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Abstract

In this paper, we study a variant of the orienteering problem called the clustered orienteering
problem. In this problem, customers are grouped into clusters. A profit is associated with
each cluster and is collected if and only if all customers in the cluster are served. A single
vehicle is available to visit the customers. The goal is to maximize the total profits collected
within a maximum travel time limit. To address this NP-hard problem, we propose the first
evolutionary algorithm that integrates a backbone-based crossover operator and a destroy-
and-repair mutation operator for search diversification and a solution-based tabu search
procedure reinforced by a reinforcement learning mechanism for search intensification. The
experiment results indicate that our algorithm outperforms the state-of-the-art algorithms from
the literature on a wide range of 924 well-known benchmark instances. In particular, the proposed
algorithm obtains new records (new lower bounds) for 14 instances and finds the best-known
solutions for the remaining instances. Furthermore, a new set of 72 large instances with 50 to
100 clusters and at least 400 vertices is generated to evaluate the scalability of the proposed
algorithm. Results show that the proposed algorithm manages to outperform three state-of-
the-art COP algorithms. We also adopt our algorithm to solve a dynamic version of the COP
considering stochastic travel time.

Keywords: Heuristics; Clustered orienteering problem; Tabu search; Hybrid evolutionary
algorithm; Reinforcement learning

∗ Corresponding author.
Email addresses: qinghuawu1005@gmail.com (Qinghua Wu), muhe2020@hust.edu.cn (Mu He),

jin-kao.hao@univ-angers.fr (Jin-Kao Hao), luyonglianglyl@gmail.com (Yongliang Lu).

Preprint submitted to Elsevier 12 August 2023



1. Introduction

The clustered orienteering problem (COP) (Angelelli et al., 2014) is an extension of
the classic orienteering problem (OP) (Tsiligirides, 1984) that aims at finding a tour
across a subset of customers (starting from the depot and finishing at the depot) so as to
maximize a collected profit within a given travel time budget. Unlike the classic OP, the
customers in COP are grouped into clusters. A profit is associated with each cluster rather
than each customer, and this profit is collected if and only if all customers in the cluster
are served. A single vehicle is available to visit the customers. The goal is to maximize
the total profits collected within a maximum travel time limit. Figure 1 illustrates this
problem using 15 vertices (representing customers) and 4 clusters represented by different
colors. Vertices of the same color belong to the same cluster, and a vertex with two colors
belongs to two clusters. The profit of a cluster can be obtained only when all vertices of
the cluster are visited. In Figure 1, the profits of clusters C1, C3, and C4 are collected.
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Fig. 1. Illustrative example of COP.

The COP has a number of applications in the modern logistics and transportation
industry. As shown in Angelelli et al. (2014), a typical application is related to the
distribution of mass products, wherein each supply chain (cluster) contains a set of
retailers (customers), and if a carrier agrees to serve a supply chain, then it needs to serve
all retailers in that chain. The carrier wants to acquire as much profits as possible within
a given maximum travel time budget. Note that COP is equivalent to the classic NP-hard
OP (Golden et al., 1987) when each cluster contains exactly one vertex. Therefore, COP
is NP-hard and computationally challenging.

Despite the interest of the COP problem as a general model for a number of relevant
applications, few efforts have been devoted to advancing efficient algorithms for COP
in the literature compared to the classic OP (see the literature review in Section 2).
Meanwhile, existing heuristic algorithms are based on local search (Angelelli et al., 2014;
Yahiaoui et al., 2019). To enrich the solution approaches for solving COP, we devise
the first population-based hybrid evolutionary algorithm (HEA) with several important
features.
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- First, the COP problem can be decomposed into two subproblems: a cluster selection
subproblem at the cluster level and a routing subproblem at the customer level. Since
the served customers in the lower-level routing subproblem are first determined by
the selected clusters in the upper-level cluster selection subproblem, it is critical to
select promising clusters effectively. For this purpose, we develop a solution-based tabu
search (SBTS) procedure for cluster selection in the cluster level and apply the Lin-
Kernighan heuristic (Lin and Kernighan, 1973) for the route planning in the customer
level. To examine intensively the search space of the cluster selection subproblem,
we design solution-based tabu search, which employs hashing technique to precisely
record each visited solution and to accurately determine the tabu status of neighboring
solutions. Additionally, given that the evaluation for each neighboring solution is
computationally expensive due to the application of the Lin-Kernighan heuristic at
the customer level, we devise a reinforcement learning strategy to guide the algorithm
to focus on examining promising candidate solutions and omit non-promising solutions,
thus significantly accelerating the search process.

- Second, an analysis on a sample of locally optimal COP solutions discloses that
high-quality solutions always share many common clusters (see Section 6.8), which
provides a strong motivation for the design of our backbone-based crossover operator.
By inheriting the shared clusters from parent solutions to offspring solutions, this
crossover operator contributes to the discover of very high quality solutions.

- Third, we assess the proposed algorithm on a set of 924 well-known COP benchmark
instances from the literature. The experimental results demonstrate that HEA
outperforms the existing state-of-the-art heuristics. In particular, it reports improved
best-known solutions (new lower bounds) for 14 instances and finds the best-known
solutions for all remaining instances. Besides, we further generated a new set of 72
large instances with 50 to 100 clusters and at least 400 vertices, and present our
computational results on these instances, which can serve as reference values for new
COP algorithms.

- Finally, to demonstrate the practical usefulness of our proposed algorithm, we adopt
the proposed approach to address a real-life case (a dynamic version of COP with
stochastic travel time) from an intra-city delivery platform in a large city in China.
Moreover, the code of our HEA algorithm will be made available online, which can
help researchers and practitioners to better solve various practical problems that can
be formulated as COP.
The rest of this paper is organized as follows. Section 2 presents a review of the related

literature. Section 3 provides a detailed description of the problem. Section 4 presents
the proposed algorithm. Section 5 presents the computational results and comparisons
with the state-of-the-art approaches. Section 6 investigates some key ingredients of the
proposed algorithm. Section 7 presents a case example using real-life data to evaluate
the proposed algorithm. Section 8 concludes the paper.
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2. Literature review

This section provides a brief overview of the related OPs and node routing problems
and a summary of the solution methods for COP.

The COP is an extension of the well-known OP that is originally proposed by
Tsiligirides (1984). The OP derives from the outdoor sport game of orienteering (Chao
et al., 1996a; Tsiligirides, 1984), in which each player tries to visit the checking points
to collect points or scores within a given time frame. Due to its practical applications
including logistics and tourism (Gunawan et al., 2016), several important variants of OP
can also be found in the literature, such as the team OP (Chao et al., 1996b), the multi-
profit OP (Kim et al., 2020; Kim and Kim, 2022), the probabilistic OP (Chou et al., 2021),
the OP with time windows (Kantor and Rosenwein, 1992), the OP with hotel selection
(Divsalar et al., 2014; Sohrabi et al., 2020), the OP with variable profits (Yu et al.,
2019), the multi-visit team OP (Hanafi et al., 2020), and the stochastic OP (Campbell
et al., 2011). Given the theoretical and practical significance, a large number of exact
and heuristic solution algorithms have been presented for the OP and its variants over
the past few decades. For more details on the recent variants and solution approaches of
the OP, we refer the reader to the surveys by Vansteenwegen et al. (2011) and Gunawan
et al. (2016).

The COP is a variant of the OP where the customers are grouped into clusters, a profit
is associated with each cluster rather than each customer, and this profit is collected if
and only if all customers in the cluster are visited. Among the OP variants, the set
orienteering problem (SOP) (Archetti et al., 2018) and the clustered team orienteering
problem (CTOP) (Yahiaoui et al., 2019) are two closely related problem. In the SOP,
customers are grouped into clusters too, and the profit of a cluster is collected if at
least one customer in that cluster is visited. To solve the SOP, a matheuristic algorithm
(Archetti et al., 2018), a variable neighborhood search (Pěnička et al., 2019), a genetic
algorithm (Carrabs, 2021), and an adaptive memory matheuristic algorithm (Dontas
et al., 2023) have been proposed. The CTOP (Yahiaoui et al., 2019) is an extension
of the COP where multiple vehicles are used to collect the profits of clusters within a
limited travel time. To solve the CTOP, Yahiaoui et al. (2019) proposed an exact method
based on a cutting plane approach and a hybrid heuristic that combines an adaptive large
neighborhood search with an effective problem-specific split procedure.

In addition, several other node routing problems with customers divided into groups
(clusters) can also be found in the literature and thus share some similarities with the
COP studied in this work. For instance, in the generalized traveling salesman problem
(Fischetti et al., 1997), the customers are partitioned into several subsets called clusters,
and the salesman has to visit at least one customer for each cluster. In the clustered
traveling salesman problem (CTSP) (Chisman, 1975), customers belonging to the same
cluster must be visited contiguously. An extension of CTSP with multiple vehicles called
the clustered vehicle routing problem has been introduced in Battarra et al. (2014), in
which all customers of the same cluster must be served by the same vehicle. In the COP,
the concept of cluster is referred to a subset of customers belonging to the same transport
task, with a profit collected only when all customers in that task are served.

To the best of our knowledge, the COP has only been studied in Angelelli et al. (2014)
and Yahiaoui et al. (2019). The COP was introduced by Angelelli et al. (2014) along
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with a set of benchmark instances, a branch-and-cut algorithm, and a tabu search (TS)
algorithm. Recently, Yahiaoui et al. (2019) extended the COP by considering the use of
multiple vehicles to collect the profits of several clusters and proposed an exact method
and a hybrid heuristic algorithm to solve instances with several vehicles and a single
vehicle.

Compared to the OP and some of its variants, few efforts have been devoted to
developing efficient algorithms for the COP in the literature. To enrich the arsenal of
solution methods for solving the problem, this work introduces an effective population-
based hybrid evolutionary algorithm. As shown in Section 5, the proposed algorithm
competes very favorably with the existing state-of-the-art COP heuristic algorithms on
a wide range of 924 well-known COP benchmark instances from the literature.

3. Problem description

Let G = (V,E) be a complete undirected graph, where V is a set of vertices and E
represents a set of edges. In the set of vertices V = {v0, v1, . . . , vn}, v0 is the depot (the
starting and ending point of the tour), and the remaining vertices are customers. We
define C = {C1, C2, . . . , Ck} such that ∪ki=1Ci = V \{v0}, each Ci ∈ C is a non-empty
subset of V \{v0} called cluster and each vertex i ∈ V belongs to at least one cluster. An
integer profit pi is associated with each cluster, and the profit is collected if and only if
all customers in the cluster are served. Each edge e ∈ E corresponds to a cost te, which
represents the time required for visiting the edge. A single vehicle is available to visit the
customers. The maximum duration of the vehicle route is limited to Tmax. The vehicle
does not need to visit all customers in a cluster successively, that is, the vehicle can
first visit some customers in the cluster Ci, leave the cluster to visit other customers in
another cluster Cj , and then return to Ci to continue its route. The goal is to maximize
the total profits collected within the maximum time limit Tmax.

To formally state the COP, we recall the mathematical model proposed in Angelelli
et al. (2014), which is based on the following notations.
- δ(i): set of edges adjacent to the vertex vi.
- E(U): set of edges with both endpoints in U , and U is a subset of V .
- zi: equals 1 if all customers in cluster Ci ∈ C are served and equals 0 otherwise.
- yj : equals 1 if vertex vj ∈ V is served and equals 0 otherwise.
- xe: equals 1 if edge e ∈ E is traversed and equals 0 otherwise.
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Model

max
∑
Ci∈C

pizi (1)

s.t. y0 = 1 (2)∑
e∈δ(j)

xe = 2yj , ∀vj ∈ V (3)

∑
e∈E

texe 6 Tmax (4)∑
e∈E(U)

xe 6
∑

vj∈U\{vt}

yj , ∀U ⊆ V \{0},∀vt ∈ U (5)

zi 6 yj , ∀Ci ∈ C,∀vj ∈ Ci (6)

zi ∈ {0, 1}, ∀Ci ∈ C (7)

xe ∈ {0, 1}, ∀e ∈ E (8)

yj ∈ {0, 1}, ∀vj ∈ V. (9)

The objective function (1) aims at maximizing the total collected profit. Constraint (2)
ensures that the depot is visited. Constraint (3) guarantees that the vehicle traverses two
edges adjacent to each served vertex. Constraint (4) imposes that the total travel time
does not exceed Tmax, and constraint (5) represents the subtour elimination constraints.
Constraint (6) ensures that the profit of a cluster is collected only if all vertices in the
cluster are served. Constraints (7) to (9) define the nature of the decision variables.

4. Hybrid evolutionary algorithm for COP

4.1. General procedure

The proposed HEA algorithm follows the basic memetic framework (Moscato and
Cotta, 2003; Hao, 2012; Neri and Cotta, 2012) combining the diversification power of
genetic algorithm with the intensification strength of local search. The general scheme
of HEA is summarized in Algorithm 1. HEA starts from an initial population with p
feasible solutions (Section 4.2) improved with SBTS (Section 4.3). After initializing the
required parameters, HEA enters the “while” loop to evolve the population iteratively.
At each generation, HEA applies either a backbone-based crossover operator (Section
4.5) on two randomly selected parent solutions (Section 4.5) or a destroy-and-repair
mutation operator (Section 4.6) on a single randomly selected parent to generate an
offspring solution. To encourage the particular operator producing quality solutions, we
employ an adaptive selection strategy inspired by Lu et al. (2022) which applies the
crossover and mutation operators with probabilities 50+q1

100+q1+q2
and 50+q2

100+q1+q2
respectively,

where q1 and q2 denote the number of times an offspring solution by the crossover and
mutation operator has been introduced into the population. Subsequently, the generated
offspring is improved by the solution base tabu search procedure (Section 4.3), followed
by a probability updating procedure to update the learning matrix (Section 4.4), and
a population updating strategy to update the population (Section 4.7). Throughout
the search process, a population replacement strategy is triggered to produce a new
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population if the best-found solution Sbest fails to be improved for 30 consecutive
generations (Section 4.8) to avoid premature convergence. The whole HEA procedure
terminates when a fixed maximum number of generations is reached. A more detailed
description of the algorithmic components is provided in the following subsections.

Algorithm 1 HEA for the COP
Input: a COP instance G; population size p; probability matrix P

Output: the best found solution Sbest

1: POP = {S1, S2, . . . , Sp} ← Initial Population(G)

2: P ← Initial Probability Matrix()
3: for i = {1, 2, . . . , p} do
4: Si ← Solution based tabu search(Si, P )

5: end for
6: Sbest ← Best(POP )/* record the best solution found so far */

7: q1 ← 0 /* record the number of times an offspring solution created with the crossover operator has

been introduced into the population POP */
8: q2 ← 0 /* record the number of times an offspring solution created with the mutation operator has

been introduced into the population POP */
9: while stopping condition is not met do

10: Generate a random number σ ∈ [0, 1]

11: Randomly select two parents S1 and S2 from POP
12: if σ ≤ 50+q1

100+q1+q2
and f(S1) 6= f(S2) then

13: S0 ← Crossover(S1, S2)

14: flag = 1
15: else

16: S0 ← Mutate(S1)

17: flag = 2
18: end if

19: S ← Solution based tabu search(S0, P ) /* improve the offspring solution from crossover or

mutation */
20: P ← Probability updating(S0, S, P )

21: if f(S) ≥ f(Sbest) then /* update the best solution found so far */
22: Sbest ← S

23: end if

24: POP ← Population update(POP , S)
25: if population updating is successful then

26: if flag = 1 then

27: q1 = q1 + 1
28: else

29: q2 = q2 + 1

30: end if
31: end if

32: if Sbest is not improved for 30 consecutive generations then

33: Apply population replacement strategy
34: end if

35: end while

36: return Sbest

A distinguishing feature of our solution based tabu search is that it uses the learned
information stored in a probability matrix to guide the local search toward promising
regions. Specifically, we adopt a probability matrix P of size k × 2 (k is the number
of clusters), where the element pi1 and pi2 (i ∈ {1, . . . , k}) respectively denote the
probability of retaining and removing a cluster Ci. When a cluster Ci is retained in
the current solution, all customers in Ci are preserved, while if Ci is removed from the
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solution, only customers belonging to Ci but not belonging to any other cluster in the
solution are dropped from the solution. Initially, all elements in P are set to 1

2 , meaning
that all clusters are either retained or dropped with an equal probability. During the
search process, the probability matrix P is used to guide the selection of the added or
removed clusters (Section 4.3.2), and is updated via its probability learning procedure
(Section 4.4).

4.2. Population initialization

The initial solutions of the population are constructed in a randomized manner similar
to that in Angelelli et al. (2014). Initially, the initial solution Sinit contains only the depot
vertex, and all clusters are assigned to a candidate set L. Afterward, a cluster is picked
from L randomly, and then added to the current solution Sinit. Each time a cluster is
added to Sinit, the new tour of Sinit is generated on all vertices included in Sinit through
the popular Lin-Kernighan algorithm (Lin and Kernighan, 1973). This process is repeated
until no new cluster can be added to Sinit without exceeding the time limit Tmax. We
repeat the construction procedure p times to fill the population with p solutions, where p
is a parameter denoting population size. To obtain a high-quality population, each newly
generated solution is further improved by SBTS (Section 4.3). As observed in studies like
Hao (2012) and Zhou et al. (2022), a high-quality initial population enables the hybrid
evolutionary algorithm to converge more quickly towards good final solutions. In Section
6.4, we demonstrate the benefit of the high-quality initial population to the performance
of the hybrid evolutionary algorithm.

4.3. Local optimization using solution-based tabu search

The tabu search (TS) metaheuristic (Glover and Laguna, 1998) has been applied to
many combinatorial optimization problems. Typically, TS explores the search space by
iteratively transitioning from the current solution to one of its neighboring solutions.
At each iteration, a best neighboring solution is sought to replace the current solution
even if it does not improve the current solution. To prevent the search from revisiting a
previously encountered solution, a tabu list strategy is applied. In the so-called solution-
based TS (SBTS) (Woodruff and Zemel, 1993), the tabu list is implemented with hash
functions and their associated hashing vectors. Unlike the classical attribute-based TS,
SBTS records the visited solutions (instead of attributes) to avoid search cycling, thus
overcoming the difficulty of tuning the parameters for tabu list management. In this work,
we adopt for the first time SBTS for solving the COP and devise a multiple neighborhood
SBTS reinforced by a reinforcement learning mechanism.

4.3.1. Main scheme of the solution-based tabu search procedure
Algorithm 2 summarizes the general scheme of our SBTS. After recording the best

solution Sb found during the search of SBTS and initializing the associated hash vectors,
SBTS performs a series of iterations. At each iteration, SBTS jointly explores two
probabilistic neighborhoods N1(S) and N2(S) (Section 4.3.2) and selects the best feasible
admissible neighboring solution from the neighborhoods N1(S) and N2(S) to replace the
current solution. Then, the new current solution is marked as visited by updating the hash
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Algorithm 2 Solution-based tabu search
Input: a solution S; maximum allowed consecutive iterations T of no improvements; probability matrix

M

Output: the best solution Sb

1: Sb ← S /* record the best solution Sb found during tabu search */

2: (H1, H2, H3) ← Initialize hash vectors
3: Noimprove ← 0

4: while Noimprove ≤ T do

5: Construct the probabilistic neighbourhoods N1(S) and N2(S) /* Section 4.3.2 */
6: Choose the best feasible non-tabu neighboring solution S′ in N1(S)

⋃
N2(S)

7: S ← S′

8: if f(S) > f(Sb) then /* update the best solution found so far */
9: Sb ← S

10: Noimprove ← 0
11: else

12: Noimprove ← Noimprove+ 1

13: end if
14: /* Update the hash vectors with S */

15: H1[h1(S)] ← 1

16: H2[h2(S)] ← 1
17: H3[h3(S)] ← 1

18: end while

19: return Sb

vectors (Section 4.3.3). The best-found solution Sb is updated if an improved solution
has been found. If no improvement with respect to Sb is achieved during T consecutive
iterations, then the best-found solution Sb is returned as the final output of SBTS.

As shown in Section 4.3.2, the neighborhoods N1 and N2 are induced by the Add
and Drop move operators respectively. The Add operator can improve the quality of the
current solution, while the Drop operator always decreases the objective value. However,
if all neighboring solutions in N1 are forbidden to access, or if adding any cluster causes
the time budget to run out (i.e., the neighboring solutions in N1 are infeasible), we switch
to examining the neighboring solutions in N2. To sum, we perform the Add operator
whenever it is possible, and then the Drop operator when the Add operator cannot be
applied.

4.3.2. Move operators and probabilistic neighborhoods
Given a solution S, let K(S) be the set of clusters in S and K(S) be the set of remaining

clusters. The proposed SBTS explores two neighborhoods N1(S) and N2(S) induced by
the following basic move operators:
- Add: add a cluster Ci ∈ K(S) in S if the corresponding solution is feasible.
- Drop: drop a cluster Ci ∈ K(S) from S.

After adding a cluster into the current solution S, the corresponding tour of S is
generated by running the Lin-Kernighan algorithm to solve the corresponding TSP
including the depot and all vertices belonging to S. Dropping a cluster always leads to
a feasible solution and does not require any TSP calculation. Note that, when dropping
a cluster Ci from S, we remove vertices only belonging to Ci but not belonging to any
other cluster in K(S).

We can see that an Add move always improves the current solution, whereas a
Drop move always deteriorates the current solution. However, Add moves may become
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unavailable during the search because the insertion of any cluster in K(S) may make the
travel time budget constraint violated, in this case, the algorithm resorts to the Drop
moves to remove some clusters in K(S), after which the Add moves can become available
again.

Given that the examination of each neighboring solution consists of an application
of Lin-Kernighan algorithm to determine the corresponding TSP tour for the served
customers in the selected clusters, the computational cost to evaluate the neighborhood
could be highly expensive. To reduce the computing time required to examine all
neighboring solutions and improve the computational efficiency of our search procedure,
we devise a probabilistic neighborhood which uses a reinforcement learning strategy
to exclude some unpromising neighboring solutions. As mentioned in Section 4.1, the
learned information is stored in a probability matrix P of size k × 2, where k is the
number of clusters, the element pi1 (i ∈ {1, . . . , k}) denotes the probability that cluster
Ci is retained in the current solution, and pi2 indicates the probability that cluster Ci
is dropped from the current solution. Specifically, the chance of adding or dropping a
cluster is proportional to the probability pij (j = 1, 2), that is, cluster Ci is added to
the current solution with the probability of pi1

pi1+pi2
and dropped with the probability of

pi2
pi1+pi2

.
Formally, the probabilistic add neighborhood N1 of the current solution S can be

defined as

N1(S) = {S′ : S ⊕Add(Ci), Ci ∈ K(S), rand(0, 1)<
pi1

pi1 + pi2
} (10)

where rand(0, 1) denotes a random real number in (0, 1) and S ⊕ Add(Ci) is the
neighboring solution obtained by adding Ci to S.

Similarly, the probabilistic drop neighborhood N2 can be defined as

N2(S) = {S′ : S ⊕Drop(Ci), Ci ∈ K(S), rand(0, 1)<
pi2

pi1 + pi2
} (11)

where S ⊕Drop(Ci) is the neighboring solution obtained by dropping Ci from S.

4.3.3. Tabu list management strategy using hash functions
Our SBTS operates in the cluster level and relies on a solution based tabu strategy

to examine carefully in the search space. The basic idea behind the solution based tabu
strategy is that it accurately mark each visited solution by memory and determines
whether a neighbor solution has been previously visited by comparing it with each visited
solution. As the number of solutions visited in the search history is typically immense,
it is thus impractical to maintain a pool of solutions visited in the search history and to
compare each new solution with the solutions in the pool to check if it is a previously
visited solution. To effectively record visited solutions and to quickly determine whether
a solution has been visited, we use hashing technique coupled with a fast computation
method to keep track of each previously visited solution by mapping a solution into
an integer. However, in hashing technique, hashing conflicts can frequently occur as two
different solutions may be mapped into a same integer. To counter this, we simultaneously
utilize three coordinated hashing vectors to precisely record each visited solutions, which
is shown to be very effective in reducing the hashing conflicts compared to the use of
only a single hashing vector (Lai et al., 2018; Wang et al., 2017).
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Precisely, given a solution S = (z1, . . . , zk) where zi = 1 if cluster i is in the current
solution, and zi = 0 otherwise. Each cluster i is associated with three weights wij (j =
1, 2, 3) precomputed by wi1 = bi2.7c, wi2 = bi2.8c, and wi3 = bi2.9c. Then, the three hash
functions hj(S) (j = 1, 2, 3) are defined as

hj(S) =

(
k∑
i=1

wijzi

)
mod L (12)

where L denotes the length of the hashing vectors (each hash function is associated with
a hashing vector, and in this study, L is set to 108).

Then given the current solution S and its hash value hj(x), the hash value of its
neighboring solution S′ induced by Add(Ci) and Drop(Ci) can be quickly calculated
respectively by Equations 13 and 14.

hj(S
′) = (hj(S) + wijzi) mod L (13)

hj(S
′) = (hj(S)− wijzi) mod L (14)

In this way, we can quickly calculate the hash value of any candidate neighboring
solution in O(1).

0 1 0 1 0 0 ... 1

0 1 2 3 4 5 ... L-1

H10 1 0 1 0 0 ... 1

0 1 2 3 4 5 ... L-1

H1

1 1 0 1 0 1 ... 0

0 1 2 3 4 5 ... L-1

H21 1 0 1 0 1 ... 0

0 1 2 3 4 5 ... L-1

H2

0 0 1 0 1 1 ... 1

0 1 2 3 4 5 ... L-1

H30 0 1 0 1 1 ... 1

0 1 2 3 4 5 ... L-1

H3

z1

z2

z3

...

zn

z1

z2

z3

...

zn

hj(S')

h1(S')=3

h2(S')=1

h3(S')=2

0 1 0 1 0 0 ... 1

0 1 2 3 4 5 ... L-1

H1

1 1 0 1 0 1 ... 0

0 1 2 3 4 5 ... L-1

H2

0 0 1 0 1 1 ... 1

0 1 2 3 4 5 ... L-1

H3

z1

z2

z3

...

zn

hj(S')

h1(S')=3

h2(S')=1

h3(S')=2

Fig. 2. Determining the tabu status of a solution using three hash functions and the associated hash

vectors.

To determine if a solution has been previously visited, SBTS uses three hash vectors
H1, H2, and H3 which are initialized to 0, indicating that no solution is visited. At each
iteration of SBTS, given the current solution S, for each candidate neighboring solution
S′ of S, S′ is determined as a prohibited solution when the corresponding positions in
H1, H2, and H3 take the value of 1, i.e., H1[h1(S′)] = 1, H2[h2(S′)] = 1, H3[h3(S′)] = 1.
Otherwise, S′ has not been visited previously and is qualified as an eligible neighboring
solution. If S′ is chosen to replace S, the corresponding positions in H1, H2, and H3 are
set to 1, i.e., Hj [hj(S

′)] ← 1, (j = 1, 2, 3). As long as collisions do not simultaneously
occur in all three hash vectors, the tabu status is not misjudged, thereby significantly
reducing the chance of collisions. An illustrative example is shown in Figure 2, where
the neighboring solution S′ is classified as tabu and thus cannot be used for solution
transition.

Finally, we also mention that, contrary to the popular attribute-based tabu strategy
which forbids the reverse move to be performed for a number of iterations called tabu
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tenure, the solution based tabu strategy is better suited for the tabu search in the context
of solving the COP due to two advantages. First, it can avoid missing out any high-
quality non-visited solution which may otherwise be mistakenly marked as tabu under
the attribute-based tabu rule, thus enabling the SBTS make a more thorough examination
in the neighborhood search. Second, the attribute-based tabu strategy can prevent the
search from short-term cycling, but may be easily trapped in long-term cycling, visiting
repeatedly previously examined solutions. Our solution based tabu strategy avoids such
a situation by accurately keeping track of each previously visited solution, thus helping
the algorithm not only escape from long-term cycling but also reduces significantly
computational cost.

4.4. Reinforcement learning

As mentioned in Section 4.1, we adopt the probability matrix P to implement the
reinforcement learning strategy. During SBTS, the probability of adding or dropping
a cluster is determined by P . Recall that the chance of adding or dropping a cluster
is proportional to the probability pij , with the add probability of pi1

pi1+pi2
and drop

probability of pi2
pi1+pi2

. This strategy compares the starting solution S = (z1, . . . , zk) and

the improved solution S′ = (z′1, . . . , z
′
k) with the cluster matching phase to check whether

a cluster is kept or dropped from the improved solution. Afterward, the probability matrix
P is updated according to the following rule.

Precisely, for each cluster Ci, if the state of Ci remains to be unchanged in the improved
solution S′, (i.e., z′i = zi = u, u ∈ {0, 1}), then we reward its original operation with Ci
receiving state u and penalize the opposite operation with Ci receiving state 1 − u by
adjusting the probabilities using the following equations:

pij =

 α+ (1− α)pij j = u

(1− α)pij j = 1− u
(15)

where α is a reward factor and 0 < α < 1.
If the state of Ci is changed from zi = u in the initial solution S to zi = 1− u in the

improved solution S′, then we penalize its former operation with Ci receiving state u and
compensate for the new operation with Ci receiving state 1 − u, then the probabilities
are updated as

pij =

 (1− γ)(1− β)pij j = u

γ + (1− γ)β + (1− γ)(1− β)pij j = 1− u
(16)

where β is the penalization factor, and γ is the compensation factor.
Note that in both formulas (15) and (16), u = 1 indicates the situation that Ci is

selected to be included in the solution while u = 0 indicates that Ci is excluded from the
solution.

With the help of learning schemes (15) and (16) applied iteratively, the probability
for a cluster to receive a correct state is expected to increase gradually, thus guiding the
search gradually towards promising areas. This probability updating scheme is inspired
by the reinforcement learning mechanism proposed by Zhou et al. (2016, 2018); Sun
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et al. (2022). To prevent the search from being too greedy, we limit the probabilities in a
suitable range. According to our experiments (Section 6.6), we choose the range [0.2, 0.8].

4.5. Crossover operator and parent selection

Crossover operator is one of the crucial components of HEA. Generally, a successful
crossover operator can inherit meaningful attributes from parent solutions and generate
diversified offspring solutions (Hao, 2012). An analysis on a sample of locally optimal
COP solutions discloses that high-quality solutions always share some common clusters
(Section 6.8), thereby providing a strong motivation for preserving the common clusters
from parent solutions to the offspring solution. Based on the observation above, we adopt
a backbone-based crossover operator, where the “backbone” refers to the clusters shared
in both parents.

The proposed backbone-based crossover constructs an offspring solution in two
sequential stages.

Create a partial solution based on the backbone. First, the common clusters CM
in two parent solutions S1 and S2 are identified, that is, CM = {C : C ∈ S1, C ∈ S2}.
Second, the partial offspring So is created by solving the TSP defined by the depot and
all vertices belonging to the common clusters CM using the Lin-Kernighan algorithm.

Complete the partial offspring in a random manner. If the duration of the tour
of So does not exceed the maximum time limit Tmax, then a random cluster that is not
in So is selected and added to So from S1 and S2 in an alternating manner. Each time
a cluster is added to So, the new tour of So is generated on all vertices included in So
using the Lin-Kernighan algorithm. This process is repeated until no new cluster can be
added to So (the duration of the new tour of So exceeds the time limit Tmax).

In the literature, a crossover operator typically generates a single offspring solution
(Zhou et al., 2020, 2022), two offspring solutions (Ayadi and Hao, 2014; Lu et al., 2020),
or multiple offspring solutions (He and Hao, 2022). In this work, the backbone-based
crossover operator is constrained to produce only a single offspring solution at each
generation of the algorithm. We have also carried out experiments to test several other
schemes where two or more offspring solutions are generated by the crossover. We have
observed that the similarity between the offspring solutions is very high when two or
more offspring solutions are generated. Therefore, we adopt in this work the crossover
scheme to generate only a single offspring solution.

As for the selection of parents, we adopt the simple random selection instead of other
mechanisms such as the roulette wheel selection (Lipowski and Lipowska, 2012) and the
tournament selection (Coello and Montes, 2002). According to our experiments (Section
6.7), the simple random selection, the roulette wheel selection, and the tournament
selection lead to similar performances of the HEA algorithm. Because of its simplicity,
we use the random selection as the parent selection strategy in our algorithm.

4.6. Mutation operator

The mutation operator is a destroy-and-repair procedure. Given a solution S, the
operator performs the following steps:
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(1) Randomly remove bµ × kc clusters from the current solution S, where µ is a
parameter called mutation strength that determines the ratio of clusters to be removed,
and k is the number of clusters in S.

(2) Randomly add a cluster into S, and then generate the new tour of S on all vertices
included in S through the Lin-Kernighan algorithm. This process is repeated until no
new cluster can be added to S without violating the time limit constraint.

4.7. Population update strategy

After an offspring solution So is generated by the crossover/mutation operator and
then improved by SBTS, it replaces the worst solution Sw in the population if So is
different from any existing solution in the population and f(So) > f(Sw). Otherwise, So
is abandoned.

4.8. Population replacement strategy

As shown in the previous section, the offspring solution So is introduced to the
population regardless of its similarity to other individuals. For two given solutions S1 and
S2 with their corresponding cluster sets C1 and C2, their similarity is defined by Sim(S1,

S2) = |C1∩C2|
|C1∪C2| . To avoid premature convergence and maintain a healthily diversified

population throughout the search, a population replacement strategy is applied if the
best-found solution Sbest fails to be improved for 30 consecutive generations (Algorithm
1).

Specifically, we apply the construction procedure (Section 4.2) to generate a new
solution Snew and then use SBTS (Section 4.3) to improve this solution. To ensure the
population diversity, the improved solution Snew should be different enough to the best-
found solution Sbest. If the similarity is less or equal than 0.5 (i.e., Sim(Snew, Sbest) ≤
0.5), then Snew replaces a randomly selected individual in the population (except the
best solution of the population); otherwise, Snew is discarded. This process is repeated
until 50% of the solutions in the population are replaced.

This population replacement strategy prevents the search from prematurely converging
and being trapped into the deep local optimum.

4.9. Discussion on the innovations of the proposed algorithm

Compared with the existing OP algorithms in the literature, our proposed algorithm
for solving COP includes mainly three original features.

First, the cluster selection subproblem is critical for our two-level approach. To avoid
missing high-quality solutions in the cluster level, we adopt for the first time the solution-
based tabu search approach (instead of the attribute-based tabu search approach), which
uses the hashing technique to precisely record each visited solution and accurately
determine the tabu status of neighboring solutions.

Second, as the evaluation cost for each neighboring solution is very computationally
expensive due of the application of the Lin-Kernighan heuristic at the customer level, to
improve the computational efficiency, we devise a reinforcement learning strategy which
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gathers useful historical information from visited local optima to guide the search to
focus on these promising solutions and omit the examination of non-promising candidate
solutions, thus significantly accelerating the neighborhood search.

Third, an analysis on a sample of locally optimal COP solutions discloses that high-
quality solutions always share many common clusters (see Section 6.8), thereby providing
a strong motivation for preserving the common clusters from parent solutions to the
offspring solution. Based on the observation above, we devise a backbone-based crossover
operator for offspring solution generation by inheriting the “backbone” refers to the
clusters shared in both parents to guide the search towards promising search regions.

As shown in the next section, our proposed algorithm integrating these features
performs very well on a number of COP benchmark instances commonly used in
the literature. Finally, given that the ideas of the solution-based tabu search, the
reinforcement learning strategy, and the backbone-based crossover are very general, they
can be adapted to other related OP problems, such as the SOP (Archetti et al., 2018)
and CTOP (Yahiaoui et al., 2019).

5. Computational and comparative results

In this section, we assess the performance of HEA over the benchmark instances and
provide the comparative results with the state-of-the-art heuristics for the COP.

5.1. Benchmark instances and experimental settings

Our computational experiments are tested on two different problem set. The first set
(Set A) contains 924 benchmark instances 1 which is generated from Angelelli et al.
(2014) and used by Yahiaoui et al. (2019). The benchmark is derived from 57 instances
of TSPLIB with 42 to 532 vertices. For each instance, the first vertex is set as the depot,
and the remaining parameters are generated as follows:

(i) Clusters: the number of clusters takes the value of 10, 15, 20, or 25. Three additional
values (50, 75, and 100) are considered for the largest instance (att532).

(ii) Profits: the profit of a cluster is calculated as the sum of the profits of its customers.
The profit of a given customer is generated in two ways: in the first pattern, the
profit of each customer is set to 1, whereas in the second pattern, the profit is
generated by the formula 1 + (7141j + 73)mod(100), where j is the index of the
vertex.

(iii) Tmax: Tmax = θ×TSP ∗, where TSP ∗ is the optimal value of TSP over all vertices
of a given instance, and θ takes the values of 1

4 , 1
2 , and 3

4 .
For more details on generating instances, readers can refer to Angelelli et al. (2014).

To further assess the scalability of our proposed HEA algorithm, we additionally
generated a new set (Set B) of 72 instances 2 with a larger number of clusters (50 to 100
clusters) following Angelelli et al. (2014). These instances are derived from 6 TSPLIB
instances with 400 to 493 vertices. The results of HEA on this new data set can be useful
for future work to evaluate the performance of new COP algorithms.

1 The instances are available at http://or-brescia.unibs.it/.
2 The new large instances are available at https://github.com/muhe2020/COP.
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Table 1
Parameter settings.

Parameter Section Description Considered values Final value

p 4.2 Population size {5, 10, 20} 5

T 4.3 Max allowed SBTS iterations without improvement {5, 10, 20} 20

µ 4.6 Mutation strength {0.2, 0.3, 0.5} 0.3

α 4.4 Reward factor {0.10, 0.15, 0.20, 0.25, 0.30} 0.10

β 4.4 Penalization factor {0.10, 0.15, 0.20, 0.25, 0.30} 0.20

γ 4.4 Compensation factor {0.10, 0.15, 0.20, 0.25, 0.30} 0.30

The HEA algorithm is coded in C++ and executed on a computer with an Intel Core
i5-8400 CPU with 2.80 GHz and 16 GB RAM. The parameter settings are given in Table
1. All parameters are tuned by the popular iterated racing method (F-race) (Birattari
et al., 2010) to automatically determine the required parameters from a finite pool of
parameter configurations. The tuning is performed on 15 randomly selected instances.
The tuning budget was set to be 1000 executions of HEA. The setting of the parameters
recommended by F-race is shown under the “Final value” column in Table 1 and used
for our experiments.

5.2. Computational and comparative results

Given the stochastic nature of HEA, we perform 10 independent runs per instance,
each run being limited to 50 generations (stopping condition). To assess the performance
of HEA, we compare its results with those of the following state-of-the-art COP heuristics
from the literature:
- Three variants of TS from Angelelli et al. (2014) called COP-TABU-Basic (CTB),

COP-TABU-Multistart (CTM), and COP-TABU-Reactive (CTR), which adopt the
traditional tabu strategy, tabu search with multistart strategy, and dynamic tabu
tenure strategy, respectively.

- A hybrid heuristic (HH) (Yahiaoui et al., 2019) that combines an adaptive large
neighborhood search with an effective problem-specific split procedure.

Table 2
Reference algorithms for COP.

Name Reference Experimental environment Stopping condition

CTB Angelelli et al. (2014) Intel Xeon W3680 6-core CPU 3.33 GHz with 12 GB RAM 1000 iterations

CTM Angelelli et al. (2014) Intel Xeon W3680 6-core CPU 3.33 GHz with 12 GB RAM 999 iterations

CTR Angelelli et al. (2014) Intel Xeon W3680 6-core CPU 3.33 GHz with 12 GB RAM 1000 iterations

HH Yahiaoui et al. (2019) Intel Xeon E2-2670 16-core CPU 2.60 GHz with 128 GB RAM log(n · k) iterations without improvement or n iterations

HEA This work Intel Core i5-8400 6-core CPU 2.80 GHz with 16 GB RAM 50 generations

Note that the reference algorithms were tested on different computing platforms.
According to the SETI@home experiment website 3 , our computing platform is the
slowest with the lowest score in terms of the peak CPU speed (The scores of the computing
platforms for running these comparative algorithms are respectively 6.00 (HEA), 12.00
(CTB), 12.00 (CTM), 12.00 (CTR) and 28.92 (HH)). These four COP heuristics,
including their references, experimental environments, and stopping conditions, are listed
in Table 2.

3 Detailed CPU performance for all CPU model are available at
https://setiathome.berkeley.edu/cpu list.php.
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5.2.1. Computational results on Set A
Tables 3 summarizes the results of the five algorithms on all 57 classes of 924 benchmark

instances. Row ‘#Best’ indicates the number of cases for which the best-known solution
has been reached or improved, whereas row ‘Dev.(%)’ indicates the average percentage
gap to the best-known solution. For each instance, the gap between the best-known
result fbk and the best result produced by the current algorithm fbest is calculated as
100 × (fbk − fbest)/fbk. Row ‘T(s)’ provides the average total computation time of all
instances in each class. Detailed computational results for each instance are available
online at the link of footnote 2.

Table 3 shows that HEA outperforms all other heuristics on all instances. In particular,

Table 3
Performance of HEA on Set A.

Class
CTB CTM CTR HH HEA

#Best Dev.(%) T(s) #Best Dev.(%) T(s) #Best Dev.(%) T(s) #Best Dev.(%) T(s) #Best Dev.(%) T(s)
dantzig42 16 0.000 13.27 16 0.000 17.77 16 0.000 38.95 16 0.000 9.12 16 0.000 5.58
swiss42 13 0.670 15.38 14 0.275 23.09 15 0.013 31.93 16 0.000 6.70 16 0.000 4.39
att48 16 0.000 18.24 16 0.000 26.08 15 0.061 38.76 16 0.000 22.42 16 0.000 4.25
gr48 11 4.555 13.74 12 2.648 26.02 16 0.000 37.96 16 0.000 9.54 16 0.000 4.91
hk48 15 1.042 20.58 16 0.000 30.76 15 0.300 37.68 16 0.000 12.87 16 0.000 4.29
eil51 11 2.006 15.92 11 2.006 24.46 15 0.233 36.83 14 0.318 10.61 16 0.000 6.82
berlin52 15 0.504 38.88 15 0.118 53.39 15 0.118 60.41 16 0.000 29.50 16 0.000 6.18
brazil58 13 0.540 58.99 14 0.114 75.72 16 0.000 83.97 16 0.000 49.60 16 0.000 10.18
st70 11 1.225 23.18 11 0.973 38.95 12 0.622 48.01 16 0.000 18.00 16 0.000 10.33
eil76 9 5.190 24.50 10 3.429 33.74 15 0.123 45.84 16 0.000 12.18 16 0.000 12.29
pr76 11 0.959 21.40 13 0.105 30.88 15 0.009 54.76 16 0.000 29.94 16 0.000 20.42
gr96 12 0.572 44.07 13 0.115 51.35 14 0.024 68.19 16 0.000 31.46 16 0.000 18.88
rat99 12 1.399 32.99 12 0.126 52.03 15 0.033 63.65 15 0.147 34.02 16 0.000 19.94
kroA100 11 4.107 44.65 14 0.122 50.98 14 0.409 52.62 15 0.081 22.03 16 0.000 9.47
kroB100 15 0.641 47.96 16 0.000 58.94 16 0.000 62.20 16 0.000 21.02 16 0.000 12.55
kroC100 10 3.186 37.55 15 0.258 48.74 14 0.427 59.42 16 0.000 23.73 16 0.000 9.18
kroD100 10 1.762 36.85 11 1.182 56.70 13 0.495 69.57 16 0.000 32.41 16 0.000 11.22
kroE100 12 2.316 46.59 12 1.275 48.83 14 0.260 62.77 16 0.000 21.97 16 0.000 10.03
rd100 12 1.329 36.51 13 0.953 47.81 15 0.521 82.29 16 0.000 28.31 16 0.000 13.87
eil101 7 2.277 32.97 12 0.691 44.62 16 0.000 79.00 16 0.000 32.81 16 0.000 27.11
lin105 11 1.307 36.06 13 0.446 52.48 14 0.337 105.21 16 0.000 68.60 16 0.000 16.35
pr107 13 3.312 72.19 15 0.197 86.35 15 0.156 135.39 16 0.000 204.68 16 0.000 62.69
gr120 10 2.572 50.87 11 2.511 66.36 14 0.182 105.25 15 0.054 54.16 16 0.000 22.59
pr124 14 1.043 80.33 16 0.000 88.26 16 0.000 150.15 16 0.000 87.29 16 0.000 17.93
bier127 12 0.827 63.05 14 0.107 94.57 15 0.005 149.64 16 0.000 69.41 16 0.000 35.53
ch130 7 3.570 49.79 9 2.589 64.58 12 1.285 106.57 16 0.000 44.22 16 0.000 26.97
pr136 12 1.462 59.86 14 0.869 71.37 15 0.625 121.50 16 0.000 57.12 16 0.000 39.31
gr137 15 0.152 82.07 16 0.000 104.45 16 0.000 181.54 16 0.000 62.47 16 0.000 23.12
pr144 16 0.000 168.25 16 0.000 175.28 16 0.000 247.29 16 0.000 124.72 16 0.000 24.03
ch150 8 2.416 34.19 8 2.288 53.97 14 0.529 101.37 16 0.000 59.81 16 0.000 27.59
kroA150 9 0.934 36.84 13 0.225 50.60 14 0.073 102.11 15 0.046 54.30 16 0.000 21.88
kroB150 8 2.260 40.06 10 1.940 56.69 14 0.591 107.93 16 0.000 51.66 16 0.000 22.63
pr152 15 0.502 120.08 16 0.000 164.81 16 0.000 248.10 16 0.000 126.88 16 0.000 43.59
u159 6 3.066 113.36 9 2.198 125.51 8 1.385 184.68 15 0.269 162.81 16 0.000 47.15
si175 16 0.000 47.69 16 0.000 63.36 16 0.000 126.80 16 0.000 1022.91 16 0.000 76.34
brg180 12 0.608 54.29 13 0.531 72.18 15 0.089 127.74 16 0.000 605.49 16 0.000 52.62
rat195 12 0.511 68.18 10 0.208 78.52 14 0.378 172.00 16 0.000 162.70 16 0.000 96.53
d198 15 0.061 172.56 16 0.000 217.29 16 0.000 368.98 16 0.000 147.69 16 0.000 144.27
kroA200 11 0.999 55.09 12 0.964 76.17 14 0.951 139.43 16 0.000 100.08 16 0.000 43.94
kroB200 8 2.321 71.45 10 1.732 87.73 13 0.128 142.43 15 0.034 103.26 16 0.000 40.60
gr202 11 1.196 88.17 12 0.951 121.27 16 0.000 236.24 16 0.000 147.79 16 0.000 95.32
ts225 12 0.255 162.94 12 0.157 189.13 15 0.019 234.81 16 0.000 204.00 16 0.000 96.09
tsp225 9 1.403 87.78 9 0.481 102.99 11 0.141 180.26 16 0.000 191.03 16 0.000 106.12
pr226 12 0.784 244.84 12 0.713 268.33 15 0.042 331.10 16 0.000 314.10 16 0.000 58.57
gr229 15 0.023 109.99 15 0.023 121.07 15 0.023 170.85 16 0.000 96.69 16 0.000 128.97
gil262 6 6.649 57.09 6 3.915 84.20 10 2.256 135.48 14 0.050 183.41 16 0.000 85.80
pr264 11 3.171 151.96 10 3.183 208.51 14 0.309 304.70 16 0.000 256.35 16 0.000 131.34
a280 11 0.158 99.98 12 0.155 150.54 10 0.252 191.39 14 0.382 690.45 16 0.000 174.39
pr299 11 0.747 105.14 11 0.739 125.98 13 0.289 205.23 16 0.000 515.12 16 0.000 115.42
lin318 8 0.964 247.01 9 0.830 260.81 11 0.469 311.25 14 0.032 733.50 16 0.000 165.04
rd400 11 1.156 100.44 12 0.623 147.13 13 0.596 203.08 13 0.760 557.71 16 0.000 140.72
fl417 11 0.976 518.97 12 0.381 577.53 13 0.078 708.57 16 0.000 672.82 16 0.000 1022.07
gr431 12 0.740 236.75 15 0.009 252.35 16 0.000 280.53 16 0.000 429.84 16 0.000 391.80
pr439 11 0.628 180.16 13 0.074 221.23 14 0.058 324.17 15 0.002 531.14 16 0.000 279.34
pcb442 11 0.376 151.28 11 0.584 199.82 13 0.567 274.18 13 0.327 840.38 16 0.000 382.75
d493 7 1.102 418.35 9 1.139 419.66 12 0.996 515.84 16 0.000 949.26 16 0.000 549.07
att532 16 1.829 2180.37 18 1.522 2244.39 22 0.931 2332.69 19 0.454 3590.19 28 0.000 1941.70
Total 657 1.485 153.72 721 0.828 174.37 816 0.313 223.88 894 0.057 301.73 924 0.000 145.95
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HEA improves the best-known results (new lower bounds) for 14 out of 924 instances and
matches the best-known results for the remaining instances. In Table 4, we list the results
for the 14 instances where our HEA improves the previous best-known results. The ‘BKS’
value of Table 4 show the best-known results compiled from the literature. Furthermore,
HEA consistently finds the best-known solutions (BKS) in each run for most instances,
thereby demonstrating its robustness. This algorithm also requires less computing time
than the four reference algorithms on most instance sets, hence demonstrating its high
competitiveness, in terms of both solution quality and computing time compared with
state-of-the-art COP heuristics.

Table 4
New lower bounds for the 14 instances.

Instance CTB CTM CTR HH BKS HEA

kroA100s20g1q3 76 76 76 76 76 77

kroA150s25g2q3 5907 5907 5976 5997 5997 6041

lin318s15g2q2 7737 7760 7785 7787 7787 7812

lin318s25g2q3 13044 13083 13068 13191 13191 13216

rd400s20g2q3 13353 13353 13293 13374 13374 13894

rd400s25g2q3 12962 13010 12962 13546 13546 13604

pcb442s25g1q3 339 339 339 353 353 355

pcb442s25g2q3 17716 17103 17103 17103 17716 17883

att532s50g2q3 24195 24293 24353 24357 24357 24362

att532s75g1q3 500 501 518 518 518 519

att532s75g2q3 26223 26223 25897 26257 26257 26362

att532s100g2q2 18727 17649 16016 19996 19996 20449

att532s100g1q3 527 555 555 548 555 562

att532s100g2q3 25328 25651 27970 27905 27970 28296
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Fig. 3. Boxplots of the objective values on five algorithms.

The boxplot graphs in Figure 3 to compare the distribution and range of the average
results obtained using the five algorithms. From this figure, we can observe that among
compared heuristics, HEA obtains the smallest gap to the best-known solution, which
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equals 0 on all instances. This figure further highlights how HEA outperforms the recently
proposed COP heuristics.

In sum, this comparative assessment confirms the effectiveness and robustness of HEA
on different instance classes in terms of both solution quality and computational time.

5.2.2. Computational results on Set B

Table 5
Performance of HEA on Set B.

Instance fbest favg tavg(s) Instance fbest favg tavg(s)

rd400s50g1q2 139 133.6 498.58 pr439s50g1q2 308 302.4 1100.03

rd400s50g1q3 300 297.9 1446.67 pr439s50g1q3 457 457.0 2366.27

rd400s50g2q2 6945 6875.0 424.81 pr439s50g2q2 15249 15092.9 918.79

rd400s50g2q3 15510 15097.3 1389.16 pr439s50g2q3 23155 23155.0 2302.19

rd400s75g1q2 152 148.7 914.89 pr439s75g1q2 352 341.6 2828.61

rd400s75g1q3 331 326.4 3150.78 pr439s75g1q3 496 496.0 8508.93

rd400s75g2q2 8319 8044.8 833.70 pr439s75g2q2 16616 16253.6 2571.02

rd400s75g2q3 16917 16514.3 2555.01 pr439s75g2q3 24984 22260.6 4860.22

rd400s100g1q2 180 175.0 1693.99 pr439s100g1q2 368 359.2 3601.64

rd400s100g1q3 372 369.6 6176.65 pr439s100g1q3 546 540.3 11482.45

rd400s100g2q2 8797 8607.8 1531.93 pr439s100g2q2 18900 18018.3 3157.90

rd400s100g2q3 18477 18206.9 3825.74 pr439s100g2q3 27185 26139.0 5879.60

fl417s50g1q2 219 219.0 3808.38 pcb442s50g1q2 262 248.0 1338.52

fl417s50g1q3 418 414.2 10428.72 pcb442s50g1q3 385 383.3 2865.50

fl417s50g2q2 10931 10931.0 3164.27 pcb442s50g2q2 12805 12044.3 1227.09

fl417s50g2q3 20923 20898.8 8631.26 pcb442s50g2q3 20200 19805.2 3074.04

fl417s75g1q2 262 262.0 3936.00 pcb442s75g1q2 280 277.6 2798.16

fl417s75g1q3 443 430.2 24117.45 pcb442s75g1q3 432 425.5 6491.69

fl417s75g2q2 13127 12773.8 3964.93 pcb442s75g2q2 13872 12526.0 1856.66

fl417s75g2q3 23064 22191.7 19858.29 pcb442s75g2q3 21238 20822.4 4627.13

fl417s100g1q2 284 279.4 5755.94 pcb442s100g1q2 304 304.0 6572.88

fl417s100g1q3 504 475.3 27421.32 pcb442s100g1q3 460 456.6 11366.28

fl417s100g2q2 14500 14482.9 8294.47 pcb442s100g2q2 15588 14870.2 4114.02

fl417s100g2q3 24644 23511.6 13599.34 pcb442s100g2q3 23527 22919.8 7694.41

gr431s50g1q2 395 387.4 2009.32 d493s50g1q2 344 344.0 3057.10

gr431s50g1q3 479 479.0 3745.20 d493s50g1q3 473 464.4 3794.96

gr431s50g2q2 19996 19886.5 2290.25 d493s50g2q2 17260 17206.6 2902.91

gr431s50g2q3 24226 24226.0 3793.28 d493s50g2q3 23231 22876.5 3577.71

gr431s75g1q2 433 430.0 5405.28 d493s75g1q2 332 316.8 3688.30

gr431s75g1q3 523 523.0 10880.92 d493s75g1q3 496 489.0 6647.96

gr431s75g2q2 22042 21923.2 4275.16 d493s75g2q2 18594 17950.5 4218.42

gr431s75g2q3 26382 26380.0 4053.22 d493s75g2q3 25992 25413.7 7347.46

gr431s100g1q2 477 470.4 10527.46 d493s100g1q2 399 399.0 12496.35

gr431s100g1q3 575 575.0 22569.80 d493s100g1q3 556 549.7 15024.25

gr431s100g2q2 23605 23192.1 8887.60 d493s100g2q2 19217 18451.9 6500.75

gr431s100g2q3 29094 28865.4 7742.63 d493s100g2q3 27947 27293.5 12347.89

We perform 10 independent runs on each instance of Set B, and the results for
all 72 instances are presented in Table 5 in the following format: the instance name
(instance), the best objective value (fbest), the average objective value (favg), and the
average computation time in seconds (tavg(s)). For detailed computational results for
each instance of Set B, please refer to the online table at the link of footnote 2. The
results of HEA on Set B can serve as references for future comparative studies of new
COP methods.

To evaluate the performance of the proposed HEA algorithm on Set B, we compare the
solutions obtained by the proposed HEA algorithm and the three TS variants of Angelelli
et al. (2014) called COP-TABU-Basic (CTB), COP-TABU-Multistart (CTM), and COP-
TABU-Reactive (CTR), which were specifically designed for the COP. Given that the
source codes of the three TS algorithms are unavailable, we faithfully re-implemented
them, and verified that our implementation was able to reproduce the results reported
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in Angelelli et al. (2014). Detailed computational results of the three re-implemented
reference algorithms on Set B are also available online at the link of footnote 2.

Table 6

HEA vs. three TS variants of Angelelli et al. (2014) on the instances from Set B.

Best results Average results

Better Equal Worse Better Equal Worse

HEA vs CTB 62 6 4 71 0 1

HEA vs CTM 67 3 2 71 0 1

HEA vs CTR 62 5 5 71 0 1

Table 6 indicates the number of times HEA reports a better, equal, or worse result,
in terms of both the best and the average results, compared to each TS variant from
Angelelli et al. (2014). We notice that HEA significantly dominates the three heuristic
algorithms on Set B.

6. Analysis and discussion

This section analyzes the key components of HEA, namely, solution-based tabu
strategy, reinforcement learning strategy, crossover and mutation operator, high-quality
initial population, and population replacement strategy. We also reveal the rationale
behind the proposed backbone-based crossover, analyze the range of the probability
in reinforcement learning, the mechanism of parent selection, the sensitivity of the
parameters, and assess the influence of the number of clusters on HEA’s performance.

6.1. Effect of the solution-based tabu strategy

As shown in Section 4.3, SBTS records all the visited solutions and prevents them
from being revisited during the following search process, thereby ensuring a stronger
intensification search ability. To assess its benefit, we compare HEA with a variant called
ABHEA, where SBTS is replaced by a traditional attributed-based TS. For ABHEA, each
time a cluster is added in or dropped from the current solution, this cluster cannot be
selected for the next tt (tabu tenure) iterations. We employ three different values of tt (tt
= 5, 10, 15) to extensively evaluate the performance of ABHEA (denoted by ABHEAtt

with tt = 5, 10, 15). We then evaluate HEA and ABHEA on 15 randomly selected large
instances with at least 200 vertices from Set A under the same experimental conditions
as before.

The experimental results are summarized in Table 7, where Columns ‘fbest’, ‘favg’, and
‘tavg(s)’ present the best objective value, the average objective value over 10 independent
runs, and the average computation time in seconds across the 10 runs, respectively. Table
7 shows that HEA significantly outperforms ABHEA in terms of the best and average
objective values. Furthermore, ABHEA requires much more time than HEA, and with
a decreasing tt, the computational time of ABHEA gradually increases. These results
confirm that the solution-based tabu strategy is suitable for determining the tabu status
of solutions for COP.
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Table 7
Comparison between HEA and ABHEA on 15 randomly selected instances with at least 200 vertices.

Instance
HEA ABHEA5 ABHEA10 ABHEA15

fbest favg tavg(s) fbest favg tavg(s) fbest favg tavg(s) fbest favg tavg(s)

a280s25g2q2 7539 7386.4 179.94 7539 7176.1 704.61 7539 7149.0 661.65 7539 7274.4 651.25

att532s10g1q2 315 315.0 133.60 315 308.8 630.66 315 308.8 355.63 315 315.0 257.25

gil262s25g2q2 4473 4017.7 59.41 4473 4041.2 236.51 4473 4023.2 225.67 4473 3974.0 209.41

gr202s25g2q2 7525 7367.5 142.59 7525 7231.5 376.71 7230 7204.0 304.76 7525 7253.5 277.94

gr229s15g2q2 7858 7852.6 70.08 7858 7858.0 276.93 7858 7855.5 209.41 7858 7858.0 171.71

kroA200s20g2q3 6654 6553.2 83.25 6654 6231.4 324.93 6654 6354.1 319.51 6654 6286.8 271.05

kroA200s25g2q3 7170 7080.8 132.59 6885 6849.0 450.72 7170 6939.3 416.44 7090 6872.6 375.70

lin318s15g2q2 7812 7804.5 94.39 7812 7812.0 495.18 7812 7812.0 373.37 7812 7812.0 304.43

pcb442s20g2q2 11805 11131.5 299.81 11805 10802.1 1435.70 11805 10801.5 1151.02 11768 10798.4 1078.09

pr226s20g1q2 117 115.8 56.85 117 111.0 174.09 117 109.8 137.72 117 109.8 125.69

pr299s20g2q2 7704 7401.4 79.67 7704 7035.1 323.86 7704 7089.1 314.27 7704 7047.9 280.28

pr439s25g2q2 14028 14020.8 328.06 14028 13918.6 1279.08 14028 13919.0 1064.45 14028 14017.4 962.33

rd400s20g2q2 5675 5663.0 68.45 5675 5668.2 306.79 5675 5664.2 297.69 5675 5670.8 271.80

ts225s25g1q2 121 117.6 80.10 121 115.5 345.78 121 115.5 322.38 121 114.4 296.99

tsp225s20g2q2 5661 5639.1 77.55 5661 5631.4 319.72 5661 5646.2 289.09 5661 5638.8 274.65

Average 6297.13 6164.46 125.76 6278.13 6052.66 512.08 6277.47 6066.08 429.54 6289.33 6069.59 387.24

6.2. Impact of the reinforcement learning strategy

Table 8
Comparative results between HEA and HEA0 on 15 different instances with at least 200 vertices.

Instance
HEA HEA0

fbest favg tavg(s) fbest favg tavg(s)

a280s25g2q2 7539 7386.4 179.94 7539 7180.8 225.86

att532s10g1q2 315 315.0 133.60 315 315.0 146.47

gil262s25g2q2 4473 4017.7 59.41 4460 4013.9 76.63

gr202s25g2q2 7525 7367.5 142.59 7525 7308.5 159.24

gr229s15g2q2 7858 7852.6 70.08 7858 7852.6 87.97

kroA200s20g2q3 6654 6553.2 83.25 6634 6596.0 103.15

kroA200s25g2q3 7170 7080.8 132.59 7170 6922.8 166.06

lin318s15g2q2 7812 7804.5 94.39 7812 7812.0 113.01

pcb442s20g2q2 11805 11131.5 299.81 11768 11121.8 325.10

pr226s20g1q2 117 115.8 56.85 117 112.2 68.78

pr299s20g2q2 7704 7401.4 79.67 7704 7400.4 100.23

pr439s25g2q2 14028 14020.8 328.06 14028 13907.8 402.96

rd400s20g2q2 5675 5663.0 68.45 5675 5629.5 82.17

ts225s25g1q2 121 117.6 80.10 121 114.1 93.22

tsp225s20g2q2 5661 5639.1 77.55 5661 5631.6 88.48

Average 6297.13 6164.46 125.76 6292.47 6127.93 149.29

p-value 8.32e-02 1.26e-02 1.08e-04

To evaluate the impact of the reinforcement learning strategy in HEA, we compare this
algorithm with its variant HEA0, where the reinforcement learning strategy is removed.
The experiment is carried out on the 15 large instances with at least 200 vertices used
in Section 6.1. We conduct 10 independent runs for each version and record the best
objective value (fbest), the average objective value (favg), and the average run time
(tavg(s)) in seconds. From the comparative results of HEA and HEA0 of Table 8, we
observe that HEA outperforms HEA0 in terms of both the best objective values and
the average objective values. The experiment demonstrates clearly the usefulness of the
reinforcement learning strategy.

6.3. Effect of the crossover/mutation operator

As shown above, the solution-based tabu strategy and the reinforcement learning
strategy make critical contributions to the performance of HEA. We now study the
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Fig. 4. Comparison between HEA and its two variants without the crossover and mutation operator.

impact of the crossover/mutation operator on our algorithm by comparing HEA with
two variants. In the first variant, we disable the crossover operator (setting the random
number (line 10 of Algorithm 1) to 1), while leaving the other components unchanged.
Similarly, in the second variant, we disable the mutation operator (setting the random
number (line 10 of Algorithm 1) to 0) and keeping the other components. We run HEA
and its two variants 10 times independently on the 15 instances used above.

The average performance of these three versions is shown in Figure 4, where the y-axis
represents the percentage gap between the updated best-known solution and the average
result obtained by each algorithm. The gap of HEA is smaller than that of the other two
algorithms, thereby highlighting the joint effect of the crossover/mutation operator.

6.4. Benefit of the high-quality initial population

As shown in Section 4.2, to obtain a high-quality initial population, each newly
generated solution in the initial population is further improved by SBTS. To assess
the benefit of the high-quality initial population on the performance of the proposed
HEA algorithm, we compare HEA with an algorithmic variant (HEA1) with a random
population by disabling lines 3-5 in Algorithm 1. We run HEA and HEA1 10 times
independently on the 15 instances used above.

The average performance of two algorithms is shown in Figure 5, where the y-axis
indicates the percentage gap between the best-known result and the average result
obtained by each algorithm. The figure clearly shows that the performance of the HEA1

variant with a random population is worse. This experiment thus confirms the usefulness
of the high-quality initial population for the effectiveness of the HEA algorithm.
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Fig. 5. Comparisons of HEA with its variant HEA1 with a random population.

6.5. Effectiveness of the population replacement strategy
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Fig. 6. Comparisons of two HEA versions with and without the population replacement strategy.

As shown in Section 4.1, if the best-found solution Sbest fails to be improved for 30
consecutive generations, our HEA uses a population replacement strategy (Section 4.8)
to produce a new population to prevent the search from prematurely converging and
being trapped into deep local optima. To illustrate the effectiveness of the population
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replacement strategy to the HEA performance, we compare HEA with a weakened version
of HEA that does not make use of the population replacement strategy by disabling lines
32-34 in Algorithm 1.

We run the two HEA versions with and without the population replacement strategy
10 times independently on the 15 selected instances used above. The average performance
of the two versions is shown in Figure 6, where the y-axis indicates the percentage gap
between the best-known result and the average result obtained by each algorithm. The
figure clearly highlights the benefit of the population replacement strategy.

6.6. Influences of the range of the probability in reinforcement learning
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Fig. 7. Performance gaps of HEA with different ranges for the probability.

As shown in Section 4.4, we adopt the probability matrix to implement the reinforce-
ment learning strategy, which is used to exclude some unpromising neighboring solutions.
Since the probabilities are likely to continue updating to 0.0 or 1.0, which may result in
a lack of diversity in the search, we limit the probabilities in a suitable range. To identify
a suitable range for the probability, we tested three alternatives [0.1, 0.9], [0.2, 0.8], and
[0.3, 0.7]. Besides, to check whether the range restriction on the probability will weaken
the effect of the reinforcement learning strategy, we also test a HEA version where the
range of the probability is not limited.

Figure 7 presents the average performance with the same information as before. From
Figure 7, we observe that the probability in the range [0.2, 0.8] produces the best
performance, and when the probability has an unlimited range, it reports the worst
performance. According to this experiment, we choose the range [0.2, 0.8] as the default
setting of the HEA algorithm.
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6.7. Impact of the selection of parents
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Fig. 8. Comparison of three parent selection mechanisms.

As for the selection of parents, we adopt the simple random selection. This is mainly
due to two reasons. First, the local improvement procedure SBTS ensures a very high
quality of the population solutions. Second, the mutation operator ensures a certain
degree of population diversity. Also, the use of a very small population (5 in our case)
tends to make different selection strategies behaving in a similar way. In order to verify
if other mechanisms would be better, we compare HEA with two of its variants, which
respectively uses the roulette wheel selection (Lipowski and Lipowska, 2012), and the
tournament selection (Coello and Montes, 2002).

The average performance of the three algorithms are plotted in Figure 8 as before,
where the y-axis indicates the average percentage gap from the updated best-known
solution. This experiment indicates that the simple random selection, the roulette wheel
selection, and the tournament selection do not significantly change HEA’s performance.
We adopt thus the simple random selection in our HEA algorithm.

6.8. Rationale behind the backbone-based crossover

To generate insights into the rationale behind the backbone-based crossover, we
experimentally investigate the structural similarities between high-quality solutions.
Recall that the similarity for two given solutions S1 and S2 is defined by Sim(S1, S2) =
|C1∩C2|
|C1∪C2| in Section 4.8. Intuitively, a larger similarity between two solutions corresponds

to more clusters they share, which is a favorable feature for the backbone-based crossover,
where offspring solutions are allowed to inherit the common clusters that form the
backbone of a high-quality solution.

25



2 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

S
o

lu
ti
o

n
 s

im
ila

ri
ty

 Instance

max_sim

avg_sim

min_sim

Fig. 9. Similarity between high-quality solutions.

We run HEA 100 times on each of the 15 selected instances mentioned above
and record the best solution found in each run. For each instance, we compute the
maximum similarity (denoted by max sim) between any two solutions by max sim =
max1≤i<j≤100Sim(S1, S2), the average similarity (denoted by avg sim) between any two
solutions by avg sim = 1

4950 ×
∑

1≤i<j≤100 Sim(S1, S2), and the minimum similarity
(denoted by min sim) between any two solutions by min sim = min1≤i<j≤100Sim(S1,
S2). Figure 9 presents the solution similarities for the 15 selected instances.

Figure 9 shows a high degree of similarity between high-quality solutions. Specifically,
for the 15 selected instances, the maximum similarity reaches 1.0 and the average
similarity is greater than 0.5. These experimental results provide a solid foundation for
the backbone-based crossover designed specifically for COP in our work.

6.9. Sensitivity analysis of parameters

HEA requires 6 parameters as shown in Table 1, including population size (p), the
maximum allowed SBTS iterations without improvement (T ), the mutation strength
(µ), the reward factor (α), the penalization factor (β), and the compensation factor (γ).
To evaluate the sensitivity of each parameter, we test the considered values for each
parameter from Table 1, while fixing the remaining parameters to their final values.
For this analysis, we use the same selection of 15 instances as before and perform 10
independent runs for each considered value.

The distribution and ranges of the objective values are presented in the form of box-
and-whisker plots (Figure 10). To determine whether different values of a given parameter
show statistically significant differences in the samples, the Friedman rank sum test is
performed. Results of the Friedman rank sum test indicate a significant difference in
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(a) p: Friedman p-value = 5.829e-05
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(b) T : Friedman p-value = 4.169e-06
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(c) µ: Friedman p-value = 1.135e-04
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(d) α: Friedman p-value = 5.788e-06
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(e) β: Friedman p-value = 2.743e-05
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(f) γ: Friedman p-value = 5.334e-06

Fig. 10. Boxplots of the normalized average objective values for considered values of each parameter.

performance for p (p-value = 5.829e-05), T (p-value = 4.169e-06), µ (p-value = 1.135e-
04), α (p-value = 5.788e-06), β (p-value = 2.743e-05), and γ (p-value = 5.334e-06). Figure
10 shows that the recommended parameter values from this calibration experiment are
the same as those recommended by F-race.

6.10. Influence of the cluster number k on the performance of HEA

To assess the influence of the number of clusters on the performance of HEA, we further
classified the instance classes according to the number of clusters. In Table 9, each entry
shows the average computational time of each class respectively with k = 10, 15, 20, and
25.
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Table 9
Computational time required by instance classes with different cluster size.

Class k = 10 k = 15 k = 20 k = 25
dantzig42 1.75 3.65 6.77 10.13
swiss42 1.71 2.93 4.82 8.09
att48 1.56 3.27 4.90 7.27
gr48 1.73 3.03 5.55 9.32
hk48 1.52 2.95 4.83 7.85
eil51 2.57 4.56 7.99 12.15
berlin52 1.88 3.91 7.42 11.53
brazil58 2.65 5.92 10.83 21.34
st70 3.57 7.12 11.49 19.13
eil76 4.46 8.00 14.33 22.38
pr76 6.48 11.99 24.68 38.54
gr96 7.81 12.47 22.05 33.21
rat99 7.71 14.57 22.71 34.78
kroA100 3.39 6.11 12.66 15.73
kroB100 4.73 7.84 14.27 23.38
kroC100 3.14 6.50 10.46 16.60
kroD100 3.80 7.13 12.85 21.11
kroE100 3.78 7.21 11.22 17.92
rd100 4.84 9.12 16.54 25.00
eil101 9.61 16.43 32.98 49.43
lin105 6.27 12.05 18.97 28.12
pr107 21.38 41.61 75.45 112.31
gr120 7.39 13.91 25.07 43.97
pr124 5.65 12.52 20.20 33.33
bier127 12.83 24.07 42.84 62.39
ch130 10.01 18.98 31.93 46.96
pr136 15.92 27.01 43.55 70.77
gr137 9.34 15.88 26.22 41.01
pr144 9.76 19.42 27.62 39.32
ch150 10.53 17.94 32.65 49.25
kroA150 8.98 15.68 26.69 36.15
kroB150 9.99 16.27 24.39 39.88
pr152 17.21 31.76 49.83 75.57
u159 14.94 34.97 56.31 82.40
si175 27.17 51.60 90.45 136.13
brg180 14.87 26.99 71.03 97.60
rat195 46.07 79.27 106.25 154.53
d198 69.77 92.77 165.36 249.20
kroA200 18.28 30.54 48.38 78.56
kroB200 18.35 26.27 48.26 69.54
gr202 29.00 66.15 105.57 180.56
ts225 36.81 75.54 110.45 161.56
tsp225 42.70 73.67 127.03 181.10
pr226 24.99 46.39 69.95 92.96
gr229 42.20 86.70 141.71 245.29
gil262 37.96 64.23 105.46 135.57
pr264 47.16 94.83 151.35 232.01
a280 70.67 128.44 185.87 312.58
pr299 44.95 85.80 132.13 198.82
lin318 57.69 138.10 203.83 260.55
rd400 57.39 95.74 157.98 251.76
fl417 369.79 705.76 1066.41 1946.35
gr431 160.64 268.08 465.94 672.54
pr439 107.35 195.41 323.24 491.34
pcb442 183.64 288.22 460.72 598.41
d493 221.60 423.69 634.53 916.48
att532 151.77 263.12 407.89 581.97

As shown in Table 9, the computational time required by HEA has a positive
relationship with the number of clusters over all classes, and an instance with a larger
number of clusters generally requires more computational time. This is because a
larger number of clusters will lead to more neighboring solutions in the neighborhood
induced by the add/drop move operators consisting in adding/dropping a cluster, thereby
increasing the evaluation time to examine the neighborhood. Figure 11 summarizes the
computational time in seconds required by HEA on several instance classes with different
cluster sizes, which also demonstrates that the computational time tends to increase when
the cluster size becomes larger.
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Fig. 11. Computational time on several instance classes with different cluster size.

7. A dynamic version of COP considering stochastic travel time

The OPs have a long history in the literature, and most existing studies in the literature
focus on the static versions of OPs. However, the travel time may fluctuate under changing
traffic conditions, and the assumption of deterministic travel time is unrealistic in many
real-world settings. To account for transportation network and infrastructure uncertainty,
OPs with stochastic travel time have been considered in the literature. For instance,
Campbell et al. (2011) studied a variant of the OP in which the travel and service time
are stochastic. Lau et al. (2012) introduced an extension of OP with dynamic travel time,
and then proposed a local search algorithm to solve it. Evers et al. (2014) considered the
OP with stochastic weights to reflect uncertainty in real-life applications, where the
stochastic weights are associated with travel costs, travel time or fuel consumption on
arcs. Dolinskaya et al. (2018) studied a novel OP with stochastic travel time by adapting
paths between reward nodes as travel times. Wang et al. (2023) extended the classical
OP to a dynamic OP with stochastic travel time and service time, and proposed three
self-adaptive heuristic algorithms for solving the dynamic OP.

In this section, we study a dynamic version of COP, which considers stochastic travel
time between nodes. In this dynamic version, we assume that the travel time between
any two different nodes follows a normal distribution. To solve it, we follow the work
of Irawan et al. (2021) and propose a simulation-based optimization method integrating
HEA proposed in this work and Monte Carlo simulation (Zio and Zio, 2013).

As shown in Algorithm 3, the simulation-based optimization method performs Λ
iterations, where each iteration consists of two stages. In the first stage, we use our
HEA algorithm to solve the deterministic COP problem, where the stochastic travel
time is transformed into a deterministic travel time. In the second stage, after the tour
S is generated by the HEA algorithm, Monte Carlo simulation is called to estimate
the expected total travel time of the tour S. Monte Carlo simulation is an iterative
process, where in each iteration, we generate random numbers conforming to their normal
distribution to represent the stochastic travel time. If the expected total travel time of
the tour S estimated by Monte Carlo simulation does not exceed the maximum time
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limit Tmax for more than λ× γ% times (where λ is number of Monte Carlo simulations,
and γ is the threshold of accepting a solution), we consider the solution S is feasible.
Finally, the best found feasible solution Sbest is updated with S if S is feasible and
f(S) > f(Sbest). At the end of the proposed simulation-based optimization method, the
best found feasible solution Sbest is returned as the final output.

Algorithm 3 The proposed simulation-based optimization method for a dynamic version
of COP considering stochastic travel time
Input: a COP instance G; maximum time limit Tmax; number of iterations Λ; number of Monte Carlo

simulations λ; threshold of accepting the solution γ

Output: the best found solution Sbest

1: for α = 1 to Λ do

2: /* Stage 1: Solve the deterministic problem */
3: Generate the travel time for each edge randomly conforming to their distribution for the COP

instance G

4: S ← HEA(G) /* Use the HEA to solve the COP with the deterministic travel time */
5: /* Stage 2: Run Monte Carlo simulation λ times */

6: θ ← 0

7: for β = 1 to λ do
8: Generate the travel time for each edge randomly conforming to their distribution

9: Compute the total travel time of the tour S, i.e., T (S)
10: if T (S) ≤ Tmax then

11: θ ← θ + 1

12: end if
13: end for

14: if θ ≥ λ× γ% then

15: if f(S) > f(Sbest) then /* The tour S has a high chance to be completed within the maximum
time limit, and is considered feasible */

16: Sbest ← S

17: end if
18: end if

19: end for

20: return Sbest

To demonstrate the practical usefulness of the proposed simulation-based optimization
method, we apply it to deal with a practical route planning case using real data
collected from an intra-city delivery platform in Wuhan city, China. In recent years,
with the booming of the online orders, several intra-city retail platforms such as
Meituan arise, where people can place their orders with mobile apps for a variety
of commodities distributed in different sites. The intra-city retail is supported by an
intra-city delivery platform as the underlying infrastructure, where all sites of suppliers
providing commodities for customers, namely the points of pickups (POPs), constitute
the intra-city delivery network. The real dataset (see Figure 12), including the location
of POPs in Wuhan and traveling time between these POPs, is provided by the Meituan
delivery platform. In real-life applications, the travel time between POPs may fluctuate
due to changing traffic conditions. Thus, we assume that the travel time follows a normal
distribution with mean µ equals to the time during off-peak hours and standard deviation
σ = 0.2µ.

In our case study, the demand of each customer consisting of several ordered
commodities distributed in different sites is represented by a cluster, and the profit of a
cluster is collected if and only if all POPs in the cluster are accessed. We assume that
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Fig. 12. An intra-city delivery platform in Wuhan city.

if a customer is assigned to a deliveryman, then he/she is responsible for the collection
for the ordered commodities of this customer. The goal is to find a tour to visit a subset
of customers (clusters) maximizing the total collected profits under the deliveryman’s
travel time limit. Consequently, this problem can be formulated as a dynamic version of
the COP considering stochastic travel time.

Table 10
Summary of the results for the stochastic COP.

|V| Clusters Tmax Stochastic

avg t(min) max t(min) min t(min) Feasible

17 7 75 71.08 89.77 51.81 80113/100000

Table 11
The routes and profits of the real case.

γ route profit

50 0-13-12-10-11-8-2-1-3-5-4-9 13

70 0-14-7-6-5-4-3-1-2-8-9 13

90 0-11-10-8-2-1-3-5-4-9 11

Here, we apply the proposed simulation-based optimization method to deal with this
real-life case. For the simulation-based optimization method, we set Λ = 100, λ = 100000
and γ = 50, 70, 90. Table 10 presents a summary of the results in an iteration of the
proposed simulation-based optimization method, including the instance size, the cluster
size, the time limit Tmax, the average total travel time estimated by the Monte Carlo
simulation, the maximum and minimum total travel time estimated by the Monte Carlo
simulation, and the number of times the total travel time (estimated by Monte Carlo
simulation) is within the maximum time limit Tmax, respectively. From Table 10, we
observe that out of 100000 Monte Carlo simulations, there are 80113 times where the
expected total travel time is within the maximum time limit Tmax. Table 11 shows the
different routes of the stochastic COP with γ = 50, 70, 90. Especially, when γ = 90, we
need to reduce some visited clusters in order to make the route acceptable, as a result,
the profits obtained are reduced slightly.

31



8. Conclusion

In this paper, we propose an effective hybrid evolutionary algorithm for addressing
COP with the following original features: (i) an SBTS procedure reinforced by a rein-
forcement learning mechanism to ensure an accurate and fast search of the neighboring
solutions, (ii) a dedicated backbone-based crossover operator to inherit good features,
and (iii) a destroy-and-repair mutation operator to diversify the search.

Extensive computational results on 924 benchmark instances in the literature reveal
that our proposed algorithm outperforms the existing algorithms by updating the
best records (new lower bounds) for 14 instances while matching the best-known
results for the remaining cases within a reasonable time. Additional analysis reveal the
usefulness of the solution-based tabu strategy, the reinforcement learning strategy, and
the crossover/mutation operator. We also presented an application of our approach to
deal with a real-life delivery tour planning case (a dynamic version of the COP with
stochastic travel time) in a large Chinese city. In the future, we plan to develop efficient
and effective algorithms for other related problems, such as the SOP (Archetti et al.,
2018) and CTOP (Yahiaoui et al., 2019).
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Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T., 2010. F-race and iterated f-race: An
overview. Experimental methods for the analysis of optimization algorithms , 311–336.

Campbell, A.M., Gendreau, M., Thomas, B.W., 2011. The orienteering problem with
stochastic travel and service times. Annals of Operations Research 186, 61–81.

Carrabs, F., 2021. A biased random-key genetic algorithm for the set orienteering
problem. European Journal of Operational Research 292, 830–854.

Chao, I.M., Golden, B.L., Wasil, E.A., 1996a. A fast and effective heuristic for the
orienteering problem. European journal of operational research 88, 475–489.

Chao, I.M., Golden, B.L., Wasil, E.A., 1996b. The team orienteering problem. European
journal of operational research 88, 464–474.

Chisman, J.A., 1975. The clustered traveling salesman problem. Computers & Operations
Research 2, 115–119.

32



Chou, X., Gambardella, L.M., Montemanni, R., 2021. A tabu search algorithm for the
probabilistic orienteering problem. Computers & Operations Research 126, 105107.

Coello, C.A.C., Montes, E.M., 2002. Constraint-handling in genetic algorithms through
the use of dominance-based tournament selection. Advanced Engineering Informatics
16, 193–203.
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