Multistart solution-based tabu search for the Set-Union Knapsack Problem

Zequn Wei^a and Jin-Kao Hao^{a,*}

^aLERIA, Université d'Angers, 2 Boulevard Lavoisier, 49045 Angers, France Applied Soft Computing, 2021 https://doi.org/10.1016/j.asoc.2021.107260

Abstract

The NP-hard Set-Union Knapsack Problem is a general model able to formulate a number of practical problems. As a variant of the popular knapsack problem, SUKP is to find a subset of candidate items (an item is composed of several distinct weighted elements) such that a profit function is maximized while a knapsack capacity constraint is satisfied. We investigate for the first time a multistart solution-based tabu search algorithm for solving the problem. The proposed algorithm combines a solution-based tabu search procedure with a multistart strategy to ensure an effective examination of candidate solutions. We report computational results on 60 benchmark instances from the literature, including new best results (improved lower bounds) for 7 large instances. We show additional experiments to shed lights on the roles of the key composing ingredients of the algorithm. The code of the algorithm will be publicly available.

Keywords: Knapsack problems; Solution-based tabu search; Heuristics and metaheuristics; Combinatorial optimization.

1 Introduction

Given a set of elements $U = \{1, \ldots, n\}$, a set of items $V = \{1, \ldots, m\}$, each element has a weight $w_j > 0$ and each item has a profit $p_i > 0$. The items and elements are associated by a relation matrix $R_{ij}[m \times n]$ such that each item *i* corresponds to a subset of elements $U_i \subseteq U$. Let *C* be the capacity of a given knapsack. Then the Set-Union Knapsack Problem (SUKP) is to select

^{*} Corresponding author.

Email addresses: zequn.wei@gmail.com (Zequn Wei),

jin-kao.hao@univ-angers.fr (Jin-Kao Hao).

a subset of items S from V such that the total profit of S is maximized, while the total weight of the covered elements does not exceed the knapsack capacity C. In SUKP, the weight of an element is countered only one time even if the element appears in multiple selected items.

Formally, SUKP can be stated as follows.

$$(SUKP) \qquad \text{Maximize} \quad f(S) = \sum_{i \in S} p_i \tag{1}$$

subject to
$$W(S) = \sum_{j \in \bigcup_{i \in S} U_i} w_j \le C, \ S \subseteq V$$
 (2)

SUKP is known to be a useful model able to formulate a number of significant practical applications. For instance, consider the following project investing scenario where a company plans to invest in the purchase of machines for the production of new products. Each candidate product has a profit, while the composing parts of the product needs new machines to be acquired. The goal is to determine the set of products to be produced such that the profit will be maximized while ensuring that the cost of the purchased machines does not exceed a given budget. This problem can be conveniently formulated by the SUKP model where an item corresponds to a product with its profit and an element is a machine with its purchasing cost (element weight). Then, solving the project investing problem is equivalent to finding the optimal solution to the resulting SUKP problem. Generally, SUKP appears in the context of flexible manufacturing [1], financial decision making [2], applied cryptography [3], database design [4], data allocation in cyber systems [5] and key-pose caching systems [6]. However, SUKP is computationally difficult given that it belongs to the class of NP-hard problems [1].

Due to its relevance, SUKP has been investigated since the eighties and has received increasing attention in recent years. The existing approaches for solving SUKP can be classified into three families.

- Exact and approximation algorithms: These algorithms are theoretically able to find the optimal solutions or solutions of guaranteed quality. For instance, theoretical algorithms based on dynamic programming and greedy approximation were described in [7,1,8], which have an exponential complexity in the general case. Linear integer programming was investigated in [9], indicating that only small instances (with 85 to 100 items and elements) can be solved optimally by the CPLEX solver.
- Population-based hybrid algorithms: These algorithms are based on various bio-inspired metaheuristics operating with a population of solutions and associated search operators. In 2018, He et al. devised the first binary artificial bee colony algorithm for solving SUKP and provided a set of 30 benchmark instances (with 85 to 500 items and

elements) [10]. Since then, several other population algorithms were proposed, such as the binary swarm intelligence algorithm [11] (2019), weighted superposition attraction algorithm [12] (2018), swarm intelligence algorithm [13] (2019), group theory-based optimization algorithm [14] (2018), moth search algorithms [15,16] (2019), hybrid Jaya algorithm [17] (2020), estimation of distribution algorithm based on Lévy flight [18] (2020) and binary grey wolf optimization algorithm [19] (2020). In terms of computational performances, these approaches achieved interesting results. However, these algorithms are rather complex in design and most of them solve the binary SUKP problem indirectly by searching a continuous space.

Local search algorithms: These algorithms are based on stochastic local search [20]. Contrary to the above population algorithms, local search algorithms solve the binary SUKP problem directly by examining candidate solutions in a discrete search space. In 2019, Wei and Hao [9] presented an iterated two-phase local search algorithm for SUKP, which includes a local optima exploration phase (using variable neighborhood descent and tabu search) and a local optima escaping phase to promote both intensification and diversification. This algorithm reported remarkable results on the 30 instances of [10]. Also in 2019, Lin et al. [21] introduced a local search (tabu search) procedure into the binary particle swarm optimization framework and achieved high-quality results on the 30 instances. In 2020, Wei and Hao [22] presented an effective kernel based tabu search algorithm and introduced a new set of 30 large instances for SUKP (with 585 to 1000 items and elements). The tabu search algorithms of [21,9,22] adopted the attributed-based tabu search method to avoid revisiting previous encountered solutions. During the search, the items involved in the move operations are recorded in a so-called tabu list and are excluded from consideration during a period called the tabu tenure. Computational results indicated that the local search approaches represent the current state-of-the-art in the literature in terms of solution quality and computational efficiency.

The tabu search technology [23] has been successfully applied to solve many difficult optimization problems. Although most studies rely on the popular and well-known *attributed-based* tabu search (ABTS) as exemplified by the studies of [21,22,24,25,26], recent studies indicated that the *solution-based* tabu search (SBTS) [27,28] is a highly competitive approach for solving several notoriously difficult binary optimization problems such as 0/1 multidimensional knapsack [29], multidemand multidimensional knapsack [30], minimum differential dispersion [31], and maximum min-sum dispersion [32] and obnoxious p-median [33]. Compared to the ABTS method, SBTS has the advantage of avoiding the use of tabu tenure and simplifying the determination of tabu status. Moreover, the intensification ability of SBTS tends to be stronger than that of ABTS. In addition, the study reported in

[30] on SBTS and our study (see Section 4.3) reveal that SBTS is more suitable than ABTS for solving a number of binary optimization problems. However, SBTS requires more resources (to record all the encountered solutions) than ABTS. More information on the SBTS approach can be found in recent studies such as [30,31,32,33], while some interesting studies using ABTS are provided in [25,24,34,35,26]. The main contributions of this work are summarized as follows.

To the best of our knowledge, no study has been reported in the literature investigating the interest of the SBTS approach for solving SUKP. In this work, we fill the gap by introducing the first multistart solution-based tabu search algorithm (MSBTS) for SUKP and provide additional indications of the benefits of the SBTS approach for binary optimization.

First, the proposed MSBTS algorithm integrates a dedicated solution-based tabu search approach and a multistart mechanism to ensure an effective and efficient examination of candidate solutions. During the search, each visited solution is recorded in a tabu list implemented with the help of a hash function based method such that the tabu status of a candidate solution can be easily determined in constant time. The multistart mechanism is employed to escape local optima traps. The algorithm is simple in design and frees the user from the delicate task of calibrating parameters. Second, we report new best-known results (improved lower bounds) for 7 large instances, which are useful for future research on SUKP. Third, we will make the code of our algorithm publicly available, which can be used by researchers and practitioners to solve various problems that can be formulated by the SUKP model.

The rest of the paper is structured as follows. In Section 2, we describe the general solution approach of the proposed algorithm and its main components. Section 3 is devoted to the performance assessment and comparisons with state-of-the-art algorithms. We analyze in Section 4 the influences of important components of the algorithm, followed by conclusions in the last section.

2 Multistart solution-based tabu search for the SUKP

2.1 Search space, solution representation, and evaluation function

Given a SUKP instance composed of m items, n elements, and knapsack capacity C, the proposed MSBTS algorithm explores the feasible search space Ω^F which includes all feasible candidate solutions corresponding to non-empty subsets of items satisfying the knapsack constraint, i.e.,

$$\Omega^F = \{ y \in \{0, 1\}^m : \sum_{j \in U_i} w_j \le C, U_i = \{ i : y_i = 1 \}, 1 \le i \le m, 1 \le j \le n \}$$
(3)

Thus, a candidate solution S in Ω^F can be expressed by a *m*-dimensional binary vector $S = (y_1, \ldots, y_m)$, where y_i takes 1 if item *i* is selected, and 0 otherwise. Let $A = \{q : y_q = 1 \text{ in } S\}$ and $\bar{A} = \{p : y_p = 0 \text{ in } S\}$, a candidate solution can be equivalently represented by $S = \langle A, \bar{A} \rangle$.

Additionally, the quality of a candidate solution S is determined by the objective function value f(S) (Equation 1) of SUKP. Since SUKP is a maximization problem, a larger f value indicates a better solution.

2.2 Main framework

The MSBTS algorithm follows the flow chart shown in Fig. 1 and is described in Algorithm 1.

Fig. 1. Flow chart of the proposed MSBTS algorithm.

The basic idea of the MSBTS algorithm (see Alg. 1) is to repeat a greedy randomized initialization procedure (Section 2.3)followed by а solution-based tabu search procedure (Section 2.4). Specifically, after initializing the overall best solution S^* (line 3), the algorithm performs a 'while' loop (lines 4-10) to execute the main search process. At each round of this process, MSBTS first runs the greedy randomized procedure to generate a starting solution S (line 5), which is used as the input solution of the solution-based tabu search procedure. The solution-based tabu search procedure (line 6) iteratively improves the input solution S and returns the local best solution S_b encountered. After conditionally updating the overall best solution S^* , the algorithm moves to the next round of its search by re-starting the greedy randomized procedure. The main search process is terminated and returns the overall best solution S^* , when the cut-off time (t_{max}) is reached.

Algorithm	1	Multistart	solution-ba	ased ta	bu s	search	for	the S	SUKP	
-----------	---	------------	-------------	---------	------	--------	-----	-------	------	--

- Input: Instance I, cut-off time t_{max}, neighborhoods N, hash vectors H₁, H₂, H₃, length of hash vectors L, hash functions h₁, h₂, h₃.
 Output: The best solution found S*.
- 3: $S^* \leftarrow \emptyset$ /* Initialize the overall best solution S^* (i.e., $f(S^*) = 0$)*/
- 4: while $Time \leq t_{max}$ do
- 5: $S \leftarrow Greedy_Randomized_Initialization(I)$
- 6: /* Record the best solution S_b found during tabu search */ $S_b \leftarrow Solution_Based_Tabu_search(S)$
- 7: **if** $f(S_b) > f(S^*)$ **then**
- 8: $S^* \leftarrow S_b$ /* Update the overall best solution S^* found so far */ 9: end if
- 10: end while

11: return S^*

2.3 Greedy randomized initialization

The quality of initial solutions may impact the performance of the algorithm. In this work, we adopt a greedy randomized initialization procedure to generate initial solutions of good quality.

Let W(S) be the total weight of the current solution S and W_k be the additional weight of a non-selected item k, where W_k is defined by $\sum_{j \in U_k \land j \notin \cup_{i \in S} U_i} w_j.$ Then the feasible non-selected items can be expressed $W_k =$ by $R(x) = \{k \in \overline{A} : W_k + W(S) \leq C\}$, where \overline{A} is the set of non-selected items. Following [36], we employ a restricted candidate list (denoted by RCL) to record *rcl* feasible non-selected items belonging to R(x), where *rcl* is the maximum size of RCL. A too large rcl value will make many items to be recorded in *RCL* and thus result in an initial solution of poor quality, while a too small *rcl* value will limit the possible choices and lead to insufficient diversity of the initialization procedure. In our case, we set empirically $rcl = \sqrt{max\{m, n\}}$, where m and n are the number of items and elements respectively. Considering the fact that the number of items in R(x)by be less than rcl, we finally set the size of RCLmay $|RCL| = min\{rcl, |R(x)|\}$. Now, we build the restricted candidate list as follows. For each item k of R(x), we calculate its dynamic profit ratio $r_k^* = p_k/W_k$. Then we identify the top |RCL| items with the largest r^* values to form RCL. As the result, RCL contains the feasible non-selected items whose dynamic profit ratio is larger than the other non-selected items. Finally, each item k in RCL is selected with probability P_k , which is given by $P_k = r_k^* / \sum_{l=1}^{|RCL|} r_l^*$.

As shown in Algorithm 2, starting from an empty solution S, the initialization procedure randomly and adaptively adds feasible items k into S

Algorithm 2 Greedy Randomized Initialization

```
1: Input: Instance I.
 2: Output: The initial solution S.
 3: /* Get the knapsack capacity C and restricted candidate list length rcl */
    (C, rcl) \leftarrow Read_instance(I)
                                                 /* Initialize the total weight of S */
 4: W(S) \leftarrow 0
 5: while W(S) < C do
      Calculate additional weight W_k of each non-selected item k
 6:
 7:
      Add all items i with W_i = 0 into current solution S
 8:
      r^* \leftarrow Calculate\_dynamic\_profit\_ratio(W, |RCL|)
      P \leftarrow Calculate\_probability(r^*, |RCL|)
9:
       S \leftarrow Add\_one\_item(P,S)
10:
11: end while
12: return S
```

at each iteration of the 'while' loop (lines 5-11). Specifically, the initial solution is generated by four steps. First, we calculate the additional weight W_k of each non-selected item k (line 6), and add all items k with $W_k = 0$ into the current solution S, which means adding this item will not increase the total weight of S (lines 7). Second, we calculate the dynamic profit ratio r_k^* of each item k in R(x) with $W_k \neq 0$ (line 8). Third, we calculate the selection probability P_k of each item k (line 9). Fourth, we randomly add one item from RCL into S according to P_k (line 10). These four steps are repeated until the knapsack capacity is reached.

Fig. 2. An illustrative example of the main steps of the greedy randomized initialization procedure.

As shown in Fig. 2, we present a numerical example to illustrate the main steps of the greedy randomized initialization procedure. Given a set of six items $(I_i, i = 1, ..., 6)$ with a profit of 1 to 6 respectively and a set of 6 elements $(E_j, j = 1, ..., 6)$ with a weight of 1 to 6 respectively. Let the capacity of knapsack be equal to 16. At the step shown in the left figure, two items I_1 and I_2 are already added into the knapsack. We calculate additional weight W_i of each non-selected item *i* and find that $W_3 = 0$ (the elements E_1 and E_5 corresponding to item I_3 are already selected). Then we add the item I_3 into the knapsack and obtain the new solution shown in the right figure. Next, we calculate the dynamic profit ratio of the non-selected items and identify items I_4 and I_5 as belonging to RCL (in this case, |RCL| = 2). Finally, we add one of the two items into the knapsack according to the probability P_k .

2.4 Solution-based tabu search

Tabu search (TS) is a general and powerful metaheuristic for combinatorial optimization [23]. Typically, TS examines candidate solutions by iteratively transitioning from the current solution to a nearby (neighbor) solution by following a neighborhood. Each solution transition is performed by selecting the best admissible candidate among the neighboring solutions within the neighborhood. The key distinguishing feature of TS compared to other local optimization approaches is its tabu list strategy, which prevents the search from revisiting previously encountered solutions. With the so-called *solution-based* tabu search [27,28], the tabu list is implemented with hash vectors and associated hash functions. Contrary to the popular *attribute-based* tabu search approach which typically needs some parameters for tabu list management, solution-based tabu search has the advantage of eliminating such parameters.

In the context of solving SUKP, the best-performing algorithms are all based on the conventional attribute-based TS approach [21,9,22]. This work adopts for the first time the solution-based tabu search approach for solving SUKP, which leads to an effective algorithm while avoiding the difficulty of tuning parameters.

Algorithm 3 shows the general scheme of our solution-based tabu search (SBTS) procedure. After initializing the best solution found so far (line 3) and the associated hash vectors (i.e., tabu list, line 4), the SBTS procedure iteratively improves the current solution S (lines 6-20) until 1) no admissible neighboring solution (i.e., feasible and non-tabu neighboring solution) exists, or 2) the allowed cut-off time t_{max} is reached. Given the optimization function f, the neighborhood structure N (Section 2.4.1) and the tabu list management strategy (Section 2.4.2), the current solution S is replaced by a best admissible neighboring solution at each iteration of the SBTS procedure. And then the tabu list is updated with the newly obtained solution S. The best solution found during this procedure is recorded in S_b (lines 14-16) and returned as the output of SBTS. Note that the best admissible neighboring solution S is not necessarily better than S_b , but it will still be selected to replace the current solution S. In this way, the search can keep moving forward to discover better solutions without being trapped in local optima.

The SBTS procedure terminates under one of the two following conditions: (1)

the overall cut-off time is reached; (2) no admissible neighboring solution can be found in the neighborhood, i.e., $N'(S) = \emptyset$ where $N'(S) \subseteq N(S)$ is the set of the admissible neighboring solutions not forbidden by the tabu list. Upon the termination of the SBTS procedure, two cases are considered: the overall cut-off time is reached and then the whole algorithm terminates. Otherwise, the algorithm re-starts its search by using the greedy randomized initialization procedure to creating a new starting solution, which is used to seed the next round of the SBTS procedure.

Next, we present the main ingredients of SBTS, including the move operator, the neighborhood structure and the tabu list strategy.

Algorithm 3 Solution-based tabu search 1: Input: Input solution S, neighborhood N, hash vectors H_1 , H_2 , H_3 , hash functions h_1 , h_2 , h_3 , cut-off time t_{max} , length of hash vectors L. 2: **Output**: Best solution S_b found during tabu search. /* Record the best solution S_b found during tabu search */ 3: $S_b \leftarrow S$ 4: $(H_1, H_2, H_3) \leftarrow Initialize_Hash_Vectors(H_1, H_2, H_3, L) /*$ (i.e., tabu list) */ 5: $Find \leftarrow True$ /* Track the admissible neighboring solution */ 6: while $Find \wedge Time \leq t_{max}$ do 7: Find admissible neighboring solutions N'(S) in N(S)8: if $N'(S) \neq \emptyset$ then /* Attain the best admissible neighboring solution S^* / 9: $S \leftarrow argmax\{f(S') : S' \in N'(S)\}$ 10: $Find \leftarrow True$ 11: else 12: $Find \leftarrow False$ end if 13:14:if $f(S) > f(S_b)$ then $f(S_b) \leftarrow f(S) /*$ Update the best solution S_b found during tabu search */ 15:end if 16:/* Update the hash vectors with S * /17: $H_1[h_1(S)] \leftarrow 1$ 18: $H_2[h_2(S)] \leftarrow 1$ 19: $H_3[h_3(S)] \leftarrow 1$ 20: end while 21: return S_b

2.4.1 Move operator and neighborhood structure

Our SBTS procedure relies on two popular move operators, i.e., the *flip* operator and the *swap* operator to explore candidate solutions. Specifically, given a solution $S = (y_1, \ldots, y_m)$ as described in Section 2.1, the *flip(i)* operator changes the value of a variable y_i to its opposite value $1 - y_i$. Similarly, given a solution $S = \langle A, \overline{A} \rangle$, the swap(q, p) operator exchanges one item in \overline{A} against one item in \overline{A} , where q and p represent items in sets A

and \overline{A} respectively. Meanwhile, a neighborhood filtering strategy [9,22] is applied in both move operators to reduce the neighborhood size. So the neighborhoods $N_f(S)$ and $N_s(S)$ induced by flip(i) and swap(q,p) are defined as follows, respectively.

$$N_f(S) = \{S' : S' = S \oplus flip(i) : 1 \le i \le m, f(S') > f(S_b)\}$$
(4)

$$N_s(S) = \{S' : S' = S \oplus swap(q, p) : q \in A, p \in \bar{A}, f(S') > f(S_b)\}$$
(5)

In this work, we employ a union neighborhood that covers both neighborhoods $N_f(S)$ and $N_s(S)$, i.e., $N(S) = N_f(S) \cup N_s(S)$. Moreover, we also apply a streamlining gain updating strategy to quickly evaluate the weight of each neighboring solution (see [21,22] for more details).

2.4.2 Tabu list management strategy using hash functions

During the SBTS procedure, the current solution S is iteratively replaced by the best admissible neighboring solution S', which is identified according to the objective function value and the tabu list strategy described in this section. Unlike the traditional attribute-based tabu search, where the tabu list records the performed moves, our solution-based tabu search uses hash vectors and hash functions to implement the tabu list.

Following previous studies [29,30,31,32], our tabu list management strategy relies multiple hash vectors and hash functions, which helps significantly reduce the probability of wrong identification of the tabu status. Specifically, we adopt three hash vectors H_v (v = 1, 2, 3) of length L, where each position takes a binary value which contributes to the definition of the tabu status of candidate solutions. The hash vectors are initialized to 0, indicating that no candidate solution is classified as tabu. Once a candidate solution is selected to replace the current solution S, the corresponding positions in the three hash vectors will be set to 1 (i.e., $H_v[h_v(S)] \leftarrow 1, v = 1, 2, 3$).

Given a candidate solution $S = (y_1, \ldots, y_m)$ where $y_i = 1$ if item *i* is selected, and $y_i = 0$ otherwise, the hash values $h_v(S)$ (v = 1, 2, 3) are calculated by

$$h_v(S) = \left(\sum_{i=1}^m \left\lfloor \mathcal{W}_i^v \times y_i \right\rfloor\right) \mod L \tag{6}$$

where L is the length of the hash vectors and is set to 10^8 . And \mathcal{W}_i^v is a precomputed weight that satisfies the following relation: $\mathcal{W}_i^v = i^{\gamma_v}$ (v = 1, 2, 3 and $i = 1, \ldots, m$), where γ_v is a parameter that takes different values for the three hash functions ($\gamma_v = 1.2, 1.6, 2.0$). To reduce the possible collisions that occur with hash functions, we randomly shuffle the order in the pre-computed weight vector \mathcal{W}^v in order to ensure an extended distribution of hash values of the solutions. Fig. 3 shows an illustrative example of this shuffling operation with five items and γ_v being set to 1.2, 1.6, 2.0, respectively. The left figure indicates the pre-computed weights \mathcal{W}_i^v (v = 1, 2, 3, and $i = 1, \ldots, 5$). Then the order of each of the three weight vectors \mathcal{W}^v is randomly shuffled to obtain a new weight vector shown in the right figure. Our preliminary experiment indicates that this random shuffling operation helps to reduce the error rates of the hash functions. We present the rationale for the setting of γ_v and an analysis of the hash functions in Section 4.1.

	1	2	3	4	5		1	2	3	4	5
w^1	1	2	3	5	6		2	5	1	6	3
w^2	1	3	5	9	13	\Longrightarrow	9	13	3	5	1
w^3	1	4	9	16	25		16	1	4	25	9

Fig. 3. An illustrative example of the random shuffling operation.

The hash-based tabu list management strategy works as follows. Given a candidate solution $S = (y_1, \ldots, y_m)$, we first calculate the three hash values $h_v(S)$ that are the indexes of the hash vectors. Then, the tabu status of solution S is determined according to the values of the hash vectors $H_v[h_v(S)]$. Specifically, S is determined as a forbidden solution (i.e., already visited) when $H_1[h_1(S)] \wedge H_2[h_2(S)] \wedge H_3[h_3(S)] = 1$. Otherwise, S is classified as an unforbidden solution that has not been visited by this round of SBTS and is eligible for solution transition. In this way, we can quickly determine the tabu status of a neighboring solution in O(1), and this is the main advantage of the hash-based tabu list management strategy. For the illustrative example shown in Fig. 4, solution S is classified as tabu and thus is excluded for solution transition.

Fig. 4. An example of a solution forbidden by the hash functions and the associated hash vectors.

2.5 Computational complexity and discussion

From an empty subset S, the greedy randomized initialization procedure (Section 2.3 and Algorithm 2) creates a solution in four steps. The first step calculates the additional weights in $O(m \times n)$, where m is the number of items and n is the number of elements. The second step calculates the dynamic profit ratios and identifies the top items in $O(m \times log(m))$. The third step of calculating probability can be realized in O(|RCL|) and the fourth step of adding one item can be achieved in O(1). Then the time complexity of the initialization procedure is $O(m \times n \times K_1)$, where K_1 is the maximum iterations of the initialization procedure. For the main solution-based tabu search procedure (Section 2.4 and Algorithm 3), we can evaluate its complexity as follows. Let $S = \langle A, \overline{A} \rangle$ be a given input solution, the complexity of one iteration of the SBTS procedure is $O((m + |\overline{A}| \times |A|) \times n)$. Let K_2 be the maximum iterations of SBTS. Then the time complexity of SBTS is $O((m + |\overline{A}| \times |A|) \times n \times K_2)$.

Now we discuss the relations between our algorithm and the existing tabu search algorithms for SUKP [21,9,22]. First, MSBTS is the first solution-based tabu search algorithm for SUKP, while the existing TS algorithms are based on the conventional attribute-based TS approach. Second, MSBTS employs a new tabu list management strategy that avoids tuning the tabu tenure. Third, unlike the previous TS algorithms that uses a perturbation procedure, MSBTS does not need such specific diversification strategies. Yet, it achieves remarkable results, as it is shown in Section 3.

Finally, it is worth mentioning that the solution-based tabu search approach has led to highly effective algorithms for several NP-hard binary problems such as 0-1 multidimensional knapsack [29], multidemand multidimensional knapsack [30], minimum differential dispersion [31] and maximum min-sum dispersion [32] and obnoxious p-median [33]. Our study of using solutionbased tabu search for SUKP further confirms the usefulness of this approach for binary optimization.

3 Computational results and comparisons

This section is devoted to a computational assessment of the proposed MSBTS algorithm, in comparison with three best-performing SUKP algorithms in the literature based on two sets of 60 benchmark instances available at http://www.info.univ-angers.fr/pub/hao/SUKP_MSBTS.html.

3.1 Benchmark instances

The SUKP benchmark instances adopted in our experiments were commonly tested in the literature, which can be divided into Set I and Set II. The Set I instances were proposed in [10] with 85 to 500 items and elements, while the Set II instances were introduced in [22] with 585 to 1000 items and elements. These 60 instances share the same characteristics. An instance is defined by m items, n elements and an associated binary relation matrix $R_{ij}[m \times n]$, where $R_{ij} = 1$ means that item i contains element j. Each instance is further characterized by two parameters: the density α of $R_{ij} = 1$ in the relation matrix R (i.e., $\alpha = (\sum_{i=1}^{m} \sum_{j=1}^{n} R_{ij})/(mn)$) and the ratio β of knapsack capacity C to the total weight of the elements (i.e., $\beta = C/\sum_{j=1}^{n} w_j$). As indicated in [10,22], for the 60 instances tested in this study, α is equal to 0.10 or 0.15, while β is equal to 0.75 or 0.85.

3.2 Experimental settings

The proposed MSBTS algorithm was implemented in C++ and compiled using the g++ compiler with the -O3 option. All the experiments were carried out on an Intel Xeon E5-2670 processor (2.5 GHz CPU and 2 GB RAM) running under the Linux operating system. The MSBTS algorithm used the same stopping conditions for the reference algorithms (see below), i.e., 500 seconds for the Set I instances and 1000 seconds for the Set II instances. Each instance was solved 100 times independently with different random seeds. Note that contrary to the existing algorithms, our algorithm eliminates the need for tuning parameters.

Among the existing algorithms for SUKP in the literature, we identify four best performing algorithms according to the reported computational results: hybrid jaya algorithm [17] (DHJaya, 2019), hybrid binary particle swarm optimization with tabu search algorithm [21] (HBPSO/TS, 2019), iterated two-phase local search algorithm [9] (I2PLS, 2019) and the kernel based tabu search algorithm [22] (KBTS, 2020). We thus use them as the reference algorithms for our comparative study. Since the results of these algorithms were obtained in [22] on the same computing platform and under the same stopping condition as in this work, we directly adopt these results in our study.

3.3 Computational results

The computational results of our MSBTS algorithm and the reference algorithms on the SUKP instances of Set I and Set II are reported in Table 1

and 2, respectively¹. The first column of these two tables gives the name of each instance, where the asterisk (*) denotes that the optimal value proved by CPLEX [9]. The remaining columns report the following information: the best objective value (f_{best}), the average objective value (f_{avg}), the standard deviations over 100 runs (*std*) and the average run times t_{avg} (to obtain the f_{best} value) of each involved algorithm. The row #Avg shows the average value of each column. Furthermore, the **bold** entries highlight the dominating values among the compared results, while the *italic* entries indicate the equal best values.

Comparing the results of Table 1 leads to the following comments. First, in terms of the best performance indicator, MSBTS can attain all the best-known f_{best} results on all the 30 instances of Set I, thus dominating DHJaya and matching the performance of the best algorithms I2PLS and KBTS. Second, in terms of the average performance indicator, our MSBTS algorithm dominates DHJaya and competes favorably with HBPSO/TS and I2PLS, while performing marginally worse than KBTS even if MSBTS has better f_{avg} results on five large instances with 485 to 500 items and elements. It is difficult to further compare the competing algorithms on Set I, since the *p-values* in Table 3 from the non-parametric Wilcoxon signed-rank test don't show a statistical difference at 0.05 significance level between MSBTS and the reference algorithms except DHJaya. So we focus on Set II for a more detailed comparison.

Table 2 on the 30 instances of Set II discloses that our MSBTS algorithm outperforms the reference algorithms on large size instances. Specifically, MSBTS matches the best-known f_{best} values for the remaining 23 instances, and remarkably, finds 7 new best-known results (improved lower bounds). Most of these 7 instances have 985 to 1000 items, which demonstrates the advantage of our algorithm on the most difficult instances. When considering the average performance, MSBTS remains highly competitive compared to the reference algorithms. On the other hand, MSBTS has a zero *std* value on 20 instances while the reference algorithms achieve less zero *std* values (0 for DHJaya, 1 for HBPSO/TS, 2 for I2PLS and 6 for KBTS), which shows the robustness of our algorithm. Moreover, the smallest #Avg value of the corresponding t_{avg} entries obtained by MSBTS demonstrates that our algorithm is more computational efficient than the reference algorithms on this set of SUKP instances. We show a detailed time-efficiency comparison of our MSBTS algorithm with the reference algorithms in Section 3.4.

In order to better highlight the advantage of the proposed MSBTS algorithm,

¹ Our solution certificates are available at: http://www.info.univ-angers.fr/ pub/hao/SUKP_MSBTS.html. The code of MSBTS will also be made available upon the publication of the paper.

we summarize the comparative results between MSBTS and each reference algorithm in Table 3. The first two columns of the table give the pairs of two compared algorithms and the corresponding instance sets, respectively. Columns #Wins, #Ties and #Losses show the number of instances for which MSBTS obtains a better, equal and worse result according to the f_{best} and f_{avg} indicators. The last column indicates the *p*-values from the Wilcoxon signed-rank test, where 'NA' implies that two underlying groups of results are exactly the same. From Table 3, we can observe that MSBTS achieves better or equal results in terms of f_{best} on all the tested instances, while being better in terms of f_{avq} on most instances. Note that KBTS reports more f_{avq} values better than MSBTS for Set I (13 vs 6). However, the Wilcoxon signedrank test in Table 3 (*p*-value = 9.10e-2 > 0.05) indicates that there is no statistically significant difference. Furthermore, as shown in the last column, the *p*-values (< 0.05) obtained between MSBTS and each compared algorithm on the instances of Set II confirm the statistically significant difference of the compared results.

3.4 Time-to-target analysis

We now present a time-to-target analysis (TTT) to evaluate the computational efficiency of the proposed MSBTS algorithm compared to the reference algorithms. For this, we compare the time required for each algorithm to obtain a solution at least as good as a given target value and measure the empirical probability distributions. More details about TTT can be found in [37,38].

Specifically, we run each compared algorithm 100 times to solve each instance of Set II with the setting shown in Section 3.2 and recorded the time to achieve an objective value at least as good as the given target value (the algorithm stops immediately when it reaches the target value). Then we sorted the times in increasing order and calculated the probability $\rho_i = (i - 0.5)/100$ with each time T_i , where T_i corresponds to the *i*th smallest time.

Table 4 shows the experimental results of DHJaya, HBPSO/TS, I2PLS, KBTS and MSBTS on the instances of Set II. The first two columns give the name of each instance and the corresponding target value, respectively. The remaining columns report the best time (T_{best}) in seconds to achieve the target value and the average time (T_{avg}) in seconds to reach the target value over 100 runs. The row (#Avg) indicates the average value of each column. And the row #Best shows the number of instances for which an algorithm obtains the smallest T_{best} value among the compared algorithms. Moreover, to check whether there exists a significant difference between the proposed MSBTS algorithm and the compared algorithms in terms of T_{best} and T_{avg} , we report the *p*-values from

Table 1. Co	mpute	tional resul	lts of th	e MSB	TS algor	ithm	and th	ne refer	ence algo	rithms	on the	e 30 be	nchm	ark in	stance	ss of Se	et I.		
Instance/Algorithm		DHJaya [17]			HBPSO/T	S [21]			12PLS [9]			К	3TS [22				MSBT	S	
	f_{best}	f_{avg} std	$t_{avg}(s)$	$ f_{best} $	f_{avg}	std t_i	$_{avg(s)} f$	$_{best}$	f_{avg} std	t_{avg}	$(s) f_{best}$	f_{av_i}	, s	$td t_{a_1}$	$g(s) f_b$	est .	f_{avg}	std	avg(s)
$100_85_0.10_0.75^*$	13283	13283 0	9.477	13283	13283	0 0	1 860.	3283	13283 0	3.09	$\frac{1328}{1}$	3 132	<i>83</i> (4.()82 15	3283	13283	0	12.770
$100_85_0.15_0.85^*$	12479	12479 0	24.414	12479	12403.15	98.971	01.122	2479	12335.1398.	78 103.	757 1247	9 124	79 C	42	.992 12	61.49	12413.78	79.79	184.323
200_185_0.10_0.75	13521	13498.2226.10	0 258.21	3 13521	13521	0 0	.490 1	3521	13521 0	71.9	84 1352	1 135	<i>21</i> C	6.9	988 <u>15</u>	3521	13521	0	22.528
$200_{-185_{-0.15_{-0.85}}$	14215	14215 0	83.129	14215	14177.38	70.847	2.041	4215	$14031.28\ 131$.46 180.	809 1421	5 142	09.87 2	9.1710	7.407 14	[215	13946.15	153.67	258.541
300_285_0.10_0.75	11385	11167.77 129.9	98 174.33	5 11563	11563	0 3	8.355 1	1563	11562.023.9	4 181.	248 1156	3 115	<i>63</i> C	28	.841 11	563	11563	0	37.877
$300_285_0.15_0.85$	12402	$12248.42\ 22.1$	2 316.76	7 12607	12607	0 2	4.967	2607	$12364.55\ 83.6$	03 240.	333 1260	$\gamma 125$	36.02 8	7.5123	$5.450 1^{\ell}$	507	12430.51	73.86	216.465
$400_{-}385_{-}0.10_{-}0.75$	11484	$11325.88 \ 38.6!$	5 229.37	0 11484	11484	0 1	0.870 1	1484	11484 0	31.8	01 1148	4 114	<i>84</i> C	0.5	596 11	487	11484	0	7.643
$400_{-}385_{-}0.15_{-}0.85$	10710	$10293.96\ 173.8$	85 241.06	8 11209	11209	0 1	6.478 1	1209	11157.2687.	29 141.	525 1120	9 112	<i>09</i> C	72	.020 11	209	11209	0	16.800
$500_{485_{0.10_{0.75}}$	11722	11675.5155.5.5;	3 226.60	4 11771	11746.19	57.982	93.514 1	1771	11729.766.5	9 349.	545 1177	1 117	55.47 1	9.7420	6.199	1171	11771	0	31.171
$500_{485_{0.15_{0.85}}$	10194	9703.56 114.8	\$52 383.02	1 10194	10163.76	82.119	2.121	0238	10133.9494.	72 369.	375 1023	8 102	02.90 1	6.2529	3.140 10	238	10205.62	16.33	389.536
$100_{-}100_{-}0.10_{-}0.75^{*}$	14044	14044 0	1.374	14044	14044	0 0	.518 1	77077	14044 0	38.2	45 1404	4 140	44 C	0.0	14	. 044	14044	0	5.639
$100_{-}100_{-}0.15_{-}0.85^{*}$	13508	13508 0	1.572	13508	13508	0 2	.923 1	3508	$13451.50\ 126$.49 70.5	87 1350	8 135	<i>08</i> C	33	.403 15	3508	13508	0	55.103
$200_200_0.10_0.75$	12522	$12480.62\ 65.0!$	5 207.66	7 12522	12522	0 0	.8125 1	2522	12522 0	54.7	80 1252	2 125	22 C	48	.206 12	2522	12518.28	21.15	70.411
$200_{-}200_{-}0.15_{-}0.85$	12317	12217.81 93.30	51 229.82	4 12317	12317	0 0	.950 1	2317	12280.0757.	77 238.	348 1231	7 123	17 C	72	.495 12	317	12316.21	7.86	92.155
$300_{-}300_{-}0.10_{-}0.75$	12736	12676.7835.20	0 241.77	4 12817	12806.44	15.392	9.074 1	2817	12817 0	66.4	03 1281	7 128	17 C	74	.247 16	3817	12813.70	9.90	165.618
$300_{-}300_{-}0.15_{-}0.85$	11425	$11260.25\ 103.9$	95 152.32	9 11585	11585	0	.985 1	1585	11512.1873.	15 220.	100 1158	5 115	84.17 8	.26 14	1.464 11	585	11585	0	156.333
400_400_0.10_0.75	11569	11301.5674.83	8 322.14	3 11665	11484.20	72.954	5.025 1	1665	11665 0	18.7	33 1166	5 116	<i>65</i> C	64	.126 11	665	11657.08	10.56	90.423
$400_{-}400_{-}0.15_{-}0.85$	10927	$10721.45\ 221.3$	38 77.037	11325	11325	0	.902 1	1325	11325 0	76.0	00 1132	5 113	25 C	17	.591 11	325	11309.20	112.46	125.950
500-500-0.10-0.75	10943	10871.2239.93	3 41.383	11109	11026.24	51.623	40.958	1249	$11243.40\ 27.5$	43 134.	186 1124	9 112	48.96 C	.40 14	6.040 11	249	11249	0	29.905
$500_{-}500_{-}0.15_{-}0.85$	10214	10069.33 103.	33 101.92	6 10381	10213.25	71.302	20.328	0381	10293.8985.	53 237.	894 1038	1 103	32.63 5	2.2515	6.331 1 <i>(</i>	381	10365.52	49.41	169.084
85_100_0.10_0.75*	12045	12045 0	17.199	12045	12045	0 0	.056 1	2045	12045 0	2.79	8 1204	5 120	45 C	0.0	075 16	2045	12045	0	3.117
$85_{-100_{-}0.15_{-}0.85^{*}}$	12369	12369 0	0.342	12369	12369	0 0	.088	2369	12315.5362.	60 17.4	70 1236	9 123	<i>69</i> C	10	.175 12	369	12369	0	26.240
$185_200_0.10_0.75$	13696	13667.63 26.50	6 244.20	5 13696	13696	0 0	.489 1	3696	13695.603.6	8 124.	136 1369	6 136	<i>96</i> C	5.8	351 15	3696	13696	, 0	7.089
$185_200_0.15_0.85$	11298	11298 0	38.439	11298	11298	0 0	.486 1	1298	11276.1783.	78 139.	865 1129	8 112	<i>98</i> C	9.9	373 11	298	11298	0	30.689
$285_{-}300_{-}0.10_{-}0.75$	11568	$11563.80\ 10.4$	1 203.87	4 11568	11568	0 1	3.630 1	1568	11568 0	25.1	28 1156	8 115	<i>68</i> C	30	.618 11	568	11567.70	2.99	17.706
$285_{-}300_{-}0.15_{-}0.85$	11714	11436.93 101.8	85 463.46	6 11802	11802	0 2	.135 1	1802	11790.4327.	51 206.	422 1180	2 117	99.27 9	.95 16	8.904 11	802	11798.88	10.58	186.685
$385_{-400-0.10-0.75}$	10483	$10287.36\ 80.6$	1 53.459	10600	10552.73	74.681	00.155	0090	10536.5356.	08 234.	475 1060	0 106	00	73	.087 110	0090	10599.70	1.71	150.505
$385_{-}400_{-}0.15_{-}0.85$	10302	10184.09 138.0	00 230.07	7 10506	10472.40	67.201	68.870	0506	10502.6423.	52 129.	505 1 <i>050</i>	6 105	00	58	.240 10	506	10504.23	16.08	133.340
$485_{-500-0.10-0.75}$	11036	$10883.19\ 48.56$	8 66.029	11321	11142.27	62.512	23.387	1321	11306.4736.1	00 207.	118 1132	1 113	18.81	0.9512	1.494 11	321	11321	0	54.178
485_500_0.15_0.85	10104	9665.70 142.	57 49.438	10220	10208.96	3.26 1	43.999 1	0220	10179.4546.	97 238.	530 1 <i>022</i>	0 102	19.761	.68 11	8.564 10	220	10219.04	3.26	123.052
#Avg	11873.80	3 11748.07 61.50	6 156.33	2 11967.4	17 11 938.10	24.296	5.194 1	1973.60	11932.3940.	54 138.	476 1197	3.60 119	68.567	.87 78	.16 11	973.60	11953.72	18.987	96.729

		vg(s)	31.952	9.382	3.474	02.379	59.160	36.666	32.21 3	78.573	71.192	34.006	3.377	24.626	1.868	3.472	1.032	29.395	5.950	37.865	12.712)5.954	3.093).163	229	3.859	10.315	20.765	1.932	73.526	55.645	28.435	30.940
II.	s	std t_a	0 18	0 5	0 2	0 1($0^{2!}$	25.384	0 15	31.189'	29.56 6	0.77 6	0 1(0 2	0 64	0	0 2.	0 1	0 4	0 2;	$0 1_{4}$	28.46 5(0)6 0	0 9.)6 0	$9.24 \ 2.$	36.41 72	0 8.	9.88 5	13.26.8!	32.47 6	7.22 28
of Set	MSBT	60	14	57	81	63	37	86.25	25	66.71	32.59	53.36	524	62	86	29	32	01	45	06	51	97.39	393	56	121	20	82.68	84.58	18	11.72	93.15	78.20	51.59
nces (f_{a}	66	93	98	91	, 99	89	97	85	96 (84	4 10	6	97	92	66	91	97	89	95	848	3 10	92	1 10	91	93	86	93	84	į 91	85	.93 93
insta		$) f_{best}$	9914	34 9357	3 9881	9163	34 9937	3 9024	1 9725	3 8620	22 968 0	5 8455	7 1052	2 9062	9786	14 9229	6 9932	9101	1 9745	4 8990	0 9551	5 8538	1039	9256	8 1012	1 9176	3 9384	4 8746	2 9318	9 8425	6 9234	1 8612	9362
mark		$t_{avg}(s$	209.67	263.68	455.71	524.79	483.38	474.64	609.81	274.65	487.92	941.56	404.65	255.34	97.316	486.30	214.28	321.85	368.80	672.57	510.66	500.43	89.785	84.355	230.91	140.15	136.17	467.33	281.63	625.82	319.35	450.71	379.47
enchi	S [22]	std	0	9.18	11.88	9.10	20.42	49.07	24.85	48.37	74.35	0.50	22.91	4.78	0	20.70	14.33	39.55	30.06	14.50	60.84	27.12	0	0	631.87	0	0	47.92	21.32	46.80	74.76	33.47	23.95
e 30 b	KBT	f_{avg}	9914	9354.52	9844.96	9138.36	9808.86	8955.29	9616.70	8526.55	9496.63	8448.05	10521.7	9061.16	9786	9187.55	9930.56	8936.12	9729.51	8918.96	9431.47	8376.20	10393	9256	10114.5	9176	9384	8643.93	9236.16	8311.68	9105.84	8488.13	9303.1C
on th		f_{best}	9914	9357	9881	9163	9837	9024	9725	8620	9668	8453	10524	9062	9786	9229	9932	9101	9745	8990	9544	8474	10393	9256	10121	9176	9384	8746	9318	8425	9193	8528	9352.30
ithms		avg(s)	79.356	57.807	63.945	71.132	19.986	74.231	11.245	41.670	29.743	41.606	13.537	56.386	83.700	45.194	68.227	7.170	41.110	16.694	76.669	32.334	99.311	64.876	40.289	61.051	76.738	86.047	52.360	84.859	9.760	83.901	73.031
algor	[6]	td t	3.39 4	6.67 4	8.74 3	1.90 6	30.67 7	13.34 6	31.42 5	14.76 5	03.183	35.555	2.99 5	16.28 4	10.87 3	8.61 4	2.06 8	0.91 2	36.68 3	1	42.338	38.52 6	29.83 4	2	36.13 5	52.80 4	5.56 5	9.51 5	32.28 4	04.344	26.378	19.982	57.96 4
rence	12PLS	5 <i>б</i> а	34.74]	24.62	19.24	35.27 4	78.89 8	80.32 4	37.61 (26.36	21.23	68.18	520.705	22.97	42.73 4	55.79	85.79 7	09.50	60.12 3	16 (55.73	06.49 (366.152	56 (202.62	39.18	36.10 9	58.51 7	06.31 (68	17.48	33.05]	02.09
e refe		$f_{a_{l}}$:26 C	7 93.	1 98.	3 91:	2 96'	7 878	1 95;	1 845) 92	8 820	24 10	2 90	$6 97_{2}$	9 91	2 96	1 89(5 96	68 .	4 925	9 82(93 10:	6 92	21 99'	6 91:	4 92:	3 85!	2 91(5 82(268 2	8 82:	0.10920
nd th		$(s) f_{bes}$	<u>860 975(</u>	57 935	999 <i>988</i>	59 916	55 9825	33 890'	22 961	02 848	136 9580	848 8448	34 105	261 906	010 978	922	506 <i>993</i>	83 896	520 974	798 8916	52 954	9 8379	103	37 925	112 101	53 917	115 938	614 866	04 923	61 842	315 904'	340 8528	248 9310
hm a	21]	t_{avg}	576.2	19413.1	3 881.9	78 689.7	1 777.1	3 418.0	3 514.9	56332.1	30 620.4	1 564.8	60.25	7 214.2	1 215.9	16659.1	20 607.5	37590.8	3 598.5	54665.7	7 802.6	97.90	35 729.4	103.6	2 123.0	34645.1	1 339.4	3 665.5	2 455.1	35 296.0	1 967.3	56350.6	1 499.2
lgorit	[] ST/0	std	7.68	3 143.3	3 51.06	5 109.7	9 46.13	1 84.30	3 89.45	2 108.5	125.8	8 92.7	391.09	3 27.27	3 72.5	5 138.4	7 113.2	1 160.0	51.13	210.5	4 82.57	1 95.70	01102.3	0	30.82	7 135.6	20.92	7 57.53	48.92	7 131.6	8 66.64	121.8	1 85.9
BTS a	HBPSC	f_{avg}	9724.60	9174.16	9792.23	8940.65	9736.89	8872.84	9560.95	8208.22	9278.50	8129.08	10517.8	8902.35	9679.50	9003.15	9823.17	8732.94	9639.60	8617.20	9273.64	7872.84	10191.0	9256	6066	8936.47	9163.90	8322.17	9121.24	7900.57	8938.38	7958.24	9105.91
e MS.		f_{best}	9741	9357	9881	9135	9837	8907	9611	8481	9668	8448	10518	9024	9786	9177	9932	8907	9745	8916	9509	8134	10393	9256	10121	9176	9384	8572	9232	8277	9113	8172	9280.33
of th		avg(s)	90.489	81.295	43.236	26.088	37.331	36.798	87.150	16.604	09.873	12.589	21.196	71.965	09.836	07.656	67.090	61.688	570.990	02.655	42.187	32.614	8.186	16.631	30.180	59.976	16.494	04.625	90.376	40.935	13.094	03.976	82.096
esults	[17]	std t	30.22 6	79.17 8	5.96 5	140.484	17.95	33.01 2	109.14	37.93 3	15.01 3	90.87 3	3 29.61	13.46	28.70	35.90	51.42 5	9.78	37.83 6	32.31 7	53.65 5	71.87 9	72.81 9	61.72 6	19.02 4	106.42	54.14 5	61.45 6	16.70	35.84 1	14.99 3	18.74	32.54 4
nal r	HJaya	3 6	9.97 6	98.45 7	32	94.09 1	10.08 4	61	19.53	14.47 8	06.86	30.52 9	504.251	35.64 4	9.01 2	35.51 6	56.38	74.18	32.86 3	92.88 6	50.80	37.92 7	161.45 7	14.22 6	3.55 4	0.79 1	35.09 5	32.33	79.09 4	31.44 6	94.48 4	25.27 4	11.40
utatic	Ц	$_t f_{a_1}$	$) 94_{i}$	268 26)96 (388	$1 95_4$	7 864	$5 92_4$	8 824	4 93(3 828	01 10	878 (2 94(1 898	396 (1 877	3 94(8 849	3 925	08 00	00 100	1 894	366 02	2 88(388	3 848	206 2	7 788	7 899	3 842	3.6790_{4}
Comp		f_{bes}	964(918'	626	9100	977	879'	9459	8418	5 942	5 843;	1050	8910	951;	912	989(896	952(8718	75 9348	85 833(103(903	100′	910	912:	8550	913′	821'	5 906'	5 845:	9190
e 2. (lgorith)	10-0.75	$15_{-0.85}$	10-0.75	$15_{-0.85}$	10-0.75	15_0.85	10-0.75	$15_{-0.85}$.10-0.7	$.15_{-0.8}$	10-0.75	$15_{-0.85}$	10-0.75	$15_{-0.85}$	$10_{-0.75}$	$15_{-0.85}$	10-0.75	$15_{-0.85}$	0.10_0.	0.15_{-0} .	10-0.75	$15_{-}0.85$	10-0.75	$15_{-0.85}$	10-0.75	$15_{-}0.85$	10-0.75	$15_{-0.85}$	$.10_{-0.7}$	$.15_{-0.8}$	
Tabl	ance/A		-585_0.	-585_0	-685_0.	-685_0.	_785_0.	_785_0.	-885-0.	-885-0.	$0_{-985_{-0}}$	$0_{-985_{-}0}$	-600-0	-600_0.	-700-0	-700-0	-800-0	-800-0.	-900-0.	-900-0	0_1000_	0_1000_	-600-0	-600-0	-700-0.	-700-0	_800_0	-800-0	-900-0.	-900-0	-1000_0	_1000_0	vg
	Inst		600.	600.	700	700.	800.	800.	900.	900.	100	100	600.	600.	700.	700.	800.	800.	900.	900.	100	100	585.	585.	685.	685.	785.	785.	885.	885.	985.	985.	₩¥

Table 3

Algorithm pair	Instance se	tIndicate	r#Win	s#Tie	s # Losse	sp-value
MSBTS vs. DHJaya [17]	Set I (30)	f_{best}	16	14	0	4.82e-4
		f_{avg}	23	6	1	1.37e-4
	Set II (30)	f_{best}	30	0	0	1.82e-06
		f_{avg}	30	0	0	1.86e-09
MSBTS vs. HBPSO/TS [21]	Set I (30)	f_{best}	2	28	0	1.80e-1
		f_{avg}	11	12	7	1.33e-1
	Set II (30)	f_{best}	20	10	0	5.96e-5
		f_{avg}	29	1	0	2.56e-6
MSBTS vs. I2PLS [9]	Set I (30)	f_{best}	0	30	0	NA
		f_{avg}	19	5	6	2.64e-2
	Set II (30)	f_{best}	15	15	0	8.83e-5
		f_{avg}	29	1	0	2.56e-6
MSBTS vs. KBTS [22]	Set I (30)	f_{best}	0	30	0	NA
		f_{avg}	6	11	13	9.10e-2
	Set II (30)	f_{best}	7	23	0	1.80e-2
		f_{avg}	24	5	1	1.57e-5

Summarized comparisons of the MSBTS algorithm against each reference algorithm over the two sets of benchmark instances.

the Wilcoxon signed-rank test in the last row.

From Table 4, we observe that the proposed MSBTS algorithm is very competitive compared to the reference algorithms in terms of T_{best} and T_{avg} . In particular, MSBTS attains the smallest T_{best} values for 22 instances (out of 30) against 0 for DHJaya, HBPSO/TS, I2PLS and 8 for KBTS. Also, MSBTS has a better average performance according to the #Avg values in the last row. The *p*-values (< 0.05) from the Wilcoxon signed-rank test clearly indicate that differences between MSBTS and the compared algorithms are statistically significant.

To further illustrate the computational efficiency of MSBTS compared to the reference algorithms, we plot the points (T_i, ρ_i) based on two SUKP instances of Set II and show the time-to-target plots in Fig. 5. The X-axis in each subfigure indicates the time to achieve the target value, and the Y-axis is the cumulative probability of reaching the given target value. We observe that the cumulative probability of each algorithm increases with the run-time. However, MSBTS (also KBTS) attains a high probability (over 90%) in a very short computation time (less than 20 seconds) on both instances, while the other algorithms perform poorly. Regarding MSBTS and KBTS, in order to attain a probability of 99.5% of reaching the target value, MSBTS requires about 12 seconds on both instances, while KBTS consumes around 42 seconds and 26 seconds. Note that DHJaya failed to obtain the probability of 99.5% within the time limit of 1000s on both instances. This experiment demonstrates the computational efficiency of the proposed MSBTS algorithm.

Table 4 Time-to-target analysis on the SUKP instances of Set II.

Instance/Algorithm	 Target	DH.	Jaya	HBPS	SO/TS	I2F	PLS	KE	BTS	MSI	BTS
, .		$T_{best}(s)$	$T_{avg}(s)$								
600_585_0.10_0.75	9500	100.079	523.459	3.470	9.353	3.741	11.927	0.213	0.618	0.654	1.297
600_585_0.15_0.85	9100	65.826	566.872	67.883	382.176	6.599	59.784	3.486	12.187	1.244	9.123
700_685_0.10_0.75	9700	270.577	561.072	11.334	133.119	11.657	66.970	1.216	7.799	0.858	5.310
700_685_0.15_0.85	9100	106.614	427.274	123.888	526.406	9.663	178.041	1.647	42.561	1.370	23.398
800_785_0.10_0.75	9500	160.885	650.605	18.534	132.560	25.917	241.929	1.272	15.965	1.325	7.600
800_785_0.15_0.85	8700	151.590	516.174	68.445	323.062	15.246	102.963	5.448	55.774	2.492	7.798
900_885_0.10_0.75	9400	313.696	560.054	37.409	271.706	13.254	295.578	1.530	28.776	3.346	8.834
900_885_0.15_0.85	8400	221.799	400.128	499.176	652.865	13.318	459.241	2.592	60.691	2.139	9.243
1000_985_0.10_0.75	9000	291.897	421.090	9.114	97.051	13.008	150.602	1.061	21.855	0.639	16.614
1000_985_0.15_0.85	8300	293.618	574.331	678.089	820.440	530.745	530.745	6.685	116.893	10.870	25.255
600_600_0.10_0.75	10500	67.558	369.584	16.691	51.810	5.938	31.448	2.589	58.678	1.041	5.271
600_600_0.15_0.75	8800	68.179	560.449	6.067	131.515	5.670	40.425	1.170	5.538	0.697	5.450
700_700_0.10_0.75	9500	654.112	743.459	9.297	163.108	9.090	99.874	1.769	12.083	0.721	4.817
700_700_0.15_0.85	9100	105.922	521.651	111.166	690.543	23.306	265.033	4.807	29.800	2.098	19.571
800_800_0.10_0.75	9800	573.460	576.004	180.088	549.453	866.553	866.553	9.431	213.756	6.618	21.098
800_800_0.15_0.85	8800	162.727	575.454	114.424	508.682	15.821	131.655	1.385	27.487	2.459	8.224
900_900_0.10_0.75	9500	220.422	603.266	33.222	261.629	11.589	46.073	1.275	8.965	2.809	6.297
900_900_0.15_0.85	8600	235.578	459.369	50.142	554.410	12.601	84.906	1.033	10.397	0.912	8.208
1000_1000_0.10_0.75	9300	327.772	784.859	76.998	560.236	30.069	412.291	2.125	149.036	18.468	43.389
1000_1000_0.15_0.85	8000	294.562	530.699	76.860	548.614	25.684	225.339	2.132	24.634	1.218	8.561
585_600_0.10_0.75	10000	64.865	245.444	15.053	83.161	6.935	17.042	1.614	5.787	0.746	2.510
585_600_0.15_0.85	9000	65.337	528.534	8.954	63.449	7.319	96.275	1.033	21.288	1.005	21.108
685_700_0.10_0.75	10000	333.101	472.050	137.383	171.016	108.642	484.414	13.512	235.948	2.818	5.230
685_700_0.15_0.85	9000	154.648	514.173	189.391	531.964	19.709	299.990	3.127	45.425	1.370	29.075
785_800_0.10_0.75	8900	155.496	484.831	9.029	96.090	11.278	104.360	0.756	7.486	0.765	2.847
785_800_0.15_0.85	8500	150.938	607.258	679.254	679.254	27.872	358.703	10.115	155.450	2.401	22.656
885_900_0.10_0.75	9100	222.106	619.250	30.648	425.582	36.186	415.666	6.096	73.726	4.159	17.378
885_900_0.15_0.85	8000	346.018	631.780	228.520	564.195	28.099	209.716	1.941	17.235	1.746	7.186
985_1000_0.10_0.75	8900	300.232	540.491	278.500	651.225	36.254	428.971	12.316	113.230	9.698	48.404
985_1000_0.15_0.85	8100	281.460	437.529	109.148	276.985	47.763	287.634	1.088	12.129	0.997	10.208
#Avg	9073	225.369	533.573	129.272	363.722	65.984	233.472	3.482	53.040	2.923	13.732
#Best	-	0	0	0	0	0	0	8	2	22	28
#p-value	-	1.86e-09	1.86e-09	1.86e-09	1.86e-09	1.86e-09	1.86e-09	2.48e-2	9.31e-09	-	-
						'					

Fig. 5. Cumulative probability distributions for the time to reach a target value.

4 Analysis

In this section, we perform additional experiments to investigate the influences of the main ingredients of the MSBTS algorithm. Specifically, we study the effect of the parameter γ_v of the hash functions (Section 4.1), the error rates of hash functions (Section 4.2) and the benefit of the solution-based tabu search strategy (Section 4.3).

4.1 Sensitivity analysis of hash functions

Hash functions are the key ingredients of the MSBTS algorithm. Now, we analyze the influence of the parameter γ_v (v = 1, 2, 3) involved in the hash functions (see Section 2.4.2) on the performance of the MSBTS algorithm. As indicated in [31], the proper settings of γ_v should satisfy two conditions: (1) the hash values of each candidate solution should be no more than the allowed maximum integer to avoid overflow; (2) the distribution of hash values of different candidate solutions should be wide enough to reduce possible collisions. We have carried out preliminary experiments for γ_v used in the hash functions. Experimental results show that a large γ_v value (> 2.8) will lead to integer overflow for instances with more than 985 items or elements. On the other hand, a small γ_v value (< 1.0) will lead to the same values of $|\mathcal{W}_i^v|$ $(\mathcal{W}_i^v = i^{\gamma_v})$ for adjacent items, increasing the probability of collisions. For example, assuming $\gamma_v = 0.9$, the $|\mathcal{W}_i^v|$ values of the adjacent items 501 and 502 are both 269 ($\mathcal{W}_{501} = 501^{0.9} = 269.06$, $\mathcal{W}_{502} = 502^{0.9} = 269.55$). Given two neighboring solutions S_1 and $S_2 = S_1 \oplus swap(500, 501)$ where the swap operator was defined in Section 2.4.1, they will get the same hash value. As we focus on the ranges (1.0, 2.8)to analyze the influence of the parameter γ_v .

For this purpose, we tested different groups of parameters $(\gamma_1, \gamma_2, \gamma_3)$ (see Table 5) on 10 representative SUKP instances, i.e., 785-800-0.15-0.85, 800-785-0.10-0.75, 800-785-0.15-0.85, 885-900-0.15-0.85, 900-885-0.15-0.85, 985-1000-0.10-0.75, 985-1000-0.15-0.85, 1000-985-0.10-0.75, 1000-985-0.15-0.85, 1000-1000-0.15-0.85. These 10 instances are denoted by G_1 to G_{10} in Table 5, respectively. For the experiment, we performed 30 independent runs for each setting of parameters on each instance with the cut-off time of 1000 seconds, and recorded the average objective values (f_{avg}) . In fact, we do not provide the best object values (f_{best}) here, since most of the f_{best} values obtained with different group of parameters $(\gamma_1, \gamma_2, \gamma_3)$ are exactly the same.

Table 5 displays the comparative results of this experiment, where the first row shows the label of each tested instance and the first column indicates the setting of the parameters $(\gamma_1, \gamma_2, \gamma_3)$. The f_{avg} values of each group of γ_v are shown in rows 2 to 21, respectively. In addition, the last row #std gives the standard deviation of each column and the last column #Avg presents that the average values of each row.

From Table 5, we observe that the parameter γ_v is not sensitive for our algorithm. First, the results obtained from different groups of parameters are very similar in terms of #Avg values. Specially, there are 12 out of 20 groups of parameters that obtained the same f_{avg} value on instance G_4 . Second, the small #std values of each column indicate that the standard deviations of the results shown in the columns are relatively low. The *p*-value of 0.633 (> 0.05) from the Friedman statistical test again confirms that there are no significant differences among the tested results. This analysis indicated that any γ_v value in the interval (1.0, 2.8) is suitable for the proposed algorithm. Table 5

Influence of the hash functions on the average performance of MSBTS algorithm.

$(\gamma_1, \gamma_2, \gamma_3)/$ Instance	G_1	G_2	G_3	G_4	G_5	G_6	G_7	G_8	G_9	G_{10}	#Avg
(1.1, 1.3, 1.5)	8665.77	9930.33	9004	8408.87	8578.23	9190.07	8579.50	9647.67	8453.80	8491.90	8895.01
(1.1, 1.5, 1.9)	8687.90	9937	8985.50	8411	8577.10	9191.87	8575.17	9627.50	8453.27	8490.07	8893.64
(1.2, 1.4, 1.8)	8687.90	9937	8983.67	8412.20	8579.27	9190.73	8583.83	9638.50	8453.60	8487.93	8895.46
(1.2, 1.6, 2.0)	8693.43	9937	8992.83	8413.80	8576.07	9192.53	8579.50	9631.60	8453.20	8500.37	8897.03
(1.3, 1.5, 1.7)	8671.30	9937	9000.17	8411.67	8581.43	9192.93	8577.33	9636.10	8453.43	8490.77	8895.21
(1.3, 1.7, 2.1)	8690.67	9937	8985.50	8413.80	8566.33	9189.03	8577.33	9631.60	8453.13	8491.70	8893.61
(1.4, 1.6, 2.0)	8687.90	9933.67	8994.67	8411.47	8582.53	9191.80	8573	9626.13	8453.27	8486.93	8894.14
(1.5, 1.7, 1.9)	8679.60	9937	8989.17	8412.20	8568.43	9189.73	8573	9631	8453.33	8496.10	8892.96
(1.5, 1.9, 2.3)	8685.13	9933.67	8983.67	8412.20	8571.67	9191.80	8579.50	9636.80	8453.40	8492.47	8894.03
(1.6, 1.8, 2.2)	8679.60	9937	8989.17	8412.20	8568.43	9189.73	8573	9631	8453.33	8496.10	8892.96
(1.7, 1.9, 2.1)	8685.13	9933.67	8985.50	8412.20	8573.90	9190.50	8573	9637.50	8453.40	8492.47	8893.73
(1.7, 2.1, 2.5)	8682.37	9933.67	8981.83	8412.20	8573.90	9191.57	8575.17	9637.50	8453.40	8492.47	8893.41
(1.8, 2.0, 2.4)	8685.13	9933.67	8983.67	8412.20	8571.67	9191.80	8579.50	9636.80	8453.40	8492.47	8894.03
(1.9, 2.1, 2.3)	8682.37	9933.67	8981.83	8412.20	8573.90	9191.57	8577.33	9637.20	8453.40	8492.47	8893.59
(1.9, 2.3, 2.7)	8682.37	9933.67	8981.83	8412.20	8573.90	9191.57	8577.33	9637.50	8453.40	8492.47	8893.62
(2.0, 2.2, 2.6)	8685.13	9933.67	8985.50	8412.20	8573.90	9190.50	8573	9637.50	8453.40	8492.47	8893.73
(1.1, 1.2, 2.7)	8693.43	9937	8983.67	8410.60	8568.40	9191.20	8573	9636.67	8453.40	8494.33	8894.17
(1.1, 1.8, 2.7)	8679.60	9933.67	8985.50	8412.73	8571.73	9191.57	8573	9643	8453.40	8490.33	8893.45
(1.1, 2.0, 2.7)	8676.83	9933.67	8981.83	8412.20	8573.90	9191.57	8575.17	9637.20	8453.40	8492.47	8892.82
(1.1, 2.5, 2.7)	8676.83	9933.67	8981.83	8412.20	8571.73	9191.57	8575.17	9637.20	8453.33	8492.47	8892.60
#std	6.93	1.96	6.30	1.04	4.35	0.99	3.10	4.94	0.14	2.88	-

4.2 Error rates of hash functions

An error occurs when an unvisited solution is wrongly forbidden by the hash functions and the associated hash vectors. To calculate the error rates of hash functions, we ran our SBTS procedure for 10^4 iterations on two SUKP instances: $1000_1000_0.10_0.75$, $1000_1000_0.15_0.85$. During the search, each

encountered solution is recorded in a pool POP. We use a counter c_1 to count the number of solutions forbidden (classified as tabu) by the hash functions. Another counter c_2 (error counter) will be incremented by 1 if the solution is not included in POP. Then the error rate is obtained by c_2/c_1 . We perform additional experiments to investigate two factors that affect the error rates of the hash functions: 1) the length L of the hash functions, and 2) the number of the hash vectors.

The role of the length L is to ensure that the hash vectors are long enough to be able to record the sampled solutions. A proper setting of L should not only avoid memory overflow, but also keep the error rates at a low level. The results of preliminary experiments indicate that a large L value (> 10^8) leads to memory overflow. Thus we carried out an experiment to check the error rates of the hash vectors with L ranging from 10^5 to 10^8 . The error rate plots are shown in Fig. 6, where the iterations of the SBTS procedure and the corresponding error rates are displayed on the X-axis and the Y-axis, respectively.

Fig. 6. Impact of the length L of hash vectors on the error rate of the solution-based tabu search procedure.

Fig. 6 shows that our algorithm can keep the error rate at a low level (< 0.07) with L ranging from 10⁶ to 10⁸. In particular, when the values of L are 10⁷ and 10⁸, the corresponding curves almost overlap and stay under 0.02. The error rates increase dramatically (more than 0.5) as the number of iterations increases for $L \leq 10^5$. Considering that the time complexity of evaluating a neighboring solution is O(1), a large L value will not significantly affect the computation time. Thus any L value in the interval [10⁶, 10⁸] is suitable for the proposed algorithm ($L = 10^8$ in the MSBTS algorithm).

Fig. 7. Impact of the number of hash vectors on the error rate of the solution-based tabu search procedure.

The role of the hash vectors is to record the solutions encountered during the search, and the number of the hash vectors can significantly affect the error rates. We performed another experiment to analyze the error rates when using two or three hash vectors. As the error rate plots in Fig. 7 show, the SBTS procedure has an error rate of nearly 0.9 with two hash vectors over 10^4 iterations. The error rate with one hash vector will be naturally higher than that with two hash vectors for the same number of iterations. On the contrary, the error rate remains very low (< 0.02) with three hash vectors over 10^4 iterations. So three hash vectors can effectively identify the previously encountered solutions, which justifies the use of three hash vectors in MSBTS.

4.3 Analysis of solution-based tabu search

The solution-based tabu search strategy is the most innovative component of the MSBTS algorithm. To understand its influence on the algorithm, we created a MSBTS variant; named MABTS where the solution-based tabu search procedure is replaced by an attributed-based tabu search procedure. For this experiment, we employed the attributed-based tabu search method introduced in [22], which is one of the best SUKP algorithm. Thus, except the tabu search procedure, MABTS shares the other components of MSBTS.

Considering that our algorithm mainly shows its superiority on the large instances, we carried out this experiment based on Set II, where each instance was independently solved by each algorithm 30 times, each run being limited to 1000 seconds.

The experimental results are reported in Table 6. The first column shows the names of the instances. The results of the two compared algorithms are respectively presented in columns 2 to 7, including the best objective value (f_{best}) , the average objective value (f_{avg}) , the standard deviation over 30 runs (std). To facilitate the comparison, we also provide the similar #Avg, #Best and *p*-values as described in Section 3.4.

Table 6 shows that MSBTS significantly outperforms MABTS, achieving better f_{best} values (marked in bold) for 17 out of the 30 instances and equal results for the remaining 13 instances. When comparing the f_{avg} values, MSBTS again dominates MABTS for all the instances. Moreover, the *std* values of MSBTS are very small, indicating that MSBTS is highly robust. Furthermore, the small *p*-values (< 0.05) show that there is a significant difference between MSBTS and MABTS. This experiment confirms that the solution-based tabu search strategy constitutes one key ingredient of our algorithm.

5 Conclusions

The Set-Union Knapsack Problem attracts more and more attention in recent years due to its theoretical and practical interest. Inspired by the fact that the solution-based tabu search has been successfully applied to solve several difficult binary optimization problems, we devised the first multistart solution-based tabu search algorithm for solving SUKP. The proposed MSBTS algorithm uses its solution-based tabu search procedure to find high-quality local optima and the multistart mechanism to overcome deep local optima traps. MSBTS has several desirable features such as simple design and implementation as well as absence of parameters.

We performed extensive experimental assessments of the proposed algorithm on two sets of 60 benchmark instances. The comparisons with the state-of-the-art algorithms demonstrated the high competitiveness of our algorithm in terms of solution quality, computational efficiency and robustness. In particular, we demonstrated the interest of the MSBTS algorithm to deal with large instances and reported new lower bounds for 7 large and difficult instances (with 585 to 1000 items and elements).

This work thus provides a useful tool for solving the general Set-Union Knapsack Problem. Moreover, since a number of real-world applications can be conveniently formulated by SUKP, the proposed algorithm can be hopefully applied to these practical problems. The availability of the code of the MSBTS algorithm will facilitate such applications.

Finally, this work provides another supporting evidence for using the solutionbased tabu search strategy to solve binary problems. As such it would be interesting to verify the effectiveness of this approach on additional problems including those related to knapsack.

Instance/Setting		MSBTS			MABTS	
, 0	f_{best}	f_{avg}	std	f_{best}	f_{avg}	std
600_585_0.10_0.75	9914	9914	0	9914	9801.57	72.65
600_585_0.15_0.85	9357	9357	0	9357	9329.40	23.76
700_685_0.10_0.75	9881	9881	0	9841	9814.37	34.83
700_685_0.15_0.85	9163	9163	0	9135	9126.67	14.16
800_785_0.10_0.75	9937	9937	0	9811	9679.73	61.37
800_785_0.15_0.85	9024	8992.83	27.25	9024	8892.53	51.21
900_885_0.10_0.75	9725	9725	0	9611	9503.63	53.57
900_885_0.15_0.85	8620	8576.07	27.14	8499	8459.87	26.51
1000_985_0.10_0.75	9689	9631.60	28.92	9580	9411.37	58.09
1000_985_0.15_0.85	8455	8453.20	0.60	8448	8359.30	106.74
600_600_0.10_0.75	10524	10524	0	10524	10519.67	3.54
600_600_0.15_0.75	9062	9062	0	9062	9058.20	11.40
700_700_0.10_0.75	9786	9786	0	9786	9770.20	37.93
700_700_0.15_0.85	9229	9229	0	9177	9145.20	30.65
800_800_0.10_0.75	9932	9932	0	9932	9734.87	64.12
800_800_0.15_0.85	9101	9101	0	8956	8907.10	14.88
900_900_0.10_0.75	9745	9745	0	9660	9629.20	36.02
900_900_0.15_0.85	8990	8990	0	8916	8911.03	17.49
1000_1000_0.10_0.75	9551	9551	0	9357	9269.87	92.10
1000_1000_0.15_0.85	8538	8500.37	28.65	8381	8282.20	73.08
585_600_0.10_0.75	10393	10393	0	10393	10325.43	34.75
585_600_0.15_0.85	9256	9256	0	9256	9256	0
685_700_0.10_0.75	10121	10121	0	10121	9944.10	59.12
685_700_0.15_0.85	9176	9176	0	9176	9144.97	31.29
785_800_0.10_0.75	9384	9384	0	9384	9229.37	93.68
785_800_0.15_0.85	8746	8693.43	40.00	8663	8526.57	59.71
885_900_0.10_0.75	9318	9318	0	9232	9158.57	40.38
885_900_0.15_0.85	8425	8413.80	7.33	8425	8276.07	42.39
985_1000_0.10_0.75	9234	9192.53	14.12	9193	9030.77	54.53
985_1000_0.15_0.85	8612	8579.50	32.50	8461	8384.43	75.03
#Avg	9362.93	9352.61	6.88	9309.17	9229.41	45.83
#Best	30	30	-	13	0	-
p-value	2.93e-4	2.563e-06	-	-	-	-

Table 6 Comparison between MSBTS and MABTS on the instances of Set II.

Declaration of competing interest

The authors declare that they have no known competing interests that could have appeared to influence the work reported in this paper.

Acknowledgments

We are grateful to the reviewers for their useful comments and suggestions which helped us to significantly improve the paper. We would like to thank Dr. Congcong Wu, Dr. Geng Lin, Dr. Xiangjing Lai and their co-authors for sharing the codes of their algorithms ([17], [21], [32]). Support from the China Scholarship Council (Grant 201706290016) for the first author is also acknowledged.

References

- O. Goldschmidt, D. Nehme, G. Yu, Note: On the set-union knapsack problem, Nav. Res. Log. 41 (6) (1994) 833–842.
- [2] H. Kellerer, U. Pferschy, D. Pisinger, Knapsack problems, Springer, 2004.
- [3] B. Schneier, Applied cryptography protocols, algorithms, and source code in C, 2nd Edition, John Wiley & Sons, 1996.
- [4] S. B. Navathe, S. Ceri, G. Wiederhold, J. Dou, Vertical partitioning algorithms for database design, ACM Trans. Database Syst. 9 (4) (1984) 680–710.
- [5] M. Tu, L. Xiao, System resilience enhancement through modularization for large scale cyber systems, in: 2016 IEEE/CIC International Conference on Communications in China (ICCC Workshops), IEEE, 2016, pp. 1–6.
- [6] W. D. Lister, R. G. Laycock, A. M. Day, A key-pose caching system for rendering an animated crowd in real-time, Comput. Graph. Forum 29 (8) (2010) 2304–2312.
- [7] A. Arulselvan, A note on the set union knapsack problem, Discret. Appl. Math. 169 (2014) 214–218.
- [8] R. Taylor, Approximations of the densest k-subhypergraph and set union knapsack problems, arXiv preprint :1610.04935 (2016).
- [9] Z. Wei, J. Hao, Iterated two-phase local search for the set-union knapsack problem, Future Gener. Comput. Syst. 101 (2019) 1005–1017.
- [10] Y. He, H. Xie, T. Wong, X. Wang, A novel binary artificial bee colony algorithm for the set-union knapsack problem, Future Gener. Comput. Syst. 78 (2018) 77– 86.
- [11] F. B. Ozsoydan, A. Baykasoglu, A swarm intelligence-based algorithm for the set-union knapsack problem, Future Gener. Comput. Syst. 93 (2019) 560–569.
- [12] A. Baykasoğlu, F. B. Ozsoydan, M. E. Senol, Weighted superposition attraction algorithm for binary optimization problems, Oper. Res. (2018) 1–27.

- [13] F. B. Ozsoydan, Artificial search agents with cognitive intelligence for binary optimization problems, Comput. Ind. Eng. 136 (2019) 18–30.
- [14] Y. He, X. Wang, Group theory-based optimization algorithm for solving knapsack problems, Knowl. Based Syst. (2018) 104445.
- [15] Y. Feng, H. An, X. Gao, The importance of transfer function in solving set-union knapsack problem based on discrete moth search algorithm, Mathematics 7 (1) (2019) 17.
- [16] Y. Feng, J. Yi, G. Wang, Enhanced moth search algorithm for the set-union knapsack problems, IEEE Access 7 (2019) 173774–173785.
- [17] C. Wu, Y. He, Solving the set-union knapsack problem by a novel hybrid jaya algorithm, Soft Comput. 24 (3) (2020) 1883–1902.
- [18] X. Liu, Y. He, Estimation of distribution algorithm based on lévy flight for solving the set-union knapsack problem, IEEE Access 7 (2019) 132217–132227.
- [19] I. Gölcük, F. B. Ozsoydan, Evolutionary and adaptive inheritance enhanced grey wolf optimization algorithm for binary domains, Knowl. Based Syst. 194 (2020) 105586.
- [20] H. H. Hoos, T. Stützle, Stochastic Local Search: Foundations & Applications, Elsevier / Morgan Kaufmann, 2004.
- [21] G. Lin, J. Guan, Z. Li, H. Feng, A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem, Expert Syst. Appl. 135 (2019) 201–211.
- [22] Z. Wei, J. Hao, Kernel based tabu search for the set-union knapsack problem, Expert Syst. Appl. 165 (2020) 113802.
- [23] F. Glover, M. Laguna, Tabu search, Springer Science+Business Media New York, 1997.
- [24] Y. Lu, B. Cao, C. Rego, F. Glover, A tabu search based clustering algorithm and its parallel implementation on spark, Appl. Soft Comput. 63 (2018) 97 – 109.
- [25] I. Polak, M. Boryczka, Tabu search in revealing the internal state of rc4+ cipher, Appl. Soft Comput. 77 (2019) 509 – 519.
- [26] Q. Zhou, J. Hao, Z. Sun, Q. Wu, Memetic search for composing medical crews with equity and efficiency, Appl. Soft Comput. 94 (2020) 106440.
- [27] W. B. Carlton, J. W. Barnes, A note on hashing functions and tabu search algorithms, Eur. J. Oper. Res. 95 (1) (1996) 237–239.
- [28] D. L. Woodruff, E. Zemel, Hashing vectors for tabu search, Annals OR 41 (2) (1993) 123–137.
- [29] X. Lai, J. Hao, F. W. Glover, Z. Lü, A two-phase tabu-evolutionary algorithm for the 0-1 multidimensional knapsack problem, Inf. Sci. 436-437 (2018) 282– 301.

- [30] X. Lai, J. Hao, D. Yue, Two-stage solution-based tabu search for the multidemand multidimensional knapsack problem, Eur. J. Oper. Res. 274 (1) (2019) 35–48.
- [31] Y. Wang, Q. Wu, F. W. Glover, Effective metaheuristic algorithms for the minimum differential dispersion problem, Eur. J. Oper. Res. 258 (3) (2017) 829–843.
- [32] X. Lai, D. Yue, J. Hao, F. W. Glover, Solution-based tabu search for the maximum min-sum dispersion problem, Inf. Sci. 441 (2018) 79–94.
- [33] J. Chang, L. Wang, J. Hao, Y. Wang, Parallel iterative solution-based tabu search for the obnoxious p-median problem, Comput. Oper. Res. 127 (2020) 105155.
- [34] E. D. N. Ruiz, X. Yang, Improved tabu search and simulated annealing methods for nonlinear data assimilation, Appl. Soft Comput. 83 (2019).
- [35] M. Shahmanzari, D. Aksen, A multi-start granular skewed variable neighborhood tabu search for the roaming salesman problem, Appl. Soft Comput. (2020) 107024.
- [36] Y. Chen, J. Hao, An iterated "hyperplane exploration" approach for the quadratic knapsack problem, Comput. Oper. Res. 77 (2017) 226–239.
- [37] R. M. Aiex, M. G. C. Resende, C. C. Ribeiro, TTT plots: a perl program to create time-to-target plots, Optim. Lett. 1 (4) (2007) 355–366.
- [38] C. C. Ribeiro, I. Rosseti, R. V. Campos, Exploiting run time distributions to compare sequential and parallel stochastic local search algorithms, J. Global Optimization 54 (2) (2012) 405–429.