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Abstract

In this article we present the framework of Possibilistic Influence Diagrams (PID), which allows to model in a compact form
problems of sequential decision making under uncertainty, when only ordinal data on transitions likelihood or preferences are
available. The graphical part of a PID is exactly the same as that of usual influence diagrams, however the semantics differ.
Transition likelihoods are expressed as possibility distributions and rewards are here considered as satisfaction degrees. Expected
utility is then replaced by anyone of the two possibilistic qualitative utility criteria (optimistic and pessimistic) for evaluating
strategies in a PID. We then describe decision tree-based methods for evaluating PID and computing optimal strategies and we study
the computational complexity of PID optimisation problems for both cases. Finally, we propose a dedicated variable elimination
algorithm that can be applied to both optimistic and pessimistic cases for solving PID.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

For several years, there has been a growing interest in the Artificial Intelligence community towards the founda-
tions and computational methods of decision making under uncertainty. This is especially relevant for applications
to planning under uncertainty, where a suitable strategy (i.e. either a sequence of unconditional decisions or a deci-
sion tree) is to be found, starting from a description of the initial world, of the available decisions and their (perhaps
uncertain) effects, and of the goals to reach.

Several authors have thus proposed to integrate some parts of decision theory into the paradigm of planning under
uncertainty (see for example [2]). A classical model based on decision theory for planning under uncertainty is the
Markov decision processes framework (MDP) [20], where uncertain effects of actions are represented by probability
distributions and the satisfaction of agents is expressed by a numerical, additive utility function. However, transition
probabilities are not always available for representing the effects of actions, especially in Artificial Intelligence appli-
cations where uncertainty is often ordinal, qualitative. The same remark applies to utilities: it is often more adequate
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to represent preference over states simply with an ordering relation rather than with additive utilities. Several authors
have advocated this qualitative view of decision making and have proposed qualitative versions of decision theory.
[7] proposes a qualitative utility theory based on possibility theory, where preferences and uncertainty are both ex-
pressed qualitatively on the same totally ordered scale. [9,22] have extended the use of these criteria to sequential
decision and have proposed possibilistic counterparts of the classical dynamic programming solution methods for
MDP.

The MDP framework (be it stochastic or possibilistic) makes the assumption that the possible states of the world
and the available actions are described in extension, as are transition probabilities and utility functions. However,
Artificial Intelligence has a long history of focusing on structured models of knowledge representation. These models
can be based on logic, Constraint Satisfaction Problems [13] or graphical representation (for example, Bayesian
networks [15]). Then, naturally, models and algorithms for solving structured decision making under (stochastic)
uncertainty problems were proposed, based on graphical models [11] or on logic [3].

The work described in this article builds a bridge between qualitative possibilistic decision criteria and graphical
models: it incorporates the semantics of qualitative possibilistic decision theory with the graphical syntax of influence
diagrams. In addition, an in-depth analysis of the resulting framework is provided, both from a complexity-theoretic
point of view and from an algorithmic point of view. Such a bridge is important, especially for building well-founded
decision support systems (DSS). Indeed, in a DSS, knowledge and preferences have to be elicitated from a human user
and automatically manipulated so as to provide the user with well-argumented decision suggestions. Such decision
problems are likely to involve many (interacting) state and decision variables, and knowledge and preferences are
likely to be only “roughly” specified, by means of orderings of plausible values of state variables and preferred values
of objective variables. Our work allows to deal with knowledge and preferences expressed in such a way and to
compute strategies which are formally justified in the framework of possibilistic utility theory.

We should point out the relationship between the work we present and the parallel work of Pralet et al. [16,17]
on the Plausibility-Feasibility-Utility (PFU) framework, a generic language allowing to represent knowledge and
preferences in various ways and to manipulate them. The PFU framework allows to model various problems (from
weighted CSP to influence diagrams) and proposes generic solution algorithms for solving them. The authors recently
claimed that possibilistic (finite-horizon) MDP and possibilistic influence diagrams (PID) could be embedded in their
framework. It would certainly be interesting in the future to compare the specialisation of their generic algorithm to
PID with our own algorithms.

The present article is an extended version of [10]. After having presented possibilistic counterparts of expected
utility (Section 2), we present (Section 3) the framework of Possibilistic Influence Diagrams (PID). The graphical part
of a PID is exactly the same as that of an usual influence diagram, however the semantics differ. Transition likelihoods
are expressed by possibility distributions, and rewards are here considered as satisfaction degrees attached to partial
goals. Expected utility is then replaced by anyone of the two possibilistic qualitative utility criteria proposed by [7]
for evaluating strategies in a PID. Then, we describe a decision tree representation of the PID and a decision tree-
based method for evaluating it and computing an optimal strategy. In Section 4, we show some complexity results
about several PID-related problems. These results enlighten the fact that optimistic optimisation problems are easier
to solve than pessimistic ones. Finally (Section 5), we propose variable elimination algorithms for solving PID in both
optimistic and pessimistic cases.

2. Possibilistic counterparts of expected utility

In a problem of (sequential) decision under uncertainty, the state of the world, possibly ill-known, can be repre-
sented by a combination x = {x1, . . . , xn} of values taken by a set of state variables X = {X1, . . . ,Xn}.1 In the same
way, a decision can be represented by a combination d = {d1, . . . , dp}, chosen by a decision maker, of values of the
decision variables D = {D1 . . .Dp}, distinct from X .

The decision maker’s strategy expresses the way the values of the decision variables are chosen, with respect to the
values of the state variables which are observed before the choice. Formally, a strategy is represented by a function
δ :X → D, which associates a decision d = δ(x) to every possible states of the world. A strategy can also be defined

1 Xi will denote both the variable name and its domain, the meaning should be clear from the context. In the same way, XA , with A ⊆ {1, . . . , n}
will represent both a set of variables {Xi}i∈A and the Cartesian product of their domains

⊗
i∈A Xi . The same holds for decision variables.
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by the use of a set of partial functions, {δ1, . . . , δp}, δj :Xj1 × · · · × Xjkj
→ Dj which define the value taken by the

decision variable Dj with respect to the values taken by a subset of the state variables (and not necessarily all of
them). These partial functions allow to take into account the “sequential” aspect of decision problem: when d1 has to
be chosen, only the values of some state variables are known, then new state variables are revealed and d2 is chosen,
etc. In other words, if the ordering of decision variables is considered as a “temporal” ordering, and if the set of state
variables is partitioned “accordingly”, the strategy δ can be considered as “dynamic”.

In a problem of decision under uncertainty defined as above, the uncertainty weighs only on the values of the state
variables. The values of the decision variables are chosen deterministically with respect to the state variables, by a
fixed strategy δ. In the setting of possibilistic qualitative decision theory proposed by [7], the uncertainty of the agent
about the effects of strategy δ is represented by a possibility distribution πδ mapping the set X of state variables
values into a bounded, linearly ordered (qualitative) valuation set L equipped with an order-reversing map n. Let 1L

and 0L denote the top and bottom elements of L respectively, n(0L) = 1L and n(1L) = 0L. The quantity πδ(x) thus
represents the degree of possibility of the state x to be the consequence of strategy δ. For instance, πδ(x) = 1L means
that x is completely plausible, whereas πδ(x) = 0L means that it is completely impossible.

The decision maker’s preferences are expressed on pairs (x, d) and represented by an ordinal utility function
μ :X × D → L. μ(x, d) expresses to what extent the instantiation d of the decision variables is satisfactory when
the real world is x. Let us note that, to a utility function μ and a fixed strategy δ corresponds a utility function
μδ :X → L, defined from μ by μδ(x) = μ(x, δ(x)), ∀x ∈ X . μδ(x) = 1L means that x is completely satisfactory,
whereas if μδ(x) = 0L, it is totally unsatisfactory. Notice that πδ is normalised (there shall be at least one completely
possible state of the world), but μδ may not be (it can be that no consequence is totally satisfactory).

From πδ and μδ , [7] proposed two qualitative decision criteria for assessing the value of a strategy δ:

u∗(δ) = max
x∈X

min
{
πδ(x),μδ(x)

}
, (1)

u∗(δ) = min
x∈X

max
{
n
(
πδ(x)

)
,μδ(x)

}
. (2)

u∗ can be seen as an extension of the maximax criterion which assigns to an action the utility of its best possible
consequence. On the other hand, u∗ is an extension of the maximin criterion which corresponds to the utility of the
worst possible consequence. u∗ measures to what extent every plausible consequence are satisfactory. u∗ corresponds
to an adventurous (optimistic) attitude in front of uncertainty, whereas u∗ is conservative (pessimistic).

Let us focus here on the fact that the uncertainty and the preference degrees are explicitly assumed to be measured
on the same scale L. This amounts to make an assumption of commensurability between uncertainty and preference.
This assumption does not seem very natural at first sight. However, it can be totally justified in a decision theory
setting since it is a rather direct consequence of the following axiom of comparability of strategies:

From two strategies δ, δ′, either one is preferred to the other, or the two ones are equivalent from the decision
maker’s point of view.

We do not develop this argument here but the interested reader is invited to refer to [8] where this argument is
developed in the “non-sequential” decision theoretic setting. Furthermore, let us note that this assumption of com-
mensurability is not related to the possibilistic approach. It is also present in the setting of expected utility theory. In
the latter, preferences between strategies are invariant with respect to any positive affine transformation of the utility
function, but a non-affine transformation of the utility function might change preferences between strategies.

Some authors have tried to relax the assumption of total comparability in the possibilistic setting [4]. This lead to
decision procedures which are not “decisive” in the setting of (non-sequential) qualitative decision making. Indeed, if
the assumption of commensurability is given up, the uncertainty measure defines an ordered set of subsets of possible
states and two strategies δ and δ′ will not be generally comparable, unless one totally dominates the other in a subset
of states and they are equivalent in all more plausible states.

In the following, we define Possibilistic Influence Diagrams (PID) which allow to represent in a compact form the
functions πδ and μδ taking the local dependencies between state and decision variables into account. Then, we will
focus on the computation of strategies which optimise one of the two criteria u∗ or u∗. We will show the theoretical
complexity of this computation and we will describe exact algorithms for the computation of strategies, inspired
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by variables elimination algorithms, used to solve problems of decision making under uncertainty represented by
classical influence diagrams [11].

3. Possibilistic influence diagrams (PID)

The uncertainty πδ and the utility μδ attached to a strategy δ are functions mapping X into L. The space needed
for representing πδ and μδ is a priori exponential in the number of (state and decision) variables. Using two tables
to represent these functions can thus be impossible in practice. That’s why, as in classical influence diagrams (ID)
[11], they are expressed when possible in terms of local functions. More precisely, πδ is generally expressed by
the means of a set of conditional possibility tables {πXi

(Xi |Par(Xi))}Xi∈Xi
, where Par(Xi) ⊆ X ∪ D is the set of

variables on which Xi depends. Let us note that each element of a possibility table belongs to L. πδ(x) can then
be computed if necessary from conditional possibility tables and δ, using the possibilistic chain rule which will be
recalled in Section 3.2. In the same way, μδ is represented by local utility functions {μk}k=1,...,q , each one depending
on a reduced number of state and decision variables.

The framework of possibilistic influence diagrams (PID) includes a syntactic part which allows to represent de-
pendencies between variables together with an ordering of decision variables reflecting the order in which they are
chosen. It also includes a semantic part which explicitly specifies the values of the a priori and conditional possibility
tables and of the local utility functions.

3.1. Structural description of a PID

A possibilistic influence diagram is graphically represented by a directed acyclic graph (DAG) containing three
different kinds of nodes:

• chance nodes, drawn as circles, represent state variables Xi ∈ X = {X1, . . . ,Xn}, as in the Bayesian Networks
(BN) framework [15].

• decision nodes, drawn as rectangles, represent decision variables Dj ∈D = {D1, . . . ,Dp}.
• utility nodes V = {V1, . . . , Vq}, drawn as diamonds, represent local “satisfaction degree” functions μk ∈

{μ1, . . . ,μq}.

The local dependencies between the different variables are represented by the directed edges of the DAG. The
meaning of these edges is the following:

• The edges directed toward a node Xi representing a state variable, specify the variables Par(Xi) ⊆ X ∪ D on
which the conditional possibility degree of Xi depends, via πXi

(Xi |Par(Xi)).
• The edges directed toward a node Dj representing a decision variable, specify the variables Par(Dj ) ⊆ X whose

values are revealed immediately before the value of Dj is chosen.
• Finally, the edges directed to a utility node Vk specify the variables Par(Vk) ⊆ X ∪ D on which the local utility

function μk depends.

Three assumptions on the DAG structure allow to partially define the order in which state variables are revealed
and decisions are taken. They also allow to define the domain of partial strategies.

(1) Decision variables are supposed to be totally ordered, according to an a priori, fixed, ordering (this ordering should
be consistent with any existing oriented path between decision nodes of the DAG).

(2) The values of the state variables which are revealed are never “forgotten”.
(3) Finally, in the DAG attached to a PID, utility nodes are supposed to have no successors.

Given assumptions (1) and (2), all edges in the DAG linking two decision nodes can be suppressed. This is why it
is usually assumed that edges directed toward a decision node are only issued from chance nodes.

The next example shows a DAG attached to a PID:
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Fig. 1. An “omelette” example.

Example 1. Consider the example of Fig. 1. The problem is to prepare a six-egg omelette from a five-egg one. The
new egg can be fresh or rotten.

There are two binary decision variables:

• BAC: break the egg apart in a cup (BAC = yes if the egg is broken apart in a cup for inspection and BAC = no if
not),

• PIO: put it in the omelette (PIO = yes or no).

The state variables are the following:

• C: whether we have a cup to wash (C = true) or not (C = false).
• OF: whether we observe that the egg is fresh (OF = t) or rotten (OF = f ) or we do not observe whether the egg

is fresh or not (OF = unknown).
• F : the “real” state of the egg, fresh (F = t) or rotten (F = f ).
• O: whether we get a six-egg omelette (O = 6O), a five-egg omelette (O = 5O) or no omelette at all (O = nO).
• S: whether an egg is spoiled (S = t) or not (S = f ).

Let us note that, for example, the edge between BAC and C represents a causal influence of the value of the decision
BAC upon the value of the state C while the edge from OF to PIO denotes an informational influence which expresses
the fact that the value of the variable OF will be observed before choosing the value of the variable PIO. Note that
the example could have been represented without the nodes C, O and S but they will be useful to illustrate variable
elimination procedures.

The DAG structure, together with the underlying assumptions allow to define a strict partial ordering of the vari-
ables in X ∪D, described as a partition Ω = {I0, . . . , Ip} of the state variables. Indeed, if {D1, . . . ,Dp} is the ordered
set of decision variables, Ij−1 ⊆ X (for 1 � j � p) represents the set of state variables which values are revealed “just
before” decision Dj is chosen. In the problem of sequential decision under uncertainty modelled as a PID, the values
of the variables in I0 are revealed first, then the decision d1 is taken, then the values of the variables in I1 are revealed,
then the decision d2 is taken, etc. The values of the variables in Ip are not revealed before all the decision are taken
(or more exactly their revelation has no influence on decisions). Formally, the sets Ij are determined from the DAG:

I0 = Par(D1),

Ij = Par(Dj+1) − (I0 ∪ · · · ∪ Ij−1), ∀j = 1 . . . p − 1 and

Ip = X − (I0 ∪ · · · ∪ Ip−1).



L. Garcia, R. Sabbadin / Artificial Intelligence 172 (2008) 1018–1044 1023
In the following, methods for solving possibilistic decision problems modelled as a PID will be based on a complete
ordering of chance and decision nodes, compatible with the DAG. This notion of DAG-compatible ordering is defined
from the partition Ω deduced from the DAG:

Definition 1 (DAG-compatible ordering). ‘≺’, a complete ordering of all state and decision nodes, is said to be DAG-
compatible if and only if:

• for two decision nodes Di and Dj , Di ≺ Dj iff i < j ,
• for two chance nodes Y ∈ Ii and Y ′ ∈ Ij , Y ≺ Y ′ if i < j ,
• for a chance node Y ∈ Ii and a decision node Dj , Y ≺ Dj iff i < j .

Example 2. For the PID graphically represented in Fig. 1, the partitioning defined in a unique way from the DAG is
I0 = ∅, I1 = {OF} and I2 = {C,F,S,O} since the ordering between decision variables is BAC ≺ PIO. Indeed, BAC
has no predecessor, OF is the only predecessor of PIO and the values of the other state variables will not be revealed
before every decision will be taken (except for C, whose value has no influence on the decision PIO).

The strict complete ordering BAC ≺ OF ≺ PIO ≺ F ≺ O ≺ C ≺ S is an example of a DAG-compatible ordering
for this PID.

3.2. Semantics of a PID

In addition to the graphical part, which is identical to that of classical influence diagrams, PID also comprise
numerical specifications. In the possibilistic setting, this numerical ordering is handled in a qualitative way. A condi-
tional possibility table πXi

(Xi |Par(Xi)) is attached to each state variable Xi . The set of conditional possibility tables
is Φ = {πXi

(xi |xPar(Xi), dPar(Xi))}xi∈Xi
, where xPar(Xi) ∈ XPar(Xi) = ⊗

Xj ∈(Par(Xi)∩X ) Xj and dPar(Xi) ∈ DPar(Xi) =⊗
Dj ∈(Par(Xi)∩D) Dj . If Xi is a root of the DAG (Par(Xi) = ∅) we specify the a priori possibility degrees πXi

(xi) ∈ L

associated with each value xi of Xi .

Example 3. In the example of Fig. 1, let us take L = {0, . . . ,5}. The conditional possibilities are defined w.r.t. the
natural meaning of the problem. The only possibilities that can not be determined directly using the problem statement
are the a priori possibilities of F . Let us take πF (F = t) = 5 and πF (F = f ) = 3 (which describes the assumption that
the egg is expected to be fresh rather than rotten). Then, we obtain the following conditional and a priori possibility
tables:

πC(C|BAC) y n

t 5 0
f 0 5

πS(S|F,PIO) (t, n) (t, y) (f, ·)
t 5 0 0
f 0 5 5

πOF(OF|BAC,F ) (y, t) (y, f ) (n, ·)
t 5 0 0
f 0 5 0
u 0 0 5

πO(O|F,PIO) (·, n) (t, y) (f, y)

6O 0 5 0
5O 5 0 0
nO 0 0 5

πF (F ) a priori

t 5
f 3

Once a decision d ∈ D is fixed, the chance nodes of the PID form a possibilistic causal network and determine
a unique less specific joint possibility distribution π on the interpretations over chance nodes x = {x1, . . . , xn}. This
joint possibility distribution can be computed by applying the chain rule [1]:

π(x|d) = min πXi
(xi |xPar(Xi), dPar(Xi)), ∀x ∈ X ,∀d ∈D. (3)
Xi∈Xi
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We also define the set Ψ = {μk(xPar(Vk), dPar(Vk))Vk∈V }. For each utility node Vk , we prescribe ordinal values
μk(xPar(Vk), dPar(Vk)) to every possible instantiations (xPar(Vk), dPar(Vk)) of the parent variables of Vk . These values
represent satisfaction degrees attached to the local instantiation of the parent variables. It is assumed, analogously
to Flexible Constraint Satisfaction Problems [5], that the global satisfaction degree μ(x, d) associated with a global
instantiation (x, d) of all variables (state and decision) can be computed as the minimum of the local satisfaction
degrees:

μ(x, d) = min
k=1...q

μk(xPar(Vk), dPar(Vk)), ∀x ∈ X ,∀d ∈ D. (4)

Example 4. In the example of Fig. 1, utility functions μO,μS and μR are defined as follows, and for any global
instantiation (x, d), μ(x, d) = min{μO(o),μS(s),μC(c)}.

O μO(O)

6O 5
5O 3
nO 0

S μS(S)

f 5
t 2

C μC(C)

f 5
t 4

We are now interested in computing the optimistic and pessimistic utilities of a strategy δ. A strategy δ for a PID
specifies the value d of all the decision variables knowing the value x of the state variables (d = δ(x)). Thus, the
possibility distribution πδ can be computed using (3):

πδ(x) = π
(
x|δ(x)

) = min
k=1...n

πXk
(xk|xPar(Xk), d

x
Par(Xk)

), (5)

where dx = δ(x) is the value of all decision variables, uniquely defined from δ and x.
In the same way, a global satisfaction degree μδ(x) on state variables instantiations induced by a strategy can also

be computed from (4):

μδ(x) = μ
(
x, δ(x)

) = min
l=1...q

μVl
(xPar(Vl), d

x
Par(Vl)

). (6)

πδ(x) and μδ(x) thus depend on the value of state variables only. It is then possible to compute the optimistic and
pessimistic possibilistic utilities of a strategy δ using Eqs. (1) and (2).

3.3. Possibilistic decision tree

As it has already been noticed, the choice of the value dj of a decision variable Dj can only depend on the values
of the variables which have been previously observed. A DAG-compatible ordering on variables ‘≺’ defines, in a non-
ambiguous way, the variables whose values are known when the value of the decision Dj has to be fixed. A strategy δ

can then be decomposed as a set of sub-strategies δ1, . . . , δp , where δj (Predecessors(Dj )) specifies the value of the
decision variable Dj , knowing the observed values of all the variables in Predecessors(Dj ) = {Y ∈ X , Y ≺ Dj }.

A priori, nothing prevents Predecessors(Dj ) to contain decision variables. However, for a strategy δ = {δ1, . . . , δp},
if Di ∈ Predecessors(Dj ), it is possible to replace Predecessors(Dj ) with (Predecessors(Dj )−{Di}) since the value
of Di is determined from the values of the variables of Predecessors(Di) ⊆ Predecessors(Dj ). By repeating this oper-
ation until Predecessors(Dj ) does not contain anymore decision variables, δ is replaced with an equivalent strategy δ′
in which no subset Predecessors(Dj ) contains any decision variable.

To solve sequential decision under uncertainty problems modelled as a PID, it is useful to show an equivalent
representation in term of a decision tree. A PID can be unfolded into a possibilistic decision tree, using a method very
similar to that of [11] for usual ID. A decision tree represents every possible scenarios of successive actions and obser-
vations, for a fixed DAG-compatible ordering. In a possibilistic decision tree, branches issuing from a decision node
are labelled with the corresponding instantiation of the decision variable. Branches issuing from a chance node Xi are
labelled with instantiations of the variable together with their possibility degree computed from the local transition
possibilities and the values of the ancestors of Xi in the branch. Fig. 2 shows a decision tree obtained by unfolding
the PID in Fig. 1 with the DAG-compatible ordering BAC ≺ OF ≺ PIO ≺ F ≺ O ≺ S ≺ C.

A decision tree is gradually built by successively considering the state and decision variables with respect to the
DAG-compatible ordering. The root of the tree is the first variable, then branches issuing from a node are added and
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Fig. 2. Decision tree associated with the example PID.

labelled with the different possible values of the variable corresponding to the node. Once the tree is completely built,
the branches of the tree correspond to complete instantiations (x, d) of the state and decision variables. Then, to each
leaf are attached both a possibility degree π(x|d) and an aggregated satisfaction degree μ(x, d). Following the chain
rule (Eqs. (3) and (4)), π(x|d) (resp. μ(x, d)) is the minimum of the transition possibilities (resp. satisfaction degrees)
involved in the branch from the root to the leaf.

In the decision tree of Fig. 2, after nodes BAC, OF and PIO have been added, node F is omitted in the left part of
the tree since it has only one possible value, given the observed value of OF (for example, in the leftmost branch F is
true since OF is true). For the same reason, nodes C,O and S are not displayed. Then, it can be easily checked that, to
each leaf of the decision tree, is associated one particular interpretation of the variables. In Fig. 2, the leftmost branch
corresponds to the instantiation {BAC = yes,OF = t,PIO = yes,F = t,O = 6O,S = f,C = t}. Its possibility degree
is π = πOF(OF = t |BAC = yes,F = t) = 5 and its utility is μ = min(μO(6O),μC(t),μS(f )) = 4.

It has to be noticed that the number of leaves of a possibilistic decision tree is equal to the number of (authorised)
instantiations (x, d) (such that π(x|d) �= 0) of every state and decision variables. This representation is then more
expensive in space, in general, than the representation using a PID. It can also be shown that two decision trees built
from the same PID and two different DAG-compatible orderings will see the same pairs {μ(x, d),π(x, d)} attached
to leaves corresponding to identical complete instantiations (x, d). The trees corresponding to two different DAG-
compatible orderings will of course be different, though.

3.4. Strategies, possibilistic values of strategies

A possibilistic decision tree can be used to represent a strategy for a PID and for computing the optimistic and
pessimistic utilities of this strategy. Namely, a strategy representation can be obtained from the decision tree by
pruning every branches issuing from each decision node, but one. The remaining branch then represents the decision
node value associated by the local strategy to the corresponding instantiation of the ancestor variables of the decision
node.
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Fig. 3. Strategy representation from decision tree.

Example 5. Let us now consider the following strategy δ = {δBAC, δPIO}: δBAC = yes (BAC has no parent, so δBAC is
unconditional), δPIO(OF = t) = yes and δPIO(OF = f ) = no.

Fig. 3 represents the strategy δ = {δBAC, δPIO} of Example 5. The branch “no” issuing from BAC has been pruned,
which amounts to suppressing the right part of the decision tree of Fig. 2 and, in the same way, only one branch issuing
from each copy of node PIO has been kept.

The possibility and utility levels πδ(x) and μδ(x) of the leaves can then be used to compute the optimistic and
pessimistic utilities of strategy δ described in Example 5:

Example 6 (Continued). It can be easily checked that only the two instantiations x1 = (F = t,O = 6O,S = f,

OF = t,C = t) and x2 = (F = f,O = 5O,S = f,OF = f,C = t) have a non-zero possibility degree: πδ(x1) =
πF (F = t) = 5 and πδ(x2) = πF (F = f ) = 3. And we can check that μδ(x1) = 4 and μδ(x2) = 3. So,

u∗(δ) = max
{
min

(
πδ(x1),μδ(x1)

)
,min

(
πδ(x2),μδ(x2)

)} = 4 and

u∗(δ) = min
{
max

(
n
(
πδ(x1)

)
,μδ(x1)

)
,max

(
n
(
πδ(x2)

)
,μδ(x2)

)} = 3.

3.5. Strategy optimisation

Solving a PID amounts to finding an optimal strategy δ∗, i.e. one which maximises the (either optimistic or pes-
simistic) possibilistic utility. We present next a tree search method, based on the decision tree built from the PID,
that can be used to compute such optimal strategies. Describing the method will be useful in order to introduce the
complexity results which will be shown in Section 4. In Section 5, we will present algorithms based on a variable
elimination procedure that can be used in practice to solve a PID in the optimistic or pessimistic framework.

In order to compute a possibilistic optimal strategy from the decision tree, we can apply a depth-first search method,
allowing to attach a utility degree to each node, and to prune branches issuing from each decision node by keeping
only one branch. The two basic principles of the computation are the following:

• If all the children of a decision node already have an attached possibilistic utility, only the issuing branch with the
highest value is kept. This highest value is attached to the decision node.
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Fig. 4. Optimal pessimistic decision strategy computation.

• If all the children of a chance node have an attached possibilistic utility, its possibilistic (either optimistic or
pessimistic) utility is computed.

The depth-first search is made until a possibilistic utility is attached to the root node. The remaining tree represents
an optimal strategy, together with its utility (optimistic or pessimistic according to the chosen case). Fig. 4 shows how
an optimal pessimistic strategy can be computed for the omelette example. The circled numbers attached to decision
and chance nodes represent the possibilistic pessimistic utilities which have been successively computed during the
search. Note that the optimal pessimistic strategy, which is the one described in Fig. 3, consists in breaking the egg
apart in a cup for inspection, and to put it in the omelette if it is observed to be fresh, and to throw it away if it is not.

3.6. Remarks on optimal strategies

The above-described computation method must explore a decision tree of size exponential in the number of vari-
ables of the PID in order to compute an optimal strategy. It may not be necessary to keep it all in memory in order
to compute the utility of the best strategy. Indeed, in the next section we will show that computing the utility of an
optimal (pessimistic or optimistic) strategy requires polynomial space. However, optimal strategies may require space
exponential in the number of decision variables to be expressed: they can be quite large subtrees of the decision tree.

In the optimistic case, however, it can be shown that one can always find unconditional optimal strategies (se-
quences of decisions). Indeed, in order to compute an optimal strategy, it is enough to find in the decision tree the
branch (x, d) which maximises min(π(x|d),μ(x, d)). The corresponding instantiation of decision variables d is an
unconditional optimistic optimal strategy.

Example 7. In Fig. 4, the branch {(BAC = no), (C = false), (OF = unknown), (PIO = yes), (F = true), (O = 6O),

(S = false)} has a maximal utility of 5. It can be checked that the unconditional strategy δ∗, δ∗ = no, δ∗ = yes
BAC PIO
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has utility u∗(δ∗) = 5. Let us note that this strategy is better, according to the optimistic criterion, than the one of
Example 5 which has utility u∗(δ) = 4.

However, such unconditional strategies lack a desirable property shared by all optimal strategies in stochastic ID
(and by pessimistic optimal strategies in PID): they are not dynamically consistent. Dynamic consistency of an optimal
strategy means that the strategy remains optimal in time, when state variables are successively instantiated [21]. It may
happen that an unconditional optimal optimistic strategy does not remain optimal if the course of nature is different
from what was anticipated. So, even if they can require exponentially less space to be expressed than conditional
strategies, the unconditional optimal optimistic strategies may have to be recomputed whenever a chance variable
value is observed which differs from the one in the branch that allowed to compute the current strategy. This would
give a motivation for designing a real-time algorithm in the optimistic case but we do not focus on this point in this
article.

In the next section we discuss more formally, in terms of computational complexity considerations, this difference
in the difficulty of solving optimistic or pessimistic optimisation problems. Then, in Section 5 we will describe a
generic variable elimination algorithm which can be used to compute optimal dynamically consistent strategies for
both types of optimisation problems.

4. Complexity results

In this section, we formalise the intuition which results from the algorithm that has been exposed in the previous
section, namely the intuition that optimistic optimisation problems are “easier” to solve than pessimistic ones.

We will consider here the two decision problems:

Definition 2 (Optimistic strategy optimisation (OSO)).
INSTANCE: A PID P = (X ,D,V,Φ,Ψ ), a level α ∈ L

QUESTION: Does there exist δ, u∗(δ) � α, where u∗ is the optimistic utility function associated to the PID P?

Definition 3 (Pessimistic strategy optimisation (PSO)).
INSTANCE: A PID P = (X ,D,V,Φ,Ψ ), a level α ∈ L

QUESTION: Does there exist δ, u∗(δ) � α, where u∗ is the pessimistic utility function associated to the PID P?

4.1. Complexity of the optimistic strategy optimisation problem

Proposition 1 (Optimistic strategy optimisation (OSO)). A PID P and a level α ∈ L being given, the problem of
deciding whether there exists a strategy δ that attains utility degree α (u∗(δ) � α) is NP-complete.

Proof. 1) OSO is in NP:

OSO writes:
(∃δ,max

x
min

(
πδ(x),μδ(x)

)
� α

)
?

But
(∃δ,max

x
min

(
πδ(x),μδ(x)

)
� α

) ⇔ (∃d∃x min
(
π(x|d),μ(x, d)

)
� α

)
,

where π(x|d) = min
i=1...n

ΠXi
(xi |xPar(Xi), dPar(Xi)) and μ(x, d) = min

l=1...q
μVl

(xPar(Vl), dPar(Vl)).

This question can be answered through an oracle guess:
Guess (x, d) such that:

min
(

min
i=1...n

ΠXi
(xi |xPar(Xi), dPar(Xi)), min

l=1...q
μVl

(xPar(Vl), dPar(Vl))
)
� α.

Such a guessed solution can be checked in time polynomial in the size needed to express the possibility and utility
tables, and it is easy to see that a solution corresponds to an unconditional strategy δ∗ (δ∗

i (x) = di, ∀x).
2) NP-hardness: In order to show that OSO is NP-hard, it is enough to exhibit a polynomial-time reduction from

3-SAT to OSO (since 3-SAT is NP-complete). Let a 3-SAT instance be defined as a CNF formula F(x) = F1(x) ∧
· · · ∧ Fq(x), where the Fk are 3-clauses. This instance can be represented as a q × 3 matrix of integers, element
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Fig. 5. PID corresponding to a polynomial transformation of 3-SAT.

(k, j) ∈ {1 . . . q} × {1,2,3} of the matrix being the index of the j th variable of the kth clause, negated if the variable
is negated in the clause. It thus requires space q log(n) to represent F(x).

Let us define the following PID P = (X ,D,V,Φ,Ψ ) described in Fig. 5:

• X = {X1, . . . ,Xn} are the binary variables involved in the CNF F ,
• D = {D0}, where D0 has domain {yes,no},
• V = {V0, . . . , Vq} contains one symbol for each clause and the additional symbol V0.
• Φ is a set of unconditional possibility measures {ΠXi

}Xi∈X , one for each state variable, and ΠXi
(xi) = 1L, ∀xi .

• Ψ is a set of utility functions μVk
, one for each clause Fk , with scope Par(Vk) = Scope(Fk). μVk

(xPar(Vk)) = 1L

if xPar(Vk) satisfies Fk and 0L otherwise. Ψ contains an additional utility function, μ0, which scope is {D0}, and
for which μ0(d0) = 1L if d0 = yes and 0L otherwise.

Then,
(∃δ,max

x
min

(
πδ(x),μδ(x)

)
� 1L

) ⇔ F is satisfiable.

So, this OSO problems solves 3-SAT if we fix α = 1L. The corresponding unconditional strategy is δ : d0 = yes.
The transformation is obviously polynomial in time since utility tables have at most 23 elements (the Fk are

3-clauses) and so, OSO is NP-hard.
Papadimitriou [14] rather used logarithmic space transformations to show NP-completeness of problems. We can

also show that the proposed transformation is logarithmic in space. We only sketch the proof, since it is not directly
necessary to our proof of NP-hardness. Note first that we only need to build the functions {μVk

}k=1...q and their scopes
{Par(Vk)}k=1...q . The transition possibilities {πXi

}i=1...n can remain implicit (we know that πXi
(xi) = 1L, ∀i,∀xi and

writing them in a write-only tape would require a counter of size log(n)). The scopes {Par(Vk)}k=1...q can be stored
as lines of a q × 3 matrix which is simply the absolute value of F(x) and which can be written using only “constant”
space, by copying matrix F(x) bit by bit, forgetting the sign bits. In order to write the μVk

functions, we can notice that
μVk

(xPar(Vk)) = 0L if xPar(Vk) is exactly the opposite of the signs of line k of F(x) (literals in the clause are positive
if the corresponding numbers in the corresponding line of F are negative, and vice-versa) and is 1L otherwise. Thus,
the μVk

can be written in a clever way by storing only the index of their zero element, which can again be done in
constant time by reading the signs of the literals in Fk and writing the corresponding bits of the index accordingly (0
if sign is negative, 1 otherwise). The full transformation is of course log-space (it is even constant-space). �
4.2. Complexity of the pessimistic strategy optimisation problem

The pessimistic strategy optimisation problem is more complex since the corresponding exploration of the (com-
plete) decision tree alternates maximisations at decision nodes and minimisations at chance nodes. The following
result can be shown:

Proposition 2 (Pessimistic strategy optimisation (PSO)). A PID P and a utility degree α being given, the problem of
deciding whether there exists a strategy δ which attains utility degree α (u∗(δ) � α) is PSPACE-complete.
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Proof. 1) PSO is in PSPACE:

PSO writes:
(∃δ,min

x
max

(
n
(
πδ(x)

)
,μδ(x)

)
� α

)
?

This also writes:
(
max

δ
min

x
max

(
n
(
πδ(x)

)
,μδ(x)

)
� α

)
?

Given a state variables partition Ω = {I0, . . . , Ip} defined from an ordering of variables ‘≺’, DAG-compatible for the
PID P ,2 the PSO can also be written (local strategy δj only depends on the variables instantiated before dj ):

min
xI0

max
d1

min
xI1

. . .max
dp

min
xIp

max
(
n
(
π(x|d)

)
,μ(x, d)

)
� α,

Finally, this can be transformed into:

∀xI0∃d1∀xI1 . . .∃dp∀xIp

(
max

(
n
(
π(x|d)

)
,μ(x, d)

)
� α

)
.

This can be seen as a two-players game, where Player I chooses the value of decision variables and Player II chooses
the values of chance variables. The game is made alternating by adding quantified dummy variables (∃zk) or (∀wk)

not appearing in the max expression, where needed, so that the “quantification” part of the expression alternates
existentially and universally quantified variables. Each player then alternates moves (choices for chance or decision
variables) and when all variables have been instantiated, the final position is labelled WIN for Player I if the expression
in brackets is true, and WIN for Player II if not.

This game is PSPACE [14] since:

• The length of any legal sequence of moves is bounded, by 2 × (n + p) in the worst case (when only I0 or only IP

is non-empty).
• Any final position (i.e. when all variables have been instantiated) can be labelled WIN for Player I or II in poly-

nomial space. In fact, the expression in brackets can even be evaluated in polynomial time.
• Finally, given any arbitrary position of the game, given by the instantiation of the k first variables, the set of

possible moves for the current player to play and the set of possible following positions can be constructed
using polynomial space only. This fact is obvious, since the next possible plays are determined by checking the
(polynomial size) set of allowed values for the next variable to instantiate.

The conclusion is that PSO, which can be rewritten as the above described two-players game, is also in PSPACE.
2) PSPACE-hardness: Here we show how a Quantified Boolean Formula (3-QBF, in fact) problem can be reduced

to a PSO problem. Let us consider the 3-QBF ∃y1∀y2∃y3 . . .QnynF (y) where F is a CNF formula (F(y) = F1(y) ∧
· · · ∧ Fq(y), where the Fi are 3-clauses). Let us now define a PID P = (X ,D,V,Φ,Ψ ) from the 3-QBF in the
following way:

• X is the set of universally quantified variables in the 3-QBF. Variables Xi are all binary.
• D is the set of existentially quantified variables in the 3-QBF. Variables Dj are all binary.
• V contains one symbol Vk for each clause in the 3-QBF.
• Φ is a set of unconditional possibility measures ΠXi

, one for each state variable, and ΠXi
(xi) = 1L, ∀xi .

• Ψ is a set of utility functions, one for each clause Fk , and μVk
(xPar(Vk), dPar(Vk)) = 1L if the corresponding

instantiation yScope(Fk) satisfies Fk and 0L else.

Fig. 6 shows the graphical part of the PID corresponding to the example 3-QBF: ∃y1∀y2∃y3∀y4∃y5((y1 ∨¬y3 ∨y5)∧
(¬y2 ∨ y3 ∨ y4) ∧ (¬y4 ∨ ¬y5)).

Now, we can show that in general a 3-QBF ∃y1∀y2∃y3 . . .QnynF (y) is true if and only if the corresponding PSO
is true:(

max
δ

u∗(δ) � 1L

)
?

In order to prove this, just look at the following equivalences:

2 Let us recall that Ω is the same for every DAG-compatible ordering ‘≺’.
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Fig. 6. PID corresponding to the QBF ∃y1∀y2∃y3∀y4∃y5((y1 ∨ ¬y3 ∨ y5) ∧ (¬y2 ∨ y3 ∨ y4) ∧ (¬y4 ∨ ¬y5)).

max
δ

u∗(δ) � 1L ⇔ max
d1

min
x1

max
d2

. . .max
(
n
(
π(x|d)

)
,μ(x, d)

)
� 1L,

where π(x|d) = min
Xi

ΠXi
(xi) = 1L, ∀x

and μ(x, d) = min
k=1...q

μk(xPar(Vk), dPar(Vk)), ∀x.

So, max
δ

u∗(δ) � 1L ⇔ max
d1

min
x1

max
d2

. . .μ(x, d) � 1L, and

max
δ

u∗(δ) � 1L ⇔ ∃d1∀x1∃d2 . . . min
k=1...q

μk(xPar(Vk), dPar(Vk)) � 1L.

Noticing that mink=1...q μk(xPar(Vk), dPar(Vk)) � 1L ⇔ F(x, d) is true, and rewriting the xi and dj as yk variables, we
get

max
δ

u∗(δ) � 1L ⇔ ∃y1∀y2∃y3 . . . F (y).

So, this PSO problem “solves” 3-QBF, and thus 3-QBF has been reduced to PSO. Furthermore, the transformation is
polynomial in time and space since utility tables have at most 23 elements (the Fk are 3-clauses). The proposition is
then proved: PSO is PSPACE-complete. �
4.3. Complexity of unobservable pessimistic strategy optimisation (UPSO)

In [10], it was wrongly stated that PSO is 	
p

2 -complete. However, this result holds in a particular case. Indeed, in
the unobservable case, where decisions are to be made before any chance variable value is observed, the complexity of
the corresponding unobservable pessimistic strategy optimisation (UPSO) problem falls down.3 The next proposition
can then be shown.

Proposition 3 (Unobservable pessimistic strategy optimisation (UPSO)). A PID being given, the problem of comput-
ing an optimal pessimistic strategy δ∗ and its utility u∗(δ), when state variables are never observed is 	

p

2 -complete.

Sketch of proof. In the unobservable case, it can be shown that since state variables are only observed after all
decisions have been chosen, Eq. (2) writes:

max
d1

. . .max
dp

min
x

max
(
n
(
π(x|d)

)
,μ(x, d)

)
� α,

which can be rewritten:

∃d1, . . . , dp,∀x1, . . . , xn

(
max

(
n
(
π(x|d)

)
,μ(x, d)

)
� α

)
.

3 The UPSO case is the one of a PSO problem on a PID for which I0 = I1 = · · · = Ip−1 = ∅ and Ip = X .
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This question is of the form “is it true that ∃a,∀b, r(a, b)?”, which is representative of the class of 	
p

2 -complete
problems in the polynomial hierarchy. In the same way as OSO was shown to be NP-complete and PSO PSPACE-
complete, UPSO can be shown to be 	

p

2 -complete. �
5. Variable elimination algorithms

In this section we present variable elimination algorithms for computing optimal strategies for PID with either
optimistic or pessimistic utilities. These algorithms are inspired by the eponymous algorithm for stochastic ID, initially
proposed by [23] and also used for example in [12]. The basic principle of the algorithms is to remove one by one the
nodes of the influence diagram in order to obtain an optimal strategy together with its attached utility. The variables
will have to be eliminated following a DAG-compatible ordering for the PID.

[15] defines four “licit” operations on the nodes of the DAG attached to an influence diagram. These operations
allow to simplify the structure of the influence diagram without modifying the optimal strategy or its value. These
operations are the following:

(1) “Barren node removal”. It is possible to remove the state or decision nodes which have no successors since the
values of the variables corresponding to the other nodes are not affected by this removal.

(2) “Conditional expectation” (chance node removal). It is possible to remove a chance node directly preceding (only)
utility nodes. This removal implies a modification of the corresponding utility function: the “parent” variables of
the removed chance node are incorporated in the scope of the utility function.

(3) “Maximisation” (decision node removal). It is possible to remove a decision node directly preceding (only) utility
nodes and to compute a new equivalent PID together with a local strategy associated to the removed node. The
“parent” variables of the removed decision node are incorporated in the scope of the utility function.

(4) “Arc reversal”. The removal of a chance node, needed due to the variable elimination ordering at a given time
step, can be illicit when this node is parent of another chance node. To solve this issue, a licit operation of arc
reversal is defined.

In this section, we define four operations of this type in the PID framework. As in the framework of influence
diagrams, these operations will be applied when necessary, by an algorithm in which all the variables are successively
removed following a DAG-compatible ordering.

In our framework, it is obvious that the values of the strategies are not affected by the first transformation (barren
node removal). This transformation is applied as soon as the current node to remove will be without any successor.
The second and third transformations are applied as soon as the current node to eliminate contains only utility nodes
as successors. When the node to eliminate is a decision node, a corresponding local strategy is computed. The last
transformation (arc reversal) is only applied when the current node to eliminate is a chance node which contains at
least another chance node as successor.4 The computed arc reversal(s) allow then the current node to be parent of only
utility nodes. It can then be eliminated by applying the second transformation.

We will show in the following that each of the four mentioned operations, when it is applied in a legal way to the
current variable to eliminate, transforms the PID P into an equivalent PID P ′ (that is, with identical optimal strategy
and maximal utility). Moreover, each decision variable elimination Dj allows the computation of a corresponding
optimal sub-strategy δ∗

Dj
.

5.1. Barren node removal

It is simple to show that if a state variable has no successor in a PID, it can be modified without modifying
the value of any strategy. Therefore, state variables without successors will be removed, this leading to remove the
corresponding conditional possibility table.

Let us show this in the optimistic case (the proof is similar in the pessimistic case). Let P be a PID and Xi a state
variable without any successor in the associated DAG. Let δ be an arbitrary strategy. Let us recall first that δ can be

4 If the nodes are removed following a DAG-compatible ordering, when the current node to eliminate is a decision node, it cannot contain state
or decision nodes as successors.
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decomposed into a set {δj } of strategies deciding the value of the decision variables Dj knowing the values of their
predecessors. Since Xi has no successor, none of the local strategies δj depends on the values of Xi .

Now, let us write the optimistic utility u∗(δ):

u∗(δ) = max
x∈X

min
(

min
k=1...n

πXk
(xk|xPar(Xk), d

x
Par(Xk)

), min
l=1...q

μVl
(xPar(Vl), d

x
Par(Vl)

)
)
.

This can also be written5

u∗(δ) = max
x∈X

min
(
πXi

(xi | . . .), min
k=1...n

k �=i

πXk
, min
l=1...q

μVl

)
,

= max
x1,...,xi−1,xi+1,...,xn

min
((

max
xi

πXi
(xi | . . .)

)
,min

k �=i
πXk

, min
l=1...q

μVl

)
.

But since, by definition, πXi
(xi | . . .) is normalised, (maxxi

πXi
(xi | . . .)) = 1L and

u∗(δ) = max
x1,...,xi−1,xi+1,...,xn

min(min
k �=i

πXk
, min
l=1...q

μVl
).

So the utility u∗(δ) does not depend on the variable Xi .
The same result can be obtained in the pessimistic case, and also in the case where the variable to eliminate is a

decision variable. In the latter case, it is enough to notice that if Dj has no successor, it is not an argument of any
function {πXk

} or {μVl
} and it does not participate to the computation of the utility of a strategy δ.

5.2. Elimination of a state variable

Recall first that any strategy δ decides on the value of each decision variable, according to its predecessor state
and decision variables only. Then, if Xend denotes the set of state variables which are not the predecessors of any
decision variable, the variables in Xend should be the first to eliminate in our variable elimination algorithm, since
their elimination will not affect the form of the local strategies.

If Xend is non-empty, let Xk ∈Xend be the next variable we wish to eliminate. Let us define:

ΦXk
= {

πY

(
Y |Par(Y )

) ∈ Φ, Xk ∈ (
Par(Y ) ∪ {Y })},

ΨXk
= {

μV

(
Par(V )

) ∈ Ψ, Xk ∈ Par(V )
}
, and

ΦXk
= Φ − ΦXk

and ΨXk
= Ψ − ΨXk

. (7)

Let us also define:

φ∗
k (x, d) = min

πXi
∈ΦXk

πXi
(xi |xPar(Xi), dPar(Xi)), ∀x, d. (8)

Since Xk /∈ Par(Xi) ∪ {Xi} for any πXi
∈ ΦXk

by definition of ΦXk
, φ∗

k does not depend on xk and we can write that
φ∗

k (x, d) = φ∗
k (xk̄, d), ∀x, d , where xk̄ ∈ ⊗

i �=k Xi .
In the same way, we can also write that

ψ∗
k (x, d) = ψ∗

k (xk̄, d) = min
μV ∈ΨXk

μV (xPar(V ), dPar(V )), ∀x, d. (9)

Let us note that φ∗
k and ψ∗

k may in general not depend on all state and decision variables apart from Xk , but only
respectively on those:

• variables Xi such that πXi
∈ ΦXk

and their parents,
• parent variables of utility nodes V such that μV ∈ ΨXk

.

5 To simplify the notations, the arguments of the functions will be omitted.
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5.2.1. Optimistic case
When considering state variable elimination in the optimistic case, we will need to define also the following:

ψ−Xk (xk̄, d) = max
xk∈Xk

min
(

min
πXi

∈ΦXk

πXi
(xi |xPar(Xi), dPar(Xi)), min

μVj
∈ΨXk

μVj
(xPar(Vj ), dPar(Vj ))

)
, (10)

where ψ−Xk is obviously not a function of xk , since this variable has been marginalised out by the maxxk∈Xk
operator.

As before, ψ−Xk may depend only in general on a subset of state and decision variables, excluding Xk .
Now, we can show the next proposition:

Proposition 4. ∀δ = {δj }j=1...p , where δj :XPredecessors(Dj ) → Dj , ∀Xk ∈Xend,

u∗(δ) = max
xk̄

min
(
φ∗

k

(
xk̄, δ(xk̄)

)
,ψ∗

k

(
xk̄, δ(xk̄)

)
,ψ−Xk

(
xk̄, δ(xk̄)

))
.

Proof. Indeed, if dx denotes δ(xk̄),
6 we have:

u∗(δ) = max
x1,...,xn

min
(
πδ(x1, . . . , xn),μδ(x1, . . . , xn)

)
u∗(δ) = max

x1,...,xn

min
(

min
πXi

∈Φ
πXi

(xi |xPar(Xi), d
x
Par(Xi)

), min
μVj

∈Ψ
μVj

(xPar(Vj ), d
x
Par(Vj ))

)

u∗(δ) = max
x1,...,xn

min
(

min
πXi

∈ΦXk

πXi
(xi |xPar(Xi), d

x
Par(Xi)

), min
μVj

∈ΨXk

μVj
(xPar(Vj ), d

x
Par(Vj )),

min
πXi

∈ΦXk

πXi
(xi |xPar(Xi), d

x
Par(Xi)

), min
μVj

∈ΨXk

μVj
(xPar(Vj ), d

x
Par(Vj ))

)

u∗(δ) = max
x1,...,xk−1,xk+1,...,xn

min
(
φ∗

k

(
xk̄, δ(xk̄)

)
,ψ∗

k

(
xk̄, δ(xk̄)

)
,

max
xk

min
(

min
πXi

∈ΦXk

πXi

(
xi |xPar(Xi), δ(xk̄)

)
, min
μVj

∈ΨXk

μVj

(
xPar(Vj ), δ(xk̄)

)))

u∗(δ) = max
xk̄

min
(
φ∗

k

(
xk̄, δ(xk̄)

)
,ψ∗

k

(
xk̄, δ(xk̄)

)
,ψ−Xk

(
xk̄, δ(xk̄)

))
. �

Let us now define, for any PID P = (X ,D,V,Φ,Ψ ) and any variable Xk ∈ Xend , a new PID P−Xk =
(X ′,D′,V ′,Φ ′,Ψ ′) obtained through elimination of variable Xk :

• X ′ = X − {Xk}, D′ = D and V ′ = V ∪ {VXk
} − {Vj |μVj

∈ ΨXk
},7

• Φ ′ = ΦXk
and Ψ ′ = ΨXk

∪ {ψ−Xk }.

We can show that the optimistic utility of any strategy δ is unchanged in a PID when a chance variable belonging
to the maximal class is eliminated.

Proposition 5 (Consistency of state variable elimination). Let P = (X ,D,V,Φ,Ψ ) be a PID and Xk ∈ Xend

(Xk is not an ancestor of any decision variable) and Xk is not parent of any state variable. The PID P−Xk =
(X ′,D′,V ′,Φ ′,Ψ ′) is equivalent to P . In other terms, any strategy δ has the same possibilistic optimistic utility
in P and in P−Xk .

Proof. Let u∗
P (δ) and u∗

P−Xk
(δ) denote respectively the utility of δ in P and P−Xk . From Proposition 4, we have:

u∗
P (δ) = max

xk̄

min
(
φ∗

k

(
xk̄, δ(xk̄)

)
,ψ∗

k

(
xk̄, δ(xk̄)

)
,ψ−Xk

(
xk̄, δ(xk̄)

))
.

6 Since Xk has no descendent in the DAG except for utility nodes, it cannot be the predecessor of any decision variable and thus, since ∀Dj ,
Xk /∈ Predecessors(Dj ), δDj

is independent of Xk .
7 VXk

represents an additional utility node in the DAG to which function ψ−Xk is attached. Its parents in the DAG are the variables belonging

to the scope of ψ−Xk .
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Now, from the definition of P−Xk , we have:

u∗
P−Xk

(δ) = max
x1,...,xk−1,xk+1,...,xn

min
(

min
πXi

∈Φ ′ πXi
(xi |xPar(Xi), d

x
Par(Xi)

), min
μVj

∈Ψ ′ μVj
(xPar(Vj ), d

x
Par(Vj ))

)

u∗
P−Xk

(δ) = max
x1,...,xk−1,xk+1,...,xn

min
(

min
πXi

∈ΦXk

πXi
(xi |xPar(Xi), d

x
Par(Xi)

),

min
μVj

∈ΨXk

μVj
(xPar(Vj ), d

x
Par(Vj )),ψ

−Xk
(
xk̄, δ(xk̄)

))

u∗
P−Xk

(δ) = max
xk̄

min
(
φ∗

k

(
xk̄, δ(xk̄)

)
,ψ∗

k

(
xk̄, δ(xk̄)

)
,ψ−Xk

(
xk̄, δ(xk̄)

)) = u∗
P (δ). �

Then, obviously the next corollary holds, since optimal strategies for P and P−Xk should be identical:

Corollary 1. An optimal optimistic strategy δ∗ for P can be obtained by solving P−Xk instead.

Example 8. To show the application of the elimination of a state variable in the optimistic case, let us consider the
omelette example.

First, it is important to recall that the variables will be eliminated with respect to the DAG-compatible ordering. In
our example, this means that the variables in {C,F,O,S} have to be eliminated first.

Let us start by eliminating state variable S: Here Xk = S.

ΦS = πS, ΦS = {πC,πOF,πO,πF },
ΨS = {μS}, ΨS = {μO,μC} and

ψ−S(F,PIO) = max
s∈S

min
{
πS(s|F,PIO),μS(s)

}
.

Note that ψ−S here only depends on {F,PIO} and on no other variables. A new PID P−Xk = (X ′,D′,V ′,Φ ′,Ψ ′) can
be computed.

X ′ = X − {Xk} = {C,F,O,OF},
D′ = D = {BAC,PIO},
V ′ = V ∪ {VXk

}\{Vj |μVj
∈ ΨXk

} = {VO,VC,VS} ∪ {V ′
S}\{VS} = {VO,VC,V ′

S}.
We obtain the PID of Fig. 7.
The possibility tables associated with this PID are πC(C|BAC), πOF(OF|F,BAC), πO(O|F,PIO) and πF (F ); the

initial possibility table πS(S|F,PIO) has been eliminated. The utility tables are μO(O), μC(C) and μ′
S(F,PIO); the

initial utility table μS(S) has been eliminated.

Fig. 7. PID after eliminating the variable S.
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The new utility table μ′
S(F,PIO) is defined by

F,PIO μ′
S
(F,PIO)

t, y 5
t, n 2
f,y 5
f,n 5

5.2.2. Pessimistic case
A similar state variable elimination method can also be defined in the pessimistic case. However in this case, a

specific term ξ−Xk is defined, instead of ψ−Xk for variable Xk ∈ Xend which is not parent of any state variable.
Namely, ξ−Xk is defined by:

ξ−Xk (xk̄, d) = min
xk∈Xk

max
(

max
πXi

∈ΦXk

n
(
πXi

(
xi |xPar(Xi), dPar(Xi)

))
,

min
(
ψ∗

k (xk̄, d), min
μVj

∈ΨXk

μVj

(
xPar(Vj ), dPar(Vj )

)))
, ∀x, d. (11)

As for ψ−Xk , ξ−Xk may only depend on a subset of variables. Note that the main difference with the optimistic case
is that ψ∗

k is included in the definition of ξ−Xk contrarily to ψ−Xk . This is due to the different form of alternation of
max and min operators which, in the pessimistic case, prevents to extract ψ∗

k .
The following proposition can be shown:

Proposition 6.

u∗(δ) = min
x1,...,xk−1,xk+1,...,xn

max
(
n
(
φ∗

k

(
xk̄, δ(xk̄)

))
, ξ−Xk

(
xk̄, δ(xk̄)

))
.

Proof. Once again, if dx denotes δ(xk̄), we have:

u∗(δ) = min
x1,...,xn

max
(
n
(
πδ(x1, . . . , xn)

)
,μδ(x1, . . . , xn)

)
u∗(δ) = min

x1,...,xn

max
(
n
(

min
πXi

∈Φ
πXi

(xi |xPar(Xi), d
x
Par(Xi)

)
)
, min
μVj

∈Ψ
μVj

(xPar(Vj ), d
x
Par(Vj ))

)

u∗(δ) = min
x1,...,xn

max
(
n
(

min
πXi

∈ΦXk

πXi
(xi |xPar(Xi), d

x
Par(Xi)

)
)
, max
πXi

∈ΦXk

n
(
πXi

(xi |xPar(Xi), d
x
Par(Xi)

)
)
,

min
(

min
μVj

∈ΨXk

μVj
(xPar(Vj ), d

x
Par(Vj )), min

μVj
∈ΨXk

μVj
(xPar(Vj ), d

x
Par(Vj ))

))

u∗(δ) = min
x1,...,xk−1,xk+1,...,xn

max
(
n
(
φ∗

k

(
xk̄, δ(xk̄)

))
,min

xk

max
(

max
πXi

∈ΦXk

n
(
πXi

(xi |xPar(Xi), d
x
Par(Xi)

)
)
,

min
(
ψ∗

k

(
xk̄, δ(xk̄)

)
, min
μVj

∈ΨXk

μVj
(xPar(Vj ), d

x
Par(Vj ))

)))

u∗(δ) = min
xk̄

max
(
n
(
φ∗

k

(
xk̄, δ(xk̄)

))
, ξ−Xk

(
xk̄, δ(xk̄)

))
. �

As in the optimistic case, we can show that the pessimistic utility of any strategy δ is unchanged in a PID when a
chance variable belonging to the maximal class with respect to ≺ is eliminated. The only difference with the optimistic
case is that in the modified PID P−Xk , Ψ is replaced with Ψ ′ = {ξ−Xk } and V is replaced with V ′ = {VXk

}. A unique
utility node thus replaces all the remaining ones. Then, the following proposition can be proved:

Proposition 7 (Consistency of state variable elimination (pessimistic case)). Let P = (X ,D,V,Φ,Ψ ) be a PID and
Xk ∈Xend. The PID P−Xk = (X ′,D′,V ′,Φ ′,Ψ ′) where Ψ ′ = {ξ−Xk } is equivalent to P . In other terms, any strategy
δ has the same possibilistic pessimistic utility in P or in P−Xk .
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Proof. Let uP∗ (δ) and uP
−Xk

∗ (δ) denote respectively the pessimistic utility of δ in P and P−Xk . From Proposition 6,
we have:

uP∗ (δ) = min
x1,...,xk−1,xk+1,...,xn

max
(
n
(
φ∗

k

(
xk̄, δ(xk̄)

))
, ξ−Xk

(
xk̄, δ(xk̄)

))
.

Now, from the definition of P−Xk , we have:

uP
−Xk

∗ (δ) = min
x1,...,xk−1,xk+1,...,xn

max
(
n
(

min
πXi

∈Φ ′ πXi
(xi |xPar(Xi), d

x
Par(Xi)

)
)
, min
μVj

∈Ψ ′ μVj
(xPar(Vj ), d

x
Par(Vj ))

)

uP
−Xk

∗ (δ) = min
xk̄

max
(
n
(
φ∗

k

(
xk̄, δ(xk̄)

))
, ξ−Xk

(
xk̄, δ(x,min k̄)

)) = uP∗ (δ). �
Then, the next corollary holds, since optimal pessimistic strategies for P and P−Xk should be identical:

Corollary 2. An optimal pessimistic strategy δ∗ for P can be obtained by solving P−Xk instead of P .

Note that, in the pessimistic case, the elimination of a state variable results in grouping together all utility nodes.
Thus, the resulting PID P−Xk may take exponentially more space to be expressed than P . In the optimistic case,
the favourable alternation of min and max operators allows to keep utility functions distinct during state variable
elimination and thus, may avoid this space complexity explosion. However, even in the pessimistic case, the next
example shows that this complexity explosion can be sometimes avoided. Namely, when utility functions μVj

∈ ΨXk

do not share any variable with any utility function μVl
∈ ΨXk

or any transition function πXi
∈ ΦXk

, they can still
persist as independent functions and not be grouped in μVXk

. Thus, the space complexity explosion can be partially
avoided.

Example 9. Once again we eliminate variable S from the PID. We have: ΦS = πS , ΦS = {πC,πOF,πO,πF } and
ΨS = {μS}, ΨS = {μO,μC}.

From this, we compute:

ξ−S(F,O,C,PIO) = min
s∈S

max
(
n
(
πS(s|F,PIO)

)
min

(
μO(O),μC(C),μS(s)

))
= min

{
max

(
min

(
μO(O),μC(C)

)
,min

s∈S

(
n
(
πS(s|F,PIO)

)))
,

min
s∈S

max
(
n
(
πS(s|F,PIO)

)
,μS(s)

)}
= min

{
μO(O),μC(C),min

s∈S
max

(
n
(
πS(s|F,PIO)

)
,μS(s)

)}
.

In the general case all utility functions are replaced by a unique (but with maybe large scope) one. However in this
example, ξ−S(F,O,C,PIO) is the minimum of three functions: μO,μC and a third one of scope {F,PIO} which we
name μ−S(F,PIO). This is due to the fact that μO and μC do not share any variable with πS or μS .

Thus, the new equivalent PID still has three utility functions: Only μS(S) is replaced with

μ−S(F,PIO) = min
s∈S

max
(
n
(
πS(s|F,PIO)

)
,μS(s)

)
.

5.3. Elimination of a decision variable

Once all state variables in Xend (the set of state variables which are not the predecessor of any decision variable)
have been eliminated by repeated application of the state variable elimination procedure, the next variable to remove
will be a decision variable (belonging to the set of decision variables of the resulting PID which do not have any
successor). Let P = (X ,D,V,Φ,Ψ ) be the current PID. In a similar way as for state variables, Dend will denote the
set of decision variables in D which do not have any successor node in X ∪D. We are going to present a method for
eliminating a decision variable Dj in Dend and building a local component δ∗

j of the optimal strategy δ∗.
Assume that Dj is the decision variable in Dend that has to be eliminated. As for state variable elimination, we

define:

ΨDj
= {

μV

(
Par(V )

) ∈ Ψ, Dj ∈ Par(V )
}
.
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Now, let us also define 
Dj
, the set of state and decision variables involved in ΨDj

:


Dj
=

( ⋃
μV (Par(V ))∈ΨDj

Par(V )

)
− {Dj }.

It is easy to check that 
Dj
is the set of variables whose instantiation determines a local utility degree together with

the instantiation of Dj .
Similarly to the optimistic state variable elimination case, we define:

ψ−Dj (x
Dj
, d
Dj

) = max
dj ∈Dj

min
μV ∈ΨDj

μV (xPar(V ), dPar(V )).

Note that obviously ψ−Dj does not depend on Dj .
Eliminating a decision variable amounts to compute a local strategy δ∗

Dj
which determines the value of this decision

variable as a function of the values of variables in 
Dj
so as to maximise the local utility function ψ−Dj . Namely,

δ∗
Dj

(x
Dj
, d
Dj

) = arg max
dj ∈Dj

min
μV ∈ΨDj

μV (xPar(V ), dPar(V )).

Proposition 8 shows that the obtained local strategy is part of a globally optimal strategy.

Proposition 8 (Optimality of δ∗
Dj

). Let P = (X ,D,V,Φ,Ψ ) be a PID, where D = {D1, . . . ,Dp} and let Dj ∈ Dend

be a decision variable without any successor variable. Let also δ = {δD1, . . . , δDp } be any fixed strategy, and δ∗
Dj

be
the local strategy computed through elimination of Dj . Let us also define δDj

= {δD1, . . . , δDj−1, δDj+1 , . . . , δDp }.
Then, u∗(δDj

, δ∗
Dj

) � u∗(δ) and u∗(δDj
, δ∗

Dj
) � u∗(δ).

Proof. Let us write δ′ = {δDj
, δ∗

Dj
}. From (5) it is easily checked that πδ′(x) = πδ(x), ∀x, since it is assumed that

Dj has no descendent in the DAG. Let us write for a given x, d = δ(x) and d ′ = δ′(x). So, d ′
i = di,∀i �= j . We have

min
l s.t. Dj ∈Par(Vl)

μl(xPar(Vl), d
′
Par(Vl)

) = max
(d ′′

j ∈Dj )
min

(l s.t. Dj ∈Par(Vl))
μl(xPar(Vl), dPar(Vl)\{j}, d ′′

j ) and

max
(d ′′

j ∈Dj )
min

(l s.t. Dj ∈Par(Vl))
μl(xPar(Vl), dPar(Vl)\{j}, d ′′

j ) � min
l s.t. Dj ∈Par(Vl)

μl(xPar(Vl), dPar(Vl)).

Since μl(xPar(Vl), dPar(Vl)) = μl(xPar(Vl), d
′
Par(Vl)

), ∀l s.t. Dj /∈ Par(Vl), we get μδ′(x) � μδ(x), ∀x. From which we
get both u∗(δ′) � u∗(δ) and u∗(δ′) � u∗(δ). �

Now, let us define, for any PID P = (X ,D,V,Φ,Ψ ), and any variable Dj ∈ Dend , a new PID P−Dj = (X ′,D′,
V ′,Φ ′,Ψ ′) obtained after eliminating Dj :

• X ′ = X , D′ = D − {Dj } and V ′ = V ∪ {VDj
} − {Vl,μVl

∈ ΨDj
},8

• Φ ′ = Φ and Ψ ′ = (Ψ − ΨDj
) ∪ {ψ−Dj }.

Then, the following proposition shows that an optimal strategy can be obtained as the union of δ∗
Dj

and of an

optimal strategy for P ′.

Proposition 9 (Consistency of decision variable elimination). Let P = (X ,D,V,Φ,Ψ ) be a PID, where D =
{D1, . . . ,Dp} and let Dj ∈ Dend a decision variable without any successor (chance or decision) node. Let P−Dj =
(X ′,D′,V ′,Φ ′,Ψ ′) be the PID obtained after eliminating Dj and let δ∗

Dj
be the corresponding computed local strat-

egy.
If δ∗

Dj
denotes an optimal strategy for P−Dj then, for either possibilistic criterion, strategy δ∗ = {δ∗

Dj
, δ∗

Dj
} is an

optimal strategy for P for the corresponding criterion.

8 Here, VDj
represents an additional utility node to which function ψ

−Dj is attached.
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Proof. Let us first consider the optimistic criterion u∗
P . Let δ∗

Dj
be an optimal strategy for P−Dj . Obviously, it holds

that:

u∗
P−Dj

(δ∗
Dj

) � u∗
P−Dj

(δDj
), ∀δDj

. (12)

It can also be checked from the definition of P−Dj that for all δDj
:

u∗
P (δDj

, δ∗
Dj

) = max
x∈X

min
(

min
πXi

∈Φ
πXi

(xi |xPar(Xi), dPar(Xi)),

min
μVl

∈(Ψ −ΨDj
)
μVl

(xPar(Xi), dPar(Xi)),ψ
−Dj (x
Dj

, d
Dj
)
) = u∗

P−Dj
(δDj

). (13)

Now, from Eqs. (12) and (13), we get

u∗
P (δ∗

Dj
, δ∗

Dj
) � u∗

P (δDj
, δ∗

Dj
), ∀δDj

.

But now, Proposition 8 entails that u∗
P (δDj

, δ∗
Dj

) � u∗
P (δ), ∀δ. So, finally,

u∗
P (δ∗

Dj
, δ∗

Dj
) � u∗

P (δ), ∀δ.

Thus, {δ∗
Dj

, δ∗
Dj

} is an optimal optimistic strategy for P .

Let us now consider the pessimistic criterion uP∗ . Once again it is easily checked that by definition

uP
−Dj

∗ (δ∗
Dj

) � uP
−Dj

∗ (δDj
), ∀δDj

. (14)

Now, similarly as for (13), we can show:

uP∗ (δDj
, δ∗

Dj
) = min

x∈X
max

(
n
(

min
πXi

∈Φ
πXi

(xi |xPar(Xi)), dPar(Xi)

)
,

min
(

min
μVl

∈(Ψ −ΨDj
)
μVl

(xPar(Xi), dPar(Xi)),ψ
−Dj (x
Dj

, d
Dj
)
)) = uP

−Dj

∗ (δDj
).

From these two equations we get

uP∗ (δ∗
Dj

, δ∗
Dj

) � uP∗ (δDj
, δ∗

Dj
), ∀δDj

.

Again, from Proposition 8 we get that uP∗ (δDj
, δ∗

Dj
) � uP∗ (δ), ∀δ. So, finally,

uP∗ (δ∗
Dj

, δ∗
Dj

) � uP∗ (δ), ∀δ.

Thus, {δ∗
Dj

, δ∗
Dj

} is also an optimal pessimistic strategy for P . �
5.4. Arc reversal

When the current variable to eliminate (with respect to the DAG-compatible ordering) is a state variable which is a
parent of another state variable, the results of Section 5.2 no longer hold. In this case, it is necessary to reverse first the
dependency between the two variables to make sure to remove a node which is parent of utility nodes only. This arc
reversal operation will not concern chance nodes which are parents of a decision node since, in this case, the chance
node will be candidate to be removed only after the decision node has been removed (due to the DAG-compatible
ordering).

Technically, this arc reversal operation takes the following form. Let X and Y be two state variables such that
X ∈ Par(Y ) and such that the only oriented path from X to Y is the edge X → Y (Y is called a non-transitive child
of X). We can define:
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Fig. 8. Arc reversal operation.

π ′
Y

(
Y |Par′(Y )

) = max
x∈X

min
(
πY

(
Y |Par(Y )

)
,πX

(
x|Par(X)

))
where Par′(Y ) = (

Par(Y )\{X}) ∪ Par(X)

π ′
X

(
X|Par′(X)

) = min
(
πY

(
Y |Par(Y )

)
,πX

(
X|Par(X)

)) ∗ π ′
Y

(
Y |Par′(Y )

)
where Par′(X) = Par(X) ∪ {Y } ∪ Par(Y )\{X} and a ∗ b = a if a < b and a ∗ b = 1L if a = b. (15)

Fig. 8 shows how a link between X and Y is reversed by considering π ′
X and π ′

Y instead of πX and πY . The
consistency of arc reversal operation is shown by Proposition 10, which proof is omitted.

Proposition 10 (Consistency of arc reversal). Let P = (X ,D,V,Φ,Ψ ) be a PID and let X and Y be two
state variables such that Y is a non-transitive child of X and X ∈ Ip . Let P ′ = (X ,D,V,Φ ′,Ψ ), where Φ ′ =
(Φ ′\{πX(X|Par(X)),πY (Y |Par(Y ))}) ∪ {π ′

X(X|Par′(X)),π ′
Y (Y |Par′(Y ))}, be the PID obtained after arc reversal.

Let πP
δ = minZ∈X (πZ(Z|Par(Z))) and πP ′

δ = minZ∈X (π ′
Z(Z|Par(Z))), then πP

δ = πP ′
δ .

Proposition 10 ensures that the joint possibility distribution πδ is preserved by arc reversal operation from which
u∗(δ) and u∗(δ) are also preserved. If it is necessary to remove a state variable X which has several children, it is then
possible to find a sequence of arc reversal operations.

Example 10. In our example, it is necessary to reverse the edge between F and OF since, due to the partitioning
of chance nodes, F should be eliminated before OF. πF (F ) and πOF(OF|F,BAC) are known. After application
of arc reversal, we get: π ′

OF(OF|BAC) = maxx∈F (min(πOF(OF|F = x,BAC),πF (F = x))) and π ′
F (F |OF,BAC) =

min(πOF(OF|F,BAC),πF (F )) ∗ π ′
OF(OF|BAC).

5.5. Variable elimination algorithm

Solving a PID simply consists in applying the state and decision variable elimination procedures to all variables in
the PID, following a DAG-compatible ordering and applying arc reversal operations when necessary. The proof that
the obtained strategy is optimal (according to the considered criterion) simply follows from Corollaries 1 and 2 and
Propositions 9 and 10.

Example 11. Let us consider again the omelette example with the optimistic criterion. Once variable S has been
eliminated, the state variable elimination process is repeated for variables C, O and F (following a DAG-compatible
ordering). The PID of Fig. 9 results from the elimination of S, C and O .

A priori and conditional possibilities πF (F ) and πOF(OF|BAC,F ) do not change. Utilities μ′
C(BAC), μ′

S(PIO,F )

and μ′
O(PIO,F ) are:

BAC μ′
C

(BAC)

y 4
n 5

PIO,F μ′
S
(PIO,F )

y, t 5
y,f 5
n, t 2
n,f 5

PIO,F μ′
O

(PIO,F )

y, t 5
y,f 0
n, t 3
n,f 3
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Fig. 9. PID obtained after elimination of variables S, C and O .

Fig. 10. PID after arc reversal between F and OF.

After the elimination of C and O , F has to be removed. To remove F , an arc reversal operation between F and
OF has to be applied. The PID of Fig. 10 is obtained.

The new conditional possibilities π ′
OF(OF|BAC) and π ′

F (F |OF,BAC) are:

π ′
OF(OF|BAC) y n

t 5 0
f 3 0
u 0 5

π ′
F

(F |BAC,OF) (y, t) (y, f ) (y,u) (n, t) (n,f ) (n,u)

t 5 0 5 5 5 5
f 0 5 5 5 5 3

Now, it is possible to remove node F . The PID of Fig. 11 is obtained.
The possibility table associated to this PID is π ′

OF(OF|BAC) and the utility tables are μ′
C(BAC) and μ′

F (OF,

PIO,BAC). The new utility table defined by μ′
F (OF,PIO,BAC) is:

OF,PIO,BAC μ′
F

(OF,PIO,BAC)

t, y, y 5
f,y, y 0
u,y, y 5
t, y, n 5
f,y,n 5
u,y,n 5

OF,PIO,BAC μ′
F

(OF,PIO,BAC)

t, n, y 2
f,n, y 3
u,n, y 3
t, n, n 3
f,n,n 3
u,n,n 3

Now, variable PIO (which is a decision variable) has to be eliminated.

P ′ = (
X ,D − {PIO}, (V − {V,μV ∈ ΨPIO}) ∪ {VPIO},Φ, (Ψ − ΨPIO) ∪ {ψ−PIO}).
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Fig. 11. PID obtained after elimination of variables S, C, O and F .

Fig. 12. PID obtained after elimination of variable PIO.

The PID obtained by elimination of PIO is the one of Fig. 12 since X ′ = X , D′ = D − {PIO} = {BAC} and
V ′ = V − {V,μV ∈ ΨPIO} ∪ VPIO = {VPIO,V ′

C}.
The possibility table π ′

OF(OF|BAC) and the two utility tables μ′
C(BAC) and μPIO(OF,BAC) are associated to the

resulting PID. The last one (and its related local optimal strategy) is computed and gives:

OF,BAC μPIO(OF,BAC) δ∗
PIO(OF,BAC)

t, y 5 yes
f,y 3 no
u,y 5 yes
t, n 5 yes
f,n 5 yes
u,n 5 yes

The local “optimal” strategy is then δ∗
PIO(OF = false,BAC = yes) = no and δ∗

PIO(other) = yes.
The algorithm is applied until no chance or decision node remains. Following the DAG-compatible ordering, state

variable OF is removed after PIO and decision variable BAC is removed last.
The computation of the local strategy δ∗

BAC (which is unconditional) gives δ∗
BAC = no.

The final PID is P such that X = ∅, D = ∅, V ′ = {VBAC} and μBAC = 5, where μBAC is the utility of the optimal
optimistic strategy. The corresponding optimal strategy has been computed:

• δ∗
PIO(OF = false,BAC = yes) = no and δ∗

PIO(other) = yes.
• δ∗

BAC = no.

In other words, for this particular example and for this optimisation criterion, we have computed the sequential deci-
sions δ∗

BAC = no and δ∗
PIO = yes, which agrees with the intuition since, from an optimistic point of view, the fact that

we think that the egg is fresh rather than rotten leads us to put it into the omelette without checking it.
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6. Concluding remarks and perspectives

In this article we have described Possibilistic Influence Diagrams (PID), which allow to model in a compact form
problems of sequential decision making under qualitative uncertainty in the framework of possibility theory. We have
described a decision-tree based solution method for PID and we have given computational complexity results for
several questions related to PID. Then, we have proposed variable elimination algorithms for solving PID for both
optimistic and pessimistic criteria. We have also given proofs of correctness for these algorithms.

[17] independently presented a general unified framework for representing and solving various decision prob-
lems (from weighted CSP to stochastic ID or possibilistic MDP). This framework is more general than ours but not
dedicated specifically to PID and does not include computational complexity considerations, except that their gen-
eral model, being able to model QBF problems, is trivially PSPACE-hard. However, some of the methods proposed
in [18,19] could certainly help to further improve our own variable elimination algorithms.

We now plan to study structured possibilistic Markov decision processes for which specific PID representations
should be defined, representing explicitly the time-structure of the process (in the way 2-DBN are used to model
structured MDP in [3]). This would lead to define structured versions of the possibilistic value iteration and policy
iteration algorithms proposed in [22].

Another perspective is to study the relation between PID and possibilistic propositional logic or Constrained Sat-
isfaction Problems. More precisely, PID problems can be transformed into problems of reasoning with possibilistic
logic bases (computation of a degree of consistency or implication) for which dedicated algorithms have been pro-
posed in the literature [6]. These algorithms reason from alpha-cuts and use a limited number of calls to SAT solvers
in order to solve possibilistic decision problems expressed in possibilistic logic.
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