and Nicolas 2009b)) de-

veloped at the same time, and more recently OMiGA (Dao-Tran et al. 2012). They

are all based on the notion of computation given in (Liu et al. 2010). GASP is im-

plemented in Prolog and Constraint Logic Programming over finite domains. Each

rule instantiation and propagation is realized by building and solving a CSP. OMiGA

is implemented in Java and uses an underlying Rete network for instantiation and

propagation. ASPeRiX, which is the one presented in this article, is implemented in

C++. Instantiation and propagation are inspired by previous work realized on the

DLV grounder which is based on the semi-naive evaluation technique of (Ullman

1989).

Last, concerning a direct handling of first order programs, let us note that there

exists some works (Gottlob et al. 1996; Eiter et al. 1997; Ferraris et al. 2007; Lin

and Zhou 2007; Truszczynski 2012) dealing with first order nonmonotonic logic

programs. These works establish some relations between stable model semantics

and constraints systems or second order logic or circumscription but they are not

really concerned by the explicit computation of answer sets.

The present paper is an extended version of (Lefèvre and Nicolas 2009a; Lefèvre

and Nicolas 2009b). It details our approach of answer set computation that escapes

the preliminary grounding phase by integrating it in the search process and includes:

• theoretical foundations of the approach, “mbt ASPeRiX computation”, with

complete proofs; these computations are based on those of (Liu et al. 2010)

and include use of constraints and must-be-true propagation in order to guide

the search;

• a detailed description of the main algorithms;

• experimentations of the resulting system, ASPeRiX, and comparisons with

other similar systems and other “classical” ASP systems. Our methodology

is particularly well suited for:

— solving easy problems with a large grounding,

— finding only one answer set for a program whose search space is large and

proportional to the desired number of solutions,

— solving problems for which pre-grounding is impossible because domains

are infinite or open, or because some pieces of knowledge come from outside

(distributed systems for example).

The paper is organized as follows. In Section 2 we recall the theoretical back-

grounds about ASP necessary to the understanding of our work. In Section 3 we

present our first order rule oriented approach of answer set computation and its

implementation in the solver ASPeRiX. In Section 4 experimental results are pre-

sented. We conclude in Section 5 by citing some new perspectives for ASP as a

result of our innovative approach. Proofs of theorems are reported in the online

appendix of the paper, Appendix B.

8 Claire Lefèvre, Christopher Béatrix, Igor Stéphan, Laurent Garcia

2 Theoretical Background

In this section, we give the main backgrounds of ASP framework useful to the

understanding of this article.

Set V denotes the infinite countable set of variables, set FS denotes the set of

function symbols, set CS denotes the set of constant symbols and set PS denotes

the set of predicate symbols. It is assumed that the sets V, CS, FS and PS are

disjoint and that the set CS is not empty. Function ar denotes the arity function

from FS to N∗ and from PS to N which associates to each function or predicate

symbol its arity. Set T denotes the set of terms defined by induction as follows:

• if v ∈ V then v ∈ T,

• if c ∈ CS then c ∈ T,

• if f ∈ FS with ar(f) = n > 0 and t1, . . . , tn ∈ T then f(t1, . . . , tn) ∈ T.

A ground term is a term built over only the two last items of the previous definition.

The Herbrand universe is the set of all ground terms. Set A denotes the set of atoms

defined as follows:

• if a ∈ PS with ar(a) = 0 then a ∈ A,

• if p ∈ PS with ar(p) = n > 0 and t1, . . . , tn ∈ T then p(t1, . . . , tn) ∈ A.

A ground atom is an atom built over only ground terms. The Herbrand base denoted

A is the set of all ground atoms.

A normal logic program (or simply program) is a set of rules like

c← a1, . . . , an, not b1, . . . , not bm. n ≥ 0,m ≥ 0 (1)

where c, a1, . . . , an, b1, . . . , bm are atoms.

The intuitive meaning of such a rule is: ”if all the ai’s are true and it may be

assumed that all the bj ’s are false then one can conclude that c is true”. Symbol

not denotes the default negation. A rule with no default negation is a definite rule

otherwise its is a nonmonotonic rule. A program with only definite rules is a definite

logic program. A program is a propositional program if all the predicate symbols are

of arity 0.

For each program P , we consider that the set CS (resp. FS and PS) consists

of all constant (resp. function and predicate) symbols appearing in P . These sets

determine the set of ground terms and the set of ground atoms of the program.

A substitution for a rule r ∈ P is a mapping from the set of variables from r to

the set of ground terms of P . A ground rule r′ is a ground instance of a rule r if

there is a substitution θ for r such that r′ = θ(r), the rule obtained by substituting

every variable in r by the corresponding ground term in θ. The program P (with

variables) has to be seen as an intensional version of the program ground(P) defined

as follows: given a rule r, ground(r) is the set of all ground instances of r and

then, ground(P) =
⋃
r∈P ground(r). Program ground(P) may be considered as a

propositional program. Let us note that the use of function symbols leads to an

infinite Herbrand universe, this point will be discussed in Section 3.5.

ASPeRiX 9

Example 4. The program

P4 =


n(1)., n(2).,

a(X)← n(X), not b(X).,

b(X)← n(X), not a(X).


is a shorthand for the program

ground(P4) =


n(1)., n(2).,

a(1)← n(1), not b(1).,

b(1)← n(1), not a(1).,

a(2)← n(2), not b(2).,

b(2)← n(2), not a(2).


For a rule r (or by extension for a rule set), we define:

• head(r) = c its head,

• body+(r) = {a1, . . . , an} its positive body and

• body−(r) = {b1, . . . , bm} its negative body.

The immediate consequence operator for a definite logic program P is TP : 2A →
2A such that TP (X) = {head(r) | r ∈ P, body+(r) ⊆ X}. The least Herbrand

model of P , denoted Cn(P), is the smallest set of atoms closed under P , i.e., the

smallest set X such that TP (X) ⊆ X. It can be computed as the least fix-point of

the consequence operator TP .

The reduct PX of a normal logic program P w.r.t. an atom set X ⊆ A is the

definite logic program defined by:

PX = {head(r)← body+(r). | r ∈ P, body−(r) ∩X = ∅}

and it is the core of the definition of an answer set.

Definition 1. (Gelfond and Lifschitz 1988) Let P be a normal logic program and

X an atom set. X is an answer set of P if and only if X = Cn(PX).

For instance, the propositional program {a← not b., b← not a.} has two answer

sets {a} and {b}.

Example 5. Taking again the program P4, ground(P4) has four answer sets:

{a(1), a(2), n(1), n(2)}, {a(1), b(2), n(1), n(2)},
{a(2), b(1), n(1), n(2)}, {b(1), b(2), n(1), n(2)}

that are thus the answer sets of P4.

There is another definition of an anwer set for a normal logic program based on

the notion of generating rules which are the rules participating to the construction

of the answer set. These rules are important in our approach because they are

exactly the rules fired in the ASPeRiX computation presented in the next section.

Definition 2. (Konczak et al. 2006) Let P be a normal logic program and X be

an atom set. GRP (X), the set of generating rules of P , is defined as GRP (X) =

{r ∈ P | body+(r) ⊆ X and body−(r) ∩X = ∅}.

Theorem 1. (Konczak et al. 2006) Let P be a normal logic program and X be an

atom set. Then, X is an answer set of P if and only if X = head(GRP (X)).

10 Claire Lefèvre, Christopher Béatrix, Igor Stéphan, Laurent Garcia

Special headless rules, called constraints, are admitted and considered equivalent

to rules like (bug ← . . . , not bug.) where bug is a new symbol appearing nowhere

else. For instance, the program {a ← not b., b ← not a.,← a.} has one, and only

one, answer set {b} because constraint (← a.) prevents a to be in an answer set.

When dealing with default negation, we call a literal an atom, a, or the negation

of an atom, not a. A literal a is said to be positive, and not a is said to be negative.

The corresponding atom a of a literal l is denoted by at(l). For a literal l where

at(l) = a, let us denote pred(l) the function such that pred(not a) = pred(a) = p

with p the predicate symbol of the atom a.

For purposes of knowledge representation, one may have to use conjointly strong

negation (like ¬a) and default negation (like not a) inside a same program. This is

possible in ASP by means of an extended logic program (Gelfond and Lifschitz 1991)

in which rules are built with classical literals (i.e. an atom a or its strong negation

¬a) instead of atoms only. Semantics of extended logic programs distinguishes in-

consistent answer sets from absence of answer set. But, if we are not interested in

inconsistent answer sets, the semantics associated to an extended logic program is

reducible to answer set semantics for a normal logic program using constraints by

taking into account the following conventions:

• every classical literal ¬x is encoded by the atom nx,

• for every atom x, the constraint (← x, nx.) is added.

By this way, only consistent answer sets are kept. In this article, we do not focus

on strong negation and literal will never stand for classical literal.

Let us note that one can also use some particular atoms for (in)equalities and

simple arithmetic calculus on (positive and negative) integers. Arithmetic opera-

tions are treated as a functional arithmetic and comparison relations are treated as

built-in predicates.

Finally, a program P is said to be stratified iff there is a mapping strat from PS
to N such that, for each ground rule like (1), the two following conditions hold:

• strat(pred(c)) ≥ str(pred(ai)) for all i ∈ [1..n]

• strat(pred(c)) > str(pred(bj)) for all j ∈ [1..m]

3 A First Order Forward Chaining Approach for Answer Set

Computing

3.1 ASPeRiX Computation

In this section, a characterization of answer sets for first-order normal logic pro-

grams, based on a concept of ASPeRiX computation, is presented. This concept is

itself based on an abstract notion of computation for ground programs proposed

in (Liu et al. 2010). This computation fundamentally uses a forward chaining of

rules. It builds incrementally the answer set of the program and does not require the

whole set of ground atoms from the beginning of the process. So, it is well suited to

deal directly with first order rules by instantiating them during the computation.

The only syntactic restriction required by this methodology is that every rule of a

ASPeRiX 11

program must be safe. That is, all variables occurring in the head and all variables

occurring in the negative body of a rule occur also in its positive body. Note that

this condition is already required by all standard evaluation procedures. Moreover,

every constraint (i.e. headless rule) is considered given with the particular head ⊥
and is also safe. For the moment we do not consider function symbols but their use

will be discussed in Section 3.5.

An ASPeRiX computation is defined as a process on a computation state based

on a partial interpretation which is defined as follows.

Definition 3. A partial interpretation for a program P is a pair 〈IN,OUT 〉 of

disjoint atom sets included in the Herbrand base of P .

Intuitively, all atoms in IN belong to a search answer set and all atoms in OUT

do not.

The notion of partial interpretation defines different status for rules.

Definition 4. Let r be a ground rule and I = 〈IN,OUT 〉 be a partial interpreta-

tion.

• r is supported w.r.t. I when body+(r) ⊆ IN ,
• r is blocked w.r.t. I when body−(r) ∩ IN 6= ∅,
• r is unblocked w.r.t. I when body−(r) ⊆ OUT ,
• r is applicable w.r.t. I when r is supported and not blocked.1

An ASPeRiX computation is a forward chaining process that instantiates and fires

one unique rule at each iteration according to two kinds of inference: a monotonic

step of propagation and a nonmonotonic step of choice. To fire a rule means to add

the head of the rule in the set IN .

Definition 5. Let P be a set of first order rules, I be a partial interpretation and

R be a set of ground rules.

• ∆pro(P, I,R) is the set of all supported definite rules and supported unblocked

nonmonotonic rules from ground(P) \R.
• ∆cho(P, I,R) is the set of all applicable nonmonotonic rules from ground(P)\
R.

It is important to notice that the two sets defined above, like the set ground(P),

do not need to be explicitly computed. It is in accordance with the principal aim

of this work that is to avoid their extensive construction. When necessary, a first-

order rule of P can be selected and grounded with propositional atoms occurring

in IN and OUT in order to define a new (not already occurring in R) fully ground

rule member of ∆pro or ∆cho. Because of the safety constraint on rules this full

grounding is always possible. These mechanisms are specified in more details in

Subsection 3.3. The sets ∆pro and ∆cho are used in the following definition of an

ASPeRiX computation. Specific case of constraints (rules with ⊥ as head) is treated

by adding ⊥ into OUT set. By this way, if a constraint is fired (violated), ⊥ should

be added into IN and thus, 〈IN,OUT 〉 would not be a partial interpretation.

1 The negation of blocked, not blocked, is different from unblocked.

12 Claire Lefèvre, Christopher Béatrix, Igor Stéphan, Laurent Garcia

Definition 6. Let P be a first order normal logic program. An ASPeRiX computa-

tion for P is a sequence 〈Ri, Ii〉∞i=0 of ground rule sets Ri and partial interpretations

Ii = 〈INi, OUTi〉 that satisfies the following conditions:

• R0 = ∅ and I0 = 〈∅, {⊥}〉,

(Propagation) Ri = Ri−1 ∪ {ri} with ri ∈ ∆pro(P, Ii−1, Ri−1)

and Ii = 〈INi−1 ∪ {head(ri)}, OUTi−1〉
or (Rule choice) ∆pro(P, Ii−1, Ri−1) = ∅,

Ri = Ri−1 ∪ {ri} with ri ∈ ∆cho(P, Ii−1, Ri−1)

and Ii = 〈INi−1 ∪ {head(ri)}, OUTi−1 ∪ body−(ri)〉
or (Stability) Ri = Ri−1 and Ii = Ii−1,

• (Convergence) ∃i ≥ 0, ∆cho(P, Ii, Ri) = ∅.

The computation is said to converge to the set IN∞ =
⋃∞
i=0 INi.

Example 6. Let P6 be the following program:


n(1).

n(X + 1)← n(X), (X + 1) <= 2.

a(X)← n(X), not b(X), not b(X + 1).

b(X)← n(X), not a(X).

c(X)← n(X), not b(X + 1).


The following sequence is an ASPeRiX computation for P6:

I0 = 〈∅, {⊥}〉

r1 = n(1). ∈ ∆pro(P6, I0, ∅)
I1 = 〈{n(1)}, {⊥}〉

r2 = n(2)← n(1). ∈ ∆pro(P6, I1, {r1})
I2 = 〈{n(1), n(2)}, {⊥}〉

∆pro(P6, I2, {r1, r2}) = ∅
r3 = a(1)← n(1), not b(1), not b(2). ∈ ∆cho(P6, I2, {r1, r2})
I3 = 〈{n(1), n(2), a(1)}, {⊥, b(1), b(2)}〉

r4 = c(1)← n(1), not b(2). ∈ ∆pro(P6, I3, {r1, r2, r3})
I4 = 〈{n(1), n(2), a(1), c(1)}, {⊥, b(1), b(2)}〉

∆pro(P6, I4, {r1, r2, r3, r4}) = ∅
r5 = a(2)← n(2), not b(2), not b(3). ∈ ∆cho(P6, I4, {r1, r2, r3, r4})
I5 = 〈{n(1), n(2), a(1), c(1), a(2)}, {⊥, b(1), b(2), b(3)}〉

ASPeRiX 13

r6 = c(2)← n(2), not b(3). ∈ ∆pro(P6, I5, {r1, r2, r3, r4, r5})
I6 = 〈{n(1), n(2), a(1), c(1), a(2), c(2)}, {⊥, b(1), b(2), b(3)}〉

∆pro(P6, I6, {r1, r2, r3, r4, r5, r6}) = ∅
∆cho(P6, I6, {r1, r2, r3, r4, r5, r6}) = ∅

I7 = I6

The previous ASPeRiX computation converges to the set

{n(1), n(2), a(1), c(1), a(2), c(2)} which is an answer set for P6.

The following theorem establishes a connection between the results of any ASPeRiX

computation and the answer sets of a normal logic program.

Theorem 2. Let P be a normal logic program and X be an atom set. Then, X

is an answer set of P if and only if there is an ASPeRiX computation 〈Ri, Ii〉∞i=0,

Ii = 〈INi, OUTi〉, for P such that IN∞ = X.

Let us note that in order to respect the revision principle of an ASPeRiX com-

putation each sequence of partial interpretations must be generated by using the

propagation inference based on rules from ∆pro as long as possible before using

the choice based on ∆cho in order to fire a nonmonotonic rule. Then, because of

the non determinism of the selection of rules from ∆cho, the natural implementa-

tion of this approach leads to a usual search tree where, at each node, one has to

decide whether or not to fire a rule chosen in ∆cho. Persistence of applicability of

the nonmonotonic rule chosen to be fired is ensured by adding to OUT all ground

atoms from its negative body. On the other branch, where the rule is not fired,

the translation of its negative body into a new constraint ensures that it becomes

impossible to find later an answer set in which this rule is not blocked.

Propagation can be improved by using “must-be-true”2 atoms: atoms which have

to be in the answer set to avoid a contradiction or, in other words, atoms already

determined to be in IN but which are not yet be proved to be in.

Example 7. Let (⊥ ← not b.) be a constraint whose body contains only one literal

not b with b 6∈ IN ∪OUT . In order to have an answer set, b must be in IN so that

the constraint is not applicable but b is not yet proved (it is not the head of a fired

rule). Thus, one can only conclude that b must be true.

Must-be-true atoms can be used during the propagation step in order to reduce

the search space.

Example 8. Let (c ← a, b.) be a rule with a ∈ IN and b 6∈ IN but b has been

determined to be a must-be-true atom. The rule may be fired during the propagation

step but one can only conclude that the rule head c must be true (because b is not

yet proved).

Must-be-true atoms can also be used to reduce the size of ∆cho, the set of nom-

monotonic rules that can be chosen to be fired.

2 The term “must be true” is first used in (Faber et al. 1999).

14 Claire Lefèvre, Christopher Béatrix, Igor Stéphan, Laurent Garcia

Example 9. Let (c← a, not d.) be a rule with a ∈ IN and d 6∈ IN but d has been

determined to be a must-be-true atom. The rule may already be considered to be

blocked, even if d is not yet proved, and thus may be excluded from ∆cho.

Note that must-be-true atoms are first used to improve propagation and choice

but have to be proved later, otherwise the computation can not lead to an answer

set.

Notions of partial interpretation, rule status and ASPeRiX computation can be

modified in order to consider these new elements.

Definition 7. Let P be a logic program. A mbt partial interpretation for P is a

triplet 〈IN,MBT,OUT 〉 of disjoint atom sets included in the Herbrand base of P .

Definition 8. Let r be a ground rule and I = 〈IN,MBT,OUT 〉 be a mbt partial

interpretation.

• r is supported w.r.t. I when body+(r) ⊆ IN ,

• r is weakly supported w.r.t. I when body+(r) ⊆ (IN ∪MBT)

• r is blocked w.r.t. I when body−(r) ∩ (IN ∪MBT) 6= ∅,
• r is unblocked w.r.t. I when body−(r) ⊆ OUT ,

• r is applicable w.r.t. I when r is supported and not blocked.

Propagation is extended by Mbt-propagation: if some rule is weakly supported

and unblocked w.r.t. mbt partial interpretation 〈IN,MBT,OUT 〉 (but is not sup-

ported, i.e., does not belong to ∆pro), then the head of the rule can be added in

MBT set. And ∆cho, the set of rules that can be chosen, is restricted to the rules

that are not blocked w.r.t. mbt partial interpretation.

Definition 9. Let P be a set of first order rules, I = 〈IN,MBT,OUT 〉 be a mbt

partial interpretation and R be a set of ground rules.

• ∆pro(P, I,R) = {r ∈ ground(P) \R | body+(r) ⊆ IN and body−(r) ⊆ OUT}
• ∆pro mbt(P, I,R) = {r ∈ ground(P)\R | body+(r) ⊆ IN ∪MBT, body+(r) 6⊆
IN and body−(r) ⊆ OUT}
• ∆cho mbt(P, I,R) = {r ∈ ground(P) \ R | body+(r) ⊆ IN, and body−(r) ∩

(IN ∪MBT) = ∅}

A mbt ASPeRiX computation is an ASPeRiX computation with this additional kind

of propagation and with the possibility to block a rule from ∆cho mbt instead of firing

it (“Rule exclusion”). To block a rule is to add a constraint with the negative literals

of the rule body. If there is only one literal in the negative body, this constraint can

be expressed by adding an atom in MBT set (see Example 7). These possibilities

restrict rule choice in ∆cho mbt and thus forbid some computations: if a rule r is

blocked, computation can only converge to an answer set whose generating rules

do not contain r. Note that Convergence principle impose that, at the end of a

computation, no constraint is applicable and each atom from MBT set has been

proved (i.e., was moved from MBT to IN set).

ASPeRiX 15

Definition 10. Let P be a first order normal logic program. A mbt ASPeRiX com-

putation for P is a sequence 〈Ki, Ri, Ii〉∞i=0 of ground rule sets Ki and Ri and mbt

partial interpretations Ii = 〈INi,MBTi, OUTi〉 that satisfies the following condi-

tions:

• K0 = ∅, R0 = ∅ and I0 = 〈∅, ∅, {⊥}〉,
• (Revision) ∀i ≥ 1,

(Propagation) Ki = Ki−1,

Ri = Ri−1 ∪ {ri} with ri ∈ ∆pro(P, Ii−1, Ri−1)

and Ii = 〈INi−1 ∪ {head(ri)},MBTi−1 \ {head(ri)}, OUTi−1〉
or (Mbt-propagation) Ki = Ki−1, Ri = Ri−1,

and Ii = 〈INi−1,MBTi−1 ∪ {head(ri)}, OUTi−1〉
with ri ∈ ∆pro mbt(P, Ii−1, Ri−1)

or (Rule choice) ∆pro(P ∪Ki−1, Ii−1, Ri−1) = ∅,
∆pro mbt(P ∪Ki−1, Ii−1, Ri−1) = ∅,
Ki = Ki−1,

Ri = Ri−1 ∪ {ri} with ri ∈ ∆cho mbt(P, Ii−1, Ri−1)

and Ii = 〈INi−1 ∪{head(ri)},MBTi−1 \ {head(ri)}, OUTi−1 ∪ body−(ri)〉
or (Rule exclusion) ∆pro(P ∪Ki−1, Ii−1, Ri−1) = ∅,

∆pro mbt(P ∪Ki−1, Ii−1, Ri−1) = ∅,

Ki = Ki−1, Ri = Ri−1
and Ii = 〈INi−1,MBTi−1 ∪ body−(ri), OUTi−1〉
with ri ∈ ∆cho mbt(P, Ii−1, Ri−1) and |body−(ri)| = 1

or Ki = Ki−1 ∪ {⊥ ← ∪b∈body−(ri)not b.}, Ri = Ri−1 and Ii = Ii−1
with ri ∈ ∆cho mbt(P, Ii−1, Ri−1) and |body−(ri)| > 1

or (Stability) Ki = Ki−1, Ri = Ri−1 and Ii = Ii−1,

• (Convergence) ∃i ≥ 0, ∆cho mbt(P ∪Ki, Ii, Ri) = ∅ and MBTi = ∅.

Mbt ASPeRiX computations characterize answer sets of a normal logic program.

Completeness and correctness are established by the following theorem.

Theorem 3. Let P be a normal logic program and X be an atom set. Then, X is

an answer set of P if and only if there is a mbt ASPeRiX computation 〈Ki, Ri, Ii〉∞i=0,

Ii = 〈INi,MBTi, OUTi〉, for P such that IN∞ = X.

Note that computations model only successfull branches of a search tree. On the

other hand, must-be-true atoms and rules blocking enable to prune failed branches

of the tree and to reduce non determinism of the search by restricting the possible

choices for the oracle (because some rules are explicitly excluded, and others are

blocked by must-be-true atoms). So, these new elements do not improve the number

of steps of a computation but they improve the number of steps needed to find a

computation when there is no oracle to guide the search and, then, they make easier

the search of answer sets.

16 Claire Lefèvre, Christopher Béatrix, Igor Stéphan, Laurent Garcia

3.2 ASPeRiX Main Algorithm

Now, we are interested in the practical computation of an answer set. The ASPeRiX

algorithm, following the principle of mbt ASPeRiX computation seen in section 3.1,

is based on the construction of three disjoint atom sets IN , MBT and OUT during

the search for an answer set. It alternates two steps. On the one hand, a propagation

step which instantiates all supported and unblocked rules which may be built from

IN , MBT and OUT and fires them, i.e. adds their head in IN (or MBT). On the

other hand, a choice step which forces or prohibits a nonmonotonic instantiated

applicable rule to be fired during the next propagation step.

In order to treat the information more efficiently, the rules of a program P are

ordered following the strongly connected components (SCC) of the dependency

graph of P : the nodes of the dependency graph of a program P are its predi-

cate symbols and the arcs are defined by {(p, q)|∃r ∈ P, p = pred(head(r)), q ∈
pred(body+(r) ∪ body−(r))}. The strongly connected components {C1, ..., Cn} are

ordered in such a way that if i < j then no node (i.e. predicate symbol) of Ci de-

pends of a node of Cj . A rule is said to belong to a SCC C if the predicate symbol

of its head is in the component C. Note that constraints are not really concerned

by ordering of rules but, for standardizing notations, constraints are considered to

belong to a unique component whose number is greater than that of the last SCC,

i.e., if Cn is the last SCC then constraints are considered to belong to Cn+1.

Example 10. (Example 6 continued)

The strongly connected components (SCC) of the graph of the program P6 are

C1 = {n}, C2 = {a, b} and C3 = {c} (Figure 2).

n c

a b

Fig. 2. Dependency graph of P6

The ASPeRiX algorithm solves one by one the SCC {C1, ..., Cn} of a program

P by starting by C1. When no propagation nor choice can no longer be done on

the current SCC, the predicate symbols of the SCC are said to be solved and

the SCC too. It means that nothing can be deduced anymore for those predicate

symbols. The atoms which are instances of the predicate symbols of the current

SCC and which are not in IN are implicitly added to OUT . Note that they are not

explicitly added to OUT because ground instances of a predicate are not known

(not computed): they could be infinite and, even if finite, to compute and store

them is useless.

Rules of the program are instantiated on the fly during the propagation phase and

the choice step. Hence the propositional program ground(P) which contains all the

instantiated rules of the program is never really computed. The propagation step

ASPeRiX 17

and the choice step are realized in the ASPeRiX algorithm thanks to the functions

γpro and γcho (which are selection functions in ∆pro ∪∆pro mbt and ∆cho mbt sets

used in the mbt ASPeRiX computation of Subsection 3.1). The γpro function searches

for a weakly supported unblocked rule amongst the current and next non-solved

SCC. So propagation operates on several components: each rule is fired as soon as

possible to quickly detect a possible conflict. Rules instantiated by γpro are stored

in a set Subst = {subst(ri), ..., subst(rn)} during the answer set search to mark

the substitution of rules that have already been used. For each first-order rule ri,

subst(ri) denotes the set of all substitutions θ such that θ(ri) has already been fired.

And subst rule(ri) =
⋃
θ∈subst(ri){θ(ri)} is the set of instantiated rules obtained

thanks to substitutions subst(ri). The notation is extended to a set R of first-

order rules: subst rule(R) =
⋃
ri∈R subst rule(ri). The γcho function chooses an

applicable rule in the current SCC when nothing can no longer be propagated. So

choice, unlike propagation, operates only on the current component. This strategy,

consisting of solving the SCC one after another, makes it possible to solve efficiently

stratified programs (or some stratified parts of programs).

Functions γpro and γcho are specified in more details in Subsection 3.3 and are

defined informally as follows:

• γpro(P, S, S′, T, SCC, Subst): nondeterministic function which selects a rule

(or a constraint) r belonging to a SCC greater or equal to the current SCC in

the dependency graph of a program P such that body+(r) ⊆ S∪S′, body−(r) ⊆
T and r ∈ ground(P)\subst rule(P) or returns NULL if no such a rule exists.

• γcho(P, S, S′, T, SCC, Subst): nondeterministic function which selects a rule r

belonging to the current SCC in the dependency graph of a program P such

that body+(r) ⊆ S, body−(r)∩(S∪S′) = ∅ and r ∈ ground(P)\subst rule(P)

or returns NULL if no such a rule exists.

The function solve of Algorithm 1 specifies the algorithm of the search of one

answer set for a program P . The set PK is the set of constraints (rules with the

symbol ⊥ at their heads) of P and PR the other rules. By default, ⊥ is into the set

OUT . Then, if a constraint is fired, a contradiction is immediately detected since

⊥ is added into the set IN and the sets IN and OUT are no longer disjoint. The

algorithm of the function solve computes one answer set (or none if the program is

incoherent) thanks to the variable stop which stops the search once an answer set

has been found. This algorithm may be easily extended to compute an arbitrary

number of answer sets. Let us note that, for sake of simplicity, the function solve

will return either a set (when there is an answer set) or the constant no answer set

if there is no answer set.

The main parts of the function solve are now described. Initially, IN = ∅,
MBT = ∅, OUT = {⊥}, SCC is the index of the first SCC and Subst = ∅.

The propagation phase successively fires each weakly supported and unblocked in-

stantiated rule r0. At each step, the call γpro(PR∪PK , IN,MBT,OUT, SCC, Subst)

selects and instantiates a unique unblocked rule r0 such that body+(r0) ⊆ IN ∪
MBT (line 4). If such a rule exists, its head atom head(r0) must belong to the

answer set. This head atom is added into the set IN (line 9) if the positive body

18 Claire Lefèvre, Christopher Béatrix, Igor Stéphan, Laurent Garcia

Algorithm 1: solve

1 Function solve(PR, PK , IN, MBT, OUT, SCC, Subst);

2 // search of one answer set for a program P = PR ∪ PK
3 repeat//Propagation phase

4 r0 ← γpro(PR ∪ PK , IN,MBT,OUT, SCC, Subst);

5 if r0 6= NULL then

6 if (body+(r0) ∩MBT) 6= ∅ then

7 MBT ←MBT ∪ {head(r0)};
8 else

9 IN ← IN ∪ {head(r0)};
10 if (head(r0) ∈MBT) then

11 MBT ←MBT\{head(r0)};

12 until r0 = NULL;

13 if ((IN ∪MBT) ∩OUT 6= ∅) then //Contradiction detected

14 return no answer set;

15 else

16 r0 ← γcho(PR, IN,MBT,OUT, SCC, Subst);

17 if r0 6= NULL then //Choice point

18 stop← solve(PR, PK , IN,MBT,OUT ∪ body−(r0), SCC, Subst);

19 if stop = no answer set then

20 atoms← {a|a ∈ body−(r0), pred(a) ∈ pred(SCC)};
21 if (|atoms| = 1) then

22 MBT ←MBT ∪ atoms;
23 else

24 PK ← PK ∪ {⊥ ← ∪ai∈atoms not ai};
25 stop← solve(PR, PK , IN,MBT,OUT, SCC, Subst);

26 return stop ;

27 else // The SCC is solved

28 if pred(MBT) ∩ pred(SCC) = ∅ then

29 if ¬last(SCC) then

30 return solve(PR, PK , IN,MBT,OUT, SCC + 1, Subst);

31 else

32 if γcheck(PK , IN,MBT,OUT, SCC) then // a constraint is

violated

33 return no answer set;

34 else // An answer set has been found

35 return IN ;

36 else // a MBT atom can not be proved

37 return no answer set;

ASPeRiX 19

of the rule is included in the set IN or added into the set MBT (line 7) otherwise

since at least one atom a of the positive body of the rule has not yet proved its

membership to the set IN (a ∈MBT but a /∈ IN). Moreover, a head atom which

is added into IN must be deleted from MBT since a proof of its membership to

the answer set has been found (line 10). When there is no more unblocked rule r0
such that body+(r0) ⊆ IN ∪MBT , (IN ∪MBT) ∩ OUT = ∅ is checked in order

to detect a contradiction (line 13). If no contradiction is detected, the algorithm

begins the choice step.

The choice point forces or forbids a nonmonotonic applicable rule to be fired. The

call γcho(PR, IN, MBT, OUT, SCC, Subst) selects and instantiates a unique

applicable rule of PR whose head belongs to the current SCC (line 16). If such

a rule exists, r0 is forced to be unblocked and then will be fired during the next

propagation phase: its negative body is added to the OUT set and function solve

is recursively called with its new parameters (line 18). If a recursive call to the

function solve detects a contradiction, the algorithm backtracks on the last choice

point on the rule r0 which has been forced to be fired and blocks it (lines 19-25):

if a is the only atom of the negative body of r0 then a is added to the set MBT

(line 22) else a constraint including all the atoms of the negative body of r0 is added

to the program (line 24). More precisely, the only atoms of the negative body that

are considered are those with a predicate symbol belonging to the current SCC

because atoms from a lower SCC are already solved, i.e. they are in IN or OUT .

When there is no more choice point, the current SCC is solved (line 27) but it must

be checked that no atom of the MBT set has a predicate symbol in the current

SCC (line 28). If such an atom exists, MBT and OUT sets are not disjoint. Indeed,

if a SCC is solved, atoms which are instances of predicate symbols of the SCC

and which are not in IN are implicitly added to OUT . Then if a MBT atom is

an instance of a predicate symbol of the current SCC, a failure is observed and

the backtrack process continues (line 36). If the last SCC is solved, the set IN

represents an answer set of P if no constraint is applicable. This test is realized

thanks to the nondeterministic function γcheck (line 32) which is specified in more

details in Subsection 3.3 and is defined informally as follows:

γcheck(P, S, S′, T, SCC): function which checks if there is any constraint c such

that body+(c) ⊆ S, body−(c) ∩ S = ∅ and c ∈ ground(P).

Example 11. The execution of the ASPeRiX algorithm for program P6 of Example 6

is represented by a tree in Figure 3. At the beginning IN = ∅, MBT = ∅, OUT =

{⊥} and the current SCC is the component C1 = {n}. After the first propagation,

n(1) and n(2) are in IN thanks to the two rules (n(1).) and (n(2)← n(1), (1+1) <=

2.). No choice point exists and the first SCC is solved since the MBT set is empty.

The component C2 = {a, b} becomes the current SCC.

The first choice is realized on the current SCC (choice point CP1): the rule

(a(1) ← n(1), not b(1), not b(2).) becomes unblocked by adding b(1) and b(2) into

the set OUT (left branch after choice point CP1). A new propagation phase shows

that a(1) and c(1) are in IN since (a(1) ← n(1), not b(1), not b(2).) and (c(1) ←
n(1), not b(2).) can be fired. Then, a new choice is realized (choice point CP2) and

20 Claire Lefèvre, Christopher Béatrix, Igor Stéphan, Laurent Garcia

the rule (a(2)← n(2), not b(2), not b(3).) is forced to be unblocked (left branch after

choice point CP2). The atom b(3) is added into the set OUT . A new propagation

phase shows that a(2) and c(2) are in IN since (a(2) ← n(2), not b(2), not b(3).)

and (c(2)← n(2), not b(3).) can be fired. The second SCC is solved since no other

rule is applicable and the MBT set is still empty. In the same way, no propagation

nor choice point is possible in the SCC C3 = {c}. Since no constraint is applicable,

a first answer set is obtained: {a(1), a(2), c(1), c(2), n(1), n(2)}.
If another answer set is wished, the algorithm backtracks to the last choice point

Fig. 3. The tree-shaped execution of the answer sets of program P6.

ASPeRiX 21

on (a(2)← n(2), not b(2), not b(3).) of the component C2 and blocks the rule (right

branch after choice point CP2) by adding a constraint (⊥ ← not b(2), not b(3).) into

PK . A new choice is realized (choice point CP3) and the rule (b(2)← n(2), not a(2).)

is forced to be unblocked (left branch after choice point CP3) by adding a(2) into

the OUT set. During the propagation step, b(2) is added into the IN set since

(b(2) ← n(2), not a(2).) is fired. The atom b(2) is then simultaneously in the sets

IN and OUT which leads to a contradiction.

The algorithm backtracks to the choice point (b(2) ← n(2), not a(2).) of the

component C2 (choice point CP3) and the rule is blocked by adding the atom

a(2) into the MBT set (right branch after choice point CP3). Since there is no

more possible choice and the MBT set contains an atom whose predicate symbol

is in the current SCC, this atom cannot be proved and this leads to a failure. The

algorithm backtracks to the first choice point on (a(1) ← n(1), not b(1), not b(2).)

of the component C2 (choice point CP1) and blocks the rule and searches for a

new possible answer set (right branch after choice point CP1). The process keeps

going until the whole tree is computed when all the answer sets are required. Let

us note that when dealing with the computation of one answer set like explained

in the algorithm, only the first branch is considered.

3.3 Functions γ

Functions γ have a crucial role in two important steps of the search of an answer set.

The function γpro is called during the propagation step in order to choose the rules

to fire and then to add their heads into IN (or MBT). The function γcho is called

during the choice step in order to force or to forbid a rule to be fired during the next

propagation step. The function γcheck is called during the verification step in order

to verify that no constraint is applicable. Since the principle of the solver ASPeRiX

is to instantiate the rules on the fly during the search of an answer set, functions

γ need to call a function instantiateRule which searches for a substitution for the

atoms of a rule. This function is detailed in its own Subsection 3.4.

Function γpro. The function γpro searches for a rule to fire w.r.t. IN , MBT and

OUT sets. This function computes a complete instantiation of a rule such that

the positive body is in IN ∪MBT and the negative body is in OUT . The rule

to instantiate is chosen amongst a set of rules R consisting of rules that could

lead to new, unprocessed instances. These rules are those whose body contains

some predicate symbol of what we call an atom to propagate. Atoms to propagate

are atoms recently added into IN , MBT and OUT sets, and not yet used for

propagation phase. Thereby, when an atom a is added into IN or MBT (resp.

OUT) set, the rules containing pred(a) in their positive body (resp. negative body)

will be in the R set for the next call to γpro in order to propagate this atom,

i.e. to use its presence in IN or MBT (resp. OUT) for building new instances of

rules to be fired. During the first call of the function solve, atoms to propagate

are the facts of the program, and the set R contains all the rules which have some

predicate symbols of the facts in their positive body. During a call after a choice

22 Claire Lefèvre, Christopher Béatrix, Igor Stéphan, Laurent Garcia

point, atoms to propagate are those added into OUT during this choice point, and

the set R contains all the rules which have some predicate symbols of these atoms in

their negative body. During a call after the access to the next SCC, the predicate

symbols of the current SCC are solved and then all instances of these predicate

symbols that are not in IN are implicitly added into OUT . Atoms to propagate

are all these instances determined to be false, and then the set R contains all the

rules which have in their negative body some of these solved predicate symbols.

The Algorithm 2 of the function γpro chooses a first-order rule r amongst the set R

(the first one, line 5) and tries to find a weakly supported unblocked instantiation of

the rule. It calls the function instantiateRule which returns this next instantiation

if any (line 6). If there is no more weakly supported unblocked instantiated rule

which may be extracted from r (line 7), γpro deletes from R the rule r and treats

the next rule. This process is repeated until a weakly supported unblocked rule is

found or there is no more rule in R. When a rule allows a substitution (line 10),

the latter is stored in Subst in order to find some others at the next call to γpro.

Algorithm 2: γpro

1 Function γpro(P, IN,MBT,OUT, SCC, Subst);

2 R← Set of rules (including constraints) containing predicate symbols to

propagate;

3 if R 6= ∅ then

4 repeat

5 r ← first(R);

/* Searching for an instantiation of the rule r with

body+(r) ⊆ IN ∪MBT and body−(r) ⊆ OUT */

6 θ ← instantiateRule(r, γpro, IN,MBT,OUT, subst(r));

7 if θ = NULL then

8 R← R\{r};

9 until θ 6= NULL or R = ∅;
10 if θ 6= NULL then

/* An unblocked weakly supported instantiated rule is found

*/

11 subst(r)← subst(r) ∪ {θ};
12 return θ(r);

13 else

14 return NULL;

15 else

16 return NULL;

Example 12. Example 11 is taken again. An answer set is searched after the choice

point on the rule (a(1) ← n(1), not b(1), not b(2).) (choice point CP1): the atoms

b(1) and b(2) are added into the set OUT in order to force the rule to be fired

ASPeRiX 23

(left branch after choice point CP1). During the propagation step, many calls to

the function γpro are executed. During the first call the set R consists of all the

rules containing in their negative body the predicate symbol b of the atoms b(1)

and b(2) that must be propagated. This set R then contains the rules (a(X) ←
n(X), not b(X), not b(X + 1).) and (c(X) ← n(X), not b(X + 1).) Arbitrarily, the

rule (a(X)← n(X), not b(X), not b(X+1).) of the set R is chosen and a supported

unblocked instantiation (a(1) ← n(1), not b(1), not b(2).) is found. The function

γpro returns the instantiation of the rule and the solve function adds a(1) into IN .

During the next call to γpro, the set R must contain, in addition to the previous

rules, any rule containing in its positive body the predicate symbol a of the atom

to be propagated a(1) (since a(1) has been added into IN). Since no rule respects

this condition, the set R still contains only the two previously added rules. The

function γpro searches for a new weakly supported unblocked instantiation of the

rule (a(X) ← n(X), not b(X), not b(X + 1).). No such instantiation is found and

the rule is deleted from the set R. The function γpro searches for a new weakly

supported unblocked instantiation of the rule (c(X) ← n(X), not b(X + 1).). The

instantiation (c(1) ← n(1), not b(2).) is then returned to the solve function which

adds c(1) into IN . Then during the next call to the function γpro, the set R must

be updated with the rules containing in their positive body the predicate symbol

c of the atom to propagate c(1). As previously, no rule respects this condition and

the set R still contains the only rule (c(X)← n(X), not b(X + 1).). A new weakly

supported unblocked instantiation is sought but this rule leads to a failure. The

rule (c(X) ← n(X), not b(X + 1).) is then deleted from the set R which becomes

empty. Then the function γpro returns the value NULL and the propagation step

of the function solve stops.

Function γcho. The function γcho is executed when no rule can be fired anymore

and there is some SCC to be solved. This function searches an applicable instanti-

ated rule belonging to the current SCC. The Algorithm 3 of function γcho is similar

to the algorithm of the function γpro. The function γcho searches for an applicable

instantiated rule amongst a set R of rules which have in their negative body at least

one predicate symbol from the current SCC (otherwise, if all predicate symbols from

negative body belong to previous SCC, they are already solved and then the rule

can be considered as a monotonic one and is only used for propagation). The func-

tion γcho chooses a rule in this set R before calling the function instantiateRule

searching for the next applicable instantiation for the considered rule. In a similar

way as the function γpro, the process is repeated until an applicable instantiated

rule is found for a rule of R or there is no more rule in R.

Example 13. Example 12 is taken again. After the first SCC has been solved, a first

choice is realized on the current SCC, C2 = {a, b}, by the function γcho. The rules of

this component which contains in their negative body at least one predicate symbol

a or b of C2 are added into the set R of the rules that may be chosen. Then, the rules

(a(X) ← n(X), not b(X), not b(X + 1).) and (b(X) ← n(X), not a(X).) are in R.

Arbitrarily, the function γcho searches for an applicable instantiation of the first rule

24 Claire Lefèvre, Christopher Béatrix, Igor Stéphan, Laurent Garcia

Algorithm 3: γcho

1 Function γcho(P, IN,MBT,OUT, SCC, Subst);

2 R← Set of rule belonging to the current SCC such that the negative body

contains at least a predicate symbol not solved;

3 if R 6= ∅ then

4 repeat

5 r ← first(R);

/* Searching for an instantiation of the rule r with

body+(r) ⊆ IN and body−(r) ∩ (IN ∪MBT) = ∅ */

6 θ ← instantiateRule(r, γcho, IN,MBT,OUT, subst(r));

7 if θ = NULL then

8 R← R\{r};

9 until θ 6= NULL or R = ∅;
10 if θ 6= NULL then

/* An applicable instantiated rule is found */

11 subst(r)← subst(r) ∪ {θ};
12 return θ(r);

13 else

14 return NULL;

15 else

16 return NULL;

of this set and a choice point on (a(1)← n(1), not b(1), not b(2).) is returned to the

calling function solve (choice point CP1). After the propagation step, γcho searches

for a new applicable instantiation of the rule (a(X)← n(X), not b(X), not b(X+1).)

and a choice point on (a(2) ← n(2), not b(2), not b(3).) is returned to the calling

function solve (choice point CP2). After a new propagation step, γcho searches in

vain a new applicable instantiation of the rule (a(X)← n(X), not b(X), not b(X +

1).) This last rule is then deleted from the set R and γcho searches for an applicable

instantiation of the rule (b(X)← n(X), not a(X).) which leads to a failure. The set

R is now empty and the function γcho returns NULL to the calling function solve

to mean that no other choice may be realized on the current SCC.

Function γcheck. The function γcheck is executed when no more choice point is

possible for the last SCC. This function verifies that no constraint containing at

least one predicate symbol of the last SCC is applicable in order to determine if

the set IN is an answer set. The Algorithm 4 of the function γcheck is similar to

the algorithm of the function γcho. The function γcheck searches for an applicable

instantiated constraint amongst a set C of constraints whose negative body contains

at least a not-solved predicate symbol of the last SCC. The function γcheck chooses

a constraint in the set C and calls the function instantiateRule which searches

for an applicable instantiated constraint. If no instantiated constraint is applicable,

ASPeRiX 25

the algorithm returns false and the set IN is an answer set of the program. If a

constraint is applicable, the algorithm returns true which means there is a failure

on the branch (the search of answer sets keeps going on other branches if any).

Algorithm 4: Function γcheck

1 Function γcheck(P, IN,MBT,OUT, SCC);

2 C ← Set of constraints such that the negative body contains at least a

predicate symbol not solved;

3 if C 6= ∅ then

4 repeat

5 c← first(C);

/* Searching for an instantiation of the constraint c such

that body+(c) ⊆ IN and body−(c) ∩ IN = ∅ */

6 θ ← instantiateRule(c, γcheck, IN,MBT,OUT, ∅);
7 if θ = NULL then

8 C ← C\{c};

9 until θ 6= NULL or C = ∅;
10 if θ 6= NULL then

/* An applicable instantiated constraint is found */

11 return true;

12 else

13 return false;

14 else

15 return false;

3.4 Rule Instantiation

In this section is described the process of instantiation of a rule. This process is a

lazy one only called when needed. Since we only consider safe rules, the instantiation

of a rule is in fact the instantiation of its positive body. In a forward chaining

approach, the only rule instantiations of interest are those that lead to a not blocked

supported rule or an unblocked weakly supported rule. Hence, the rule instantiation

is mainly directed by the instantiated atoms already present in the sets IN and

MBT .

The algorithm used in the ASPeRiX solver and described below is inspired by the

previous work realized on the DLV grounder (Faber et al. 2012; Perri et al. 2007)

which is based on the semi-naive evaluation technique of (Ullman 1989). The goal

is to find a substitution for all the literals of the body of a rule r thanks to the

atoms already in IN , MBT or OUT . To do this, a partial substitution θ is built as

possible values are found for the variables of the literals of the body of the rule r. It is

assumed that the literals l1, l2, . . . , ln of the body of the rule r are ordered following

a list [l1, l2, . . . , ln]: firstLiteral(r) (resp. lastLiteral(r)) corresponds to l1 (resp.

26 Claire Lefèvre, Christopher Béatrix, Igor Stéphan, Laurent Garcia

ln) and previousLiteral(r) (resp. nextLiteral(r)) corresponds to the literal which

precedes (resp. follows) the literal under consideration in the list. The substitution

calculus for a literal l of a rule r is realized thanks to the functions firstMatch

and nextMatch. These functions look for a substitution which has not already been

computed, i.e. not leading to a substitution for r present in the set subst(r) of all

substitutions θ such that θ(r) has already been fired. If the literal l is positive,

a substitution such that the substituted atom is in the set IN (or IN ∪MBT)

is searched. If the literal is negative, (a) a substitution such that the substituted

corresponding atom is in the set OUT is searched if the goal is an unblocked rule or

(b) the non membership of the substituted atom to the set IN ∪MBT is checked

if the goal is a not blocked rule3.

In the functions firstMatch and nextMatch which follow, the parameter γ shows

if an unblocked weakly supported or not blocked supported rule is looked for.

• firstMatch(l, θ, γ, IN,MBT,OUT, subst) is a function which searches for

the first possible substitution for a literal l w.r.t. the sets IN , MBT and

OUT , selection criterion γ (unblocked weakly supported or applicable rule)

and the current partial substitution θ. firstMatch returns true and updates

the partial substitution θ in case of success. Otherwise, the function returns

false.

• nextMatch(l, θ, γ, IN,MBT,OUT, subst) is a function which searches for the

next possible substitution for literal l given the already realized substitutions.

For a rule r, a free variable of a literal l is an occurrence of a variableX such that it

is its first occurrence in the body of r when starting traversing the literal l. In other

words, no other literal which precedes l in the body of r contains an occurrence of

the variable X. During the instantiation of a rule, a possible substitution is sought

for all the free variables of every traversed literal and the substitutions of the

previously calculated variables are kept. If a literal has no free variable, the validity

of the substitution w.r.t. the selection criterion γ is checked (i.e. the substituted

corresponding atom θ(at(l)) is in IN or IN ∪MBT if l ∈ body+(r) and θ(at(l)) is

in OUT or θ(at(l)) is not in IN if l ∈ body−(r)).

Example 14. Let (a(X,Y, Z)← b(X,Y), c(X,Y), d(X,Z).) be a rule. The ordered

list of the body of the rule is [l1 = b(X,Y), l2 = c(X,Y), l3 = d(X,Z)] with:

• freeV ariables(l1) = {X,Y }
• freeV ariables(l2) = ∅
• freeV ariables(l3) = {Z}.

Function instantiateRule of Algorithm 5 specifies the instantiation principles of

a rule for constant sets IN , MBT and OUT . This function is initialized with the

partial substitution θ which is the last found substitution (thanks to the function

lastSubstitution) for the rule r if any (line 2). If it is the first attempt for the instan-

tiation of this rule, θ is empty (line 3) and the function searches a first substitution

3 In this case, the body of the rule is ordered in such a way that negative literals appear after the
positive literals containing their variables.

ASPeRiX 27

Algorithm 5: instantiateRule

1 Function instantiateRule(r, γ, IN, MBT, OUT, subst);

2 θ ← lastSubstitution(r);

3 if θ = ∅ then

/* Searching for the first possible substitution of first

literal */

4 l← firstLiteral(r);

5 matchFound← firstMatch(l, θ, γ, IN,MBT,OUT, subst);

6 else

/* Searching for the next possible substitution of last

literal */

7 l← lastLiteral(r);

8 θ ← θ\freeV ariableSubstitutions(l);
9 matchFound← nextMatch(l, θ, γ, IN,MBT,OUT, subst);

10 while true do

11 if matchFound then

12 if l 6= lastLiteral(r) then

13 l← nextLiteral(r);

14 matchfound← firstMatch(l, θ, γ, IN,MBT,OUT, subst)

15 else

/* A complete substitution is found */

16 return θ;

17 else

/* No substitution for literal l. Bactrack to previous

literal (if any) to find its next possible substitution

*/

18 if l 6= firstLiteral(r) then

19 l← previousLiteral(r);

20 θ ← θ\freeV ariableSubstitutions(l);
21 matchFound← nextMatch(l, θ, γ, IN,MBT,OUT, subst);

22 else

23 return NULL;

for the first literal of the body of the rule r using the function firstMatch. Other-

wise, a substitution for r has already been computed (line 6), the function searches a

new possible substitution for the rule. For this, the function searches the next possi-

ble instance of the last literal of the rule r by deleting from θ the substitutions of the

free variables of this literal (thanks to the function freeV ariableSubstitutions) and

by calling the function nextMatch. During the execution of the main loop, the func-

tion first checks if a substitution has been found for the current literal a (line 11).

If it is the case, it searches a first substitution for the next literal of the rule body

respecting the partial substitution θ. When all the atoms have been considered,

28 Claire Lefèvre, Christopher Béatrix, Igor Stéphan, Laurent Garcia

a complete substitution is found (line 15). The function returns this substitution.

When the instantiation of a literal fails (i.e. there is no possible substitution for it),

the function backtracks on the previous literal (line 18) and updates θ by deleting

the substitutions of the free variables of this literal. Hence the function calls the

function nextMatch which searches the next possible instantiation for this literal.

The instantiation of a rule r fails when no more substitution is possible for the first

literal (line 23).

Actually, the instantiation algorithm of a rule is slightly more complicated than

the Algorithm 5 since the atoms dynamically added into IN , MBT and OUT

sets during the answer set computation, called atoms to propagate, have to be

taken into account: if possible, each substitution has to be computed once and only

once. Hence ASPeRiX uses a queue called propagate IN (resp. propagate MBT and

propagate OUT) which contains the atoms to be added into the set IN (resp. MBT

and OUT). When all the instances of a rule r, for given sets IN0, MBT0 and OUT0,

have been generated, an atom to propagate ap whose predicate symbol p appears

in the body of the rule r is extracted. Now I1 = 〈IN1,MBT1OUT1〉 denotes the

mbt partial interpretation obtained by adding ap into I0 = 〈IN0,MBT0, OUT0〉.
The body of the rule is ordered in such a way that the first literals are those whose

predicate symbol is the one of the atom to propagate ap (they are the literals

that might unify with ap). Then these literals whose predicate symbol is p are

successively marked and placed at the beginning of the rule. The marked literal

might only take the value of the atom to propagate ap whereas the following (non

marked) literals might take any values in I1. Then, if the instantiation of the first

literal fails, it is unmarked, the next literal of predicate p becomes the first literal

of the rule body and is marked in turn, and the instantiation of the rule is started

again. The unmarked literals might then take any values in I0 (which excludes the

values of ap already used) while the marked literal can only take the value of the

atom to propagate, and the non marked literals always take their values in I1. If

the instantiation of the first literal fails and there is no other literal to be marked,

the instantiation of the rule fails.

Example 15. Let r0 be a rule and IN0, propagate IN and IN1 be sets of atoms

defined as follow:

r0 = a(X + Y)← a(X), b(X,Y), a(Y).

IN0 = {b(1, 1), b(1, 2)}
propagate IN = {a(1)}
IN1 = {b(1, 1), b(1, 2), a(1)}

The atom a(1) has to be propagated by instantiating the rule r0. Table 1 shows

the different steps of the instantiation. The literals to be marked (whose predicate

symbol is a) of the body of the rule are a(X) and a(Y). These literals are placed

at the beginning of the body of r0 like this: [l1 = a(X), l2 = a(Y), l3 = b(X,Y)]. In

Table 1, for clarity, the sequence of literals of the rule body is not changed when the

marked literal changes. But the marked literal (shown in bold) is processed first,

which is the same. The first attempt for an instantiation begins and for the first

time with atom to propagate a(1). The literal l1 = a(X) is then marked and takes

ASPeRiX 29

a(X + Y) ← a(X), a(Y), b(X,Y)
*** first call to instantiateRule ***

(1.1) a(1) - - (l1 marked)
(1.2) a(1) a(1) -
(1.3) a(1) a(1) b(1, 1) ⇒ complete instantiation

*** second call to instantiateRule ***
(2.1) a(1) a(1) NO
(2.2) a(1) NO -
(2.3) NO - - ⇒ failure
(2.4) - a(1) - (l2 marked)
(2.5) NO a(1) - ⇒ failure

Table 1. Decomposition of the instantiations of the rule r0 for the atom to

propagate a(1) (Example 15)

as unique value that of the atom to propagate a(1) ((1.1) Table 1). Hence, value 1

is substituted to the variable X in θ. Then, the following literal in the body of the

rule, l2 = a(Y), becomes the current literal and takes as value the first amongst

those into IN1 which is also a(1). Hence, value 1 is substituted to the variable Y

in θ ((1.2) Table 1). Then the last literal, l3 = b(X,Y), is reached. This literal has

no free variable and the membership into IN1 is simply checked for b(1, 1) which is

obtained from b(X,Y) by substituting X and Y by the values in θ ((1.3) Table 1).

There is no more literal to consider then a complete substitution has been found.

The atom of the head a(X + Y) takes the values of the substitution θ. Hence, the

forward chaining algorithm can add a(2) into the propagate IN queue.

Now, during a new instantiation attempt of the rule for the atom to propagate

a(1), the function restarts with the last substitution of the rule θ = {X/1, Y/1} in

order to find a new substitution for the literal l3 = b(X,Y). The second attempt

for an instantiation begins with atom to propagate a(1) for the second time. Since

b(X,Y) has no free variable, there can be no other substitution than the current

one ((2.1) Table 1). The process then backtracks to the literal l2 = a(Y) which

has no other substitution in IN1 (a(2) has been inferred after a(1) and is not into

the current set IN1) ((2.2) Table 1). Since literal l1 = a(X) can only take the

value a(1), it also fails ((2.3) Table 1). Since the last literal has failed, the literal

l2 = a(Y) is now marked instead of a(X), and is instantiated with the atom to

propagate a(1). Hence, value 1 is substituted to the variable Y in θ ((2.4) Table 1).

Literal l1 = a(X) is unmarked and can only take the values of the atoms of IN0,

thus no substitution is possible. Hence the algorithm fails on the first literal ((2.5)

Table 1). Since there is no more literal to be marked, the rule instantiation ends by

a failure for the atom to propagate a(1). The sets becomes as follow:

IN0 = {b(1, 1), b(1, 2), a(1)}
propagate IN = {a(2)}
IN1 = {b(1, 1), b(1, 2), a(1), a(2)}

The next atom a(2) is extracted from the queue to propagate. The third attempt

for an instantiation of r0 begins with atom to propagate a(2) for the first time.

Table 2 shows the different steps of the instantiation. The literals a(X) and a(Y)

30 Claire Lefèvre, Christopher Béatrix, Igor Stéphan, Laurent Garcia

a(X + Y) ← a(X), a(Y), b(X,Y)
*** third call to instantiateRule ***

(1.1) a(2) - - (l1 marked)
(1.2) a(2) a(1) -
(1.3) a(2) a(1) NO
(1.4) a(2) a(2) -
(1.5) a(2) a(2) NO
(1.6) a(2) NO -
(1.7) NO - - ⇒ failure
(1.8) - a(2) - (l2 marked)
(1.9) a(1) a(2) -
(1.10) a(1) a(2) b(1, 2) ⇒ complete instantiation

*** fourth call to instantiateRule ***
(2.1) a(1) a(2) NO
(2.2) NO a(2) -
(2.3) - NO - ⇒ failure

Table 2. Decomposition of the instantiations of the rule r0 for the atom to

propagate a(2) (Example 15 continued)

are again to be marked. The rule instantiation is restarted with the literal l1 = a(X)

which is the marked literal. The variable X is substituted by the value 2 since the

only allowed value is that of the atom to propagate a(2) ((1.1) Table 2). The current

literal is now l2 = a(Y) where Y is substituted by the value 1 since a(1) is into IN1

((1.2) Table 2). The literal b(X,Y) has no free variable and since the atom b(2, 1)

which respects the substitution θ = {X/2, Y/1} is not in IN1, the literal b(X,Y)

has no possible substitution ((1.3) Table 2). Then a new instantiation for l2 = a(Y)

is sought: its next possible value is 2 (since a(2) is in IN1) ((1.4) Table 2). Again,

since the atom b(2, 2) which respects the substitution θ = {X/2, Y/2} is not in

IN1, the literal b(X,Y) has no possible substitution ((1.5) Table 2). The process

backtracks to the literal l2 = a(Y) which has no possible value ((1.6) Table 2).

Hence, the process backtracks to the literal l1 = a(X) which has no possible value

since the only possible value was that of the atom to propagate a(2) ((1.7) Table 2).

Since the first literal has failed, the process restarts by marking the second literal

a(Y) (and unmarking the first a(X)). The marked literal l2 = a(Y) is processed

first, it substitutes Y by the value 2 of the atom to propagate a(2) ((1.8) Table 2).

The unmarked literal l1 = a(X) may only take its values into IN0. The variable

X is then substituted by the value 1 ((1.9) Table 2). The literal l3 = b(X,Y) has

no free variable and since b(1, 2) which respects the substitution θ = {X/1, Y/2}
is in IN1 a complete substitution is found ((1.10) Table 2). The atom a(X + Y)

of the head takes then the value of the substitution θ. Hence, the forward chaining

algorithm can add a(3) into IN1 and into propagate IN .

Then, during a new instantiation attempt of the rule r0, the atom to propagate

is still a(2). The process restarts from the last substitution θ = {X/1, Y/2} and

search for a new substitution for the literal l3 = b(X,Y). A fourth attempt for an

instantiation begins with atom to propagate a(2) for the second time. Since b(X,Y)

has no free variable, there can be no other substitution than the current one ((2.1)

Table 2). The process then backtracks to the literal l1 = a(X) that has no other

ASPeRiX 31

substitution since the only possible values are those from IN0 (then neither the

atom to propagate a(2) nor a(3) appeared after a(2) are possible) ((2.2) Table 2).

The literal l2 = a(Y) also fails since the marked literal only accepts the value of the

atom to propagate a(2) ((2.3) Table 2). Since there is no more literal to be marked,

the instantiation of the failing rule ends for this atom to propagate. The process

continues with the atom a(3) which also leads to a failure.

3.5 ASPeRiX language

The core language of ASPeRiX is that of normal logic programs (Gelfond and Lifs-

chitz 1988) with function symbols and true (or strong) negation without inconsistent

answer set. ASPeRiX also provides dedicated treatment of lists with built-in predi-

cates, as in DLV-complex (Calimeri et al. 2008), an extension of DLV with lists and

sets. On the other side, ASPeRiX does not provide aggregate atoms and optimiza-

tion statements (Buccafurri et al. 2000) which are accepted by the main current

systems.

One of the important issues in ASP is the treatment of function symbols. Un-

interpreted function symbols are important because they enable representation of

recursive structures such as lists and trees. But reasoning becomes undecidable if

no restriction is enforced. A lot of work has been made for identifying program

classes for which reasoning is decidable (Alviano et al. 2011; Alviano et al. 2010;

Calimeri et al. 2011; Lierler and Lifschitz 2009; Baselice and Bonatti 2010; Greco

et al. 2013).

The inherent difficulty with functions in general (and arithmetic in particular)

in the framework of ASP is that it makes the Herbrand universe infinite in whole

generality. ASP grounders Lparse (Syrjänen 1998) and versions up to 3.0 of Gringo

(Gebser et al. 2007) accept programs respecting some syntactic domain restrictions

and are able to deal with some restricted versions of functions.

DLV grounder (Faber et al. 2012) and Gringo (since version 3.0) (Gebser et al.

2011) only require programs to be safe and can deal with all programs having a

finite instantiation. DLV guarantees finite instantiation for finitely ground programs

but membership in this class is not decidable. It integrates a Finite Checker module

which can check if a program belongs to a sub-class of finitely ground programs

(argument-restricted programs). For programs that are not member of this sub-

class, answer sets can be computed without preliminary check but ending is not

guaranteed.

ASPeRiX can deal with these programs and with some other programs whose in-

stantiation is infinite but whose answer sets are finite. For example, the program P1a

from Section 1 is not finitely ground: intelligent instantiation of the program must

be finite to be finitely ground. The key points of intelligent instantiation are that

rules are instantiated with atoms appearing in head of rules of the program, and

simplifications are performed relatively to facts and rule heads of preceding compo-

nents of the dependency graph. In example P1a, choice between a and b makes both

possible for the grounder, and constraint has no effect on intelligent instantiation of

the program. Thus, the grounding of rules from P1a will be the same with or with-

32 Claire Lefèvre, Christopher Béatrix, Igor Stéphan, Laurent Garcia

out the constraint (← a.): infinite in both cases. ASPeRiX halts on P1a and is thus

able to halt on non finitely ground programs but it is not able to verify in advance

if answer sets are finite or not, and thus if computation will end or not. Never-

theless, ending can be guaranteed by means of command-line options specifying

the maximum allowed nesting level for functional terms and the biggest admissible

integer (DLV grounder provides similar possibilities). These restrictions ensure that

our computations always converge to an answer set if it exists. Formalizing the class

of programs for which ASPeRiX halts will be the subject of a forthcoming work.

4 Experimental results

Following Algorithm 1 of Section 3.2, the solver called ASPeRiX has been im-

plemented in C++ and is available at http://www.info.univ-angers.fr/pub/

claire/asperix.

There are two other ASP systems, GASP (Dal Palù et al. 2009) and OMiGA (Dao-

Tran et al. 2012), that realize the grounding of the program during the search of

an answer set.

GASP is an implementation in Prolog and Constraint Logic Programming over

finite domains of the notion of computation (see Section 3.1). The main ideas are

the same as those of ASPeRiX. Notable differences are the following. Well founded

consequences of the program are computed first. Then propagation is close to ours.

GASP does not deal with must-be-true atoms but two special cases of propagation,

not treated by ASPeRiX, are implemented: (a) if the head of a rule is known to

be in OUT set and the body of the rule is satisfied except for one positive literal,

then this literal must be false (added to OUT) and (b) if, for some undefined atom

a, there is no applicable rule whose head is a, then a can be added to OUT. For

each rule, instantiation and propagation are realized by building and solving a CSP

that determines atoms derivable from the rule. Representation of interpretations

uses Finite Domain Sets, such a data structure is efficient to represent compactly

intervals but it need to code tuples (instances of predicates) by integers (very big

integers if domain is large and arity of predicate too). This representation impose

the set of ground terms of the program to be finite and thus function symbols are

excluded. On the other hand, GASP supports some cardinality constraints. To our

knowledge, GASP remained at the prototype stage and is no longer developed.

OMiGA is implemented in Java. Functional symbols (of non-zero arity) are not

supported. Principles of propagation and choice are the same as those of ASPeRiX

but implementation uses Rete algorithm for improving the speed of propagation.

First order rules are represented by a Rete network. Each node represents a literal

(or a set of literals) from the body of a rule or the atom of the head of a rule. It

stores all instances of the node that are true w.r.t. current partial interpretation.

Thereby all partial instantiations of rules are stored in the network. This lead to an

efficient propagation regarding computation time, but memory space is sacrified.

Dependency graph and solved predicates seems to be treated in a similar manner to

that of ASPeRiX. Current version (Weinzierl 2013) uses must-be-true propagation

and tries to introduce methods for conflict-driven learning of non-ground rules:

ASPeRiX 33

when a constraint is violated, a new constraint is built by unfolding of rules whose

firing contributes to the conflict. This learned constraint is then transformed into

special rules so as to be used for propagation.

In the following we give some results of evaluation of ASPeRiX 0.2.5 highlighting

its adequacy to some particular problems. It is compared with Clingo (composed

by Gringo 3.0.5 and Clasp 1.3.10) (Gebser et al. 2011; Gebser et al. 2012),

DLV Dec 16 2012 (Leone et al. 2006), GASP (june 2009) (Dal Palù et al. 2009)

and OMiGA Dec 3 2012 (Dao-Tran et al. 2012). Version without learning is used

for OMiGA because learning lowers its performances. All the systems have been run

on an Intel Core i7-3520M PC with 4 cores at 2.90GHz and about 4GB RAM,

running Linux Ubuntu 12.04 64 bits. For each instance of a problem, the memory

usage is limited to 3.000MB and computation time to 600 seconds. RunLim1.7 is

used for these limitations tasks. Tables of results use OoM (resp. OoT) to indicate

Out of Memory (resp. Out of Time). Results for GASP are only given for the first

two examples, because it does not accept other tested programs.

Schur problem The Schur number problem is to partition N numbers into M

sets such that all of the sets satisfy: if x and y are assigned to the same set, then

x+ y is not in the set. The following program (Dal Palù et al. 2009) is for M = 3

sets and N = 4 numbers.

PSchur−4 =



number(1)., number(2)., number(3)., number(4).,

part(1)., part(2)., part(3).,

inpart(X, 1)← not inpart(X, 2), not inpart(X, 3), number(X).,

inpart(X, 2)← not inpart(X, 1), not inpart(X, 3), number(X).,

inpart(X, 3)← not inpart(X, 1), not inpart(X, 2), number(X).,

← number(X), number(Y), part(P),

inpart(X,P), inpart(Y, P), inpart(Z,P),

T = Y + 1, X < T, Z = X + Y.


The results are shown in Table 3 for M = 3. AS reports the number of answer

sets which are all computed. For all N ≥ 14, Schur-N has no answer set.

The program is a typical “guess and check” program. The seach space is expressed

by the three rules with inpart as head predicate, and constraint eliminates “bad

choices”. The grounding of the program is rather small but the search space is large.

The problem is very easy for Clingo and DLV but very hard for ASPeRiX and GASP.

Systems using grounding on the fly have to repeat instantiation of the same rules

in each branch of the search tree. Moreover, constraints are not efficiently man-

aged by systems like ASPeRiX: it does not use constraints for propagation but only

checks if a constraint is violated. Compared to ASPeRiX, OMiGA performs well for

computation time, certainly because Rete network improve speed of instantiation

(partial instantiations are stored in the network) and the network remains rela-

tively small in such an example. This example illustrates a large class of programs

that ASPeRiX mismanage: programs with many choices and little propagation by

forward chaining.

Conversely, the following examples illustrate problems for which grounding on

the fly is well adapted.

34 Claire Lefèvre, Christopher Béatrix, Igor Stéphan, Laurent Garcia

ASPeRiX Clingo DLV OMiGA GASP

N = 1 AS = 3 time in sec <0.1 <0.1 <0.1 <0.1 <0.1
memory in MB <2.0 <2.0 <2.0 20.0 4.4

N = 2 AS = 6 time in sec <0.1 <0.1 <0.1 <0.1 <0.1
memory in MB <2.0 <2.0 <2.0 20.0 5.2

N = 3 AS = 18 time in sec <0.1 <0.1 <0.1 0.1 0.3
memory in MB <2.0 <2.0 <2.0 20.0 6.3

N = 4 AS = 30 time in sec <0.1 <0.1 <0.1 0.2 1.0
memory in MB <2.0 <2.0 <2.0 24.0 8.3

N = 5 AS = 66 time in sec <0.1 <0.1 <0.1 0.3 3.6
memory in MB <2.0 <2.0 <2.0 50.0 8.3

N = 6 AS = 120 time in sec <0.1 <0.1 <0.1 0.4 11.0
memory in MB <2.0 <2.0 <2.0 63.0 8.3

N = 7 AS = 258 time in sec 0.3 <0.1 <0.1 0.6 41.0
memory in MB 2.0 <2.0 <2.0 99.0 7.5

N = 8 AS = 288 time in sec 1.0 <0.1 <0.1 0.8 113.0
memory in MB 2.0 <2.0 <2.0 100.0 5.7

N = 9 AS = 546 time in sec 3.6 <0.1 <0.1 1.3 370.0
memory in MB 2.0 <2.0 <2.0 165.0 7.5

N = 10 AS = 300 time in sec 11.1 <0.1 <0.1 1.9 OoT
memory in MB 2.0 <2.0 <2.0 220.0 -

N = 11 AS = 186 time in sec 39.7 <0.1 <0.1 2.8 OoT
memory in MB 2.2 <2.0 <2.0 290.0 -

N = 12 AS = 114 time in sec 131.0 <0.1 <0.1 4.1 OoT
memory in MB 2.2 <2.0 <2.0 290.0 -

N = 13 AS = 18 time in sec 448.0 <0.1 <0.1 6.5 OoT
memory in MB 2.2 <2.0 <2.0 285.0 -

N = 14 AS = 0 time in sec OoT <0.1 <0.1 11.0 OoT
memory in MB - <2.0 <2.0 287.0 -

Table 3. Experimental results for Schur

Birds problem Problem birds is a stratified program encoding a taxonomy about

flying and non flying birds. b stands for bird, f for flying, nf for nonflying, p for

penguin, sp for superpenguin, and o for ostrich.

Pbirds =


p(X)← sp(X)., b(X)← p(X)., b(X)← o(X).,

f(X)← b(X), not p(X), not o(X)., f(X)← sp(X).,

nf(X)← p(X), not sp(X)., nf(X)← o(X).



ASPeRiX 35

We add to this program the atoms encoding N birds with 10% of ostriches, 20%

of penguins whose half of them are super penguins.

Fig. 4. Time for birds

The unique answer set of such a program can be computed polynomially. ASPeRiX

uses only propagation step, without choice point, and grounders completely evaluate

the program so that the solver has nothing to do. Experimental results for birds

are comparable for ASPeRiX, Clingo, GASP and DLV. ASPeRiX has the best results

for CPU time, and DLV for memory usage (Figure 4 and 5). For such a problem,

the number of instantiated rules must be nearly the same for all systems. On the

other side, OMiGA system uses a very large amount of memory space, certainly due

to the Rete network which is designed to sacrifice memory for increased speed.

Unfortunately, memory gains expected by the first order approach are lost.

Cutedge problem cutedge program is proposed in (Dao-Tran et al. 2012): given

a random graph with 100 vertices and N edges, each answer set is obtained by

deleting an edge and compute some transitive closure on the remaining edges.

Pcutedge =


delete(X,Y)← edge(X,Y), not keep(X,Y).,

keep(X,Y)← edge(X,Y), delete(X1, Y 1), X1! = X.,

keep(X,Y)← edge(X,Y), delete(X1, Y 1), Y 1! = Y.,

reachable(X,Y)← keep(X,Y).,

reachable(X, 98)← reachable(X,Z), reachable(Z, 98).


Computing each answer set is only based on propagation, and the number of

answer sets equals the number of edges. The number of rules needed to compute

all answer sets is proportional to N2 while the rule number needed to compute

36 Claire Lefèvre, Christopher Béatrix, Igor Stéphan, Laurent Garcia

ASPeRiX Clingo DLV OMiGA

N = 2.8K AS = 1 time in sec <0.1 21 115 0.6
memory in MB 14.8 345 103 85

AS = 10 time in sec 0.2 21 226 1.8
memory in MB 14.8 345 103 200

AS = 100 time in sec 2.7 32 OoT 11.4
memory in MB 15.1 345 - 1042

AS = 500 time in sec 16 78 OoT 48
memory in MB 16.4 345 - 1050

AS = 1000 time in sec 36 123 OoT 84
memory in MB 18.0 345 - 1050

AS = all time in sec 167 189 OoT 165
memory in MB 24.1 345 - 1050

N = 4.9K AS = 1 time in sec 0.1 60 325 1
memory in MB 23.7 881 144 177

AS = 10 time in sec 0.5 63 OoT 3.7
memory in MB 23.8 881 - 425

AS = 100 time in sec 5.8 94 OoT 29
memory in MB 24.0 881 - 1100

AS = 500 time in sec 30.7 228 OoT 125
memory in MB 25.3 881 - 1150

AS = 1000 time in sec 67 373 OoT 245
memory in MB 27 881 - 1190

N = 5.9K AS = 1 time in sec 0.1 94 465 1
memory in MB 28.5 1167 202 132

AS = 10 time in sec 0.8 94 OoT 5
memory in MB 28.6 1168 - 680

AS = 100 time in sec 7.6 114 OoT 41
memory in MB 29.1 1168 - 1135

AS = 500 time in sec 42 210 OoT 192
memory in MB 31.3 1168 - 1125

AS = 1000 time in sec 92 316 OoT 352
memory in MB 34.1 1168 - 1132

Table 4. Experimental results for cutedge

ASPeRiX 37

Fig. 5. Space for birds

one is proportional to N . But systems with pregrounding phase must generate all

ground instances of rules even if only one answer set is required. The results are

shown in Table 4. ASPeRiX has the best results for this program both for CPU

time and memory usage. OMiGA and Clingo use much more memory and are much

slower than ASPeRiX. As expected, memory usage of Clingo is independent of the

number of answer sets required and is close to the square of that used by ASPeRiX.

For its part, DLV quickly exceeds the time limit imposed.

Hamiltonian cycle problem The program P3 from Example 3, Hamiltonian

cycle in a complete graph, is another easy problem with a lot of answer sets. Each

answer set is easy to compute but the whole instantiation is huge. Experiments

for the computation of one answer set in a graph with N vertices are represented

in Figures 6 and 7. ASPeRiX performs well on this example whereas OMiGA has

time and memory problems similar to that of Clingo and DLV. One more time, a

simple problem becomes intractable by systems with pregrounding phase because

they drown it in a lot of useless information so that memory used quickly becomes

prohibitive.

Hanoi problem Hanoi example illustrates a planning problem where the max-

imum number of allowed steps is given as input. NbD is the number of disks in

the problem and NbM is the maximum number of moves that are allowed to move

all disks from the first rod to the third. The least value of NbM is the minimum

required to achieve the goal, then its value is gradually increased to evaluate its im-

pact. The complete program is given in the online appendix of the paper, Appendix

38 Claire Lefèvre, Christopher Béatrix, Igor Stéphan, Laurent Garcia

Fig. 6. Time for Hamiltonian cycle

A. Experimental results are shown in Table 5. ASPeRiX performances are (almost)

independent of the given number of moves: search, and therefore grounding, are

stopped when a solution is found. Conversely, grounders are quickly overwhelmed

as they are obliged to fully instantiate the program with all hypothetical (and unnec-

essary in this case) calculation steps4. This example cannot be computed by OMiGA

due to restrictions on its input language (function symbols are not supported).

Three coloring problem The program P2 (see Example 2), 3-coloring problem

on a graph organized as a bicycle wheel, poses no problem for Clingo and DLV

(cf. Table 6). But ASPeRiX and OMiGA have bad results on this example because

they are mismanaging constraints. Once a vertex is colored, say red, constraint

(← e(V,U), col(V,C), col(U,C).) prohibits coloring adjacent vertices of the same

color. In propositional systems, unit propagation (or equivalent) works well and

allows to infer that adjacent vertices are not colored red. But first-order approach

does not allow, in general case, to use unit propagation and thus, constraints are

mainly used for verification and not for propagation. A lot of work remains on

these points. First-order constraints could instead allow more powerful propagation.

Suppose for example a constraint (← p(X,Y), p(Y,Z).) and p(1, 2) is added in IN

set then, for all Z, p(2, Z) can be excluded at once from current solution, even if Z

values are potentially infinite. But these opportunities are not exploited yet.

4 iClingo (Gebser et al. 2008) was created to address this specific problem. Some directives are
added to the program in order to incrementally instantiate some predicates of the program. But
it does not escape the grounding/solving separation, it only introduces some tools to control
the process.

ASPeRiX 39

ASPeRiX Clingo DLV

NbD = 4 NbM = 15 time in sec <0.1 <0.1 < 0.1
memory in MB - - -

NbM = 60 time in sec <0.1 0.7 0.8
memory in MB - 27 22

NbM = 100 time in sec <0.1 1.5 3.6
memory in MB - 54 51

NbM = 500 time in sec <0.1 11.6 -
memory in MB - 327 OoM

NbM = 1000 time in sec <0.1 27 -
memory in MB - 693 OoM

NbM = 2000 time in sec <0.1 66 -
memory in MB - 1523 OoM

NbM = 5000 time in sec <0.1 - -
memory in MB - OoM OoM

NbM = 10000 time in sec <0.1 - -
memory in MB - OoM OoM

NbM = 50000 time in sec 0.1 - -
memory in MB 12.9 OoM OoM

NbM = 100000 time in sec 0.3 - -
memory in MB 23.9 OoM OoM

NbD = 5 NbM = 31 time in sec 0.2 0.1 0.1
memory in MB 3.7 6.4 4

NbM = 50 time in sec 0.2 0.7 0.9
memory in MB 3.7 28 31

NbM = 100 time in sec 0.2 8.2 9.4
memory in MB 3.8 245 270

NbM = 500 time in sec 0.2 91 -
memory in MB 3.8 2055 OoM

NbM = 1000 time in sec 0.2 - -
memory in MB 3.8 OoM OoM

NbM = 5000 time in sec 0.2 - -
memory in MB 4.8 OoM OoM

NbM = 10000 time in sec 0.2 - -
memory in MB 5.8 OoM OoM

NbM = 50000 time in sec 0.4 - -
memory in MB 14.4 OoM OoM

NbM = 100000 time in sec 0.7 - -
memory in MB 25 OoM OoM

NbD = 6 NbM = 63 time in sec 4.7 0.6 1.1
memory in MB 10.3 24 29

NbM = 100 time in sec 4.7 9 -
memory in MB 10.3 272 OoM

NbM = 150 time in sec 4.7 83 -
memory in MB 10.3 1863 OoM

NbM = 200 time in sec 4.7 - -
memory in MB 10.3 OoM OoM

NbM = 500 time in sec 4.7 - -
memory in MB 10.4 OoM OoM

NbM = 1000 time in sec 4.7 - -
memory in MB 10.5 OoM OoM

NbM = 5000 time in sec 4.7 - -
memory in MB 11.3 OoM OoM

NbM = 10000 time in sec 4.8 - -
memory in MB 12.4 OoM OoM

NbM = 50000 time in sec 5 - -
memory in MB 21 OoM OoM

NbM = 100000 time in sec 5.6 - -
memory in MB 31.7 OoM OoM

Table 5. Experimental results for Hanoi tower problem

40 Claire Lefèvre, Christopher Béatrix, Igor Stéphan, Laurent Garcia

Fig. 7. Space for Hamiltonian cycle

ASPeRiX Clingo DLV OMiGA

N = 11 AS = 1 time in sec <0.1 <0.1 <0.1 0.3
memory in MB <2 1 <1 45

N = 11 AS = all(6) time in sec 3.4 <0.1 <0.1 7.7
memory in MB 1.8 1 <1 132

N = 101 AS = 1 time in sec <0.1 <0.1 <0.1 OoT
memory in MB 3 1.5 1.1 -

N = 101 AS = all(6) time in sec OoT <0.1 <0.1 OoT
memory in MB - 1.8 1.4 -

N = 501 AS = 1 time in sec 1.6 <0.1 <0.1 OoT
memory in MB 8.8 3.3 3.3 -

N = 501 AS = all(6) time in sec OoT <0.1 0.3 OoT
memory in MB - 3.3 3.3 -

N = 1001 AS = 1 time in sec 13.3 <0.1 0.1 OoT
memory in MB 15.9 5.5 5.5 -

N = 1001 AS = all(6) time in sec OoT <0.1 1.4 OoT
memory in MB - 5.5 5.5 -

Table 6. Experimental time results for 3col

ASPeRiX 41

To sum up, ASPeRiX is efficient to deal with stratified programs or simple prob-

lems whose instantiation is infinite or huge but much of which is useless to compute

one specific answer set. On the other hand, the system is not competitive for more

combinatorial problems, with a large search space and few solutions, because propo-

sitional methods for propagation, heuristics, learning lemmas did not apply to the

first order case.

5 Conclusion

In this paper, we have presented the ASPeRiX approach to answer set computation.

Our methodology deals with first order rules following a forward chaining with

grounding process realized on the fly and has been implemented in the ASP solver

ASPeRiX. This paper is the first comprehensive document in which a survey of the

important techniques relevant to our approach is presented.

Starting from a short description of state-of-the-art ASP working principle, we

have presented by many examples the main motivation of our approach: escaping

the bottleneck of the preliminary phase of grounding in which many state-of-the-art

systems fall. After a presentation of the theoretical foundations of ASP, we have

described by an ASPeRiX computation our first order forward chaining approach for

answer set computing and have established the soundness and completeness of this

calculus w.r.t. the semantics of ASP (Proofs are reported in the online appendix of

the paper, Appendix B). We have then described in details the main algorithms of

ASPeRiX and particularly those which realize the selection of the first order rules

to be instantiated and applied according to the current answer set in construction.

Our methodology allows very good performances for definite and stratified pro-

grams. It outperforms systems with a pregrounding phase for programs with large

grounding but much of it is unnecessary to solve the problem. On the other side,

performances quickly degrade for combinatorial problems with large search spaces,

especially if forward chaining propagation can not be exploited.

We have shown that our approach escapes the bottleneck of the preliminary

phase of grounding that is the only difficulty for some classes of programs. A direct

consequence of our new approach is that the use of symbolic functions in general

and arithmetic calculus in particular inside ASP is greatly facilitated.

The forward chaining with the grounding process realized on the fly as an oper-

ational semantics emphasizes the programming aspect of ASP in which the answer

set is not only the result of a black box but the result of a process that may be

followed. This is interesting in particular when dealing with knowledge coming from

the web and expressed in description logic since the structure of information uses

rules that are chained ones with the others (whereas this is not always the case for

a program encoding a combinatorial problem). Moreover, when dealing with knowl-

edge expressed in description logic, one important issue is the ability to query the

knowledge base. The grounding process realized on the fly will then allow to fo-

cus only on the rules useful to find an answer to the query. For this category of

programs, we think that our approach may be of great interest.

Furthermore, computing the answer sets of a program is a fundamental goal but

42 Claire Lefèvre, Christopher Béatrix, Igor Stéphan, Laurent Garcia

not an exclusive one. Debugging a program, controlling its behavior, introducing in

it some features coming from other programming languages may be of great interest

for ASP. We think that our methodology of answer set computing, guided by the

rules of the program, is the good starting point towards these new goals.

The ASPeRiX project is still in progress. Improvements at the algorithmic level

are underway by the development and implementation of backjumping and clause

learning techniques. On the other hand, we plan to fully respect the core language

ASP (Calimeri et al. 2014) by introducing, among others, minimization / maximiza-

tion and aggregates and extend it by introducing existentially quantified variables

in multi-head rules to encode fragments of Description Logics which are logical

formalisms for ontologies and the Semantic Web.

Tribute

In memory of the late Pascal Nicolas who was at the origin of this work. He sadly

passed away in 2010 but his enthusiasm, his passion for research and his great

humanity are still with us.

References

Alviano, M., Calimeri, F., Faber, W., Ianni, G., and Leone, N. 2011. Function
Symbols in ASP: Overview and Perspectives. In Nonmonotonic Reasoning, Essays
Celebrating its 30th Anniversary, G. Brewka, V. Marek, and M. Truszczynski, Eds.
Studies in Logic, vol. 31. College Publications, 1–24.

Alviano, M., Dodaro, C., Faber, W., Leone, N., and Ricca, F. 2013. WASP: A
native ASP solver based on constraint learning. In Proceedings of the 12th Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’13),
P. Cabalar and T. C. Son, Eds. LNCS, vol. 8148. Springer, 55–67.

Alviano, M., Faber, W., and Leone, N. 2010. Disjunctive asp with functions: Decidable
queries and effective computation. Theory and Practice of Logic Programming 10, 4-6,
497–512.

Balduccini, M. 2009. Representing constraint satisfaction problems in answer set pro-
gramming. In Proceedings of the Workshop on Answer Set Programming and Other
Computing Paradigms (ASPOCP’09). 16–30.

Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press.

Baselice, S., Bonatti, P., and Gelfond, M. 2005. Towards an integration of answer
set and constraint solving. In Proceedings of the 21st International Conference on Logic
Programming (ICLP’05). LNCS, vol. 3668. Springer, 52–66.

Baselice, S. and Bonatti, P. A. 2010. A decidable subclass of finitary programs. Theory
and Practice of Logic Programming 10, 4-6, 481–496.

Buccafurri, F., Leone, N., and Rullo, P. 2000. Enhancing disjunctive datalog by
constraints. IEEE Transactions on Knowledge and Data Engineering 12, 5, 845–860.

Calimeri, F., Cozza, S., Ianni, G., and Leone, N. 2008. Computable functions in
ASP: Theory and implementation. In Proceedings of the 24th International Conference
on Logic Programming (ICLP’08), M. G. de la Banda and E. Pontelli, Eds. LNCS, vol.
5366. Springer, 407–424.

ASPeRiX 43

Calimeri, F., Cozza, S., Ianni, G., and Leone, N. 2011. Finitely recursive programs:
Decidability and bottom-up computation. AI Communications 24, 4 (Dec.), 311–334.

Calimeri, F., Ianni, G., and Ricca, F. 2014. The third open answer set programming
competition. Theory and Practice of Logic Programming 14, 1, 117–135.

Calimeri, F., Perri, S., and Ricca, F. 2008. Experimenting with parallelism for the
instantiation of ASP programs. Journal of Algorithms 63, 1-3, 34–54.

Dal Palù, A., Dovier, A., Pontelli, E., and Rossi, G. 2009. Gasp: Answer set
programming with lazy grounding. Fundamenta Informaticae 96, 3 (Aug.), 297–322.

Dao-Tran, M., Eiter, T., Fink, M., Weidinger, G., and Weinzierl, A. 2012.
OMiGA: An open minded grounding on-the-fly answer set solver. In Proceedings of
the 13th European Conference on Logics in Artificial Intelligence (JELIA’12). LNAI,
vol. 7519. Springer, 480–483.

Eiter, T., Lu, J. J., and Subrahmanian, V. S. 1997. Computing non-ground rep-
resentations of stable models. In Proceedings of the 4th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR’97), J. Dix, U. Furbach,
and A. Nerode, Eds. LNCS, vol. 1265. Springer, 198–217.

Faber, W., Leone, N., and Perri, S. 2012. The intelligent grounder of DLV. In Correct
Reasoning - Essays on Logic-Based AI in Honour of Vladimir Lifschitz, E. Erdem,
J. Lee, Y. Lierler, and D. Pearce, Eds. LNCS, vol. 7265. Springer, 247–264.

Faber, W., Leone, N., and Pfeifer, G. 1999. Pushing goal derivation in dlp compu-
tations. In Proceedings of the 5th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’99), M. Gelfond, N. Leone, and G. Pfeifer, Eds.
LNCS, vol. 1730. Springer, 177–191.

Ferraris, P., Lee, J., and Lifschitz, V. 2007. A new perspective on stable mod-
els. In Proceedings of the 20th International Joint Conference on Artificial Intelligence
(IJCAI’07). 372–379.

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., and Thiele,
S. 2008. Engineering an incremental ASP solver. In Proceedings of the 24th International
Conference on Logic Programming (ICLP’08), M. Garcia de la Banda and E. Pontelli,
Eds. LNCS, vol. 5366. Springer, 190–205.

Gebser, M., Kaminski, R., König, A., and Schaub, T. 2011. Advances in gringo
Series 3. In Proceedings of 11th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’11), J. P. Delgrande and W. Faber, Eds. LNCS,
vol. 6645. Springer, 345–351.

Gebser, M., Kaufmann, B., and Schaub, T. 2012. Conflict-driven answer set solving:
From theory to practice. Artificial Intelligence 187, 52–89.

Gebser, M., Schaub, T., and Thiele, S. 2007. GrinGo : A New Grounder for Answer Set
Programming. In Proceedings of the 9th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR’07). LNCS, vol. 4483. Springer, 266–271.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic program-
ming. In Proceedings of the Fifth International Conference and Symposium on Logic
Programming (ICLP’88), R. A. Kowalski and K. Bowen, Eds. The MIT Press, Cam-
bridge, Massachusetts, 1070–1080.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunc-
tive databases. New Generation Computing 9, 3/4, 365–386.

Giunchiglia, E., Lierler, Y., and Maratea, M. 2006. Answer set programming based
on propositional satisfiability. Journal of Automated Reasoning 36, 4, 345–377.

Gottlob, G., Marcus, S., Nerode, A., Salzer, G., and Subrahmanian, V. S. 1996. A
non-ground realization of the stable and well-founded semantics. Theoretical Computer
Science 166, 1-2, 221–262.

44 Claire Lefèvre, Christopher Béatrix, Igor Stéphan, Laurent Garcia

Greco, S., Molinaro, C., and Trubitsyna, I. 2013. Logic programming with function
symbols: Checking termination of bottom-up evaluation through program adornments.
Theory and Practice of Logic Programming 13, 4-5, 737–752.

Konczak, K., Linke, T., and Schaub, T. 2006. Graphs and colorings for answer set
programming. Theory and Practice of Logic Programming 6, 61–106.

Lefèvre, C. and Nicolas, P. 2009a. A first order forward chaining approach for answer
set computing. In Proceedings of the 12th International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR’09). LNCS, vol. 5753. Springer, 196–208.

Lefèvre, C. and Nicolas, P. 2009b. The first version of a new ASP solver : ASPeRiX.
In Proceedings of the 12th International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’09). LNCS, vol. 5753. Springer, 522–527.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., and Scar-
cello, F. 2006. The DLV system for knowledge representation and reasoning. ACM
Transactions on Computational Logic 7, 3, 499–562.

Lierler, Y. and Lifschitz, V. 2009. One more decidable class of finitely ground pro-
grams. In Proceedings of the 25th International Conference on Logic Programming
(ICLP’09). LNCS, vol. 5649. Springer, 489–493.

Lin, F. and Zhao, Y. 2004. ASSAT: computing answer sets of a logic program by SAT
solvers. Artificial Intelligence 157, 1-2, 115–137.

Lin, F. and Zhou, Y. 2007. From answer set logic programming to circumscription via
logic of GK. In Proceedings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI’07). 441–446.

Liu, L., Pontelli, E., Son, T. C., and Truszczynski, M. 2010. Logic programs with
abstract constraint atoms: The role of computations. Artificial Intelligence 174, 3-4,
295–315.

Liu, L. and Truszczynski, M. 2005. Pbmodels - software to compute stable models by
pseudoboolean solvers. In Proceedings of the 8th International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR’05), C. Baral, G. Greco, N. Leone,
and G. Terracina, Eds. LNCS, vol. 3662. Springer, 410–415.

Niemelä, I. 1999. Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of Mathematics and Artificial Intelligence 25, 3-4, 241–273.

Ostrowski, M. and Schaub, T. 2012. ASP modulo CSP: the clingcon system. Theory
and Practice of Logic Programming 12, 4-5, 485–503.

Perri, S., Scarcello, F., Catalano, G., and Leone, N. 2007. Enhancing dlv in-
stantiator by backjumping techniques. Annals of Mathematics and Artificial Intelli-
gence 51, 2-4, 195–228.

Simons, P., Niemelä, I., and Soininen, T. 2002. Extending and implementing the stable
model semantics. Artificial Intelligence 138, 1-2, 181–234.

Syrjänen, T. 1998. Implementation of local grounding for logic programs for stable
model semantics. Tech. rep., Helsinki University of Technology.

Truszczynski, M. 2012. Connecting first-order ASP and the logic FO(ID) through
reducts. In Correct Reasoning - Essays on Logic-Based AI in Honour of Vladimir
Lifschitz. LNCS, vol. 7265. Springer, 543–559.

Ullman, J. D. 1989. Principles of Database and Knowledge-Base Systems, Volume II.
Computer Science Press.

Weinzierl, A. 2013. Learning non-ground rules for answer-set solving. In 2nd Workshop
on Grounding and Transformations for Theories With Variables (GTTV’13).

