
A fast heuristic algorithm for the critical node problem
Yangming Zhou
Université d’Angers
2 Boulevard Lavoisier

49045 Angers cedex 01, France
zhou.yangming@yahoo.com

Jin-Kao Hao∗
Université d’Angers
2 Boulevard Lavoisier

49045 Angers cedex 01, France
jin-kao.hao@univ-angers.fr

ABSTRACT
The critical node problem (CNP) aims to identify a subset of criti-
cal nodes in an undirected graph such that removing these critical
nodes minimizes the pairwise node connectivity over the residual
graph. CNP has various applications; however, it is computation-
ally challenging. This paper introduces FastCNP, a fast heuristic
algorithm for solving the problem. FastCNP employs an effective
two-phase node exchange strategy to locate high-quality solutions
and applies a destructive-constructive perturbation procedure to
drive the search to new regions when the search stagnates. Com-
putational results on 16 popular benchmark instances show that
FastCNP finds improved best results (new upper bounds) for 6 in-
stances, and matches the best-known results for 9 instances.

KEYWORDS
Critical node problem; heuristics; iterated local search; combinato-
rial optimization.

ACM Reference format:
Yangming Zhou and Jin-Kao Hao. 2017. A fast heuristic algorithm for the
critical node problem. In Proceedings of GECCO ’17 Companion, Berlin, Ger-
many, July 15-19, 2017, 2 pages.
DOI: http://dx.doi.org/10.1145/3067695.3075993

1 INTRODUCTION
Given an undirected graphG = (V ,E) and an integerK , the critical
node problem (CNP) is to identify and extract a subset of nodes
S ⊂ V (where |S | 6 K) from G in order to minimize the total
number of node pairs still connected in the connected components
of the residual graph G[V \ S] [3].

min f (S) =

nc∑
i=1

(
|Ci |
2

)
(1)

s.t. |S | 6 K , (2)

where nc is the number of connected components in the residual
graph, and |Ci | represents the number of nodes in the connected
component Ci . The nodes in S are called critical nodes because their
removal results in minimization of the above objective function.

∗Corresponding author, also affiliated with the Institut Universitaire de France.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s).
GECCO ’17 Companion, Berlin, Germany
© 2017 Copyright held by the owner/author(s). 978-1-4503-4939-0/17/07. . .$15.00
DOI: http://dx.doi.org/10.1145/3067695.3075993

CNP is known to be NP-hard [3] in the general case even if
there are polynomially solvable special cases [5]. The computa-
tional challenge and wide range of applications of CNP have moti-
vated a variety of solution approaches in the literature, including
both exact [3, 6] and heuristic algorithms [1–4].

In this study, we design and implement a fast heuristic algo-
rithm for CNP called FastCNP.Themain originality behind FastCNP
is its low-complexity “two-phase node exchange” operation, which
breaks the traditional high-complexity “node swap” operation into
two distinct and constrained “single nodemove” operations. Based
on the two-phase node exchange strategy, we create a fast neigh-
borhood search algorithm which is able to locate high-quality so-
lutions. In addition, we design a destructive-constructive pertur-
bation procedure which enables the search to escape from local
optima traps and visit new search regions.

To assess the performance of FastCNP, we carry out an exper-
imental study on 16 benchmark instances. Experimental results
show that, despite its simplicity, FastCNP achieves a competitive
performance compared to the state-of-the-art results. In particular,
FastCNP finds new upper bounds for 6 instances and matches the
best-known results for 9 out of the remaining 10 instances.

2 THE PROPOSED ALGORITHM
The proposed FastCNP algorithm follows the general iterated local
search scheme and consists of three key components (Algorithm 1)
- an initialization procedure, a fast neighborhood search procedure
and a destructive-constructive procedure. FastCNP starts from a
random initial solution. Then at each iteration, FastCNP first em-
ploys the fast neighborhood search procedure to attain a local op-
timal solution. Then it invokes the destructive-constructive proce-
dure which attempts to move away from the current search region
and jump to a new search region. The above steps are repeated
until a stopping condition (e.g., a time limit tmax) is met.

Algorithm 1 A fast heuristic algorithm for CNP

1: Input: graph G = (V ,E), integer K , maximum allowed time
limit tmax

2: Output: the best solution S∗ found
3: S ← initialization() //generate an initial solution
4: S∗ ← S
5: while tmax is not reached do
6: S ← fast neighborhood search(S) //local optimization
7: if f (S) < f (S∗) then
8: S∗ ← S
9: end if
10: S ← destructive-constructive(S) //perturb the solution
11: end while

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Y. Zhou and J.K. Hao

To efficiently explore the search space, the FastCNP algorithm
relies on the fast (low-complexity) two-phase node exchange strat-
egy described below. Contrary to the conventional node exchange
(or swap) which results in a neighborhood of size K (|V | − K), our
two-phase node exchange leads to a smaller neighborhood and
thusmuch fast. Specifically, the two-phase exchange strategy breaks
the exchange of a pair of nodes into two phases. Let S be the cur-
rent solution (the set of critical nodes), the “add” phase randomly
selects one large connected component, and then adds to S a ran-
dom node from the selected component regardless of its influence
on the objective function. The “removal” phase moves a node from
S to the residual graph such that this causes the minimum increase
in the objective function. Using this two-phase exchange strategy,
the effort required to examine the candidate solutions is greatly
decreased. Our neighborhood search technique shares ideas with
the neighborhood decomposition strategy used in [7].

The destructive-constructive procedure of FastCNP generates a
new starting solution for the next round of neighborhood search by
modifying slightly the input local optimal solution. Specifically, we
randomly remove pω nodes (pω is a parameter called perturbation
strength) from S and add them back to the residual graph; then we
expand S with nodes randomly taken from a large component until
the cardinality of S reaches K .

3 COMPUTATIONAL RESULTS
We assess the performance of FastCNP on the synthetic bench-
mark 1 largely tested in the literature [1, 2, 4]. FastCNP was im-
plemented in C++, and complied using GNU gcc 4.1.2 with ‘-O3’
option on a 2.5 GHz Intel E5-2670 processor with 2 GB RAM un-
der Linux. Due to the stochastic nature of FastCNP, each instance
was solved 30 times independently. For each run, we used a time
limit tmax = 3,600 seconds (this condition is comparable to the
stopping conditions used by the reference algorithms [1, 2, 4]).

To report our results, we indicate the best objective value among
the 30 results (“fbest ”), average objective value (“favд”), average
time to find the best value for the 30 trials (“tavд”) and number
of successful trials to find the best value (“#succ”) of the 30 trials.
Table 1 summarizes the computational results of FastCNP where
BKV indicates the current best-known values (upper bounds) re-
ported in the literature. In this table, the best values are highlighted
in bold and the improved best upper bounds are marked by “⋆”.

As we can see from Table 1, FastCNP obtains the best-known
objective values for all instances except for WS1000 and FF2000
(for FF2000 whose proved optimum is 4545, the result of FastCNP
is only one unit higher). In particular, FastCNP discovers 6 new
best upper bounds (marked by “⋆” in Table 1). It is interesting to
observe that the average objective values of these 6 improved re-
sults are also better than the previous best-known objective values.
The average times to find the best objective values range from 0 to
about 2,100 seconds, which are very competitive compared to the
time consumed by the reference algorithms [1, 2].

4 CONCLUSIONS
We presented a fast heuristic algorithm for the computationally
challenging critical node detection problem. The proposed FastCNP

1It is available at: http://individual.utoronto.ca/mventresca/cnd.html

Table 1: Performance of FastCNP with tmax = 3,600 seconds.

Instance K BKV fbest favд tavд #succ

BA500 50 195∗ 195 195.0 0.0 30/30
BA1000 75 558∗ 558 558.0 43.4 30/30
BA2500 100 3704∗ 3704 3713.0 308.7 15/30
BA5000 150 10196∗ 10196 10202.9 18.1 22/30
ER235 50 295∗ 295 295.0 11.6 30/30
ER466 80 1542 1524⋆ 1524.0 378.9 30/30
ER941 140 5120 5012⋆ 5014.7 1405.8 22/30
ER2344 200 997839 959500⋆ 978643.7 1796.4 1/30
FF250 50 194∗ 194 194.0 3.3 30/30
FF500 110 257∗ 257 258.4 123.3 7/30
FF1000 150 1260∗ 1260 1261.3 26.2 25/30
FF2000 200 4545∗ 4546 4557.6 1088.5 2/30
WS250 70 3240 3101⋆ 3192.5 1457.1 1/30
WS500 125 2130 2078⋆ 2085.5 1673.7 1/30
WS1000 200 113638 120411 127675.1 2051.7 1/30
WS1500 265 13662 13167⋆ 13267.7 2099.7 1/30
∗ Optimal results obtained within 5 days [1].
⋆ Improved best upper bounds.

algorithm is based on an original component-based two-phase node
exchange strategy which ensures an effective local optimization.
Compared to the conventional two-node exchange (swap) strategy,
the two-phase node exchange strategy is of much lower compu-
tational complexity, which contributes greatly to the search effi-
ciency of the neighborhood search procedure. The computational
results on 16 popular benchmark instances showed that FastCNP
is highly competitive compared with state-of-the-art results and
in particular is able to find 6 improved best solutions (new upper
bounds). Finally, given the reported results for CNP, it would be
interesting to investigate the usefulness of the component-based
two-phase node exchange strategy introduced in this work in the
context of other critical node problems.

ACKNOWLEDGMENTS
The authors would like to thank the referees for their useful com-
ments and suggestions. Support for YangmingZhou from theChina
Scholarship Council (2014-2018) is also acknowledged.

REFERENCES
[1] Roberto Aringhieri, Andrea Grosso, Pierre Hosteins, and Rosario Scatamacchia.

2016. A general evolutionary framework for different classes of Critical Node
Problems. Engineering Applications of Artificial Intelligence 55 (2016), 128–145.

[2] Roberto Aringhieri, Andrea Grosso, Pierre Hosteins, and Rosario Scatamacchia.
2016. Local search metaheuristics for the critical node problem. Networks 67, 3
(2016), 209–221.

[3] Ashwin Arulselvan, Clayton W. Commander, Lily Elefteriadou, and Panos M.
Pardalos. 2009. Detecting critical nodes in sparse graphs. Computers & Opera-
tions Research 36, 7 (2009), 2193–2200.

[4] Wayne Pullan. 2015. Heuristic identification of critical nodes in sparse real-
world graphs. Journal of Heuristics 21, 5 (2015), 577–598.

[5] Marco Di Summa, Andrea Grosso, and Marco Locatelli. 2011. Complexity of the
critical node problem over trees. Computers & Operations Research 38, 12 (2011),
1766–1774.

[6] Marco Di Summa, Andrea Grosso, and Marco Locatelli. 2012. Branch and cut
algorithms for detecting critical nodes in undirected graphs. Computational
Optimization and Applications 53, 3 (2012), 649–680.

[7] Yangming Zhou, Jin-Kao Hao, and Béatrice Duval. 2017. Opposition-based
memetic search for the maximum diversity problem. IEEE Transactions on Evo-
lutionary Computation PP, 99 (2017), 1–1.

