
Possibilistic Influence Diagrams

Laurent GARCIA1
and Régis SABBADIN2

Abstract. In this article we present the framework of Pos-

sibilistic Influence Diagrams (PID), which allow to model in
a compact form problems of sequential decision making under
uncertainty, when only ordinal data on transitions likelihood
or preferences are available. The graphical part of a PID is
exactly the same as that of usual influence diagrams, how-
ever the semantics differ. Transition likelihoods are expressed
as possibility distributions and rewards are here considered
as satisfaction degrees. Expected utility is then replaced by
anyone of two possibilistic qualitative utility criteria for eval-
uating strategies in a PID. We describe a decision tree-based
method for evaluating PID and computing optimal strategies.
We then study the computational complexity of PID-related
problems (computation of the value of a policy, computation
of an optimal policy).

Keywords: decision, possibility theory, causal networks,
influence diagrams.

1 INTRODUCTION

For several years, there has been a growing interest in the Ar-
tificial Intelligence community towards the foundations and
computational methods of decision making under uncertainty.
This is especially relevant for applications to planning, where
a suitable sequence of decisions is to be found, starting from
a description of the initial world, of the available decisions
and their effects, and of the goals to reach. Several authors
have thus proposed to integrate some parts of decision the-
ory into the planning paradigm. A classical model for decision
making under uncertainty is based on Markov decision pro-

cesses (MDP), where actions effects are stochastic and the
satisfaction of agents expressed by a numerical, additive util-
ity function. However, classical dynamic programming (DP)
algorithms [9] do not scale to the size of problems that can
be compactly represented by the factored representations tra-
ditionally used in AI. Therefore several methods of aggrega-
tion/decomposition for large problems have been proposed
in the AI community. Aggregation methods [2], for example,
use a compact representation of probability and reward func-
tions involved in the MDP description and propose algorithms
dealing explicitly with this representation. These methods are
often based on the use of Influence Diagrams [6] which form
such a factored representation framework for problems of de-
cision under uncertainty (sequential or non sequential).

However, transition probabilities are not always available
for representing the effects of actions, especially in Artificial

1 LERIA, University of Angers, France. Email:
laurent.garcia@info.univ-angers.fr

2 INRA-BIA Toulouse, France. Email: sabbadin@toulouse.inra.fr

Intelligence applications where uncertainty is often ordinal,
qualitative. The same remark applies to utilities: it is often
more adequate to represent preference over states simply with
an ordering relation rather than with additive utilities. Several
authors have advocated this qualitative view of decision mak-
ing and have proposed qualitative versions of decision theory.
[4] propose a qualitative utility theory based on possibility
theory, where preferences and uncertainty are both expressed
qualitatively. [5, 10] have extended the use of these criteria to
sequential decision, allowing the definition of (non-factored)
possibilistic MDP and have proposed counterparts of the clas-
sical DP solution methods for MDP.

In this paper, after having presented possibilistic coun-
terparts of expected utility (Section 2), we present (Section
3) the framework of Possibilistic Influence Diagrams (PID),
which allow to model in a compact form problems of sequen-
tial decision making under uncertainty, where only ordinal
data on transition likelihoods or preferences are available. The
graphical part of PID is exactly the same as that of usual
influence diagrams, however the semantics differ. Transition
likelihoods are expressed by possibility distributions, and re-
wards are here considered as satisfaction degrees attached to
partial goals. Expected utility is then replaced by anyone of
the two possibilistic qualitative utility criteria proposed by
[4] for evaluating strategies in a PID. Then (Section 4), we
describe a decision tree-based method for evaluating PID and
computing optimal strategies. We finally show some complex-
ity results on solving PID-related problems (Section 5).

2 POSSIBILISTIC COUNTERPARTS OF
EXPECTED UTILITY

[4] propose an ordinal counterpart of the expected utility the-
ory based on possibility theory. The basic measure of pos-
sibility theory is the possibility distribution which describes
knowledge about the unknown value taken by one or sev-
eral attributes used to describe states of affairs. It can rep-
resent uncertain knowledge distinguishing what is plausible
from what is less or it can represent preferences over desired
or less desired states.

In the framework of decision under uncertainty, some state
variables are controlled by a decision maker who can choose
their value, depending on the observation of the values of (all
or) some other state variables. The decision maker thus ap-
plies a strategy δ mapping the set of (observed) uncontrolled
state variables values into controlled (decision) variables val-
ues. The uncertainty of the agent about the effect of strategy δ

is represented by a possibility distribution πδ mapping the set
X of state variables values into a bounded, linearly ordered

(qualitative) valuation set L. Set L is assumed to be equipped
with an order-reversing map n. Let 1L and 0L denote the top
and bottom elements of L, respectively. Then n(0L) = 1L and
n(1L) = 0L. The quantity πδ(x) thus represents the degree of
possibility of the state x being the consequence of strategy
δ. πδ(x) = 1L means that x is completely plausible, whereas
πδ(x) = 0L means that it is completely impossible.

It makes sense, if information is qualitative, to represent not
only the incomplete knowledge on the state by a possibility
distribution πδ on X but also the decision-maker’s preferences
on X by means of another possibility distribution µδ with val-
ues on a preference scale U . Here, we assume that uncertainty
and preferences are commensurate, that is U can be identi-
fied to L. µδ(x) = 1L means that x is completely satisfactory,
whereas if µδ(x) = 0L, it is totally unsatisfactory. Notice that
πδ is normalised (there shall be at least one completely pos-
sible state of the world), but µδ may not be (it can be that
no consequence is totally satisfactory).

[4] proposed the two following qualitative deci-
sion criteria for assessing the value of a strategy δ:

u∗(δ) = maxx∈X min{πδ(x), µδ(x)}
u∗(δ) = minx∈X max{n(πδ(x)), µδ(x)}

u∗ can be seen as an extension of the maximax criterion
which assigns to an action the utility of its best possible conse-
quence. On the other hand, u∗ is an extension of the maximin

criterion which corresponds to the utility of the worst possi-
ble consequence. u∗ measures to what extent every plausible
consequence is satisfactory. u∗ corresponds to an adventur-
ous (optimistic) attitude in front of uncertainty, whereas u∗

is conservative (cautious).

3 POSSIBILISTIC INFLUENCE
DIAGRAMS

Possibilistic influence diagrams are the possibilistic counter-
part of influence diagrams (ID) [6, 11] which extend Bayesian
networks to handle decision under uncertainty. A possibilis-

tic influence diagram (PID, see Figure 1) is a directed acyclic

graph DAG containing three different kinds of nodes :

• chance nodes, drawn as circles, represent state variables
Xi ∈ X = {X1, . . . , Xn}, as in the Bayesian Networks (BN)
framework [8]. A combination x = {x1, . . . , xn} of state
variables values represents a state.

• decision nodes, drawn as rectangles, represent decision
variables Di ∈ D = {D1, . . . , Dp}. A combination d =
{d1, . . . , dp} of values represents a decision.

• utility nodes {V1, . . . , Vq}, drawn as diamonds, represent
local “satisfaction degree” functions ri ∈ {r1, . . . , rq}.

The directed edges in the PID represent either causal influ-
ences or information influences between variables.

Before we describe the underlying semantics of possibilistic
influence diagrams (PID), let us give two structural assump-
tions on the DAG : i) The utility nodes have no children. ii)
There exists a directed path comprising all decision nodes3.

3 While the first assumption is classical in usual ID, the second one
is simply a convention which simplifies the resolution of problems
described as ID (possibilistic or not). The directed path induces
an ordering of decision variables which will be exploited by the
decision tree solution methods.

C RcBAC

BIO

O S RsRo F

OF

Figure 1. How to make a six-egg omelette from a five-egg one

Now, in addition to the graphical part, which is very similar
to that of a classical ID, PID also comprise numerical (ordinal)
specifications. Let us recall that, in our possibilistic setting,
this numerical ordering is handled in a qualitative way. First,
state and decision variables have a finite state space. Fur-
thermore, utility nodes have no state space attached. Then,
concerning local dependencies, each state variable Xi has a
set Par(Xi) of parents in the DAG. Par(Xi) can comprise
both state and decision variables. A conditional possibility ta-
ble Π(Xi|Par(Xi)) is attached to every state variable Xi. It
specifies every conditional possibility Π(xi|xPar(Xi), dPar(Xi))
where xi ∈ Xi

4, xPar(Xi) ∈ XPar(Xi) =
N

j,Xj∈Par(Xi)∩X
Xj

and dPar(Xi) ∈ DPar(Xi) =
N

j,Dj∈Par(Xi)∩D
Dj . XPar(Xi) is

the Cartesian product of the domains of the state variables
belonging to Par(Xi) and DPar(Xi) is the Cartesian product
of the domains of the decision variables belonging to Par(Xi).
If Xi is a root of the DAG (Par(Xi) = ∅) we specify the a
priori possibility degrees Π(xi) associated with each instance
xi of Xi.

Now if Dj is a decision node, its value dj will be fixed by
the decision maker. However, incoming links will specify which
information is available when the decision is taken, and how
the domain of Dj is restricted by the values of the variables
in Par(Dj)

5. Furthermore, we adopt the generally accepted
no forgetting assumption, which implies that all the values of
the variables that have been instantiated before dj is chosen
are still known at the time of the choice of dj .

Solving a PID amounts to compute a strategy, allowing to
maximise one of the possibilistic qualitative utilities. A strat-
egy for a PID specifies the value of every decision variables as
a function of all (or part of) the known values of the variables
at the time the decision is taken.

Formally, a strategy is defined as :

Definition 1 (Strategy) In a PID, a strategy is a function

δ : X → D which can be represented as a set of local functions

{δj}j∈1...p, δj : Ωj → Dj .

4 Xi will denote both the variable name and its domain, the mean-
ing should be clear from the context. In the same way, XA, with
A ⊆ {1, . . . , n} will represent both a set of variables and the
Cartesian product of their domains. The same holds for decision
variables.

5 For sake of simplicity of exposition, we will assume in this pa-
per that no restriction to the domain Dj will result from any
instantiation of variables in Par(Dj). However, this simplifying
assumption is easy to relax, despite the fact that it induces cum-
bersome notations.

Ωj denotes the cross product of the domains of all the vari-
ables (state and decision) instantiated before Dj . The vari-
ables instantiated before Dj (or before any state variable Xi)
are called ancestors of Dj (of Xi). A strategy δ assigning
an instantiation d to any global instantiation x of the state
variables can thus be decomposed as a set of local strategies

{δj}j∈1...p, δj specifying the value of decision variable Dj , for
any possible instantiation of the variables in Ωj . Notice that
since Ωj can contain decision variables, it is necessary to in-
stantiate the decision variables in a suitable order (parents
must be instantiated before their children). The fact that the
diagram is a DAG guarantees that this order exists, and the
above-mentioned assumption on the existence of a direct path
comprising every decision variables guarantees its uniqueness.

Finally, for each utility node Vk, we prescribe ordinal val-
ues µk(xPar(Vk), dPar(Vk)) to every possible instantiations
(xPar(Vk), dPar(Vk)) of the parent variables of Vk. These val-
ues represent satisfaction degrees attached to the local in-
stantiations of the parent variables. It is assumed, analo-
gously to Flexible Constraint Satisfaction Problems [3], that
the global satisfaction degree µ(x, d) associated with a global
instantiation (x, d) of all variables (state and decision) can be
computed as the minimum of the local satisfaction degrees :
µ(x, d) = mink=1...q µk(xPar(Vk), dPar(Vk)).

Now, we are able to compute the optimistic and pes-
simistic utilities of a strategy δ. Once a strategy δ is
chosen, the chance nodes form a possibilistic causal net-
work and thus determine a unique least specific joint
possibility distribution πδ over chance nodes interpreta-
tions x = {x1, . . . , xn}. This joint possibility distribu-
tion can be computed by applying the chain rule [1] :

πδ(x) = mink=1...n Π(xk|xPar(Xk), dPar(Xk)),
where d = δ(x). A global satisfaction degree µδ(x) on state
variables instantiations induced by a strategy can also be com-
puted :

µδ(x) = minl=1...q µl(xPar(Vl), dPar(Vl)).
Notice that πδ(x) and µδ(x) depend on the value of state

variables only since a strategy δ uniquely defines the value d =
δ(x) from x. It is then possible to compute the possibilistic
optimistic and pessimistic qualitative expected utilities of a
strategy δ :

u
∗(δ) = max

x
min{πδ(x), µδ(x)}

u∗(δ) = min
x

max{n(πδ(x)), µδ(x)} (1)

Consider the example of Figure 1. The problem is to make
a six-egg omelette from a five-egg one. The new egg can be
fresh or rotten. There are two binary decision variable: break
the egg in the omelette BIO (BIO = yes if the egg is put in
the omelette and BIO = false if the egg is thrown away) ;
break it apart in a cup BAC.

The state variables are the following. C : whether we have
a cup to wash (C = t) or not (C = f). OF : whether we
observe that the egg is fresh (OF = t) or rotten (OF = f) or
we do not observe the egg (OF = u). F : the “real” state of
the egg, fresh (F = t) or rotten (F = f). O : whether we get
a six-egg omelette (O = 6O), a five-egg omelette (O = 5O)
or no omelette at all (O = nO). S : whether an egg is spoiled
(S = t) or not (S = f).

Let us take L={0,...,5}. The only a priori possibilities con-
cern F , let us stand for Π(F = t) = 5 and Π(F = f) = 3. The

conditional possibilities are defined w.r.t. the natural mean-
ing of the problem (here each possibility value is 0 or 5 but it
is not always the case) :

Π(C|BAC) t f
t 5 0
f 0 5

Π(S|F, BIO) (t, f) (t, t) (f, ·)
t 5 0 0
f 0 5 5

Π(OF |F, BAC) (t, t) (f, t) (·, f)
t 5 0 0
f 0 5 0
u 0 0 5

Π(O|F, BIO) (·, f) (t, t) (f, t)
6O 0 5 0
5O 5 0 0
nO 0 0 5

Utility functions µO , µS and µR are defined as fol-
lows, and for any global instanciation (x, d), µ(x, d) =
min{µO(o), µS(s), µC(c)}.

O µO(O)
6O 5
5O 3
nO 0

S µS(S)
f 5
t 2

C µC(C)
f 5
t 4

4 SOLUTION METHOD: DECISION
TREE

Solving a PID amounts to finding an optimal strategy δ∗, i.e.
one which maximises the (either optimistic or pessimistic)
possibilistic utility. A PID can be unfolded into a possibilistic

decision tree, using a method very similar to that of [6] for
usual ID. A decision tree represents every possible scenarios
of successive actions and observations, for a given ordering of
decision variables6. In a possibilistic decision tree, branches
issuing from a decision node are labelled with possible in-
stantiations of the decision variable. Branches issuing from
a chance node Xi are labelled with an instantiation of the
variable and with its possibility degree computed from local
transition possibilities together with the instantiations of the
ancestors of Xi in the branch.

In order to build the decision tree, an ordering of the vari-
ables, compatible with the precedence constraints expressed
by the DAG in Figure 1, must be chosen. Figure 2 shows a
decision tree obtained by unfolding the PID in Figure 1 with
the ordering {BAC, F, OF, BIO, O, S, C}, which is obviously
compatible with the order induced by the DAG.

BAC

F

 µ =4c µ =5c

BIO

 µ =00

 µ =5S

 µ =30

 µ =5S

0

O=nO
S=f
C=t

3

O=5O
S=f
C=t

(F=t)=5Π (F=f)=3Π

BIO

4 2

 µ =50

 µ =5S

 µ =30

 µ =2S

O=5O
S=t
C=t

5 3

O=5O
S=f
C=f

O=6O
S=f
C=f

BIO BIO

(F=t)=5Π (F=f)=3Π

 µ =50

 µ =5S

 µ =30

 µ =5S

O=5O
S=t
C=f

2

O=nO
S=f
C=f

0

 µ =30 µ =00

 µ =2S µ =5S

F

yes no

yes no

OF=t

yes no

OF=f

yes no

O=6O
S=f
C=t

yes no

OF=U OF=U

yes yesno no

Figure 2. Decision tree associated with the example PID.

6 This is the reason why we choose to fix an ordering of decision
variables in a PID.

The tree is then built by successively adding nodes, follow-
ing the initial ordering. Branches issuing from the node are
then added and labelled with the different possible values of
the corresponding variable (either states or decisions). Note
that in the decision tree of figure 2, after nodes BAC and F

have been added, node OF is omitted since it has only one
possible value, knowing the values of BAC and F (for ex-
ample, in the leftmost branch OF is true since F is known
to be true and BAC = yes). For the same reasons, nodes
C, O and S are not displayed. Then, to each leaf of the de-
cision tree is associated one particular interpretation of the
variables. In figure 2, the leftmost branch corresponds to the
instantiations F = t,OF = t, O = 6O, S = f, C = t and
BAC = yes,BIO = yes.

Then, to each leaf are attached both a possibility degree
π(x) and an aggregated satisfaction degree µ(x). Following
the chain rule, π(x) (resp. µ(x)) is the minimum of the tran-
sition possibilities (resp. satisfaction degrees) involved in the
branch from the root to the leaf. For example, the possibility
degree of the leftmost branch of figure 2 is π = Π(F = t) = 5
and its utility is µ = min(µO(6O), µC(t), µS(f)) = 4.

Now, in order to compute a possibilistic optimal strat-
egy from the decision tree, we apply a backwards induction

method similar to the one designed in [5]. First, note that
choosing a strategy amounts to cut all branches issuing from
each decision node, but one (corresponding to the action pre-
scribed by the strategy, the values of the ancestor variables of
the decision node being fixed in the branch). Figure 3 shows
the pruned tree when strategy (BAC = no, BIO = yes) is
chosen (note that this strategy is unconditional). In the op-
timistic case, the value of the leaf is min(π(x), µ(x)), hence
the value of the leftmost leaf is 4. The utility of a strategy
δ is then simply the maximum of the leaves values, corre-
sponding to u∗(δ) = maxx∈X min{πδ(x), µδ(x)}. In Figure
3, the values of the two remaining leaves of the pruned tree
are 5 and 0, thus the utility of the chosen strategy is 5.
The pessimistic value of the same strategy corresponds to
u∗(δ) = minx∈X max{n(πδ(x)), µδ(x)}. The remaining leaves
take values max(0, 5) = 5 and max(n(3), 0) = 2 and the
pessimistic utility is the minimum of these leaves values :
min(5, 2) = 2.

An optimal strategy can be computed by rolling the full
decision tree backwards, keeping only one issuing branch for
each decision node, and eliminating unobserved chance nodes:

• If all the children of a decision node already have an at-
tached possibilistic utility, only its issuing branch with the
highest value is kept. This highest value is attached to the
decision node.

• If all the children of an unobserved chance node already
have an attached possibilistic utility, it is replaced with a
utility node containing its possibilistic (either optimistic or
pessimistic) expected value.

These two steps are iterated until a possibilistic utility is
attached to the root node. The remaining tree represents the
optimal optimistic strategy, together with its utility. Figure
3 shows the optimal optimistic strategy computed with the
omelette example. Note that the computed strategy (which is
to break the egg directly in the omelette without using the
cup) agrees with the intuition that since the a priori distri-
bution on F makes F more likely than noF and since the

BAC

F

BIO

0 3

BIO

4 2

yes no

3

Π (F) = 5 Π (noF) = 3

Π (F) = 5 Π (noF) = 3

F

5 30

BIOBIO

yes

yes no no
yes

true false

OF = true OF = false

no

true

OF = uOF = u

false

yes no

Figure 3. Optimal optimistic decision strategy computation.

decision maker is optimistic, he should not bother testing the
freshness of the egg before using it.

5 COMPLEXITY RESULTS

The two basic questions which can be answered within the
PID framework are :

1. Assessment of the possibilistic utility of a strategy δ.
2. Computation of an optimal strategy δ∗.

In this section we give the complexity of these problems,
both for optimistic and pessimistic utilities. Proofs of Prop.
2, 3, 4 will only be sketched for sake of brevity since they are
largely similar to that of Prop. 1. Note that NPO represent the
class of optimisation problems “find α∗ = maxα . . .” for which
the associated decision problem “is α∗ = (maxα . . .) ≥ β?” is
in NP.

Proposition 1 (Optimistic strategy evaluation (OSE))
A PID and a strategy δ being given, the problem of computing

u∗(δ) is in NPO and is NP-hard.

Proof : OSE is a maximisation problem, since u∗(δ) =
maxx min{πδ(x), µδ(x)}. OSE is in NPO since it can be solved
in polynomial time by the following non-deterministic algorithm,
where step 2 can obviously be performed in polynomial time:

∀α ∈ L,

1. guess x,

2. if min{πδ(x), µδ(x)} ≥ α, return Y ES(α), else NO(α).

3. u∗(δ) = max{α s.t. Y ES(α) holds}.

Now, in order to show that OSE is NP-hard, we exhibit a poly-

nomial transformation from 3-SAT to OSE. Let 3-SAT be defined

as a set {v1, . . . , vn} of variables and {ψ1, . . . , ψm} be a set of 3-

clauses. Let us define the following PID, where X = {X1, . . . ,Xn}

are binary variables, and the set of utility nodes is {r0, r1, . . . , rm}.

D = {D0}, where D0 has domain {t, f}. Variables Xi have no par-

ents and their unconditional possibility distributions are defined as

Π(Xi = t) = Π(Xi = f) = 1L, ∀i. There are arcs from Xi to rj

if and only if vi ∈ Scope(ψj). The local utility functions are the

following : ∀j > 0, µj(xPar(rj)) = 1L if xPar(rj) satisfies ψj and

0L else. D0 is not connected to any other node. Then, if we fix δ

to d0 = t (δ is unconditional) and if we fix α = 1L, then obviously

the utility of any δ is 1L if and only if {ψ1, . . . , ψm} is satisfiable.

So, this OSE solves 3-SAT for any strategy δ. Furthermore, the

transformation is polynomial in time and space since utility tables

have at most 23 elements (the ψj are 3-clauses). 2

Proposition 2 (Optimistic strategy optimisation (OSO))
A PID being given, the problem of computing an optimal

optimistic policy δ∗ and its utility u∗(δ) is in NPO and is

NP-hard.

Sketch of proof : Just notice that the OSO problem can be stated

equivalently as the following maximisation problem : Find U∗ =

maxd maxx min{Π(x|d), µ(x, d)}. So, similarly to the OSE case, the

problem will be here to guess interpretations (x, d) (instead of x

only) for all fixed α ∈ L, and to keep the “best one” : (x∗, d∗).

Thus, OSO is NPO. OSO is of course NP-hard, since OSE is. Note

that δ∗ is only defined in x∗ (δ∗(x∗) = d∗) and can take any value

elsewhere. 2

Remark that it is obvious, from the proof of Prop. 2 that
finding an optimal policy in an optimistic decision problem
amounts to finding the branch with maximal leaf utility in
the corresponding decision tree.

Proposition 3 (Pessimistic strategy evaluation (PSE))
A PID and a strategy δ being given, the problem of computing

u∗(δ) is in NPO and is NP-hard.

Sketch of proof : PSE is a minimisation problem. u∗(δ) =
minx max{n(πδ(x)), µδ(x)}. The same reasoning as for OSE can
be used to show that PSE is NPO:

∀α ∈ L,

1. guess x,

2. if max{n(πδ(x)), µδ(x)} ≤ α, return Y ES(α), else NO(α).

3. u∗(δ) = min{α s.t. Y ES(α) holds}.

To show NP-hardness, we use the same transformation as for

OSE, except that ∀j > 0, µj(xPar(rj)) = 0L if xPar(rj) satisfies

ψj and 1L else. Then the logic base will be satisfiable if and only

if u∗ = 0L (and not 1L). 2

The problem, when solving a PSE, amounts to finding the
branch in the pruned decision tree (a strategy being fixed)
with minimum leaf utility.

The pessimistic strategy optimisation problem is more com-
plex since the corresponding exploration of the (complete) de-
cision tree alternates maximisation at decision nodes and min-
imisation at state nodes. The following result can be shown:

Proposition 4 (Pessimistic strategy optimisation (PSO))
A PID being given, the problem of computing an optimal

pessimistic policy δ∗ and its utility u∗(δ) is
Pp

2-complete.

Sketch of proof : We want to compute: maxδ u∗(δ) =

maxδ minx max{n(πδ(x), µδ(x))}, which we can write

maxδ u∗(δ) = maxd minx max{n(Π(x|d)), µ(x, d)}. Let α ∈ L

be given, “ is maxδ u∗(δ) ≤ α?” is equivalent to “is it true that

∃x,∀d,max{n(Π(x|d), µ(x, d))} ≤ α?”. This question, of the form

“is it true that ∃x,∀y, r(x, y)?” is known to be
Pp

2-complete. So,

PSO can be solved by solving at most |L|
Pp

2-complete decision

problems and is thus
Pp

2-complete itself. 2

6 CONCLUSION

In this article we have described Possibilistic Influence Dia-

grams (PID), which allow to model in a compact form prob-
lems of sequential decision making under qualitative uncer-
tainty in the framework of possibility theory. We have de-
scribed a decision-tree based solution method for PID and
we have given computational complexity results for several
questions related to PID. Even though our complexity results
seem negative in a sense, PID-related problems being at least
NP-hard, these results have to be mitigated by comparing this
complexity to that of structured stochastic MDP, shown to be
EXP-hard [7], i.e. provably not in the polynomial hierarchy!

We now plan to work in the two following directions. First,
even if we know that PID solving is at best NP-hard, we may
look for more efficient solution methods than decision tree
“brute force” exploration. We can either explore methods de-
rived from stochastic ID [11, 12], such as variable elimination

and to exploit specific features of PID. We can also try to
exploit methods of exploration of minimax trees, since the de-
cision tree obtained in the pessimistic case is a minimax tree.
Another possible direction is to study more particularly struc-
tured possibilistic Markov decision processes [10] for which
specific PID representations should be defined, representing
explicitly the time-structure of the process (in the way 2-DBN
are used to model structured MDP in [2]). This would lead to
define structured versions of the possibilistic value iteration

and policy iteration algorithms proposed in [10].

REFERENCES

[1] S. Benferhat, D. Dubois, L. Garcia and H. Prade (2002). On
the transformation between possibilistic logic bases and pos-
sibilistic causal networks. Int. J. of Approximate Reasoning,
29, 135-173.

[2] C. Boutilier, R. Dearden and M. Goldszmidt (2000). Stochas-
tic Dynamic Programming with Factored Representations.
Artificial Intelligence, 121:1, 49-107.

[3] D. Dubois, H. Fargier and H. Prade (1996). Possibility The-
ory in Constraint Satisfaction Problems: Handling Priority,
Preference and Uncertainty, Applied Intelligence 6, 287-309.

[4] D. Dubois and H. Prade (1995). Possibility theory as a basis
for qualitative decision theory. Proc. of IJCAI’95, 1925-1930.

[5] H. Fargier, J. Lang and R. Sabbadin (1998). Towards qual-
itative approaches to multi-stage decision making. Int. J. of
Approximate Reasoning, 19, 441-471.

[6] R.A. Howard and J.E. Matheson (1984). Influence Diagrams.
Readings on the Principles and Applications of Decision
Analysis, 2, 719-762. Menlo Park, CA.

[7] C. Lusena, J. Goldsmith and M. Mundhenk (2001). Nonap-
proximability. Results for POMDP. J. of Art. Int. Research,
14, 83-103.

[8] J. Pearl (1988). Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kaufmann.

[9] M.L. Puterman (1994). Markov Decision Processes. John Wi-
ley and Sons.

[10] R. Sabbadin (2001). Possibilistic Markov decision processes.
Engineering Appl. of Artificial Intelligence, 14, 287-300.

[11] R.D. Schachter (1986). Evaluating influence diagrams. Oper-
ations research, 34(6), 871-882.

[12] N. L. Zhang (1998). Probabilistic inference in influence dia-
grams. Computational Intelligence, 14:475-497/

