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Abstract

The Maximum Balanced Biclique Problem is a relevant graph model with a num-
ber of applications in diverse domains. However, the problem is NP-hard and thus
computationally challenging. In this paper, we introduce a novel metaheuristic algo-
rithm, which combines an e�ective constraint-based tabu search procedure and two
dedicated graph reduction techniques. We verify the e�ectiveness of the algorithm
on 30 classical random benchmark graphs and 25 very large real-life sparse graphs
from the popular Koblenz Network Collection (KONECT). The results show that
the algorithm improves the best-known results (new lower bounds) for 10 classical
benchmarks and obtains the optimal solutions for 14 KONECT instances.
Keywords: Heuristics; clique problems; graph reduction; tabu search; complex net-

works.

1 Introduction

Let G = (U, V,E) be a bipartite graph with disjoint vertex sets U , V and
edge set E ⊆ U × V . Informally, the Maximum Balanced Biclique Problem

(MBBP) is to �nd in G the largest complete subgraph induced by two subsets
of vertices (X, Y ) (X ⊆ U, Y ⊆ V ) of equal size (see Section 2 for the formal
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de�nition). MBBP is known to be a NP-hard problem and thus computational
challenging [10].

As a general graph model, MBBP has a number of relevant applications. For
instance, in nanoelectronic system design, MBBP can conveniently formulate
the problem of detecting n×n defect-free crossbars [2,22]. In this application,
a crossbar is composed of two sets of orthogonal nanowires and a set of pro-
grammable switches. Each switch locates at an intersection of two nanowires.
However, in the presence of defects, some nanowires or switches may be un-
usable. Thus, a key task in this application is to �nd the largest subset of
n × n defect-free nanowires of the crossbar, such that the switches between
any two orthogonal nanowires are functional. One observes that a crossbar
can be represented by a bipartite graph G = (U, V,E), where U and V corre-
spond to two sets of orthogonal nanowires, an edge {i, j} ∈ E corresponds to
a functional switch between two orthogonal nanowires i ∈ U and j ∈ V . As
a result, the problem of detecting the largest n × n defect-free subset of the
crossbar is equivalent to �nd the maximum balanced biclique from the bipar-
tite graph representing the original crossbar. An example of this application
is shown in Figure 1. Since defects usually appear rarely and randomly, bipar-
tite graphs from such an application are typically dense random graphs. Other
applications include computational biology where MBBP is used to simulta-
neously group genes and their expressions under di�erent conditions (called
biclustering) [6], and social network analysis where MBBP is a subproblem of
co-clustering [15]. Unlike nanoelectronic system design, biology and social net-
works usually correspond to sparse graphs. Generally, the clique and biclique
models are known to be useful tools for winner determination in combinato-
rial auctions [11,24], building e�cient content pipelines for consumer Internet
portal [9] and so on.

1.1 Literature review

Given the signi�cance of MBBP as a NP-hard problem and its relevance in
practice, a number of methods, including approximate, exact and heuristic
algorithms have been proposed in the literature. For example, in [8], the rela-
tions between the approximate hardness of MBBP and 3-SAT as well as the
maximum clique problem were established. In [19], a polynomial algorithm
was given to �nd a balanced biclique with size b lnn

ln (2en2/m)
c (the cardinality

of |X| or |Y |) for a graph with n vertices and m edges. In [22], a recursive
exact algorithm for searching a maximum balanced biclique with a given size
was proposed. However, the computational time of this algorithm becomes
prohibitive when the number of vertices of the graph exceeds (32, 32). Very
recently, an upper bound propagation procedure was introduced and used to
enhance a simple branch and bound (B&B) algorithm [32]. In [17], another ex-
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Fig. 1. (a) A 4 × 4 nanoelectronic crossbar with two defects. (b) A bipartite graph
representing this crossbar.

act approach for MBBP for general (non-bipartite) graphs was studied, which
follows a classical B&B algorithm for the popular maximum clique problem
[25] with additional symmetry breaking techniques.

To cope with the computational challenge of MBBP, heuristic methods con-
stitute an interesting approach. These methods aim to obtain satisfactory
solutions in an acceptable time frame without guaranteeing the optimality of
the attained solutions. The majority of existing heuristic algorithms solved
the equivalent maximum balanced independent set problem for the bipartite
complement, instead of directly seeking the maximum balanced biclique in the
given graph. For example, [22] proposed a greedy algorithm based on vertex-
deletion, which iteratively removes vertices with maximum degree from the
bipartite complement until the set of remaining vertices forms an independent
set. [2] presented an improved greedy heuristic, in which the vertex connecting
the maximum number of vertices of minimum degree is removed. [27] intro-
duced another greedy algorithm, which iteratively deletes vertices adjacent to
the maximum number of vertices in a restricted set. [28] accelerated this algo-
rithm by removing multiple vertices at each iteration. Recently, [29] proposed
a powerful (and rather complex) evolutionary algorithm combining structure
mutation and repair-assisted restart. The computational results showed that
this algorithm performed very well on random dense graphs, which represent
one type of the most challenging instances for MBBP.
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1.2 Motivations and contributions

This work is motivated by the following observations. Our literature review
shows that unlike the classical maximum clique problem and some of its vari-
ants for which numerous algorithms have been proposed [25], there are only few
solution methods available for MBBP in bipartite graphs. Moreover, graphs
from real-life applications like social networks are usually very large with mil-
lions, or even billions of vertices, rendering most existing approaches unpracti-
cal. This work aims to �ll the gap by developing improved methods for MBBP
in bipartite graphs, which should be able to handle both random dense graphs
and large real-life networks. The contributions of this work are twofold.

First, we introduce an e�ective algorithm called �tabu search with graph re-
duction for MBBP (TSGR-MBBP)", which combines an original tabu search
procedure and two dedicated graph reduction techniques. This is the �rst
study mixing local optimization and graph reduction within the iterated search
framework for MBBP. Generally, the proposed algorithm seeks maximum bal-
anced bicliques directly on the given graph. Compared to the existing ap-
proaches which search for balanced independent sets on the complement graph,
operating on the given graph requires much less memory for large sparse
graphs. Speci�cally, TSGR-MBBP employs two bound-based reduction tech-
niques to shrink progressively the given graph (Sections 3.5 and 3.6) and uses
the dedicated tabu search procedure to e�ectively explore the search space of
the reduced graph (Section 3.4).

Second, we carry out experiments on both random and real-life instances to
demonstrate the e�ectiveness of the proposed algorithm. For the set of 30
random instances used in the literature, the algorithm dominates state-of-the-
art algorithms including the best-performing heuristic of [29] and the powerful
integer programming solver CPLEX. The algorithm attains 10 improved best
solutions (i.e., new lower bounds) and matches the best-known results for
the remaining 20 cases. For the 25 very large real-life instances from the well-
known Koblenz Network Collection, the algorithm proves the optimal solutions
for 14 instances (by obtaining equal upper and lower bounds) and reports tight
lower bounds (better than those of CPLEX) for the remaining instances. We
also analyze the impact of key algorithmic components to better understand
the proposed algorithm (Section 5).
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Fig. 2. X = {1, 2, 3}, Y = {5, 6}, N (X ∪ Y ) = {4, 7, 8}, (X,Y ) is a biclique of
balanced size of 2 with a balance deviation of 1, while ({1, 2}, {5, 6}) is the maximum
balanced biclique.

2 Preliminary

2.1 De�nitions and notations

We �rst introduce the following de�nitions, supposing that G = (U, V,E) is a
bipartite graph, X is a subset of U (X ⊆ U), Y is a subset of V (Y ⊆ V ) and
G[X ∪ Y ] = (X, Y,E(X ∪ Y )) is the subgraph induced by X ∪ Y .

De�nition 1 : If G[X∪Y ] is a complete bipartite graph, i.e., E(X∪Y ) = X×Y ,
then G[X∪Y ] is a biclique of G, which is also denoted by (X, Y ). The biclique
is balanced if |X| = |Y |.

De�nition 2 : Given a biclique (X, Y ), its balanced size is min(|X|, |Y |), and
its balance deviation is ||X| − |Y ||. If the balance deviation is 0, (X, Y ) is a
balanced biclique of size |X| (= |Y |).

De�nition 3 [10]: The Maximum Balanced Biclique Problem (MBBP) is to
�nd a balanced biclique (X∗, Y ∗) of maximum cardinality in G.

Let Ω(G) denote the search space composed of all balanced bicliques in G,
we use Ωk to represent the relaxed search space including all bicliques with a
balance deviation no more than k (k ≥ 0), i.e., Ωk = {(X, Y ) : X ⊆ U, Y ⊆
V,E(X, Y ) = X × Y, ||X| − |Y || ≤ k}.

Given a biclique (X, Y ) in Ωk, its quality is measured by its balanced size
min(|X|, |Y |). For two bicliques (X1, Y1) and (X2, Y2), (X1, Y1) is better than
(X2, Y2) if min(|X1|, |Y1|) > min(|X2|, |Y2|).

Finally, we introduce the following notations, which are needed for the de-
scription of the proposed approach of Section 3.

- Given a vertex i ∈ U ∪ V , N(i) denotes the set of vertices adjacent to i,
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i.e., N(i) = {j : {i, j} ∈ E}. Clearly, if i ∈ U , then N(i) ⊆ V , otherwise,
N(i) ⊆ U .

- Given S ⊆ U ∪ V , N (S) denotes the subset of vertices from (U ∪ V ) \ S
that are adjacent to at least one vertex in S, i.e., N (S) = (

⋃
i∈S

N(i)) \ S.

Figure 2 illustrates the above notations and de�nitions with a bipartite graph
composed of 8 vertices and 13 edges.

2.2 Linear programming formulations

In terms of computational complexity, the decision version of MBBP is NP-
complete in the general case [3,10], even though the maximum biclique prob-
lem without the balance constraint is polynomially solvable by the maximum
matching algorithm [6].

A simple Integer Linear Programming (ILP) model for MBBP can be found
in [7]. Given G = (U, V,E), the ILP model is presented as follows.

max ω(G) =
∑
i∈U

xi (1)

subject to:
xi + xj ≤ 1,∀{i, j} ∈ Ē (2)∑

i∈U
xi −

∑
j∈V

xj = 0 (3)

xi, xj ∈ {0, 1},∀i ∈ U, j ∈ V (4)

where each vertex of U (V ) is associated to a binary variable xi (xj) indicating
whether the corresponding vertex is part of the biclique, Ē is the set of edges
in the bipartite complement of G. Objective (1) maximizes the size of the
biclique. Constraint (2) ensures that each pair of non-adjacent vertices cannot
be selected at the same time (i.e., the solution must be a clique). Equation
(3) enforces that the returned biclique is balanced.

3 Tabu search with graph reduction

The proposed TSGR-MBBP algorithm is based on the popular and general
tabu search method [13], which has been used to solve other clique problems
[24,25,31]. Like any general method, it is critical to suitably adapt the method
to the considered problem. For our MBBP problem, we propose the constraint-
based tabu search (Section 3.4), which explores the search space of slightly
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unbalanced bicliques. In order to help tabu search to avoid non-promising
search regions, we introduce two bound-based graph reduction techniques to
shrink progressively the given graph (Sections 3.5 and 3.6).

3.1 Rationale of the proposed approach

Many real-life networks have a large number of vertices but with very low edge
density. Existing approaches for solving MBBP rely heavily on the complement
graph and the adjacent matrix representation. Unfortunately, the complement
of a massive graph usually results in very high memory consumption, making
most of existing MBBP approaches unpractical. To avoid this di�culty, the
proposed algorithm operates directly on the input graph, which is a memory-
e�cient way for processing very large sparse networks. From an algorithmic
perspective, our algorithm iteratively seeks improved solutions by local search
combined with graph reduction strategies. Speci�cally, the algorithm starts
from an initial solution (a slightly relaxed balanced biclique) and uses move
operators to improve the solution iteratively. However, we still need to answer
a crucial question: how to improve the solution e�ectively while maintaining
the two main constraints of a solution (balanced and biclique)?

Intuitively, local search operators that are successful for the maximum clique
problem [25] can be applied to MBBP, such as �add" (adding a vertex to the
solution), �swap" (exchanging a vertex in the solution with another vertex
out of the solution), or even �drop" (dropping a vertex from the solution).
However, given a balanced biclique, an application of any of these operators
results in an unbalanced biclique. To cope with this di�culty, we propose to
(slightly) relax the balance requirement and allow the algorithm to explore
both balanced and slightly unbalanced bicliques. For this purpose, we adopt
the general �push" operator initially designed for the maximum vertex weight
clique problem [31] to explore solutions within the relaxed search space Ω2

rather than Ω0 (see Section 2.1).

Another key idea we used is graph reduction. Given a bipartite graph G and a
known best balanced size ω (a lower bound), it is clear that to further improve
ω, it is useless to consider any vertex of the graph whose degree is smaller than
or equal to ω since such a vertex can in no way extend the best solution found
so far. Consequently, the vertices with a degree smaller than or equal to ω along
with the incident edges can be safely removed from the graph. Our algorithm
integrates this idea to dynamically prune the graph under consideration, which
proves to be highly e�ective on massive sparse graphs.

Finally, applying the graph pruning techniques can disconnect the original
graph into several connected subgraphs. This observation can be explored
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advantageously to further reduce the graph in combination with an exact
algorithm. Indeed, if a subgraph is small enough such that an exact algorithm
can identify the maximum balanced biclique quickly, then the subgraph can
be de�nitively removed since the subproblem (associated to the subgraph) is
optimally solved. Moreover, the optimal solution of this subgraph can be used
to update the current best balanced biclique (and the lower bound bound),
which can lead to additional reduction of the graph.

3.2 General procedure of TSGR-MBBP

Algorithm 1: Main framework of TSGR-MBBP

Input: Graph instance G = (U, V,E), tabu search depth L, cardinality threshold
K for graph reduction with exact algorithm, tabu tenure parameter α

Output: The maximum balanced biclique.
1 begin

2 (Xb, Y b)← (∅, ∅); /* The largest balanced biclique found so far */

3 ω = 0 ; /* The largest balanced size found so far */

4 while stopping condition is not met do

// Find an improved biclique from a new initial biclique

5 (X,Y )← Init_Solution(G) ; /* Section 3.3 */

6 (X,Y )← Constraint_Tabu_Search(G, (X,Y ), L, α) ; /* Section 3.4

*/

7 if min(|X|, |Y |) > ω then

8 (Xb, Y b)← (X,Y );
9 ω ← min(|X|, |Y |)

// Graph reduction procedure using improved balanced size ω
10 while ω ≥ minv∈U∪V {|N(v)|} do

// First graph reduction

11 G← Peel(G,ω) ; /* Section 3.5 */

// Second graph reduction

12 for each connected subgraph Gi[Ui ∪ Vi] in G do

13 if |Ui|+ |Vi| ≤ K then

14 (X,Y )← Exact_Search(Gi, ω) ; /* Section 3.6 */

15 if min(|X|, |Y |) > ω then

16 (Xb, Y b)← (X,Y );
17 ω ← min(|X|, |Y |)
18 G← G[(U \ Ui) ∪ (V \ Vi)]

19 if |U | ≤ ω ∨ |V | ≤ ω then

20 return Make_Balance(Xb, Y b) ; /* (Xb, Y b) is an optimum

solution */

21 return Make_Balance(Xb, Y b)
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Our tabu search with graph reduction for MBBP (TSGR-MBBP) (Algorithm
1) explores the above ideas. TSGR-MBBP includes two main components:
the Constraint-Based Tabu Search (CBTS) procedure and the graph reducing
procedure. The CBTS procedure is used to �nd high quality bicliques in the
relaxed search space Ω2, while the graph reducing procedure aims to shrink
progressively the current graph without losing optimal solutions.

After setting the best biclique (Xb, Y b) to (∅, ∅) and the best balanced size ω
to 0 (lines 2 and 3), the algorithm repeats the main `while' loop (lines 4-20)
until a stopping condition is met. For each `while' loop, an initial biclique,
which is not necessarily balanced, is �rst generated by Init_Solution() (line
5, see Section 3.3), and then further improved by the CBTS procedure (Con-
straint_Tabu_Search(), line 6, see Section 3.4). If the resulting biclique has
a balanced size larger than the current best balanced size ω, the best biclique
(Xb, Y b) and the best balanced size are updated (lines 7-9).

Now, if the current best balanced size is greater than or equal to the degree
of any vertex in the current graph, the graph reduction procedure is activated
(lines 10-18). This procedure includes two phases: �rst, reducing the current
graph by the Peel procedure (line 11, see Section 3.5); second, determining
the optimal balanced size of each connected subgraph with up to K (a pre-
de�ned parameter) vertices by a branch-and-bound (B&B) exact algorithm
(Exact_Search(), line 14, see Section 3.6) and then deleting these subgraphs
from the current graph (line 18). The optimal biclique of each subgraph is pos-
sibly used to update the recorded best biclique (lines 15-17). Finally, thanks
to graph reduction, ω is proven to be the optimal balanced size if ω (which
is a lower bound of the maximum biclique) is no less than the cardinality of
any partition (|U | or |V |, which is an upper bound) in the current graph (lines
19-20). In this case, the algorithm terminates immediately.

As explained in Section 2, the proposed algorithm operates on the relaxed bi-
clique space Ω2. As a result, the current solution (X, Y ) and the best biclique
found so far (Xb, Y b) are not necessarily balanced with nevertheless a bal-
ance deviation of at most 2. Actually, the three procedures: Init_Solution(),
Constraint_Tabu_Search() and Exact_Search() generate or return a biclique
with a balance deviation that does not exceed 2. The procedure of retrieving a
strict balanced biclique of size ω from an unbalanced biclique is accomplished
by Make_Balance(). This procedure simply removes vertices from the larger
set Xb or Y b until a balanced biclique of size ω is obtained. Obviously, no
more than 2 vertices will be removed by Make_Balance().

Finally, the whole algorithm terminates when a stopping condition is met. For
the experiments reported in this paper (Sections 4 and 5), we use a cuto� time
limit as our stopping condition.
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3.3 Initial solutions

The Init_Solution() procedure is invoked to initialize each restart of TSGR-
MBBP with a new biclique. This procedure starts from a trivial solution
formed by a random vertex from U ∪V , say (X, Y ) = ({1}, ∅) (without loss of
generality). Then, it iteratively expands the solution by alternatively adding
one vertex v to the set X or Y , v being necessarily connected to all vertices
of the other set. In the �rst iteration, a vertex is selected randomly from the
set ∩i∈XN(i) \ Y . In the next iteration, we switch to the set ∩i∈YN(i) \ X.
The procedure continues until the current considered set becomes empty. The
time complexity of this procedure is bounded by O(|U ∪ V | × |E|).

Consider Figure 2 as an example and suppose that we start from solution
(X, Y ) = ({1}, ∅), the procedure expands (X, Y ) by adding to Y an arbi-
trary vertex from N(1) \ ∅ = {5, 6, 8} (say 5). Next iteration adds to X
a random vertex from N(5) \ {1} = {2, 3, 4}. Suppose that the solution
(X, Y ) = ({1, 2, 3}, {5, 6}) is achieved after four iterations. Then the �fth it-
eration tries to expand Y with a vertex from N (X)\Y . This set being empty,
the procedure stops and returns (X, Y ) = ({1, 2, 3}, {5, 6}) as its output.

The biclique (X, Y ) returned by this procedure may not be strictly balanced,
but the balance deviation can never exceed 1. This biclique is served as the
starting solution for the tabu search procedure which is explained below.

3.4 Constraint-Based Tabu Search

The Constraint-Based Tabu Search (CBTS) is the local optimization compo-
nent of TSGR-MBBP, which explores bicliques in the relaxed space Ω2.

3.4.1 General procedure of CBTS

Following the general principles of tabu search [13], CBTS (Algorithm 2) starts
with an initial solution (X, Y ) (provided by the procedure of Section 3.3) and
then iteratively improves the incumbent solution. After initiating the iteration
counter I, the best biclique found so far (X∗, Y ∗) and the tabu list T (lines
2-3), CBTS enters the main `while' loop (lines 4-26) to perform a number of
iterations to improve the solution. At each iteration, the algorithm �rst builds
a vertex set C ⊆ N (X ∪ Y ) that contains vertices of interest for solution
transformation (line 5). Then it considers to expand the solution with a vertex
from a candidate set Cexpand ⊆ C (lines 6-8). If no vertex can be used to expand
the solution (i.e., Cexpand = ∅), CBTS considers to swap a vertex of the solution
with a vertex taken from another candidate set Cplateau ⊆ C (lines 10-14).
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Both the expanding and swapping operations are performed with the help of
the �push" operator introduced in [31] and followed by a possible repairing
operation if the allowable balance deviation is violated (lines 17-23). The best
solution is updated at the end of the iteration if an improved solution is found
(lines 24-25). During the search, a tabu list is used to record the vertices that
leave the solution to prevent the search process from revisiting previously
examined solutions (lines 3,14,20,23).
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Algorithm 2: Constraint-Based Tabu Search

Input: Graph instance G = (U, V,E) with n = |U |+ |V |, starting solution (X,Y ),
tabu search depth L, tabu tenure parameter α.

Output: The best biclique (X∗, Y ∗) found.
1 begin

2 I ← 0, (X∗, Y ∗)← (X,Y ); /* I is the iteration counter, (X,Y ) is the

current solution, (X∗, Y ∗) keeps the best biclique found so far */

3 T [1...n]← [0...0]n ; /* Initiate tabu list T */

4 while I ≤ L do

// Improve the current solution

5 Set C = {i ∈ N(X), Y \N(i) ≤ 1 ∨ i ∈ N(Y ), X \N(i) ≤ 1} ; /* When

introducing any vertex of C into (X,Y ), at most one vertex

from the solution needs to be expelled */

6 Set Cexpand = {i ∈ C : δi > 1,min(|X|, |Y |) + 1 > min(|X∗|, |Y ∗|)} ;
/* Any vertex of Cexpand can be added to expand the solution

without needing to expel any vertex from the solution */

7 if Cexpand 6= ∅ then
8 Pick randomly an eligible vertex i ∈ Cexpand; (X,Y )← (X,Y )⊕push(i)

9 else

10 Set Cplateau = {i ∈ C : δi = 0} ; /* Any vertex of Cplateau can be

swapped into (X,Y ) against a vertex of X or Y */

11 if Cplateau 6= ∅ then
12 Pick randomly an eligible i ∈ Cplateau ; (X,Y )← (X,Y )⊕ push(i) ;
13 Let j be the swapped out vertex;
14 T [j]← I + tt(α, |A|) ; /* A = X if j ∈ X, A = Y if j ∈ Y */

15 else

16 return (X∗, Y ∗) ; /* CBTS terminates if both Cplateau and

Cplateau become empty */

// Recover balance when the balance deviation exceeds 2

17 if ||X| − |Y || > 2 then

18 while |X| > |Y | do
19 Pick a random vertex j ∈ X ; X ← X \ {j} ;
20 T [j]← I + tt(α, |X|) ; /* Update tabu tenure of the dropped

vertex */

21 while |X| < |Y | do
22 Pick a random vertex j ∈ Y ; Y ← Y \ {j} ;
23 T [j]← I + tt(α, |Y |) ;

// Update the best solution

24 if min(|X|, |Y |) > min(|X∗|, |Y ∗|) then
25 (X∗, Y ∗)← (X,Y )

26 I ← I + 1

27 return (X∗, Y ∗)

12



During the iteration, if both Cexpand and Cplateau are found to be empty, CBTS
terminates and returns the best solution recorded in (X∗, Y ∗) (line 16). An-
other (normal) stopping condition for CBTS is when the number of iterations
I reaches the pre�xed value L (called tabu search depth) (line 4).

Finally, note that during each iteration, the vertex selected from Cexpand or
Cplateau must be an eligible vertex. A vertex is eligible if 1) it is not forbidden by
the tabu list, or 2) pushing this vertex into the solution leads to a new biclique
whose size is larger than the recorded best biclique found so far (X∗, Y ∗).
Condition 2 is the so-called aspiration criterion that revokes the forbidden
status of a vertex.

3.4.2 Exploration of search space Ω2 by solution transformation

To explore the search space Ω2 and visit di�erent bicliques, CBTS relies on the
�push" operator that was initially proposed for the maximum weight clique
problem in [31]. Generally, �push" operates with a candidate set composed of
speci�c vertices that do not belong to the incumbent solution. To generate a
new clique from the incumbent solution, the operator picks a vertex from the
candidate set, pushes the vertex to the solution and then expels p ≥ 0 vertices
from the solution to maintain the feasibility of the new solution.

In the context of MBBP, given a biclique (X, Y ) with X ⊆ U and Y ⊆ V ,
let (X ′, Y ′) denote the new biclique obtained by pushing a selected vertex i ∈
N (X ∪ Y ) into the solution. We represent this transformation by (X ′, Y ′)←
(X, Y ) ⊕ push(i) and use δi = min(|X ′|, |Y ′|) −min(|X|, |Y |) to denote the
change of the balanced sizes between (X ′, Y ′) and (X, Y ). Note that δi can be
zero, negative and positive, respectively indicating that (X ′, Y ′) is of equal,
worse, and better quality compared to (X, Y ).

To identify an appropriate candidate set used by �push" for solution transfor-
mations, we build, with reference to the current solution (X, Y ), a constrained
set C from the vertices of N (X ∪ Y ) satisfying the following property: each
vertex in C is adjacent to all the vertices of X (or Y ), or all but one vertex of
X (or Y ). Formally, we specify the set C as follows.

C = {i ∈ N (X∪Y ) : i ∈ U∧|N(i)∩Y | ≥ |Y |−1, i ∈ V ∧|N(i)∩X| ≥ |X|−1}
(5)

To make the search more focused, we further identify, among the vertices of C,
speci�c vertices satisfying additional properties to form two restricted candi-

date sets Cexpand and Cplateau that are used by the �push" operator. Speci�cally,
Cexpand is a subset of C such that pushing any vertex of this subset into the
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current solution leads always to a larger (better) biclique, while any vertex of
Cplateau ⊆ C can be exchanged with a vertex of the current solution without
changing the biclique size. Formally, we specify the two restricted candidate
sets Cexpand and Cplateau as follows.

Cexpand = {i ∈ C : δi > 0,min(|X|, |Y |) + 1 > min(|X∗|, |Y ∗|)}
Cplateau = {i ∈ C : δi = 0} (6)

where δi is calculated by the following rule (supposing i ∈ N (X) \ Y without
loss of generality).

δi ←

 |Y ∩N(i)| − |Y | , if |X| ≥ |Y |

min(|X|+ 1, |Y ∩N(i)|)− |X| , otherwise
(7)

The correctness of Equation (7) can be checked simply. If |X| ≥ |Y |, the
balanced size of (X, Y ) decrases from |Y | to |Y ∩N(i)|; otherwise, the balanced
size changes from |X| to min(|X|+ 1, |Y ∩N(v)|). For vertex i ∈ N (Y ) \X,
the above equation holds when the roles of X and Y are exchanged. In our
implementation, we maintain the values |N(i) ∩ Y | and |N(i) ∩ X| for all
vertices, thus δi can be computed in constant time.

Given these restricted candidate sets Cexpand and Cplateau, CBTS naturally
explores with priority Cexpand since pushing vertices of this set always improves
the solution. Only when Cexpand is empty, Cplateau is used to explore bicliques
of equal size. After pushing a vertex of Cplateau into the solution, the expelled
vertex j is marked tabu for the following tt(α, |A|) (A = X if u ∈ X, otherwise
A = Y ) iterations. According to [31], the tabu tenure tt(α, l) is de�ned by
the function: tt(α, l) = max(7, α ∗ random(l)) where α (a non-negative real
number) is a prede�ned parameter and random(l) returns a random integer
in [0, l]. Note that vertices dropped from the solution during balance repairing
(lines 17-23) are also classi�ed tabu, thus preventing these vertices from joining
again the solution during the period �xed by the tabu tenure.

Finally, to implement the tabu list e�ectively, we employ an integer vector T
of length n (n = |U ∪ V |), whose elements are initially set to zero. During
the search, each time a vertex j is expelled from the solution by �push", T [j]
is set to the current iteration number I plus the tabu tenure tt (lines 14,20,
23 Algorithm 2). As such, the tabu status of a vertex v can be easily checked
as follows. If I < T [v], v is still forbidden by the tabu list. Otherwise (i.e.,
I ≥ T [v]), vertex v is not forbidden by the tabu list.
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3.4.3 The time complexity of CBTS

CBTS operates directly on the input graph and uses the adjacent list represen-
tation to store the graph. Given a solution (X, Y ), by our implementation, the
time complexity of constructing Cexpand and Cplateau is bounded by O(|U ∪V |)
since we need to calculate δi for each vertex i ∈ C while |C| is bounded by
|U ∪ V |. We also need to update |N(i) ∩X| and |N(i) ∩ Y | when one vertex
is moved (outside the solution or into the solution). The time complexity of
these updates is bounded by O(∆) (∆ = maxi∈U∪V (|N(i)|)). Hence, the time
complexity of one iteration in CBTS is bounded by O(|U ∪ V |+ ∆).

3.5 Reduction by the Peel procedure

Our TSGR-MBBP algorithm employs the Peel(G,ω) procedure (Algorithm
1, line 11) to recursively delete all vertices whose degrees are smaller than or
equal to ω until no such vertex exists. Obviously, if the cardinality of one vertex
set of the reduced bipartite graph (which is a upper bound of the maximum
biclique) is less than or equal to ω (which is a lower bound), then ω must be the
optimal objective value because no better solution can exist in the reduced
graph (Algorithm 1, lines 19-20). Given G = (U, V,E), Peel(G,ω) can be
implemented by a standard breadth-�rst search, thus in time O((|U∪V |+|E|).

The peeling procedure is triggered each time the balanced size of the largest
biclique discovered so far (lower bound) is larger than or equal to the minimum
degree of the current graph. This procedure is e�ective on large sparse graphs
but may not reduce a dense graph much. The experiments reported in Section
4 con�rm that, with a high quality lower bound, large real-life bipartite graphs
can be signi�cantly reduced.

We note that the idea of Peel was previously used in a GRASP heuristic for
detecting dense subgraphs (quasi-cliques) in massive sparse graphs [1]. We
adapted this technique for solving MBBP for the �rst time.

3.6 Reduction by exact search

As discussed in Section 3.1, even if exact algorithms are unpractical for solving
large instances, they can be used to �nd the optimal solution of a subgraph
of reasonable size and thus reduce the graph. Moreover, since the optimal
value of the subgraph is a lower bound of the initial graph, it can be used to
update the current best balanced biclique, which in turn can further reduce
the current graph. The exact algorithm used by TSGR-MBBP was adapted
from a well-known B&B algorithm for the maximum clique problem [5] and
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described in Appendix A. This is an enumeration algorithm with a worst time
complexity O(2|U∪V |) for a bipartite graph G = (U, V,E). In practice, this
exact algorithm is only applied to solve a subgraph with K vertices at most
(K being the largest subgraph that is estimated to be solved in reasonable
time by the algorithm). It is clear that the best K depends on the adopted
exact algorithm and target subgraph. According to our experiments, we set K
to 100 for random dense graphs and 500 for sparse real-life networks.

4 Computational assessment

To comprehensively evaluate the proposed TSGR-MBBP algorithm as well as
its components, we tested our algorithm on two sets of benchmark instances
including both (dense) random graphs and massive real-life networks.

4.1 Benchmark

• Random Graphs: This set of benchmark instances includes 30 randomly
generated dense graphs. In each graph, the two vertex sets U and V have
an equal cardinality (i.e., |U | = |V |) and an edge between a pair of vertices
(u, v) ∈ U × V exists with uniform probability p (0 < p < 1) which de�nes
the edge density of the graph. For our study, we used the same random
graphs tested in [29] so that the performances of di�erent algorithms can be
compared. For each combination of n ∈ {250, 500} and p ∈ {0.85, 0.90, 0.95}
(n = |U | = |V |), 5 instances were generated (30 in total). These in-
stances are thus very dense and named as �G_<n>_<p>_<id>" where
id ∈ {1, 2, 3, 4, 5}. A theoretical analysis in [7] showed that the maximum
balanced size ω in random graphs locates in range [ lnn

ln(1/p)
, 2∗lnn

ln(1/p)
] with high

probability (when n is su�ciently large).
• The Koblenz Network Collection (KONECT) [14]: The entire collection
contains hundreds of networks derived from real-life applications. Though
KONECT dataset was originally designed for network analysis such as in
[18,26], these large bipartite networks are also suitable for testing TSGR-
MBBP. We selected 25 bipartite graphs from di�erent categories including
a�liation networks, feature networks, rating networks, folksonomies, inter-
action networks etc. The scales of selected graphs vary from 829 + 551
vertices and 1476 edges to 1,425,813 + 4,000,150 vertices and 8,649,016
edges. These graphs are sparse in general (normally with an edge density
less than 1%) and have quite di�erent features in terms of vertex number at
each side, max degree, edge distribution entropy, diameters 1 . Since these

1 Details of these graphs are given at http://konect.uni-koblenz.de/networks/
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graphs originate from di�erent sources and own diverse features, they form
a representative sample of real networks for our experimental studies. Note
that irrelevant graph information for MBBP like multiple edges, vertex or
edge weight in some graphs is ignored.

4.2 Parameter tuning and experimental protocol

The TSGR-MBBP algorithm has three parameters: L - the tabu search depth;
α - the coe�cient for tabu tenure required by the Constraint_Tabu_Improve()
procedure (Section 3.4); K - the threshold on the number of vertices of the
subgraph for graph reduction with the exact algorithm (Section 3.6).

Since the parameters L and α are independent from the reduction procedure,
we tuned them on a simpli�ed version of TSGR-MBBP without the graph
reduction procedure (i.e., by disabling lines 10-20 in Algorithm 1). We used
the automatic parameter con�guration package iRace [16], which implements
the Iterated F-Race (IFR) method. Given L ∈ {10, 100, 1000, 5000, 10000},
and α ∈ [0, 2], for each parameter con�guration, we used a tuning budget
of 500 hook-runs, each of which representing 10 independent calls of TSGR-
MBBP. To avoid over-�tting, we used 6 (out of 30) challenging random graphs
covering three densities (G_500_XXX_1 and G_500_XXX_2 where XXX
corresponds to 0.95, 0.90, or 0.85) as training instances. The experiments
suggested that the combination (L = 1000, α = 0.30) was a suitable con�gu-
ration for random graphs. As for KONECT graphs, the training set included
�actor-movie", �bookcrossing_full-rating", �dbpedia-genre", �dbpedia-team",
�github", �stackexchange-stackover�ow". The �nal choice of parameters was
L = 100 and α = 1.74.

The use of two di�erent settings for (L, α) is mainly due to the graph structures
which vary much. According to our observations, for random dense graphs, a
more intensi�ed search is needed to �nd quality solutions. This is achieved with
a large tabu search depth (L = 1000) and a short tabu tenure (with α = 0.30).
On the contrary, for large real-life sparse instances, the tabu search component
is able to reach local optima very quickly. As a result, it is preferable to restart
more frequently the tabu search component (with L = 100) and diversify more
strongly the search process (using a larger tabu tenure with α = 1.74).

The third parameter K indicates the largest subgraph that can be solved
in reasonable time by the exact algorithm described in Section 3.6. We set
K = 100 for random graphs and 500 for KONECT graphs. In e�ect, since
the random graphs we tested are very dense, they cannot be reduced by the
reduction procedure, implying that no connected subgraph with less than 100
vertices exists in this set of benchmarks. A very large K is not acceptable, oth-
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erwise the computing time for exact search becomes prohibitive according to
our observations for random graphs. Preliminary experiments also con�rmed
that the time consumption was normally insigni�cant (less than 2 seconds) for
connected subgraphs with less than 500 vertices for sparse KONECT graphs.
As the vertex number is just a rough estimation of the hardness of the sub-
graph for our exact algorithm, we terminate the exact algorithm if it does
not �nish during 10 seconds. This additional cutting-o� condition prevents
the algorithm from spending too much e�ort in searching optimal solutions
for some potential hard subgraphs. If the exact search stops without giving
an optimal solution, the corresponding subgraph will not be removed. It is
well known that a per-instance based parameter tuning can further improve
the performance. However, as we show below, our algorithm with the above
parameter setting performs already very well.

TSGR-MBBP was implemented in C++ and compiled with g++ v4.4.7 with
optimization �ag -o3 2 . Our experiments were performed on a computer with
an AMD Opteron 4184 processor (2.8GHz and 2GB RAM) running Linux
2.6.32. When solving the DIMACS machine benchmark procedure `dfmax.c' 3

without compilation optimization �ag, the run time on our machine is 0.40,
2.50 and 9.55 seconds for graphs r300.5, r400.5 and r500.5 respectively.

Considering the stochastic nature of TSGR-MBBP, we ran TSGR-MBBP 20
independent times to solve each instance. For each run, we set a time limit
as the stopping condition (see line 4, Algorithm 1 and Section 3.2). For the
random graphs of 250 vertices, the time limit was 30 seconds (cpu clock time),
while for the random graphs of 500 vertices, 60 seconds were allowed. For the
KONECT instances, we prolong this limitation to 360 seconds (6 minutes)
since these instances are much larger than the random graphs.

4.3 Computational results

To evaluate the performance of TSGR-MBBP, we show computational results
relative to three state-of-the-art MBBP approaches:

- EA/SM [29]: This is a hybrid algorithm mixing local search, structure mu-
tation and repair-assisted restart. EA/SM is the most recent heuristic al-
gorithm and outperforms the precedent algorithms like in [27,28]. For our
comparative study, we ran 20 times the source code of EA/SM (provided by
its authors) to solve each instance, each run being limited to 200,000 �tness
evaluations according to [29]. We observed that to attain its best solutions,

2 The source code of TSGR-MBBP is available at: https://github.com/joey001/
mbbp
3 dfmax:ftp://dimacs.rutgers.edu/pub/dsj/clique/
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EA/SM needed a run time ranging from 42 to 50 seconds for instances of
250 vertices and 75 to 94 seconds for instances of 500 vertices (see Table
1). Consequently, the stopping condition of EA/SM can be considered to
be more favorable than that used to run our algorithm (a cuto� time of 30
and 60 seconds for instances of 250 and 500 vertices respectively).

- IBM CPLEX: CPLEX is one of the best commercial optimization tools for
solving integer linear programming models. We ran CPLEX (version 12.6.1)
2 hours (7200 seconds) on each instance with the binary linear formulation
provided in Section 2.2. Obviously, the total time given to TSGR-MBBP
for 20 runs (60*20 = 1200 seconds for the random instances and 360*20 =
7200 seconds for the KONECT instances) is no more than 2 hours.

- AL_Greedy [2]. This is a (fast) greedy algorithm which solves the equivalent
maximum balanced independent set problem for the bipartite complement.
According to [29], this algorithm performs better than its earlier version
presented in [22]. Thus, we re-implemented this algorithm and used it for
our comparative study. Since AL_Greedy is a deterministic heuristic, only
one run was needed to solve each instance. Moreover, AL_Greedy stops
once its construction procedure reaches its end. Thus, no explicit stopping
condition is required.

4.3.1 Random graphs

Table 1 reports the computational results of TSGR-MBBP together with the
results of the reference approaches (EA/SM, CPLEX and AL_Greedy) on the
30 random dense graphs. Column �instance� shows the name of each instance.
Column �BKV� presents the best known values reported in [29]. For TSGR-
MBBP and EA/SM 4 , column �best(ave)" indicates respectively the largest
biclique size among the 20 best balanced bicliques found in 20 runs, and the
average size of these 20 best balanced bicliques between parentheses. Column
�time� indicates the total runtime (in seconds) per run and per instance. For
TSGR-MBBP, column �h-time� additionally reports the average time (in sec-
onds) of the 20 timestamps of �rst hitting the best balanced sizes of 20 runs
(notice that the code of EA/SM does not provide information of �rst hitting
its best solution). For CPLEX, we report the best lower bounds and the time
needed to complete the search. If CPLEX fails to report a feasible solution
for an instance due to memory limitation, �-" is used in the corresponding en-
tries of columns �best� and �time�. For the deterministic heuristic AL_Greedy,
since its run time is negligible (shorter than 0.2 second for all instances), we
only report the best biclique values.

4 The results obtained by running the code of EA/SM on our computer (column
�EA/SM") are slightly di�erent from the results initially reported in [29] (column
�BKV"). This can be explained by the stochastic nature of the EA/SM algorithm.
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Table 1
Computational results of TSGR-MBBP together with the results of EA/SM [29],
CPLEX (version 12.6.1) and AL_Greedy [2] on the set of 30 random dense graphs.

instance BKV [29]
TSGR-MBBP EA/SM CPLEX 12.6.1 AL_Greedy

best(ave) h-time time best(ave) time best time best

G_250_0.95_1 68 68(68) 0.05 30 68(67.90) 50.28 66 ≥7200 64

G_250_0.95_2 66 66(66) 0.21 30 66(65.05) 49.31 64 ≥7200 59

G_250_0.95_3 70 70(70) 0.17 30 70(69.50) 48.87 - - 67

G_250_0.95_4 68 68(68) 0.42 30 68(67.10) 47.36 66 ≥7200 63

G_250_0.95_5 68 68(68) 0.72 30 67(66.95) 47.41 67 ≥7200 62

G_250_0.90_1 44 44(44) 0.06 30 44(43.70) 42.94 42 ≥7200 37

G_250_0.90_2 44 45(45) 0.52 30 45(43.90) 43.28 42 ≥7200 39

G_250_0.90_3 44 44(44) 0.13 30 44(43.45) 43.20 42 ≥ 7200 40

G_250_0.90_4 45 45(45) 0.66 30 44(43.80) 43.13 42 ≥ 7200 40

G_250_0.90_5 45 45(45) 0.23 30 45(44.10) 45.13 41 ≥7200 40

G_250_0.85_1 33 33(45) 0.11 30 33(32.40) 47.92 - - 30

G_250_0.85_2 33 33(33) 0.04 30 33(32.75) 49.94 - - 31

G_250_0.85_3 34 34(34) 0.69 30 34(32.95) 44.66 - - 31

G_250_0.85_4 33 33(33) 0.07 30 33(32.90) 43.76 30 ≥7200 30

G_250_0.85_5 33 33(33) 0.52 30 33(32.30) 44.16 30 ≥7200 30

G_500_0.95_1 91 93(93) 14.37 60 91(90.20) 93.28 - - 83

G_500_0.95_2 89 91(91) 15.58 60 90(88.30) 92.02 - - 81

G_500_0.95_3 89 91(90.05) 3.85 60 90(87.85) 92.62 85 ≥ 7200 81

G_500_0.95_4 88 90(89.40) 21.04 60 88(86.85) 93.28 83 ≥ 7200 78

G_500_0.95_5 90 91(90.90) 13.40 60 90(88.15) 94.30 81 ≥ 7200 83

G_500_0.90_1 56 56(56) 12.21 60 55(53.75) 76.24 46 ≥ 7200 49

G_500_0.90_2 56 56(56) 5.38 60 56(54.00) 79.34 47 ≥ 7200 48

G_500_0.90_3 54 56(55.60) 15.57 60 55(53.45) 79.52 46 ≥ 7200 48

G_500_0.90_4 55 56(55.55) 9.87 60 55(53.75) 79.59 47 ≥ 7200 48

G_500_0.90_5 55 56(55.50) 13.68 60 55(53.25) 82.23 44 ≥ 7200 48

G_500_0.85_1 40 40(40) 4.59 60 40(38.45) 75.55 33 ≥ 7200 34

G_500_0.85_2 41 41(41) 5.84 60 40(39.25) 75.56 32 ≥7200 33

G_500_0.85_3 40 41(40.50) 13.50 60 41(38.65) 81.48 35 ≥7200 35

G_500_0.85_4 40 40(40) 1.84 60 39(38.30) 75.29 33 ≥7200 35

G_500_0.85_5 41 41(41) 4.60 60 40(38.60) 75.06 31 ≥7200 34

From Table 1, we �rst observe that in terms of solution quality, TSGR-MBBP
competes very favorably with the reference approaches. In particular, TSGR-
MBBP improves the best-known results reported in [29] for 10 instances
(marked in bold font). For the 20 remaining instances, the best objective
values found by TSGR-MBBP are always as good as or better than those of
the reference algorithms. When The average objective values of the 20 runs
of TSGR-MBBP are also better than that of EA/SM. Moreover, the perfor-
mance of TSGR-MBBP is quite stable across the whole set of tested instances.
In terms of computational e�ciency, TSGR-MBBP is also very competitive. It
�nds the solutions within no more than 30 and 60 seconds for the instances of
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250 and 500 vertices, in contrast to the reference algorithm EA/SM that �nds
equal or inferior solutions in around 45 and 90 seconds respectively. As for
CPLEX, it cannot complete its search within a duration of 2 hours and thus
fails to �nd the optimal solution for any instance (still CPLEX �nds some solu-
tions better than those of AL_Greedy). Unsurprisingly, the greedy algorithm
AL_Greedy leads to solutions of very poor quality. We also observed that no
vertex can be reduced for these random instances, indicating that the degrees
of all vertices are larger than the best balanced size. In fact, this is expected
according to [7] where an estimation of the size of the maximum balanced
biclique for random bipartite graphs is presented. For the graphs of Table
1, the maximum balanced biclique is estimated to be much smaller than the
average vertex degree. For instance, the vertex degree of �G_500_0.85_X�
is closely around 425 while the maximum balanced biclique is estimated to
have a size between 39 and 76. However, as we show in the next section, the
reduction procedure becomes extremely e�ective when large sparse graphs are
considered.

Finally, to verify whether the observed performance di�erences are statis-
tically signi�cant, we apply the non-parametric Friedman test to compare
TSGR-MBBP against EA/SM and AL_Greedy in terms of the best and av-
erage objective values. For the best results, the p-value of 0.0106 from the
test between the results of TSGR-MBBP and EA/SM indicates a signi�cant
di�erence. The test between TSGR-MBBP and AL_Greedy leads to a p-value
even smaller than 0.00001, indicating there is a signi�cant di�erent between
the compared results. As to the average results (only applicable to TSGR-
MBBP vs EA/SM), the p-value smaller than 0.00001 again con�rms that the
di�erence is signi�cant. This study demonstrates that our algorithm competes
very favorably with the three reference approaches on this set of benchmark
instances.

4.3.2 KONECT networks

We report in Table 2 the computational results of TSGR-MBBP and CPLEX
on the set of 25 KONECT instances. For this study, we ignore the results
of EA/SM and AL_Greedy. The code of EA/SM cannot be run with these
graphs (it cannot load a graph with more than 30,000 vertices on each side).
AL_Greedy runs out of memory for large graphs with more than 30,000 ver-
tices. For small instances such as moreno_crime and opsah-ucforum, Al_Greedy
returns a trivial biclique of size zero. Columns �name�, �(|U |, |V |)�, �|E|� show
the basic information of the original instances. Columns �best(ave)", �h-time"
(for TSGR-MBBP only) and `time" report the same information as in Ta-
ble 1. For TSGR-MBBP, columns �red_1� and �red_2� indicate the aver-
age number of reduced vertices in all runs by the �rst and second reduction
rules respectively. To enable CPLEX to load large graphs, each original graph
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Table 2
Computational results of TSGR-MBBP and CPLEX on the set of 25 large KONECT
instances. The results of EA/SM and AL_Greedy are not available.

instance TSGR-MBBP CPLEX

name (|U |, |V |) |E| best
(ave)

h-
time

time red_1 red_2 (|U ′|, |V ′|) best time

actor-
movie

(127823, 383640) 1470418 8(8) 8.91 360 474872.4 306.6 (100398,
88729)

N/A N/A

bibsonomy-
2ui

(5794, 767447) 2555080 8∗(8) 1.01 360 772062.0 1179.0 (137, 307) 8∗ 2209.76

bookcrossing_
full-rating

(105278, 340523) 1149739 13(12.30)122.25 360 432401.7 19.8 (26799, 76949) N/A N/A

dblp-
author

(1425813, 4000150) 8649016 10∗(10) 8.92 360 5400509.4 25453.6 (0, 0) - -

dbpedia-
genre

(258934, 7783) 463497 7∗(7) 1.22 360 265993.1 723.9 (385, 118) 7∗ 931.59

dbpedia-
location

(172091, 53407) 293697 5∗(5) 0.22 360 224672.2 825.8 (0, 0) - -

dbpedia-
occupation

(127577, 101730) 250945 6∗(6) 0.88 360 228851.0 456.0 (0, 0) - -

dbpedia-
producer

(48833, 138844) 207268 6∗(6) 0.17 360 183879.0 3798.0 (0, 0) - -

dbpedia-
recordlabel

(168337, 18421) 233286 6∗(6) 0.23 360 186512.8 245.2 (0, 0) - -

dbpedia-
starring

(76099, 81085) 281396 6∗(6) 0.29 360 156444.0 740.0 (44, 21) 6∗ 2.06

dbpedia-
team

(901166, 34461) 1366466 6(5.50) 99.29 360 898778.3 309.2 (24858, 4345) N/A N/A

dbpedia-
writer

(89356, 46213) 144340 6∗(6) 0.13 360 131812.9 3756.1 (0, 0) - -

discogs_
a�liation

(1754823, 270771) 14414659 26(26) 22.15 360 2009185.1 379.9 (11722, 4307) N/A N/A

discogs_lgenre (270771, 15) 4147665 15∗(15) 10.16 360 270726.3 59.7 (0, 0) - -

discogs_style (1617943, 383) 24085580 38(37.15)131.85 360 1612358.4 0.0 (5289, 305) 36 ≥
7200

edit-frwiki (288275, 4022276) 46168355 41(27.50)228.91 360 4162813.8 1.6 (6664, 56700) N/A N/A

edit-
frwiktionary

(5017, 1907247) 7399298 19(19) 31.88 360 1909273.0 0.0 (232, 2759) 16 ≥
7200

�ickr-
groupmemberships

(395979, 103631) 8545307 67(67) 94.74 360 457907.3 145.7 (213863,
61790)

N/A N/A

github (56519, 120867) 440237 12(12) 4.74 360 169911.1 637.9 (4001, 2836) N/A N/A

moreno_crime (829, 551) 1476 2∗(2) 0.00 360 1147.0 233.0 (4, 4) 2∗ 0.03

opsahl-
collaboration

(16726, 22015) 58595 8∗(8) 0.05 360 37416.3 1324.7 (0, 0) - -

opsahl-
ucforum

(899, 522) 33720 5∗(5) 0.03 360 560.7 860.3 (0, 0) - -

stackexchange-
stackover�ow

(545196, 96680) 1301942 9(8.95) 92.12 360 625182.8 49.7 (1432, 867) 8 ≥
7200

wiki-en-
cat

(1853493, 182947) 3795796 14∗(14) 17.58 360 2028030.4 8409.5 (87, 60) 14∗ 11.23

youtube-
groupmemberships

(94238, 30087) 293360 12(12) 0.81 360 121958.3 67.7 (1432, 867) 8 ≥
7200
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was pre-reduced by applying Peel(G, best) before starting CPLEX. Column
�(|U ′|, |V ′|)" reports the number of vertices after applying Peel(G, best) while
columns �best� and �time" report the best balanced size reached as well as the
total consumed time. Symbol �*" indicates that the solution has been proven
to be optimal by the corresponding algorithm, while symbol �-" means that
the initial (and Peel pre-reduced) graph cannot be loaded into CPLEX.

As explained in Section 3.2, when either of the two vertex sets of the current
bipartite graph contains less than ω (the best balanced size found so far) ver-
tices, ω is proven to be the optimal maximum balanced size. From Table 2, we
observe that TSGR-MBBP proves optimality for 14 out of the 25 instances
(indicated by �*"), even though these real-world instances are signi�cantly
larger than the random instances. Also, TSGR-MBBP achieves the same best
balanced size in all 20 runs for all but 5 instances (whose average objective
values are reported in the table). Observing the number of vertices that has
been reduced, we �nd that the �rst reduction method (the Peel method)
prunes more than half or even all of the vertices during the search proce-
dure. As for the second reduction method (which is based on exact search),
though the vertices removed by this method are fewer than the �rst method,
we cannot neglect its signi�cance. For 5 instances �bibsonomy-2ui",�dpedia-
genre",�dbpedia-starring", �moreno_crime" and �wiki-en-cat", the Peel pro-
cedure fails to reduce these graphs to small enough subgraphs such that op-
timality can be proven (one vertex set of the subgraph includes fewer than
ω vertices, see column �(|U ′|, |V ′|)"), TSGR-MBBP directly �nds the optimal
solution for the resulting subgraphs with less than K vertices. The CPLEX
solver, unfortunately, is unable to load some of these massive graphs even
after reducing these graphs signi�cantly by applying Peel(G, best) in the pre-
processing step. For instances for which CPLEX �nds a feasible solution,
like �discogs_style", �edit-frwiktionary", �stackexchange-stackover�ow" and
�youtube-groupmemberships", the results are still worse than those achieved
by TSGR-MBBP. Besides, CPLEX always requires a longer time than TSGR-
MBBP to attain the best solution.

4.4 Comments on the reduction methods

As shown in Section 4.3.1, graph reductions are unsuccessful for dense ran-
dom graphs (no vertex has been reduced for the tested instances). In other
words, the results of our TSGR-MBBP algorithm for these dense graphs have
been achieved only with its constraint-based tabu search component CBTS
described in Section 3.4. This indicates that the tabu search procedure alone
competes very favorably compared to the existing algorithms for these random
dense graphs.
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Now one interesting question is when and why graph reductions can contribute
positively to the performance of TSGR-MBBP. As shown in Table 2 of Section
4.3.2, graph reductions perform very well for large sparse graphs. Generally,
when there exists a high number of vertices with small degrees in the given
graph, Peel can e�ectively remove these vertices and thus reduce the search
space. This kind of graphs is often characterized by low densities or small
degeneracies [23]. Moreover, if Peel separates the current graph into some
small subgraphs, the second reduction could further reduce the search space
and improve the current lower bound. We observed that these graphs are
often composed by communities with di�erent sizes [12]. Indeed, the above two
characteristics are very common in graphs from real-life applications, which
explain why graph reductions work so well on the tested KONECT instances.

Finally, note that the graph reduction techniques are general and independent
from the tabu search component. As a result, these techniques (and other pos-
sible reductions) can be advantageously employed in combination with other
search algorithms like EA/SM [29] in order to obtain improved performances.

5 Analysis of CBTS and reduction methods

This section presents an empirical analysis of the restricted unbalance con-
straint related to the Constraint-Based Tabu Search procedure (Section 3.4)
and the merit of the graph reduction procedure (Section 3.5).

5.1 Unbalance constraint of Constraint-Based Tabu Search

The Constraint-Based Tabu Search procedure (see Sections 3.4) is one key
component of the proposed TSGR-MBBP algorithm. One of the main fea-
tures of CBTS is that while unbalanced bicliques are allowed, the balance
deviation of the explored bicliques cannot exceed 2 (this constraint is called
unbalance limit). To justify this speci�c unbalance limit, we compare CBTS
with two CBTS versions with di�erent unbalance limits. The �rst version
(called �CBTSΩ∞") removes the unbalance limit and allows the procedure to
visit bicliques with any unbalance (lines 17-23 are removed from Algorithm
2). The second version (named as �CBTSΩ1") introduces a more restrictive
unbalance limit � the balance deviation is required to be no more than 1 af-
ter each iteration (i.e., change the repairing condition in line 17 of Algorithm
2 to |X| − |Y | > 1). We also used �CBTSΩ2" to denote the original CBTS
procedure. As such, these three CBTS versions correspond to three restart
algorithms searching within the solution spaces Ω2, Ω∞, and Ω1 respectively.
Note that the version with absolute balanced constraint is not considered. In
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Table 3
Comparison between three di�erent versions of the Constraint-Based Tabu Search
procedure: CBTSΩ∞ can visit any biclique; CBTSΩ1 visits only bicliques with a
balance deviation no more than 1; CBTSΩ2 (the original version of CBTS) visits
bicliques with a balance deviation no more than 2.

instance
CBTSΩ∞ CBTSΩ1 CBTSΩ2

best(ave) h-time iter best(ave) h-time iter best(ave) h-time iter

GraphU_500_0.05_3 90(89.20) 8.48 2827917 70(68.25) 19.63 1387704 91(90.20) 7.76 2297846

GraphU_500_0.05_4 90(88.20) 19.48 2886301 69(67.35) 19.47 1386318 90(89.20) 10.99 2288732

GraphU_500_0.05_5 91(89.95) 20.37 2829679 71(68.40) 28.71 1389515 91(90.95) 16.41 2287010

GraphU_500_0.10_3 54(53.85) 18.77 5620994 42(40.70) 15.32 1387011 56(55.60) 13.49 2343998

GraphU_500_0.10_4 55(54.20) 17.11 5774901 42(40.90) 16.74 1385316 56(55.30) 7.17 2356738

GraphU_500_0.10_5 55(54.10) 10.04 5750204 42(41.45) 22.12 1388886 56(55.55) 13.27 2352404

GraphU_500_0.15_3 39(38.55) 15.57 6340722 31(29.75) 18.62 1441000 41(40.70) 16.92 2409855

dblp-author 8(5.40) 26.69 2674721 10(8.60) 27.25 1089614 10(9.50) 21.27 696636

dbpedia-genre 5(2.85) 18.07 546103 4(2.85) 19.69 121851 4(3.05) 9.35 147990

dbpedia-team 4(3.25) 16.25 5699436 4(3.30) 8.94 1232615 5(3.85) 24.11 1260575

discogs_style 9(3.30) 1.19 10651 7(3.80) 5.14 13617 25(7.20) 29.43 19900

edit-frwiktionary 9(2.65) 0.18 2476 9(2.85) 5.52 2204 9(3.05) 1.28 1946

wiki-en-cat 14(6.05) 29.28 3640199 13(7.50) 24.17 553078 14(8.75) 25.18 706691

e�ect, if we repair the solution whenever |X| − |Y | 6= 0, the current solution
can never be improved because the �push" operator only imports one vertex
to one vertex set of the current biclique in each iteration.

For this study, we used 13 instances selected from the two benchmark sets. We
ran each CBTS version 20 trials to solve each instance using the protocol of
Section 4.2. Each trial was given a time limit of 60 seconds. The comparative
results are summarized in Table 3. We denote one restart of CBTS as one iter-
ation here (one �while" loop, lines 10-20 in Algorithm 1). Column �best(ave)"
indicates the best biclique size over 20 runs and the average of the 20 best
biclique sizes found during 20 runs. �h-time" reports the average of 20 times-
tamps of �rst hitting the best bicliques of 20 runs. Column �iter" reports the
average number of restarts over 20 runs.

As for the solution quality, the original Constraint-Based Tabu Search (CBTSΩ2)
procedure dominates the other variants both in terms of best and average val-
ues. CBTSΩ2 also performs the best concerning the average time of hitting the
best solution for random graphs. As for the total number of iterations (column
�iter"), CBTSΩ∞ restarts more often than CBTSΩ2 which on the other hand
restarts more often than CBTSΩ1 . Obviously, a tighter unbalance limit leads
to more frequent calls to the repair procedure, thus less iterations under the
same cuto� time limit. Meanwhile, the results suggest that the strategy of in-
corporating unbalance constraint is a good trade-o� between solution quality
and number of iterations.
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Fig. 3. The relations between the number of iterations and the average best sizes of
20 runs on 6 selected instances from KONECT.

5.2 E�ectiveness of reduction methods

To gain a comprehensive understanding of the run-time behavior and e�ciency
of the two reduction methods, we show in this section an analysis of the
convergence rate of three variants of the TSGR-MBBP algorithm:

• No Reduction: The reduction procedure is disabled, i.e., lines 10-18 are
removed from Algorithm 1.
• Reduction 1: Only the �rst reduction method (the Peel method) is used.
i.e., lines 12-18 are removed from Algorithm 1.
• Reduction 1&2: Both reduction methods are used, i.e., the original TSGR-
MBBP algorithm.

The variant with only the second reduction is not considered as the exact
search will never be triggered without the Peel procedure.
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This study was based on 6 KONECT instances, �dblp-author", �dbpedia-
genre", �dbpedia-team", �discog_style", �edit-frwikitionary" and �wiki-en-cat"
which are large enough with di�erent levels of di�culty for TSGR-MBBP (the
di�culty is estimated by the time consumption of TSGR-MBBP in Table 2).
We ran each algorithm variant 20 times to solve each instance with a time
limit of 6 minutes per run. Again, we denote one restart of CBTS as one iter-
ation. Figure 3 reports the relation between the number of iterations and the
average best balanced size reached by each variant in 20 runs (abbreviated as
`average size'). Considering the two variants with reduction can stop before
reaching the time limit when the optimum is proven, we assume that the best
size after termination is constantly the optimal size in this case.

According to Figure 3, in terms of the average result after the same number
of iterations, the two variants using reduction always dominate the variant
without reduction. Actually, �No Reduction" converges so slowly that it even
has di�culties in reaching half of the best-known size in the given time limit.
Comparing �Reduction 1" and �Reduction 1&2", for �dblp-author", �dbpedia-
genre", �dbpedia-team", �edit_�wikitionaryand" and �wiki-en-cat", �Reduc-
tion 1&2" always discovers solutions of high quality earlier. In particular, for
two instances, �dblp-author" and �wiki-en-cat", �Reduction 1&2" reaches the
optimal solution in the very �rst iteration. This is because for these graphs,
the exact algorithm discovered the optimal solution in some of the connected
subgraphs at the beginning of the search, which in turn enabled the peel pro-
cedure to prune the graph to trivial size and thus proves the global optimality.
Nevertheless, for �discogs_style", �Reduction 1&2" and �Reduction 1" perform
similarly. We also notice that the curves of �Reduction 1" and �Reduction 1&2"
meet sooner or later for all the instances. In a nutshell, the convergence rate
is highly related to the instance under consideration, but in any case, both
reduction methods accelerate the search procedure.

6 Conclusions and perspectives

The Maximum Balanced Biclique Problem is of great interest both theoret-
ically and practically. We have presented an original algorithm combining
tabu search and two graph reduction techniques for solving MBBP. The pro-
posed TSGR-MBBP algorithm is driven by its Constraint-Based Tabu Search
(CBTS) procedure to retrieve high quality solutions from the current graph.
CBTS employs the �push" operator to explore a relaxed search space including
both balanced and unbalanced bicliques while imposing a speci�c unbalance
limit on explored solutions. Moreover, This search process is coupled with two
reduction rules to prune the graph, which leads to a reduced search space for
the following iterations.
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The proposed algorithm has been assessed on two benchmark sets: 30 random
dense instances and 25 real-life large instances from the KONECT collection.
For the random instances, TSGR-MBBP dominates existing state-of-the-art
approaches EA/SM [29], GL_Greedy [2] and CPLEX (version 12.6.1). Besides,
new improved solutions (new lower bounds) were found by TSGR-MBBP for
10 out of the 30 instances. For the KONECT instances, TSGR-MBBP proved
optimal solutions for 14 instances and found high quality solutions for the
other instances. Experiments have also indicated that TSGR-MBBP performs
better than CPLEX both in terms of solution quality and computation time.
Besides, we have also noticed that the two reduction methods are able to
prune a signi�cant number of vertices for large sparse graphs. Given that graph
reductions are general and independent from the search procedure, they can
be advantageously used in combination of other search algorithms.

This study can be extended in several directions. First, it would be interest-
ing to study other customized moves based on the �push" operator. Second,
this work showed that graph reductions can signi�cantly prune large sparse
graphs from real-world applications. It is then interesting to investigate other
reduction techniques to further simplify the given graph. Third, as shown in
our literature review, there are few exact algorithms for MBBP. It would be
useful to design more elaborated exact algorithms, for instance, by adapting
advanced exact clique algorithms like [20,21] to MBBP. Finally, given the ef-
fectiveness of the reduction techniques on large-scale instances for MBBP, it
would be interesting to investigate similar techniques in the context of other
clique related problems like the maximum clique problem [25] and the maxi-
mum k-plex problem [4,30] for massive graphs.
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A The exact search algorithm

The exact algorithm (Algorithm 3 and Proc. bbexpand) used in TSGR-MBBP
is adapted from the classical B&B algorithm for the maximum clique problem
[5]. Instead of starting from the trivial lower bound 0, our exact algorithm
receives an initial lower bound ω (Algorithm 3, line 2), which is the best
balanced size ever found in TSGR-MBBP. (X∗, Y ∗), the best biclique found
by the exact algorithm, is initialized as a tuple of two empty sets (Algorithm 3,
line 3). If there is no solution better than ω in the current subgraph, (X∗, Y ∗)
remains empty even after the exact search. In such a case, the real optimal
solution is discarded as we are only interested in solutions better than ω.
The exact algorithm calls a recursive procedure bbexpand (Proc. bbexpand)
to start the branch and bound search.

Unlike the original algorithm in [5], which only builds one set that forms a
clique, the bbexpand procedure alternatively builds two sets A and B (|A| =
|B| or |A| + 1 = |B| ) such that A and B form a biclique. Sets CA and CB

contain the candidate vertices that may be added to A and B respectively,
i.e., (CA =

⋂
i∈B N(i) and CB =

⋂
i∈AN(i)). Each invocation of bbexpand re-

cursively traversals the feasible bicliques containing A and B with all possible
combinations of CA and CB examined. The procedure works as follow:

Firstly, if candidate set CA is empty, bbexpand tries to update the current lower
bound lb (lines 1-5, Proc. bbexpand). As the cardinality of set A is equal to
or one less than that of B in the input of bbexpand, |A| is always the balanced
size of biclique (A,B) (or (B,A)). Then, if CA is not empty, bbexpand enters
a while loop (lines 6-14), where in each iteration, a vertex i with minimum
index is picked from CA (lines 9-10) to form a new solution with A ∪ {i} and
B while removing i from CA at the same time. In the end of the iteration,
bbexpand is recursively called to enumerate all the feasible bicliques with the
new sets of solution and new candidate sets (CA and CB∩N(i)). Note that the
roles of A and B as well as CA and CB in the next level of recursive call (lines
11-14) are exchanged. This is because that, to meet the balance constraint,
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the biclique is built by alternatively introducing a vertex from U and V . The
if part in lines 7-8 prunes the unnecessary expanding since, when |A|+ |CA|
is smaller than the current lower bound, there is no possibility to discover a
better solution based on the given solution and candidate sets. This simple
rule of pruning unnecessary enumeration is similar to the one used in [5]. In
brief, every loop from line 6 to line 14 enumerates possible bicliques involving
set A with a newly selected vertex i and set B.

Algorithm 3: Exact search algorithm

Input: Graph instance G(U, V,E), initial lower bound ω
Output: A biclique (X∗, Y ∗) with maximum balanced size

1 begin

2 lb← ω ; /* Initialize the lower bound as ω */

3 (X∗, Y ∗)← (∅, ∅) ; /* Initialize the best solution as empty sets */

4 bbexpand(G, ∅, ∅, U , V );
5 return (X∗, Y ∗)

Procedure bbexpand(G, A, B, CA, CB)

Input: Graph instance G = (U, V,E), A, B - current sets that forms a biclique,
CA, CB - the sets of eligible vertices that can be added to A and B
respectively.

Output: The maximum balanced size ω in G, the biclique (X∗, Y ∗) with balanced
size ω.

1 if |CA| = 0 then

2 if |A| > ω then

3 lb← |A| ;
4 Record current solution (A,B) in (X∗, Y ∗);
5 return

6 while CA 6= ∅ do
7 if |A|+ |CA| ≤ lb then
8 return

9 i← min{i|i ∈ CA};
10 CA ← CA \ {i};
11 if |A| < |B| then
12 bbexpand(G,A ∪ {i}, B, CA, CB ∩N(i))

13 else

14 bbexpand(G,B, A ∪ {i}, CB ∩N(i), CA)

15 return
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