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Abstract

An s-bundle (where s is a positive integer) is a connected graph, the vertex connec-
tivity of which is at least n− s, where n is the number of vertices in the graph. As
a relaxation of the classical clique model, the s-bundle is relevant for representing
cohesive groups with an emphasis on the connectivity of members; thus, it is of
great practical importance. In this work, we investigate the fundamental problem of
finding the maximum s-bundle from a given graph and present an effective branch-
and-bound algorithm for solving this NP-hard problem. The proposed algorithm is
distinguished owing to its new multi-branching rules, graph coloring-based bound-
ing technique, and reduction rules using structural information. The experiments
indicate that the algorithm outperforms the best-known approaches on a wide range
of well-known benchmark graphs for different s values. In particular, compared with
the popular Russian Doll Search algorithm, the proposed algorithm almost doubles
the success rate of solving large social networks in an hour when s = 5.

Keywords: Branch and bound; combinatorial optimization; graph theory; clique
relaxation; s-bundle.

1 Introduction

A clique of an undirected graph is a subset of vertices that induces a com-
plete subgraph, that is, the vertices are pairwise adjacent. Cliques are among
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the most widely used models for representing cohesive groups (also called
communities and clusters) in various applications such as wireless communi-
cation networks [7], bio-informatics networks [5], and social network analysis
[8]. However, in many other situations, the clique model becomes too restric-
tive owing to its pairwise connectivity requirement. For instance, in social
networks, members of a community are not necessarily connected pairwise.
Hence, several relaxed clique models have been introduced to formulate co-
hesive groups and communities in real networks [4,16]. In general, a relaxed
clique represents a dense graph that is close to a clique. Existing examples of
relaxed cliques include s-plex [4,28], s-defective clique [21], and quasi-clique
[15] and s-club [2,14] which are defined by relaxing the vertex degree, edge
number, edge density, and pairwise distance of vertices, respectively.

In this work, we are interested in the s-bundle, which is another relaxed clique
model that mainly concerns the connectivity of a subgraph [17]. To define the
concept of the s-bundle, we first recall the notion of a vertex cut. A vertex
cut of a connected graph G is a subset of vertices in which, upon removal of
these vertices and their incident edges from G, the remaining graph becomes
a disconnected or trivial graph (a 1-vertex graph). An s-bundle is a graph of
n vertices, in which any vertex cut of G has a size of at least n− s.

Similar to the maximum clique problem, which is to determine a largest clique
in a given graph [15,21,25,29], the maximum s-bundle problem studied in this
work is used to find a largest s-bundle of a given graph.

Notably, the maximum s-bundle problem is different from the maximum s-
block problem [17] (or maximum s-vertex connected component problem [24]),
which is to find a largest induced subgraph for which all the vertex cuts of
this subgraph are larger than s. Indeed, the maximum s-block problem can
be solved in polynomial time [24], contrary to the maximum s-bundle prob-
lem for which no polynomial algorithm exists unless P=NP [9]. Neverthe-
less, practically effective algorithms for the maximum s-bundle problem are
of great importance because the problem naturally arises in many network
applications, especially those with a particular emphasis on the connectivity
of members—for example, extracting large robustly connected subgroups from
social networks [17,22].

To the best of our knowledge, there are only two algorithms for this prob-
lem in the literature. The first approach [9] is based on the general Russian
doll search (RDS) framework [23], and it is designed to solve maximum re-
laxed clique problems that satisfy the hereditary property [17]. The other is a
flow-based integer linear program that solves the f -vertex-connectivity clique
problem [22]. Notably, both approaches are general methods since they are de-
signed to find the maximum relaxed cliques or subgraphs (maximum s-bundles
are a special case). Consequently, these methods do not explore the problem-
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specific properties related to s-bundles. This is in sharp contrasts to many
dedicated exact algorithms for several maximum relaxed clique problems, in-
cluding the maximum s-plex problem [26,4], maximum quasi-clique problem
[15], and maximum s-club problem [20,14], and the large body of solution
algorithms for the conventional maximum clique problem [25].

We conclude that the research on solving the maximum s-bundle problem is
still in its infancy, and effective algorithms to address this important problem
need to be developed. We partially fill this gap by introducing a dedicated
exact algorithm that surpasses the state-of-the-art approaches for solving the
maximum s-bundle problem. The main contributions of this work are summa-
rized as follows.

• We show several properties of the maximum s-bundle problem and propose
an effective branch-and-bound algorithm. Specifically, we introduce novel
multi-branching rules that dramatically reduce the number of branches in
the branch-and-bound search tree. We also propose upper-bounding tech-
niques using the k-color vertex partition and vertex degrees. New reduction
rules based on useful problem properties have also been devised.
• We show that when the algorithm is applied to a wide range of benchmark

instances covering random graphs, 80 hard 2nd DIMACS graphs, and 43
popular social networks, it closes a number of instances that cannot be
solved by any existing method. Moreover, a speedup of at least one order
of magnitude was observed compared to the existing algorithms.
• Our algorithm is made publicly available thus allowing researchers and prac-

titioners to solve various applications.

The remainder of this paper is organized as follows. In the next section, we
introduce useful notations and important properties of the s-bundle. In Section
3, we elaborate on our branch-and-bound algorithm, including its branching,
bounding, and reduction rules. The computational results and experimental
analyses are presented in Section 4, followed by our conclusions and future
research.

2 Notations and problem properties

2.1 Notations

Let G = (V,E) be an undirected graph with vertex set V and edge set E. For
a vertex subset S ⊆ V , G[S] denotes the graph induced by S in G.

For a vertex v ∈ V , NG(v) = {u : {u, v} ∈ E} denotes the set of neighbor
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vertices of v, and NG[v] = NG(v)∪{v} is the set of closed neighbor vertices of
v. For two vertices u and v in V , the distance between u and v in G, distG(v, u),
is the length of the shortest path between the two vertices.

A vertex cut of G = (V,E) is a set S of vertices such that G[V \ S] is discon-
nected or trivial (i.e., a 1-vertex graph). The graph connectivity of G, denoted
by κ(G), is the size of the minimum vertex cut in G. A graph G is an s-bundle
if κ(G) ≥ |V | − s, where s is a positive integer. It is easy to observe that a
1-bundle is a clique.

If G is a connected graph, the vertex connectivity of two non-adjacent vertices
u and v, denoted by κG(u, v), is the size of the minimum set S ⊂ V such that
u and v are disconnected in G[V \ S]. According to Menger’s theorem [13],
κG(u, v) is equal to the maximum number of vertex-disjoint paths connecting
u and v in a connected graph G. Therefore, a graph G = (V,E) is an s-bundle
if either |V | ≤ s or G is connected, and there are at least |V |−s vertex-disjoint
paths connecting any two non-adjacent vertices in G.

Given a graph G and a positive integer s, the maximum s-bundle problem
studied in this work is to find a largest s-bundle in G.

2.2 Important problem properties

Property 1. Given an undirected graph G = (V,E) with |V | = n vertices
and m edges, it takes O(n3m) time to decide whether G is an s-bundle [9].

Determining whether graph G is an s-bundle is an important task in our pro-
posed algorithm. Hence, we present a detailed procedure here. By definition,
if n ≤ s, G is an s-bundle. If n > s, we determine if G is connected, which
can be completed in time O(m) by breadth-first search or depth-first search.
Then, if n > s and G is not connected, G is not an s-bundle. However, if n > s
and G is connected, we must further check whether κ(G) ≥ n− s to make the
decision.

For this, we first build a directed flow graph H = (U,A), where each arc in A
is associated with a capacity.

• For each vertex u ∈ V , make two copies u′ and u′′ and create an arc (u′, u′′)
in H.
• For each edge {u, v} ∈ E, create two arcs (u′′, v′) and (v′′, u′) in H.

The capacity of every arc in H is 1. Clearly, there are 2n vertices and n+ 2m
arcs in H. An example of building a flow graph is shown in Figure 1.
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(a) A connected graph 𝐺.
(b) Directed flow graph 𝐻. The capacity of 
every arc is 1.

Fig. 1. An example of building directed flow graph

Then, the vertex connectivity of two non-adjacent vertices u and v in G,
κG(u, v), is equivalent to the maximum u′′, v′-flow in H. The graph connectiv-
ity of G is the smallest vertex connectivity of all pairs of non-adjacent vertices
in G.

As highlighted in [9], it is not necessary to compute the exact κG(u, v) for
each pair of non-adjacent vertices u and v in G. By definition, the connected
graph G is an s-bundle if and only if the vertex connectivity is not smaller
than n−s. In other words, G is an s-bundle if we can send n−s flows from u′′

to v′ in H for any two non-adjacent vertices u, v ∈ V . According to network
flow theory, one can send n − s flows from u′′ to v′ if and only if there are
n− s augmenting paths between u′′ and v′. Because an augmenting path can
be found via the breadth-first search in O(m) time and there are quadratic
pairs of non-adjacent vertices, the running time of deciding whether G is an
s-bundle is bounded by O(n3m).

Property 2. Let G = (V,E) be an s-bundle. Then, for any S ⊆ V , G[S] is
still an s-bundle [17].

In graph theory, the hereditary property [17] is a graph property; if it holds
for G, then it also holds for all the induced subgraphs of G. Hence, the above
statement indicates that the s-bundle is hereditary [27].

Property 3. Let G = (V,E) be an s-bundle. The following statements hold:

• If s = 1, then for any two vertices u and v in V , distG(u, v) = 1.
• If s ≥ 2 and |V | > s, then for any two vertices u and v in V , distG(u, v) ≤
b s−2
|V |−sc+ 2.

Proof. The first statement holds because a 1-bundle is a clique. We consider
the second statement under the condition |V | > s ≥ 2. By definition, G is
connected when G is an s-bundle and |V | > s. Let u and v be two arbitrary
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non-adjacent vertices in G. By Menger’s theorem [13] there are at least |V | −
s vertex-disjoint paths between u and v. Each path goes through at least
distG(u, v)− 1 vertices without counting u and v. We denote d = distG(u, v).
By summing the number of vertices in all paths, we obtain (|V |−s)(d−1)+2 ≤
|V |. As d is an integer, d ≤ b s−2

|V |−sc+ 2.

Property 4. Let G = (V,E) be an s-bundle. Then, for any vertex v ∈ V ,
|NG(v)| ≥ |V | − s.

Proof. Assume that G = (V,E) is an s-bundle, but there is a vertex v ∈ V
such that |NG(v)| < |V | − s. Clearly, NG(v) is a vertex cut as G[V \ NG(v)]
is a disconnected graph or a trivial graph (with only one vertex v). We arrive
at a contradiction as κ(G) ≥ |V | − s.

Note that the reverse of Property 4 does not hold. Consider a graph G =
(V,E) with V = {1, 2, 3, 4} and E = {{1, 2}, {3, 4}}. For each vertex v in G,
|NG(v)| ≥ 4−3. However, G is clearly not a 3-bundle. Indeed, if for any v ∈ V ,
|NG(v)| ≥ |V | − s, then G is called an s-plex. Property 4 generally states that
an s-bundle is an s-plex.

In the next section, we present our branch-and-bound algorithm for solving
the maximum s-bundle problem.

3 A novel branch-and-bound algorithm

3.1 General framework

The proposed algorithm for the maximum s-bundle problem is based on the
general branch-and-bound search method (see Algorithm 1). The core of the
algorithm is a recursive function named MSB-Rec. MSB-Rec accepts four ar-
guments: input graph G, input integer s, current set S, and candidate set C.
Generally, MSB-Rec(G, s, S, C) examines all the s-bundles that must include
vertices of S and probably include vertices of C and identifies the largest.

For notational brevity, we use G′ to denote G′ = G[S ∪ C]. Note that MSB-
Rec(G, s, S, C) searches only the solutions in G′. In the algorithm, we use S∗

to record the best solution, that is, the largest s-bundle yet found. Initially,
MSB-Rec(G, s, ∅, C) is called and S∗ is fixed as the empty set.

In lines 7–8, MSB-Rec checks whether G′[S] forms an s-bundle by Property 1.
The search stops if G′[S] is not an s-bundle because any further current search
with S would be fruitless (Property 2). In lines 9–10, S∗ is updated if a larger
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s-bundle is found. Lines 11–12 show the bounding phase and the remaining
lines in the box illustrate the branching and reduction phases. Indeed, MSB-
Rec is a depth-first tree search algorithm that implements three types of rules:
branching, bounding, and reduction.

Branching. Branching rules allow the systematic exploration of the search
space. From the search tree perspective, the branching rules guide the gen-
eration of sub-branches, each of which represents a part of the search space.
The branching rules must be complete, i.e., an optimal solution must be ob-
tained from at least one of the sub-branches. For example, the pseudo codes
in the box of Algorithm 1 show the implementation of the traditional binary
branching rule.

Branching Rule 1 (binary branching rule). Let u be the vertex from C of
the minimum degree in G′, i.e., u = argminv∈C |NG′(v)|. Then, two branches
are generated.

• In the first branch, u is moved from C to S.
• In the second branch, u is removed from C.

It is undisputed that this branching rule is complete. In Section 3.2, we present
the improved branching rules that globally lead to fewer branches.

Bounding and Reduction. The bounding and reduction rules aim to prune
subspaces where no optimal solution exists.

Following the bounding rules, MSB-Rec estimates the upper bound of the best-
known solution in G′[C] to determine whether the current search continues or
stops (pruning). If the upper bound of the largest s-bundles in G′[C] plus |S|
is not better than |S∗|, the search can be stopped. For example, the size of C
is a valid upper bound. In Section 3.3, we introduce two bounding techniques,
the color-bound that establishes connections between the size of s-bundles and
the graph color number, and the simpler degree-bound. This procedure further
reduces the size of the candidate set by removing vertices that cannot form
an s-bundle with the new candidate set of vertices that cannot belong to any
optimal solution. In the algorithm, the reduction procedure is only triggered
when a new candidate set must be built for the recursive call of MSB-Rec. Our
reduction rules use the different s-bundle graph properties that are presented
in Section 3.4.

Note that the reduction and bounding procedures aim to improve the perfor-
mance of the algorithm. The algorithm may still find an optimal solution if
these procedures are not applied, but probably in a prohibitively long time.
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Algorithm 1: The skeleton of the branch-and-bound algorithm with a
simple binary branching rule.

1 MSB-Skeleton(G = (V,E), s)
2 begin
3 S∗ ← ∅
4 MSB-Rec(G, s, ∅, V )

5 MSB-Rec(G, s, S, C)
6 begin

/* Let G′ = G[S ∪ C]. Check if G′[S] is an s-bundle */

7 if G′[S] is not an s-bundle then
8 return

9 if |S| ≥ |S∗| then
10 S∗ ← S

/* Upper-bounding the current search */

11 if Bound(G′[C], s) + |S| ≤ |S∗| then
12 return

/* Generate subbranches by branching rules. The codes in

the box shows the traditional binary branching rule. */

13

u← argminv∈C |NG′(v)|
MSB-Rec(G, s, S, C \ {u})
/* Reduce fruitless vertices */
C ′ ← Reduction(G, s, S ∪ {u}, C \ {u})
MSB-Rec(G, s, S ∪ {u}, C ′)

3.2 The multi-branching rules

In this section, we propose the multi-branching rules for MSB. Given the
current set S and candidate set C, we consider the branching rules when
G′[S] is an s-bundle (otherwise, the search stops). We use up to denote the
vertex of the minimum degree in G′, i.e., up = argminv∈S∪C |NG′(v)|. Indeed,
the multi-branching rules combine three individual branching rules with one
used only when the algorithm must branch. Specifically, the first branching
rule is applied when |NG′(up)| < |S∪C|−s and up ∈ S, and the second rule is
used when |NG′(up)| < |S ∪C| − s and up /∈ S, and the third rule is triggered
when |NG′(up)| ≥ |S ∪ C| − s.
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3.2.1 |NG′(up)| < |S ∪ C| − s and up ∈ S

We now deal with the case |NG′(up)| < |S∪C|−s and up ∈ S. Unlike the binary
branching rule, which only considers two possibilities according to whether a
vertex from the candidate set is in the solution, the first multi-branching rule
considers the possibilities of a subset of vertices from C, i.e., C \NG′(up), and
generates at least two new branches.

First, we show that C \NG′(up) is a non-empty set if |NG′(up)| < |S ∪ C| − s
and up ∈ S. Let no and ni denote the size of C \ NG′(up) and the size of
S\NG′ [up], respectively. Clearly, no+ni is the size of the non-neighbor vertices
of up in G′, i.e., |(S ∪ C) \ NG′ [up]|. Assuming no = |C \ NG′(up)| = 0, then
ni + 0 = |(S ∪ C) \NG′ [up]| = |S \NG′ [up]| ≥ s, i.e., |S ∩NG′(up)| < |S| − s,
which contradicts the condition that G′[S] is an s-bundle (because up in G′[S],
violates Property 4).

Then, we can formalize the first multi-branching rule.

Branching Rule 2. If |NG′(up)| < |S ∪ C| − s and up ∈ S, without loss
of generality, we assume that C \ NG′(up) is arbitrarily ordered as v1, ..., vno

(no > 0). Then, we generate t+ 1 new branches, where t = s− 1− ni.

• In the first branch, v1 is removed from C.
• For i ∈ {2, . . . , t}, in the ith branch, v1, . . . , vi−1 are moved from C to S and
vi is deleted from C.
• In the (t+1)th branch, v1, . . . , vt are moved from C to S and {vt+1, . . . , vno}

are deleted from C.

Example of Branching Rule 2. Consider the graph in Figure 2 with s = 4.
G[S] is an s-bundle. The vertex of the minimum degree in G′, up, is vertex 1.
Then S \NG′ [up] = {3} and C \NG′(up) = {5, 6, 7, 8}, i.e., ni = 1 and no = 4.
Assume that the vertices of C \ NG′(up) are ordered as 5, 6, 7, 8. Then, using
Branching Rule 2, we generate 3 new branches as t = 4− 1− 1 = 2.

(1) In the first branch, we call MSB-Rec with new current set S = {1, 2, 3, 4}
and candidate set C = {6, 7, 8, 9}.

(2) In the second branch, we call MSB-Rec with new current set S = {1, 2, 3, 4, 5}
and candidate set C = {7, 8, 9}.

(3) In the third branch, we call MSB-Rec with new current set S = {1, 2, 3, 4, 5, 6}
and candidate set C = {9}.

For illustrative purposes, we also show the partial branch-and-bound tree after
applying Branching Rule 2 in Figure. 3 and the partial search tree generated
by the binary branching rule in Figure 4. Note that in the branches represented
by grey nodes in Figure 4, G′[S] is not an s-plex (a graph where each vertex
is adjacent to all but s vertices), and thus cannot be an s-bundle. In both
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𝑆
𝐶

𝐶 ∖ 𝑁𝐺′ 𝑢𝑝

Fig. 2. An example of G′, s = 4, S and C are marked by shadow.

𝑆 = 1,2,3,4
𝐶 = {5,6,7,8,9}

𝑆 = 1,2,3,4
𝐶 = {6,7,8,9}

𝑆 = 1,2,3,4,5
𝐶 = {7,8,9}

𝑆 = 1,2,3,4,5,6
𝐶 = {9}

…… …

Fig. 3. Partial branch-and-bound tree by Branching Rule 2 (multi-branching rule)
for graph G′.

𝑆 = 1,2,3,4
𝐶 = {5,6,7,8,9}

𝑆 = 1,2,3,4
𝐶 = {6,7,8,9}

𝑆 = 1,2,3,4,5
𝐶 = {6,7,8,9}

𝑆 = 1,2,3,4,5
𝐶 = {7,8,9}

𝑆 = 1,2,3,4,5,6
𝐶 = {7,8,9}

𝑆 = 1,2,3,4,5,6
𝐶 = {8,9}

𝑆 = 1,2,3,4,5,6,7
𝐶 = {8,9}

𝑆 = 1,2,3,4,5,6
𝐶 = {9}

𝑆 = 1,2,3,4,5,6,8
𝐶 = {9}

…

…

…

Fig. 4. Partial branch-and-bound tree by Branching Rule 1 (binary branching rule)
for graph G′.

search trees, only the branches represented by the blue nodes can be further
branched. Clearly, by Branching Rule 2, fewer branches are generated.
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Completeness of Branching Rule 2.

Lemma 1. Given the current set S, the candidate set C. Let up be the vertex
of the minimum degree in G′. If |NG′(up)| < |S ∪ C| − s and up ∈ S, assume
that G′[Sopt] and S ⊆ Sopt form a maximum s-bundle of G′. Then, Sopt can
be found from one of the branches generated by Branching Rule 2.

Proof. First, as G′[Sopt] is an s-bundle and up ∈ Sopt, by Property 4, there are
at most s−1 vertices in Sopt that are not adjacent to up, excluding up itself. By
definition, there are ni vertices in S ⊆ Sopt that are not adjacent to up. Thus,
Sopt includes at most s− 1− ni vertices from C \NG′(up). Differently put, at
most t vertices of v1, ..., vno belong to Sopt. Note that t is strictly smaller than
no; otherwise, |(S ∪ C) \NG′ [up]| = ni + no ≤ ni + s− 1− ni = s− 1, which
contradicts the condition that |NG′(up)| < |S ∪ C| − s.

Let us consider Branching Rule 2 and the possibilities of the vertices v1, ..., vno .
First, assuming that v1, ..., vt ∈ Sopt and vt+1, . . . , vno /∈ Sopt, this case is
covered in the (t + 1)th branch. Second, assuming that v1 /∈ Sopt, Sopt must
be found in the first branch because only v1 is removed from the candidate
set in the first branch. Finally, suppose that v1 ∈ Sopt, let i be the first index
such that v1, ..., vi ∈ Sopt and vi+1 /∈ Sopt. Then, Sopt can be found in the
(i + 1)th branch because in this branch, v1, ..., vi are moved into the solution
set and vi+1 is removed for further consideration. In summary, Branching Rule
2 covers all the cases.

3.2.2 |NG′(up)| < |S ∪ C| − s and up /∈ S

We now present the second multi-branching rule to deal with the case where
|NG′(up)| < |S ∪ C| − s and up /∈ S.

Branching Rule 3. If |NG′(up)| < |S ∪ C| − s and up /∈ S, i.e., up ∈ C, we
generate t+ 2 branches, where t = s− 1− ni.

• First, up is moved from C to S. Then, we resort to Branching Rule 2 to
generate the first t+ 1 branches.
• In the (t+ 2)th branch, up is removed from C.

Completeness of Branching Rule 3. The completeness of this rule can be
verified as follows: Assume that Sopt is an optimal solution of G′ and S ⊆ Sopt,
it suffices to consider two different cases: up ∈ Sopt and up /∈ Sopt. If up ∈ Sopt,
then Sopt must be found in the first t+ 1 branches by Lemma 1. If up /∈ Sopt,
Sopt must be found in the (t+ 2)th branch because up has been removed from
the candidate set in this branch.
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3.2.3 |NG′(up)| ≥ |S ∪ C| − s

If |NG′(up)| ≥ |S ∪ C| − s, then G′ itself is an s-plex. In this case, the above
rules cannot be applied because C \NG′(up) may be empty. We then use the
binary branching rule.

Branching Rule 4. If |NG′(up)| ≥ |S ∪C| − s, let u be the vertex from C of
the minimum degree in G′, that is, u = argminv∈C |NG′(v)|. (Note that u may
be different from up because up ∈ S ∪ C but u ∈ C.) Then, two branches are
generated.

• In the first branch, u is moved from C to S.
• In the second branch, u is removed from C.

It is experimentally observed that if G′ is an s-plex, then G′ is an s-bundle
with high probability. Thus, in the implementation, we verify whether G′ is an
s-bundle before applying Branching Rule 4. If G′ is an s-bundle, the current
search stops when the entire G′ is a maximum s-bundle.

It is clear that for all the conditions regarding |NG′(up)| < |S ∪ C| − s or
its negation, one of the three branching rules must be used. Each of these
branching rules is complete. Hence, we can safely state that no optimal solution
is missed by the multi-branching rules.

3.3 Bounding rules

To bound the size of the maximum s-bundle in the current branch, we provide
two types of upper bounds, that is, color-bound and degree-bound. The color-
bound is defined as follows:.

Lemma 2 (Color-bound). If a graphG′[C] can be k-colored, that is, C is parti-
tioned into k independent sets (also known as color classes) P = {C1, . . . , Ck},
then

∑k
i=1 min{|Ci|, s} is the upper bound of the size of the maximum s-bundle

in G′[C].
∑k

i=1 min{|Ci|, s} is termed the color-bound of G′[C].

Proof. Suppose that G′[F ] is a maximum s-bundle in G′[C]. Let Fi = F ∩Ci.
By Property 2, G′[Fi] is still an s-bundle. Conversely, because Ci is an inde-
pendent set, the size of the maximum s-bundle in graph G′[Ci] is min{|Ci|, s}.
Hence, Fi ≤ min{|Ci|, s}. Therefore, |F | = ∑k

i=1 |Fi| ≤
∑k

i=1 min{|Ci|, s}.

The color-bound is clearly tighter than or at least equal to a trivial cardinality
bound, i.e., |C|. When s = 1, the color-bound is the same as the number of
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colors k. Thus, Lemma 2 generalizes that the chromatic number of a graph is
an upper bound of the clique size of the graph [18,25].

It is also clear that the smaller the number of colors, the tighter the final
color-bound. To trade off between the computational time and the quality of
the bound, we adopt the fast greedy coloring heuristic presented in [19]. This
heuristic, denoted by ColorBound(G′[C], s), includes the following steps:

(1) Initialize the color number k as 1.
(2) Open an empty color class Ck and build Ck iteratively. For each iteration,

find a vertex in C that is not adjacent to any vertices in Ck, then move
the vertex to Ck, and repeat the above operations until such a vertex
vanishes. In our implementation, the vertices in C are evaluated in the
lexicographic order of their labels.

(3) Remove vertices of Ck from C. If C is not empty, increase k by 1 and
return to Step 2. Otherwise,

∑k
i=1 min{|Ci|, s} is the color-bound of the

given graph G′[C].

The time complexity of ColorBound(G′[C], s) is O(|C|3). However, in prac-
tice it is fast, especially when the bit-parallel technique [19] is employed to
accelerate Step 2.

The other bound, i.e. the degree-bound, is defined as follows.

Lemma 3 (Degree-bound). Given a graph G′, let ∆G′(C) = maxu∈C |NG′(u)|
be the maximum degree of the vertex in C. Then, ∆G′(C) + s is an upper
bound of the size of the maximum s-bundle in G′, known as degree-bound.

The degree-bound is directly from Property 4, but it is formalized for the
maximum s-bundle problem for the first time.

3.4 Reduction techniques

The reduction rules aim to shrink the candidate set C and thus improve the
search efficiency and runtime of the algorithm. We show three reduction rules
based on the structural properties of s-bundles. Given the current set S, we
define its saturated subset PS = {u ∈ S : |NG′(u) ∩ S| = |S| − s}.

Reduction Rule 1. Given a vertex v ∈ C, if v satisfies any of the following
conditions, then v is not in any s-bundle that contains S.

• |NG′(v) ∩ S| < |S|+ 1− s
• PS \NG′(v) 6= ∅

13



Proof. The first statement clearly holds due to Property 4. For the second
statement, assume that u ∈ PS and u /∈ NG′(v). Then, |NG′(u)∩ (S ∪ {v})| =
|S| − s− 1, indicating that S ∪ {v} cannot by Property 4form an s-bundle in
G′.

During the search, |S∗| is a lower bound of the maximum size of s-bundles, i.e.,
the best-known solution found so far. We investigated more reduction rules
with |S∗|.

Reduction Rule 2. Given a vertex v ∈ C and a lower bound |S∗|, if |NG′(v)|+
s ≤ |S∗|, then v is not in any s-bundle that contains S and is larger than |S∗|.

Proof. |NG′(v)| + s is an upper bound of the size of a solution containing v
in G′. When we look for a solution larger than |S∗|, v can be removed if the
upper bound is smaller than or equal to |S∗|.

Reduction Rule 3. Given a vertex v ∈ C and a lower bound |S∗|, the
following reduction rules are applied:

• When s = 1, if there exists u ∈ S such that distG′(u, v) > 1, then v is not
in any s-bundle which contains S.
• When |S∗| ≥ s ≥ 2, if there exists u ∈ S such that distG′(u, v) > b s−2

|S∗|+1−sc+
2, then v is not in any s-bundle which contains S and is larger than |S∗|.

Proof. These reduction rules are direct applications of Property 3. The first
rule is straightforward. We prove the second statement by contradiction. As-
sume that v is in the maximum s-bundle G′[Sopt], S ⊆ Sopt, and |Sopt| ≥
|S∗|+1. From Property 3, we have distG′(u, v) ≤ b s−2

|Sopt|−sc+2 ≤ b s−2
|S∗|+1−sc+2,

which is a contradiction.

3.5 The entire MSB algorithm

Combining the above elements, we obtain the branch-and-bound-based MSB
algorithm shown in Algorithm 2.

The input graph G = (V,E) is represented by both its adjacent matrix and
adjacent list. We maintain vertex sets S and C in the recursive procedure using
the linear heap data structure [6]. The linear heap supportsO(1)-time insertion
and deletion, but has a space cost of Θ(|V |). In addition, we maintain two
auxiliary vectors nG′ [1, ..., |V |] and nS[1, ..., |V |] such that nG′(u) = |NG′(u)|
and nS(v) = |NG′(u) ∩ S|. The two vectors are updated when sets S and C
change.
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MSB uses the greedy heuristic, ColorBound described in Section 3.3, to com-
pute the color-bound in line 12. We adopted the implementation techniques
introduced in [19]. The degree-bound is not explicitly used in MSB because
Reduction Rule 2 ensures that the degree bound is never smaller than |S∗|.

Lines 15–37 implement the multi-branching rules. Specifically, lines 19–28 im-
plement Branching Rule 2 and are executed when |NG′(up)| < |S ∪ C| − s
and up ∈ S, lines 15–28 implement Branching Rule 3 and are executed when
|NG′(up)| < |S ∪ C| − s and up /∈ S. Note that set C \ NG′(up) is obtained
by iterating over C. Finally, lines 30–37 implement Branching Rule 4 and are
executed when |NG′(up)| ≥ |S ∪ C| − s.

The reduction procedure, Reduction, is shown in Algorithm 3. The procedure
is called at lines 24, 27 and 36 in Algorithm 2 when a new branch is generated.
In Algorithm 3, Reduction Rule 1 corresponds to lines 5 and 6, and Reduction
Rule 2 corresponds to lines 7 and 8. In the implementation, |NG′(v)∩S| is ob-
tained from nS(v), PS \NG′(v) is computed by enumerating PS, and |NG′(v)|
is obtained from nG′(v). Thus, the time complexity is O(|S||C|). To use Re-
duction Rule 3, we first run a breadth-first search starting from a randomly
selected vertex u ∈ S to compute the shortest distance from u to every vertex
in C. Then, the vertices not meeting the distance conditions in Reduction
Rule 3 are removed from C. The running time of Reduction is bounded by
O(|S||C|+ |E|).

3.6 Relations with the RDS algorithm

The RDS algorithm for the maximum s-bundle problem presented in [9] is a
leading-edge algorithm. It follows the general Russian Doll Search framework
[23] and uses a basic branch-and-bound algorithm with a binary branching
rule as its main subroutine. Given a graph of n vertices, the RDS algorithm
first sorts the vertices normally by degeneracy order. Assume that the vertices
are sorted as v1, . . . , vn, where n is the number of vertices in G. Then, the
RDS algorithm runs n rounds of the underlying branch-and-bound algorithm.
In the ith round, where i decreases from n to 1, the RDS algorithm solves the
maximum s-bundle problem in a subgraph induced by {vi+1, . . . , vn} with the
restriction that vi must be in the solution. Consequently, the best over all the n
solutions collected from the n rounds is the optimal solution. An advantage of
this framework is that the optimal values found in the (i+ 1)th,. . . ,nth rounds
can serve as a bound for the ith round. For example, in the ith branch-and-
bound search, when vj (j > i) is moved to the sets S and C ⊆ {vj+1, . . . , vn},
the solution that was previously found in the jth round provides an upper
bound.
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Algorithm 2: The entire MSB algorithm for the maximum s-bundle prob-
lem

1 MSB(G = (V,E), s)
2 begin
3 S ← {u ∈ V : NG(u) = |V | − 1}
4 S∗ ← |S|
5 MSB-REC(G, s, S, V \ S)

6 MSB-Rec(G, s, S, C)
7 begin

/* Let G′ = G[S ∪ C] */

8 if G′[S] is not an s-bundle then
9 return

10 if |S| ≥ |S∗| then
11 S∗ ← S

12 if ColorBound(G′[C], s) + |S| ≤ |S∗| then
13 return

14 up ← argminv∈S∪C |NG′(v)|
15 if |NG′(up)| < |S ∪ C| − s then
16 if up /∈ S then
17 MSB-Rec(G, s, S, C \ {up})
18 S ← S ∪ {up}, C ← C \ {up}
19 Denote ni = |S \NG′ [up]|, no = |C \NG′(up)| and t = s− 1− ni. Also,

assume C \NG′(up) = {v1, ..., vno}.
20 for i ∈ 1, ..., t + 1 do
21 if i = 1 then
22 MSB-Rec(G, s, S, C \ {v1})
23 else if 2 ≤ i ≤ t then
24 C ′ ← Reduction(G, s, S ∪ {v1, ..., vi−1}, C \ {v1, ..., vi})
25 MSB-Rec(G, s, S ∪ {v1, ..., vi−1}, C ′)
26 else
27 C ′ ← Reduction(G, s, S ∪ {v1, ..., vt}, C \ {v1, ..., vno})
28 MSB-Rec(G, s, S ∪ {v1, ..., vt}, C ′)

29 else
30 if G′ is an s-bundle then
31 if |S ∪ C| > |S∗| then
32 S∗ ← S ∪ C
33 return

34 u← argminv∈C |NG′(v)|
35 MSB-Rec(G, s, S, C \ {u})
36 C ′ ← Reduction(G, s, S ∪ {u}, C \ {u})
37 MSB-Rec(G, s, S ∪ {u}, C ′)
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Algorithm 3: The reduction procedure

1 Reduction(G = (V,E), s, S, C)
2 begin

/* Let G′ = G[S ∪ C] */

3 Extract PS from current S.
4 for v ∈ C do
5 if |NG′(v) ∩ S| < |S|+ 1− s or PS \NG′(v) 6= ∅ then
6 C ← C \ {v}
7 else if |NG′(v)|+ s ≤ |S∗| then
8 C ← C \ {v}

9 if |S∗| ≥ s ≥ 2 then
10 Randomly select a vertex u ∈ S and compute distG′(u, v) for

v ∈ C by BFS search.
11 for v ∈ C that distG′(u, v) > b s−2

|S∗|+1−sc+ 2 do

12 C ← C \ {v}

13 return C

Although both RDS and MSB rely on branch-and-bound, the branching, re-
duction, and bounding rules in the two algorithms are intrinsically different.
First, MSB uses multi-branching rules, whereas the branching rule used in
RDS is equivalent to the basic binary branching rule. Second, MSB exploits
some novel structural properties of the maximum s-bundles like the diameter
and color-bound properties, i.e., Property 3 and Lemma 2. Lastly, MSB solves
non-overlapping subproblems via branch-and-bound, while RDS solves a se-
ries of overlapped subproblems and uses the results of solved subproblems for
pruning branches.

4 Computational experiments

This section is dedicated to a computational assessment of the proposed MSB
algorithm. We show the experimental results obtained on benchmark instances
and comparisons with the best-performing exact algorithms in the literature.
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4.1 Experiments setup

The proposed MSB algorithm was programmed in C++ 1 and were compiled
by g++ with the optimization option ‘-O2’. The experiments were conducted
on a computer with an AMD Opteron 4184 processor (2.8 GHz and 8 GB
RAM) running CentOS 6.5. When we solved the DIMACS machine bench-
marking program dfmax.c 2 without compilation optimization flag, the run-
time on our machine was 0.40, 2.50, and 9.55 seconds for graphs r300.5, r400.5,
and r500.5, respectively. All experiments were carried out with four popular
benchmark sets: Erdös-Rényi random graphs, 2nd DIMACS graphs, SNAP,
and 10th DIMACS networks. These benchmark sets are commonly used for
testing clique and relaxed clique algorithms [10,12,14].

4.2 Computational results and comparisons

As our references we used the RDS algorithm of [9], the flow-based ILP model
solved by the MIP solver, CPLEX of [22], and the basic branch-and-bound
algorithm BB. Note that BB is almost the same as MSB, except for using only
the binary branching rule for branching.

For the RDS algorithm of [9], we faithfully re-implemented it and verified
that the results of our implementation generally matched those reported in
[9]. For the flow-based linear model of [22], we ran CPLEX (Version 12.71).
Whenever possible, the implementation of BB shares the same data structures
and subroutines as the MSB algorithm. To ensure a fair comparison we ran
all compared algorithms on the computer described above

4.2.1 Random graphs

For a graph G(n, p) of the Erdös-Rényi random benchmark, an edge with a
unified edge probability p ∈ [0, 1] exists between any pair of n vertices. We
investigated the performance of the aforementioned algorithms on 180 random
graphs with n = 50 (20 graphs for each p ∈ {0.1, 0.2, . . . , 0.9}). In Figure 5, we
present the comparative average time to solve the graphs of different densities
when s equals 2, . . . , 5. The horizontal axis gives the edge density of G, and
the vertical axis shows the average time in seconds.

1 The source code of our MSB algorithms and the codes of the reference al-
gorithms (see below) are publicly available at https://github.com/joey001/

max-s-bundle.git.
2 http://archive.dimacs.rutgers.edu/pub/dsj/clique/
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Fig. 5. Different edge densities against average computation times for random graphs
with 50 vertices.

However, CPLEX failed to solve any of these random graphs for any s in
{2, 3, 4, 5} within an hour. We further observe that, for our benchmark graphs
with at least 100 vertices, CPLEX failed to load the ILP model because of
memory corruption. To some extent, this situation is not surprising given that
there are O(n4) variables and constraints for a graph of n vertices following
the flow-based model in [22]. Thus, we omitted CPLEX in the comparative
study.

Regarding computation time, one notices that the average time used by MSB
was the lowest among the three compared algorithms. BB performs better
than RDS when the edge density is larger than 0.7 for all s values. Moreover,
we observe a significant gap between the two algorithms on the dense random
graphs for each s. Hence, MSB is always the best performing algorithm for
such instances.
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4.2.2 The 2nd DIMACS graphs

All 80 graphs of the 2nd DIMACS Implementation Challenge Benchmark (the
2nd DIMACS) 3 were tested. These benchmark instances include both small
graphs (up to 50 vertices and 1,000 edges) and large graphs (up to 4,000 ver-
tices and 5,000,000 edges) that encompass real-world problems (e.g., coding
theory, fault diagnosis, and the Steiner triple problem) and random graphs.
In Tables 1-4, we present the computational results of all solved graphs for
each s ∈ {2, 3, 4, 5} and omit the instances that cannot in an hour be solved
to optimality by any of the three algorithms. The first column shows the
basic information of each graph (name, number of vertices, and edges). Col-
umn |Sopt| provides the optimal value. For each algorithm, we show the time
consumption and the number of branches in the search tree. For the RDS al-
gorithm, we show the summation of the number of branches over all rounds of
branch-and-bound. If the runtime is shorter than an hour, the corresponding
algorithm obtains the an optimal solution in one hour. The last two rows in
each table show the number of solved graphs, “#SOLVED”, and the aver-
age runtime for solving these instances, “AVE-TIME”. Note that the runtime
for unsolvable benchmark instances is always 3600.01 seconds (indicated in
italic format). The minimum time consumption and the maximum number
of solved instances are highlighted in boldface. “0” indicates that the corre-
sponding instance was solved in less than 0.01 seconds. We have made the
following comments on the results:

For s = 2, RDS solved 19 instances within 3600 seconds while MSB and BB
solved 15 of these 19 instances. Although MSB solved fewer graphs than RDS,
it required less computation time than RDS for 6 instances (indicated in bold-
face). For s = 3, MSB and BB still solved fewer graphs than RDS. However,
the situation changes for s = 4 and s = 5 because MSB and BB solved 10
instances against 9 instances for RDS. Moreover, MSB consumed much less
time than RDS. MSB dominates the other algorithms, particularly on the c-fat
graphs. Finally, in Tables 3 and 4, MSB generated much fewer branches than
BB, with a reduction greater than 50%. We provide more information about
the rules’ impact on the number of branches in Section 4.3.

4.2.3 SNAP and the 10th DIMACS networks

The Stanford Large Network Dataset Collection(SNAP) provides many large-
scale social and information networks [11], including graphs retrieved from
social networks, communication networks, citation networks, etc. The 10th

DIMACS Implementation Challenge Benchmark (the 10th DIMACS) contains
artificial and real-world graphs from different applications [3]. Experiments

3 http://archive.dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique/
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Table 1
Computational results for the 2nd DIMACS graphs when s = 2.

graph
|Sopt|

RDS BB MSB

name #vtx #edge time(s) #branches time(s) #branches time(s) #branches

brock200 2.clq 200 9876 13 140.09 23204771 701.61 279680379 258 40950215

c-fat200-1.clq 200 1534 12 0 3757 0 8070 0 345

c-fat200-2.clq 200 3235 24 0 2221 0 4539 0 402

c-fat200-5.clq 200 8473 58 0.02 2565 0.02 8990 0.01 1825

c-fat500-1.clq 500 4459 14 0.07 19844 0.06 35815 0 723

c-fat500-10.clq 500 46627 126 0.3 10372 0.3 46696 0.12 7383

c-fat500-2.clq 500 9139 26 0.05 10462 0.09 33859 0.01 1023

c-fat500-5.clq 500 23191 64 0.05 6381 0.11 31151 0.03 2260

hamming6-2.clq 64 1824 32 0.03 1182 705.25 310576331 10.55 2963698

hamming6-4.clq 64 704 6 0 4569 0.04 58258 0.04 23197

hamming8-2.clq 256 31616 128 73.48 23389 3600.01 119378085 3600.01 133759989

hamming8-4.clq 256 20864 16 187.86 8101239 3600.01 753853474 3600.01 347806429

johnson8-2-4.clq 28 210 5 0 1465 0.01 11857 0 6916

johnson8-4-4.clq 70 1855 14 0.43 43441 122.54 108627984 54.3 17124673

keller4.clq 171 9435 15 3442.72 156769519 3600.01 1460375865 3600.01 367595746

MANN a9.clq 45 918 26 13.55 331829 256.99 74773734 1.01 179429

p hat300-1.clq 300 10933 10 5.51 1428704 44.85 29476779 22.79 3447325

p hat500-1.clq 500 31569 12 143.48 26425229 1785.94 541199388 750.25 54381068

p hat700-1.clq 700 60999 13 926.55 134143326 3600.01 725683758 3600.01 148853164

#SOLVED 19 15 15

AVE-TIME 2806.6 2970.2 2938.7

Table 2
Computational results for the 2nd DIMACS graphs when s = 3.

graph
|Sopt|

RDS BB MSB

name #vtx #edge time(s) #branches time(s) #branches time(s) #branches

c-fat200-1.clq 200 1534 12 0.12 90123 0.02 16283 0 841

c-fat200-2.clq 200 3235 24 0.04 17829 0.01 7845 0 490

c-fat200-5.clq 200 8473 58 0.06 6010 0.07 44287 0.02 2606

c-fat500-1.clq 500 4459 14 2.63 1003177 0.09 50296 0.01 1396

c-fat500-10.clq 500 46627 126 0.51 19549 1 249791 0.16 9578

c-fat500-2.clq 500 9139 26 0.63 192141 0.19 89770 0.02 1935

c-fat500-5.clq 500 23191 64 0.23 31711 0.29 86616 0.05 2522

hamming6-2.clq 64 1824 32 18.45 253714 3600.01 929298635 3600.01 598357118

hamming6-4.clq 64 704 8 0.11 31337 0.54 718935 0.68 319781

johnson8-2-4.clq 28 210 8 0.07 11209 0.05 47967 0.02 27630

johnson8-4-4.clq 70 1855 18 891.25 13720679 3600.01 2404085611 3600.01 762776066

MANN a9.clq 45 918 36 3.69 27632 2.22 610143 0.02 13031

p hat300-1.clq 300 10933 12 622.36 81407111 3600.01 1819070399 2654.45 291775936

#SOLVED 13 10 11

AVE-TIME 3034.2 3207.8 3205.9

were conducted on 43 representative graphs that were also used in [9]. To
deal with very large graphs, the so-called peel procedure [1] was applied to
each graph during the pre-processing step. It recursively removes vertices of
less than ω(G)− s degrees, where ω(G) is the best-known lower bound of the
clique number of G. Clearly, this procedure reduces the graph size without
removing any optimal solutions. The reduced graphs were used to test all
three compared algorithms.

For each s ∈ {2, 3, 4, 5}, we show the number of solved graphs and the average
time-consumption for solving the graphs in Table 5. For all s, the MSB and
BB solved more instances in a shorter average time. Remarkably, when s = 5,

21



Table 3
Computational results for the 2nd DIMACS graphs when s = 4.

graph
|Sopt|

RDS BB MSB

name #vtx #edge time(s) #branches time(s) #branches time(s) #branches

c-fat200-1.clq 200 1534 12 6.49 5074105 0.08 36864 0.01 3324

c-fat200-2.clq 200 3235 24 0.79 385727 0.02 24555 0 1034

c-fat200-5.clq 200 8473 58 0.54 31892 0.54 297958 0.05 4320

c-fat500-1.clq 500 4459 14 202.6 124087559 0.28 99517 0.03 5201

c-fat500-10.clq 500 46627 126 2.99 88184 5.85 1586216 0.27 11322

c-fat500-2.clq 500 9139 26 27.31 10443398 0.55 333375 0.08 5539

c-fat500-5.clq 500 23191 64 2.27 486119 1.07 435989 0.08 3755

hamming6-4.clq 64 704 10 2.29 374894 2.91 5103105 5.67 2488713

johnson8-2-4.clq 28 210 9 1.92 163360 0.63 346597 0.47 183688

MANN a9.clq 45 918 36 3600.01 2705586 1214.03 55729412 4.57 878911

#SOLVED 9 10 10

AVE-TIME 3198.0 3232.4 3222.5

Table 4
Computational results for the 2nd DIMACS graphs when s = 5.

graph
|Sopt|

RDS BB MSB

name #vtx #edge time(s) #branches time(s) #branches time(s) #branches

c-fat200-1.clq 200 1534 12 230.07 332799550 0.62 90247 0.11 20830

c-fat200-2.clq 200 3235 24 11.37 9697151 0.17 129575 0.03 3778

c-fat200-5.clq 200 8473 58 5.04 300289 3.64 2040620 0.24 9079

c-fat500-1.clq 500 4459 8 3600.01 3451363703 1.01 276611 0.44 42861

c-fat500-10.clq 500 46627 126 30.39 657809 33.41 11354380 0.99 15756

c-fat500-2.clq 500 9139 26 1201.87 604112363 3.7 1757377 0.39 29615

c-fat500-5.clq 500 23191 64 31.67 7823971 6.85 2922154 0.28 9338

hamming6-4.clq 64 704 12 48.14 3659296 20.35 22304439 36.67 13885967

johnson8-2-4.clq 28 210 12 9.06 266073 0.39 252089 0.3 154757

MANN a9.clq 45 918 45 0.79 1020 0 1 0 2

#SOLVED 9 10 10

AVE-TIME 3214.6 3184.8 3164.1

Table 5
The statistics of solving the 10th DIMACS and SNAP graphs in an hour when s =
2, 3, 4 and 5.

statistics
s = 2 s = 3

RDS BB MSB RDS BB MSB

#SOLVED 42 40 40 31 37 38

AVE-TIME 206.3 358.5 358.0 1143.6 611.6 462.1

statistics
s = 4 s = 5

RDS BB MSB RDS BB MSB

#SOLVED 26 35 37 18 32 36

AVE-TIME 1461.5 866.1 576.4 2131.5 1011.8 643.1
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Fig. 6. Number of branches (log scale) generated by MSB and three variants for
s = 2.

the MSB solved 36 graphs, which doubled the number of graphs solved by
RDS.

Overall, MSB outperforms RDS and BB when s = 4, 5, and RDS performs
better than MSB for s = 2 in terms of computational time. For cases where
RDS runs faster than MSB, such as brock200 2.clq, hamming6-2.clq, and wiki-
Vote.txt (see Appendix), RDS also produces fewer branches than MSB. As
pointed out in Section 3.6, RDS uses the results of previously solved subprob-
lems for bounding. Apparently, this bounding technique renders RDS very
efficient for pruning unnecessary branches for small s values, e.g., s = 2.

4.3 An analysis of multi-branching and color based bounding

Multi-branching rules and color-based bounding techniques are MSB’s two
main features. For a better understanding of these algorithmic components, we
present more comparisons among BB, MSB, and two new algorithmic variants:
BiBr and MuBr. BiBr and MuBr are also branch-and-bound algorithms, but
they use different combinations of branching and bounding rules.

• BiBr: A branch-and-bound variant which uses the Binary Branching rule
but ignores the color based bounding technique.
• MuBr: A branch-and-bound variant which uses the Multi-Branching rules,

but ignores the color based bounding technique.

23



0

1

2

3

4

5

6

7

8

9

10

s=3

BiBr BB MuBr MSB

Fig. 7. Number of branches (log scale) generated by MSB and three variants for
s = 3.

0

1

2

3

4

5

6

7

8

9

10

s=4

BiBr BB MuBr MSB

Fig. 8. Number of branches (log scale) generated by MSB and three variants for
s = 4.

Notably, BB uses the binary branching rule and color-based bounding, whereas
MSB uses multi-branching rules and color-based bounding. Therefore, BiBr
and MuBr are branch-and-bound algorithms that do not compute color-bound.
We ran these algorithms on the 19 graphs shown in Table 1 and 4 graphs
from the set of the SNAP and 10th DIMACS networks: cnr-2000.graph, pol-
blogs.graph, rgg n 2 17 s0.graph, and web-Google.txt. These graphs have dif-
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Fig. 9. Number of branches (log scale) generated by MSB and three variants when
s = 5.

ferent structures and the only known common feature is that they can be
solved by RDS within one hour for s = 2. We used the same experimental
protocol with a cut-off time of one hour for all four algorithms. We show
the total number of branches (on a log scale) generated by each algorithm in
Figures 6 to 9. If, per example, an algorithm cannot produce the an optimal
solution within one hour, the corresponding number of branches is omitted in
the figures.

From Figures 6 to 9, it is clear that the number of branches for MuBr and MSB
is dramatically lower than that of BiBr and BB for almost all the instances.
For example, for the c-fat family and four SNAP and 10th DIMACS, MuBr,
and MSB reduce the number of branches compared to BiBr and BB for all
s values by one order of magnitude. This indicates that the multi-branching
technique is the main driving force for reducing the size of the search tree.
For s = 3, 4, 5, the efficacy of the color-bound is not significant and for s = 2,
the algorithms with the color-bound (BB and MSB) generally showed a slight
reduction over the algorithms without this technique (BiBr and MuBr). Never-
theless, our experiments showed that the color-bound tends to be tighter than
the degree-bound when the input graph is dense and s is small. For example,
if we compare the degree-bound (column DegB), color-bound (column ColB),
and LP relaxation (column LP) before the exact search, but after applying
the peel procedure in Table 6, one observes a clear trend that the color-bound
is tighter than the degree-bound when s is smaller. As we mentioned, because
the LP formulation of [22] suffers from an excessive number of variables and
constraints we only obtained the solution of the LP relaxation for a few small
graphs. From the current results, there is no evidence that the bound via LP
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relaxation is stronger than the other two bounds. Nevertheless, it would be
interesting to develop a compact LP formulation or tighten the color-bound
with a larger s for this problem.

Table 6
A comparison among the color-bound, degree-bound and LP relaxation before the
exact search (at the root node of the search tree).

Graph
s=2 s=3 s=4 s=5

DegB ColB LP DegB ColB LP DegB ColB LP DegB ColB LP

MANN a9.clq 43 33 43.9 44 45 44.3 45 45 44.8 46 45 45

brock200 2.clq 116 72 - 117 105 - 118 136 - 119 164 -

c-fat200-1.clq 19 24 - 20 36 - 21 48 - 22 60 -

c-fat200-2.clq 36 46 - 37 68 - 38 90 - 39 112 -

c-fat200-5.clq 88 134 - 89 200 - 90 200 - 91 200 -

c-fat500-1.clq 22 28 - 23 42 - 24 56 - 25 70 -

c-fat500-10.clq 190 252 - 191 376 - 192 500 - 193 500 -

c-fat500-2.clq 40 52 - 41 78 - 42 104 - 43 130 -

c-fat500-5.clq 97 128 - 98 190 - 99 252 - 100 314 -

cnr-2000.graph 87 86 86 88 86 86 92 89 88.8 93 170 -

hamming6-2.clq 59 64 61.6 60 64 62.1 61 64 62.6 62 64 63.1

hamming6-4.clq 24 16 - 25 24 - 26 32 - 27 40 -

hamming8-2.clq 249 256 - 250 256 - 251 256 - 252 256 -

hamming8-4.clq 165 64 - 166 96 - 167 128 - 168 160 -

johnson8-2-4.clq 17 12 23.5 18 18 23.9 19 22 24.3 20 25 24.8

johnson8-4-4.clq 55 40 - 56 60 - 57 68 - 58 70 -

keller4.clq 126 74 - 127 101 - 128 124 - 129 140 -

p hat300-1.clq 134 54 - 135 79 - 136 103 - 137 125 -

p hat500-1.clq 206 80 - 207 118 - 208 156 - 209 194 -

p hat700-1.clq 288 103 - 289 153 - 290 203 - 291 251 -

polblogs.graph 218 55 - 227 79 - 241 100 - 255 119 -

rgg n 2 17 s0.graph 19 29 23.5 20 45 - 29 59 - 33 75 -

web-Google.txt 56 83 - 82 92 - 86 100 - 87 107 -

5 Conclusions and Perspectives

The concept of the s-bundle is an important member of the family of re-
laxed clique models. We presented an effective branch-and-bound algorithm
named MSB to solve the NP-hard maximum s-bundle problem. With the gen-
eral branch-and-bound method, the proposed algorithm integrates problem-
specific techniques including multi-branching rules, color-based bounding tech-
niques, and structural reduction rules.

We performed extensive experiments on various benchmark sets and compared
the performance of our algorithm with state-of-the-art methods. The compu-
tational results show the highly competitive performance of the proposed MSB
algorithm, especially for s = 4 and 5. Thus, this work enriches the toolkit for
effectively solving the maximum s-bundle problem. We also performed addi-
tional experiments to investigate the efficacy of the proposed multi-branching
and color-based bounding techniques for reducing the size of the search tree.

From an algorithmic perspective, this work invites us to investigate similar
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ideas to design effective algorithms for other relaxed clique problems. Given
that the s-bundle model can formulate several practical problems, as discussed
in the introduction, the proposed algorithm can hopefully be used to better
solve these problems, and to this, the availability of the source code of our algo-
rithm will significantly contribute. Finally, it is known that the RDS algorithm
of [9] is applicable to the maximum s-bundle problem and also the maximum
weight s-bundle problem. Similarly, the MSB algorithm is easily adapted to
the weight version of the maximum s-bundle problem by simply removing (or
changing) the color-bound and retaining the other rules unchanged.
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