
Multistart solution-based tabu search for the

Set-Union Knapsack Problem

Zequn Wei a and Jin-Kao Hao a,∗

aLERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France
Applied Soft Computing, 2021

https://doi.org/10.1016/j.asoc.2021.107260

Abstract

The NP-hard Set-Union Knapsack Problem is a general model able to formulate a
number of practical problems. As a variant of the popular knapsack problem,
SUKP is to find a subset of candidate items (an item is composed of several
distinct weighted elements) such that a profit function is maximized while a
knapsack capacity constraint is satisfied. We investigate for the first time a
multistart solution-based tabu search algorithm for solving the problem. The
proposed algorithm combines a solution-based tabu search procedure with a
multistart strategy to ensure an effective examination of candidate solutions. We
report computational results on 60 benchmark instances from the literature,
including new best results (improved lower bounds) for 7 large instances. We show
additional experiments to shed lights on the roles of the key composing ingredients
of the algorithm. The code of the algorithm will be publicly available.

Keywords: Knapsack problems; Solution-based tabu search; Heuristics and
metaheuristics; Combinatorial optimization.

1 Introduction

Given a set of elements U = {1, . . . , n}, a set of items V = {1, . . . ,m}, each
element has a weight wj > 0 and each item has a profit pi > 0. The items
and elements are associated by a relation matrix Rij[m × n] such that each
item i corresponds to a subset of elements Ui ⊆ U . Let C be the capacity of a
given knapsack. Then the Set-Union Knapsack Problem (SUKP) is to select

∗ Corresponding author.
Email addresses: zequn.wei@gmail.com (Zequn Wei),

jin-kao.hao@univ-angers.fr (Jin-Kao Hao).

Preprint submitted to Elsevier 10 March 2021

a subset of items S from V such that the total profit of S is maximized, while
the total weight of the covered elements does not exceed the knapsack capacity
C. In SUKP, the weight of an element is countered only one time even if the
element appears in multiple selected items.

Formally, SUKP can be stated as follows.

(SUKP) Maximize f(S) =
∑
i∈S

pi (1)

subject to W (S) =
∑

j∈∪i∈SUi

wj ≤ C, S ⊆ V (2)

SUKP is known to be a useful model able to formulate a number of significant
practical applications. For instance, consider the following project investing
scenario where a company plans to invest in the purchase of machines for the
production of new products. Each candidate product has a profit, while the
composing parts of the product needs new machines to be acquired. The goal
is to determine the set of products to be produced such that the profit will be
maximized while ensuring that the cost of the purchased machines does not
exceed a given budget. This problem can be conveniently formulated by the
SUKP model where an item corresponds to a product with its profit and an
element is a machine with its purchasing cost (element weight). Then, solving
the project investing problem is equivalent to finding the optimal solution
to the resulting SUKP problem. Generally, SUKP appears in the context of
flexible manufacturing [1], financial decision making [2], applied cryptography
[3], database design [4], data allocation in cyber systems [5] and key-pose
caching systems [6]. However, SUKP is computationally difficult given that it
belongs to the class of NP-hard problems [1].

Due to its relevance, SUKP has been investigated since the eighties and has
received increasing attention in recent years. The existing approaches for
solving SUKP can be classified into three families.

• Exact and approximation algorithms : These algorithms are theoretically
able to find the optimal solutions or solutions of guaranteed quality. For
instance, theoretical algorithms based on dynamic programming and
greedy approximation were described in [7,1,8], which have an
exponential complexity in the general case. Linear integer programming
was investigated in [9], indicating that only small instances (with 85 to
100 items and elements) can be solved optimally by the CPLEX solver.
• Population-based hybrid algorithms : These algorithms are based on

various bio-inspired metaheuristics operating with a population of
solutions and associated search operators. In 2018, He et al. devised the
first binary artificial bee colony algorithm for solving SUKP and
provided a set of 30 benchmark instances (with 85 to 500 items and

2

elements) [10]. Since then, several other population algorithms were
proposed, such as the binary swarm intelligence algorithm [11] (2019),
weighted superposition attraction algorithm [12] (2018), swarm
intelligence algorithm [13] (2019), group theory-based optimization
algorithm [14] (2018), moth search algorithms [15,16] (2019), hybrid
Jaya algorithm [17] (2020), estimation of distribution algorithm based
on Lévy flight [18] (2020) and binary grey wolf optimization algorithm
[19] (2020). In terms of computational performances, these approaches
achieved interesting results. However, these algorithms are rather
complex in design and most of them solve the binary SUKP problem
indirectly by searching a continuous space.
• Local search algorithms : These algorithms are based on stochastic local

search [20]. Contrary to the above population algorithms, local search
algorithms solve the binary SUKP problem directly by examining
candidate solutions in a discrete search space. In 2019, Wei and Hao [9]
presented an iterated two-phase local search algorithm for SUKP, which
includes a local optima exploration phase (using variable neighborhood
descent and tabu search) and a local optima escaping phase to promote
both intensification and diversification. This algorithm reported
remarkable results on the 30 instances of [10]. Also in 2019, Lin et al.
[21] introduced a local search (tabu search) procedure into the binary
particle swarm optimization framework and achieved high-quality
results on the 30 instances. In 2020, Wei and Hao [22] presented an
effective kernel based tabu search algorithm and introduced a new set of
30 large instances for SUKP (with 585 to 1000 items and elements).
The tabu search algorithms of [21,9,22] adopted the attributed-based
tabu search method to avoid revisiting previous encountered solutions.
During the search, the items involved in the move operations are
recorded in a so-called tabu list and are excluded from consideration
during a period called the tabu tenure. Computational results indicated
that the local search approaches represent the current state-of-the-art in
the literature in terms of solution quality and computational efficiency.

The tabu search technology [23] has been successfully applied to solve many
difficult optimization problems. Although most studies rely on the popular
and well-known attributed-based tabu search (ABTS) as exemplified by the
studies of [21,22,24,25,26], recent studies indicated that the solution-based
tabu search (SBTS) [27,28] is a highly competitive approach for solving
several notoriously difficult binary optimization problems such as 0/1
multidimensional knapsack [29], multidemand multidimensional knapsack
[30], minimum differential dispersion [31], and maximum min-sum dispersion
[32] and obnoxious p-median [33]. Compared to the ABTS method, SBTS
has the advantage of avoiding the use of tabu tenure and simplifying the
determination of tabu status. Moreover, the intensification ability of SBTS
tends to be stronger than that of ABTS. In addition, the study reported in

3

[30] on SBTS and our study (see Section 4.3) reveal that SBTS is more
suitable than ABTS for solving a number of binary optimization problems.
However, SBTS requires more resources (to record all the encountered
solutions) than ABTS. More information on the SBTS approach can be
found in recent studies such as [30,31,32,33], while some interesting studies
using ABTS are provided in [25,24,34,35,26]. The main contributions of this
work are summarized as follows.

To the best of our knowledge, no study has been reported in the literature
investigating the interest of the SBTS approach for solving SUKP. In this
work, we fill the gap by introducing the first multistart solution-based tabu
search algorithm (MSBTS) for SUKP and provide additional indications of
the benefits of the SBTS approach for binary optimization.

First, the proposed MSBTS algorithm integrates a dedicated solution-based
tabu search approach and a multistart mechanism to ensure an effective and
efficient examination of candidate solutions. During the search, each visited
solution is recorded in a tabu list implemented with the help of a hash function
based method such that the tabu status of a candidate solution can be easily
determined in constant time. The multistart mechanism is employed to escape
local optima traps. The algorithm is simple in design and frees the user from
the delicate task of calibrating parameters. Second, we report new best-known
results (improved lower bounds) for 7 large instances, which are useful for
future research on SUKP. Third, we will make the code of our algorithm
publicly available, which can be used by researchers and practitioners to solve
various problems that can be formulated by the SUKP model.

The rest of the paper is structured as follows. In Section 2, we describe the
general solution approach of the proposed algorithm and its main components.
Section 3 is devoted to the performance assessment and comparisons with
state-of-the-art algorithms. We analyze in Section 4 the influences of important
components of the algorithm, followed by conclusions in the last section.

2 Multistart solution-based tabu search for the SUKP

2.1 Search space, solution representation, and evaluation function

Given a SUKP instance composed of m items, n elements, and knapsack
capacity C, the proposed MSBTS algorithm explores the feasible search
space ΩF which includes all feasible candidate solutions corresponding to
non-empty subsets of items satisfying the knapsack constraint, i.e.,

4

ΩF = {y ∈ {0, 1}m :
∑
j∈Ui

wj ≤ C,Ui = {i : yi = 1}, 1 ≤ i ≤ m, 1 ≤ j ≤ n}

(3)

Thus, a candidate solution S in ΩF can be expressed by a m-dimensional
binary vector S = (y1, . . . , ym), where yi takes 1 if item i is selected, and 0
otherwise. Let A = {q : yq = 1 in S} and Ā = {p : yp = 0 in S}, a candidate
solution can be equivalently represented by S =< A, Ā >.

Additionally, the quality of a candidate solution S is determined by the
objective function value f(S) (Equation 1) of SUKP. Since SUKP is a
maximization problem, a larger f value indicates a better solution.

2.2 Main framework

The MSBTS algorithm follows the flow chart shown in Fig. 1 and is described
in Algorithm 1.

Fig. 1. Flow chart of the proposed MSBTS algorithm.

The basic idea of the MSBTS algorithm (see Alg. 1) is to repeat a greedy
randomized initialization procedure (Section 2.3) followed by a
solution-based tabu search procedure (Section 2.4). Specifically, after
initializing the overall best solution S∗ (line 3), the algorithm performs a
‘while’ loop (lines 4-10) to execute the main search process. At each round of
this process, MSBTS first runs the greedy randomized procedure to generate
a starting solution S (line 5), which is used as the input solution of the
solution-based tabu search procedure. The solution-based tabu search
procedure (line 6) iteratively improves the input solution S and returns the
local best solution Sb encountered. After conditionally updating the overall
best solution S∗, the algorithm moves to the next round of its search by
re-starting the greedy randomized procedure. The main search process is
terminated and returns the overall best solution S∗, when the cut-off time
(tmax) is reached.

5

Algorithm 1 Multistart solution-based tabu search for the SUKP
1: Input: Instance I, cut-off time tmax, neighborhoods N , hash vectors H1, H2,

H3, length of hash vectors L, hash functions h1 , h2 , h3.
2: Output: The best solution found S∗.
3: S∗ ← ∅ /* Initialize the overall best solution S∗ (i.e., f(S∗) = 0)*/
4: while Time ≤ tmax do
5: S ← Greedy Randomized Initialization(I)
6: /* Record the best solution Sb found during tabu search */

Sb ← Solution Based Tabu search(S)
7: if f(Sb) > f(S∗) then
8: S∗ ← Sb /* Update the overall best solution S∗ found so far */
9: end if

10: end while
11: return S∗

2.3 Greedy randomized initialization

The quality of initial solutions may impact the performance of the
algorithm. In this work, we adopt a greedy randomized initialization
procedure to generate initial solutions of good quality.

Let W (S) be the total weight of the current solution S and Wk be the
additional weight of a non-selected item k, where Wk is defined by
Wk =

∑
j∈Uk∧j /∈∪i∈SUi

wj. Then the feasible non-selected items can be expressed

by R(x) = {k ∈ Ā : Wk + W (S) ≤ C}, where Ā is the set of non-selected
items. Following [36], we employ a restricted candidate list (denoted by
RCL) to record rcl feasible non-selected items belonging to R(x), where rcl
is the maximum size of RCL. A too large rcl value will make many items to
be recorded in RCL and thus result in an initial solution of poor quality,
while a too small rcl value will limit the possible choices and lead to
insufficient diversity of the initialization procedure. In our case, we set

empirically rcl =
√
max{m,n}, where m and n are the number of items and

elements respectively. Considering the fact that the number of items in R(x)
may be less than rcl, we finally set the size of RCL by
|RCL| = min{rcl, |R(x)|}. Now, we build the restricted candidate list as
follows. For each item k of R(x), we calculate its dynamic profit ratio
r∗k = pk/Wk. Then we identify the top |RCL| items with the largest r∗ values
to form RCL. As the result, RCL contains the feasible non-selected items
whose dynamic profit ratio is larger than the other non-selected items.
Finally, each item k in RCL is selected with probability Pk, which is given
by Pk = r∗k/

∑|RCL|
l=1 r∗l .

As shown in Algorithm 2, starting from an empty solution S, the
initialization procedure randomly and adaptively adds feasible items k into S

6

Algorithm 2 Greedy Randomized Initialization
1: Input: Instance I.
2: Output: The initial solution S.
3: /* Get the knapsack capacity C and restricted candidate list length rcl */

(C, rcl)← Read instance(I)
4: W (S)← 0 /* Initialize the total weight of S */
5: while W (S) ≤ C do
6: Calculate additional weight Wk of each non-selected item k
7: Add all items i with Wi = 0 into current solution S
8: r∗ ← Calculate dynamic profit ratio(W, |RCL|)
9: P ← Calculate probability(r∗, |RCL|)

10: S ← Add one item(P, S)
11: end while
12: return S

at each iteration of the ‘while’ loop (lines 5-11). Specifically, the initial
solution is generated by four steps. First, we calculate the additional weight
Wk of each non-selected item k (line 6), and add all items k with Wk = 0
into the current solution S, which means adding this item will not increase
the total weight of S (lines 7). Second, we calculate the dynamic profit ratio
r∗k of each item k in R(x) with Wk 6= 0 (line 8). Third, we calculate the
selection probability Pk of each item k (line 9). Fourth, we randomly add one
item from RCL into S according to Pk (line 10). These four steps are
repeated until the knapsack capacity is reached.

Fig. 2. An illustrative example of the main steps of the greedy randomized
initialization procedure.

As shown in Fig. 2, we present a numerical example to illustrate the main steps
of the greedy randomized initialization procedure. Given a set of six items (Ii,
i = 1, . . . , 6) with a profit of 1 to 6 respectively and a set of 6 elements
(Ej, j = 1, . . . , 6) with a weight of 1 to 6 respectively. Let the capacity of
knapsack be equal to 16. At the step shown in the left figure, two items I1
and I2 are already added into the knapsack. We calculate additional weight
Wi of each non-selected item i and find that W3 = 0 (the elements E1 and E5

corresponding to item I3 are already selected). Then we add the item I3 into
the knapsack and obtain the new solution shown in the right figure. Next, we

7

calculate the dynamic profit ratio of the non-selected items and identify items
I4 and I5 as belonging to RCL (in this case, |RCL| = 2). Finally, we add one
of the two items into the knapsack according to the probability Pk.

2.4 Solution-based tabu search

Tabu search (TS) is a general and powerful metaheuristic for combinatorial
optimization [23]. Typically, TS examines candidate solutions by iteratively
transitioning from the current solution to a nearby (neighbor) solution by
following a neighborhood. Each solution transition is performed by selecting
the best admissible candidate among the neighboring solutions within the
neighborhood. The key distinguishing feature of TS compared to other local
optimization approaches is its tabu list strategy, which prevents the search
from revisiting previously encountered solutions. With the so-called solution-
based tabu search [27,28], the tabu list is implemented with hash vectors and
associated hash functions. Contrary to the popular attribute-based tabu search
approach which typically needs some parameters for tabu list management,
solution-based tabu search has the advantage of eliminating such parameters.

In the context of solving SUKP, the best-performing algorithms are all based
on the conventional attribute-based TS approach [21,9,22]. This work adopts
for the first time the solution-based tabu search approach for solving SUKP,
which leads to an effective algorithm while avoiding the difficulty of tuning
parameters.

Algorithm 3 shows the general scheme of our solution-based tabu search
(SBTS) procedure. After initializing the best solution found so far (line 3)
and the associated hash vectors (i.e., tabu list, line 4), the SBTS procedure
iteratively improves the current solution S (lines 6-20) until 1) no admissible
neighboring solution (i.e., feasible and non-tabu neighboring solution) exists,
or 2) the allowed cut-off time tmax is reached. Given the optimization
function f , the neighborhood structure N (Section 2.4.1) and the tabu list
management strategy (Section 2.4.2), the current solution S is replaced by a
best admissible neighboring solution at each iteration of the SBTS
procedure. And then the tabu list is updated with the newly obtained
solution S. The best solution found during this procedure is recorded in Sb
(lines 14-16) and returned as the output of SBTS. Note that the best
admissible neighboring solution S is not necessarily better than Sb, but it
will still be selected to replace the current solution S. In this way, the search
can keep moving forward to discover better solutions without being trapped
in local optima.

The SBTS procedure terminates under one of the two following conditions: (1)

8

the overall cut-off time is reached; (2) no admissible neighboring solution can
be found in the neighborhood, i.e., N ′(S) = ∅ where N ′(S) ⊆ N(S) is the set
of the admissible neighboring solutions not forbidden by the tabu list. Upon
the termination of the SBTS procedure, two cases are considered: the overall
cut-off time is reached and then the whole algorithm terminates. Otherwise,
the algorithm re-starts its search by using the greedy randomized initialization
procedure to creating a new starting solution, which is used to seed the next
round of the SBTS procedure.

Next, we present the main ingredients of SBTS, including the move operator,
the neighborhood structure and the tabu list strategy.

Algorithm 3 Solution-based tabu search
1: Input: Input solution S, neighborhood N , hash vectors H1, H2, H3, hash

functions h1, h2, h3, cut-off time tmax, length of hash vectors L.
2: Output: Best solution Sb found during tabu search.
3: Sb ← S /* Record the best solution Sb found during tabu search */
4: (H1, H2, H3)← Initialize Hash V ectors(H1, H2, H3, L) /* (i.e., tabu list) */
5: Find← True /* Track the admissible neighboring solution */
6: while Find ∧ Time ≤ tmax do
7: Find admissible neighboring solutions N ′(S) in N(S)
8: if N ′(S) 6= ∅ then
9: /* Attain the best admissible neighboring solution S */

S ← argmax{f(S′) : S′ ∈ N ′(S)}
10: Find← True
11: else
12: Find← False
13: end if
14: if f(S) > f(Sb) then
15: f(Sb)← f(S) /* Update the best solution Sb found during tabu search */
16: end if

/* Update the hash vectors with S */
17: H1[h1(S)]← 1
18: H2[h2(S)]← 1
19: H3[h3(S)]← 1
20: end while
21: return Sb

2.4.1 Move operator and neighborhood structure

Our SBTS procedure relies on two popular move operators, i.e., the flip
operator and the swap operator to explore candidate solutions. Specifically,
given a solution S = (y1, . . . , ym) as described in Section 2.1, the flip(i)
operator changes the value of a variable yi to its opposite value 1 − yi.
Similarly, given a solution S =< A, Ā >, the swap(q, p) operator exchanges
one item in A against one item in Ā, where q and p represent items in sets A

9

and Ā respectively. Meanwhile, a neighborhood filtering strategy [9,22] is
applied in both move operators to reduce the neighborhood size. So the
neighborhoods Nf (S) and Ns(S) induced by flip(i) and swap(q, p) are
defined as follows, respectively.

Nf (S) = {S ′ : S ′ = S ⊕ flip(i) : 1 ≤ i ≤ m, f(S ′) > f(Sb)} (4)

Ns(S) = {S ′ : S ′ = S ⊕ swap(q, p) : q ∈ A, p ∈ Ā, f(S ′) > f(Sb)} (5)

In this work, we employ a union neighborhood that covers both neighborhoods
Nf (S) and Ns(S), i.e., N(S) = Nf (S) ∪ Ns(S). Moreover, we also apply a
streamlining gain updating strategy to quickly evaluate the weight of each
neighboring solution (see [21,22] for more details).

2.4.2 Tabu list management strategy using hash functions

During the SBTS procedure, the current solution S is iteratively replaced by
the best admissible neighboring solution S ′, which is identified according to
the objective function value and the tabu list strategy described in this section.
Unlike the traditional attribute-based tabu search, where the tabu list records
the performed moves, our solution-based tabu search uses hash vectors and
hash functions to implement the tabu list.

Following previous studies [29,30,31,32], our tabu list management strategy
relies multiple hash vectors and hash functions, which helps significantly
reduce the probability of wrong identification of the tabu status. Specifically,
we adopt three hash vectors Hv (v = 1, 2, 3) of length L, where each position
takes a binary value which contributes to the definition of the tabu status of
candidate solutions. The hash vectors are initialized to 0, indicating that no
candidate solution is classified as tabu. Once a candidate solution is selected
to replace the current solution S, the corresponding positions in the three
hash vectors will be set to 1 (i.e., Hv[hv(S)]← 1, v = 1, 2, 3).

Given a candidate solution S = (y1, . . . , ym) where yi = 1 if item i is selected,
and yi = 0 otherwise, the hash values hv(S) (v = 1, 2, 3) are calculated by

hv(S) = (
m∑
i=1

bWv
i × yic) mod L (6)

where L is the length of the hash vectors and is set to 108. And Wv
i is a pre-

computed weight that satisfies the following relation:Wv
i = iγv (v = 1, 2, 3 and

i = 1, . . . ,m), where γv is a parameter that takes different values for the three

10

hash functions (γv = 1.2, 1.6, 2.0). To reduce the possible collisions that occur
with hash functions, we randomly shuffle the order in the pre-computed weight
vector Wv in order to ensure an extended distribution of hash values of the
solutions. Fig. 3 shows an illustrative example of this shuffling operation with
five items and γv being set to 1.2, 1.6, 2.0, respectively. The left figure indicates
the pre-computed weights Wv

i (v = 1, 2, 3, and i = 1, . . . , 5). Then the order
of each of the three weight vectors Wv is randomly shuffled to obtain a new
weight vector shown in the right figure. Our preliminary experiment indicates
that this random shuffling operation helps to reduce the error rates of the hash
functions. We present the rationale for the setting of γv and an analysis of the
hash functions in Section 4.1.

Fig. 3. An illustrative example of the random shuffling operation.

The hash-based tabu list management strategy works as follows. Given a
candidate solution S = (y1, . . . , ym), we first calculate the three hash values
hv(S) that are the indexes of the hash vectors. Then, the tabu status of
solution S is determined according to the values of the hash vectors
Hv[hv(S)]. Specifically, S is determined as a forbidden solution (i.e., already
visited) when H1[h1(S)] ∧ H2[h2(S)] ∧ H3[h3(S)] = 1. Otherwise, S is
classified as an unforbidden solution that has not been visited by this round
of SBTS and is eligible for solution transition. In this way, we can quickly
determine the tabu status of a neighboring solution in O(1), and this is the
main advantage of the hash-based tabu list management strategy. For the
illustrative example shown in Fig. 4, solution S is classified as tabu and thus
is excluded for solution transition.

Fig. 4. An example of a solution forbidden by the hash functions and the associated
hash vectors.

11

2.5 Computational complexity and discussion

From an empty subset S, the greedy randomized initialization procedure
(Section 2.3 and Algorithm 2) creates a solution in four steps. The first step
calculates the additional weights in O(m × n), where m is the number of
items and n is the number of elements. The second step calculates the
dynamic profit ratios and identifies the top items in O(m × log(m)). The
third step of calculating probability can be realized in O(|RCL|) and the
fourth step of adding one item can be achieved in O(1). Then the time
complexity of the initialization procedure is O(m× n×K1), where K1 is the
maximum iterations of the initialization procedure. For the main
solution-based tabu search procedure (Section 2.4 and Algorithm 3), we can
evaluate its complexity as follows. Let S =< A, Ā > be a given input
solution, the complexity of one iteration of the SBTS procedure is
O((m + |Ā| × |A|) × n). Let K2 be the maximum iterations of SBTS. Then
the time complexity of SBTS is O((m+ |Ā| × |A|)× n×K2).

Now we discuss the relations between our algorithm and the existing tabu
search algorithms for SUKP [21,9,22]. First, MSBTS is the first solution-based
tabu search algorithm for SUKP, while the existing TS algorithms are based
on the conventional attribute-based TS approach. Second, MSBTS employs
a new tabu list management strategy that avoids tuning the tabu tenure.
Third, unlike the previous TS algorithms that uses a perturbation procedure,
MSBTS does not need such specific diversification strategies. Yet, it achieves
remarkable results, as it is shown in Section 3.

Finally, it is worth mentioning that the solution-based tabu search approach
has led to highly effective algorithms for several NP-hard binary problems
such as 0-1 multidimensional knapsack [29], multidemand multidimensional
knapsack [30], minimum differential dispersion [31] and maximum min-sum
dispersion [32] and obnoxious p-median [33]. Our study of using solution-
based tabu search for SUKP further confirms the usefulness of this approach
for binary optimization.

3 Computational results and comparisons

This section is devoted to a computational assessment of the proposed MSBTS
algorithm, in comparison with three best-performing SUKP algorithms in the
literature based on two sets of 60 benchmark instances available at http:

//www.info.univ-angers.fr/pub/hao/SUKP_MSBTS.html.

12

http://www.info.univ-angers.fr/pub/hao/SUKP_MSBTS.html
http://www.info.univ-angers.fr/pub/hao/SUKP_MSBTS.html

3.1 Benchmark instances

The SUKP benchmark instances adopted in our experiments were commonly
tested in the literature, which can be divided into Set I and Set II. The Set I
instances were proposed in [10] with 85 to 500 items and elements, while the
Set II instances were introduced in [22] with 585 to 1000 items and elements.
These 60 instances share the same characteristics. An instance is defined by
m items, n elements and an associated binary relation matrix Rij[m × n],
where Rij = 1 means that item i contains element j. Each instance is further
characterized by two parameters: the density α of Rij = 1 in the relation
matrix R (i.e., α = (

∑m
i=1

∑n
j=1Rij)/(mn)) and the ratio β of knapsack

capacity C to the total weight of the elements (i.e., β = C/
∑n
j=1wj). As

indicated in [10,22], for the 60 instances tested in this study, α is equal to
0.10 or 0.15, while β is equal to 0.75 or 0.85.

3.2 Experimental settings

The proposed MSBTS algorithm was implemented in C++ and compiled using
the g++ compiler with the -O3 option. All the experiments were carried out
on an Intel Xeon E5-2670 processor (2.5 GHz CPU and 2 GB RAM) running
under the Linux operating system. The MSBTS algorithm used the same
stopping conditions for the reference algorithms (see below), i.e., 500 seconds
for the Set I instances and 1000 seconds for the Set II instances. Each instance
was solved 100 times independently with different random seeds. Note that
contrary to the existing algorithms, our algorithm eliminates the need for
tuning parameters.

Among the existing algorithms for SUKP in the literature, we identify four best
performing algorithms according to the reported computational results: hybrid
jaya algorithm [17] (DHJaya, 2019), hybrid binary particle swarm optimization
with tabu search algorithm [21] (HBPSO/TS, 2019), iterated two-phase local
search algorithm [9] (I2PLS, 2019) and the kernel based tabu search algorithm
[22] (KBTS, 2020). We thus use them as the reference algorithms for our
comparative study. Since the results of these algorithms were obtained in [22]
on the same computing platform and under the same stopping condition as in
this work, we directly adopt these results in our study.

3.3 Computational results

The computational results of our MSBTS algorithm and the reference
algorithms on the SUKP instances of Set I and Set II are reported in Table 1

13

and 2, respectively 1 . The first column of these two tables gives the name of
each instance, where the asterisk (*) denotes that the optimal value proved
by CPLEX [9]. The remaining columns report the following information: the
best objective value (fbest), the average objective value (favg), the standard
deviations over 100 runs (std) and the average run times tavg (to obtain the
fbest value) of each involved algorithm. The row #Avg shows the average
value of each column. Furthermore, the bold entries highlight the
dominating values among the compared results, while the italic entries
indicate the equal best values.

Comparing the results of Table 1 leads to the following comments. First, in
terms of the best performance indicator, MSBTS can attain all the
best-known fbest results on all the 30 instances of Set I, thus dominating
DHJaya and matching the performance of the best algorithms I2PLS and
KBTS. Second, in terms of the average performance indicator, our MSBTS
algorithm dominates DHJaya and competes favorably with HBPSO/TS and
I2PLS, while performing marginally worse than KBTS even if MSBTS has
better favg results on five large instances with 485 to 500 items and elements.
It is difficult to further compare the competing algorithms on Set I, since the
p-values in Table 3 from the non-parametric Wilcoxon signed-rank test don’t
show a statistical difference at 0.05 significance level between MSBTS and
the reference algorithms except DHJaya. So we focus on Set II for a more
detailed comparison.

Table 2 on the 30 instances of Set II discloses that our MSBTS algorithm
outperforms the reference algorithms on large size instances. Specifically,
MSBTS matches the best-known fbest values for the remaining 23 instances,
and remarkably, finds 7 new best-known results (improved lower bounds).
Most of these 7 instances have 985 to 1000 items, which demonstrates the
advantage of our algorithm on the most difficult instances. When considering
the average performance, MSBTS remains highly competitive compared to
the reference algorithms. On the other hand, MSBTS has a zero std value on
20 instances while the reference algorithms achieve less zero std values (0 for
DHJaya, 1 for HBPSO/TS, 2 for I2PLS and 6 for KBTS), which shows the
robustness of our algorithm. Moreover, the smallest #Avg value of the
corresponding tavg entries obtained by MSBTS demonstrates that our
algorithm is more computational efficient than the reference algorithms on
this set of SUKP instances. We show a detailed time-efficiency comparison of
our MSBTS algorithm with the reference algorithms in Section 3.4.

In order to better highlight the advantage of the proposed MSBTS algorithm,

1 Our solution certificates are available at: http://www.info.univ-angers.fr/

pub/hao/SUKP_MSBTS.html. The code of MSBTS will also be made available upon
the publication of the paper.

14

http://www.info.univ-angers.fr/pub/hao/SUKP_MSBTS.html.
http://www.info.univ-angers.fr/pub/hao/SUKP_MSBTS.html.

we summarize the comparative results between MSBTS and each reference
algorithm in Table 3. The first two columns of the table give the pairs of
two compared algorithms and the corresponding instance sets, respectively.
Columns #Wins, #Ties and #Losses show the number of instances for which
MSBTS obtains a better, equal and worse result according to the fbest and
favg indicators. The last column indicates the p-values from the Wilcoxon
signed-rank test, where ‘NA’ implies that two underlying groups of results
are exactly the same. From Table 3, we can observe that MSBTS achieves
better or equal results in terms of fbest on all the tested instances, while being
better in terms of favg on most instances. Note that KBTS reports more favg
values better than MSBTS for Set I (13 vs 6). However, the Wilcoxon signed-
rank test in Table 3 (p-value = 9.10e-2 > 0.05) indicates that there is no
statistically significant difference. Furthermore, as shown in the last column,
the p-values (< 0.05) obtained between MSBTS and each compared algorithm
on the instances of Set II confirm the statistically significant difference of the
compared results.

3.4 Time-to-target analysis

We now present a time-to-target analysis (TTT) to evaluate the
computational efficiency of the proposed MSBTS algorithm compared to the
reference algorithms. For this, we compare the time required for each
algorithm to obtain a solution at least as good as a given target value and
measure the empirical probability distributions. More details about TTT can
be found in [37,38].

Specifically, we run each compared algorithm 100 times to solve each instance
of Set II with the setting shown in Section 3.2 and recorded the time to achieve
an objective value at least as good as the given target value (the algorithm
stops immediately when it reaches the target value). Then we sorted the times
in increasing order and calculated the probability ρi = (i−0.5)/100 with each
time Ti, where Ti corresponds to the ith smallest time.

Table 4 shows the experimental results of DHJaya, HBPSO/TS, I2PLS, KBTS
and MSBTS on the instances of Set II. The first two columns give the name of
each instance and the corresponding target value, respectively. The remaining
columns report the best time (Tbest) in seconds to achieve the target value and
the average time (Tavg) in seconds to reach the target value over 100 runs. The
row (#Avg) indicates the average value of each column. And the row #Best
shows the number of instances for which an algorithm obtains the smallest
Tbest value among the compared algorithms. Moreover, to check whether there
exists a significant difference between the proposed MSBTS algorithm and the
compared algorithms in terms of Tbest and Tavg, we report the p-values from

15

T
ab

le
1
.

C
o
m

p
u

ta
ti

on
a
l

re
su

lt
s

of
th

e
M

S
B

T
S

al
go

ri
th

m
an

d
th

e
re

fe
re

n
ce

al
go

ri
th

m
s

on
th

e
30

b
en

ch
m

ar
k

in
st

an
ce

s
of

S
et

I.

In
st
a
n
ce
/
A
lg
o
ri
th

m
D
H
J
a
y
a
[1
7
]

H
B
P
S
O
/
T
S
[2
1
]

I2
P
L
S
[9
]

K
B
T
S
[2
2
]

M
S
B
T
S

f
b
e
s
t

f
a
v
g

st
d

t a
v
g
(s
)
f
b
e
s
t

f
a
v
g

st
d

t a
v
g
(s
)
f
b
e
s
t

f
a
v
g

st
d

t a
v
g
(s
)
f
b
e
s
t

f
a
v
g

st
d

t a
v
g
(s
)
f
b
e
s
t

f
a
v
g

st
d

t a
v
g
(s
)

1
0
0
8
5
0
.1
0
0
.7
5
∗

1
3
2
8
3

1
3
2
8
3

0
9
.4
7
7

1
3
2
8
3

1
3
2
8
3

0
0
.0
9
8

1
3
2
8
3

1
3
2
8
3

0
3
.0
9
4

1
3
2
8
3

1
3
2
8
3

0
4
.0
8
2

1
3
2
8
3

1
3
2
8
3

0
1
2
.7
7
0

1
0
0
8
5
0
.1
5
0
.8
5
∗

1
2
4
7
9

1
2
4
7
9

0
2
4
.4
1
4

1
2
4
7
9

1
2
4
0
3
.1
5
9
8
.9
7
1
0
1
.1
2
2
1
2
4
7
9

1
2
3
3
5
.1
3
9
8
.7
8

1
0
3
.7
5
7
1
2
4
7
9

1
2
4
7
9

0
4
2
.9
9
2

1
2
4
7
9

1
2
4
1
3
.7
8

7
9
.7
9

1
8
4
.3
2
3

2
0
0
1
8
5
0
.1
0
0
.7
5

1
3
5
2
1

1
3
4
9
8
.2
2
2
6
.1
0

2
5
8
.2
1
3
1
3
5
2
1

1
3
5
2
1

0
0
.4
9
0

1
3
5
2
1

1
3
5
2
1

0
7
1
.9
8
4

1
3
5
2
1

1
3
5
2
1

0
6
.9
8
8

1
3
5
2
1

1
3
5
2
1

0
2
2
.5
2
8

2
0
0
1
8
5
0
.1
5
0
.8
5

1
4
2
1
5

1
4
2
1
5

0
8
3
.1
2
9

1
4
2
1
5

1
4
1
7
7
.3
8
7
0
.8
4
7
2
.0
4
1

1
4
2
1
5

1
4
0
3
1
.2
8
1
3
1
.4
6
1
8
0
.8
0
9
1
4
2
1
5

1
4
2
0
9
.8
7

2
9
.1
7
1
0
7
.4
0
7
1
4
2
1
5

1
3
9
4
6
.1
5

1
5
3
.6
7
2
5
8
.5
4
1

3
0
0
2
8
5
0
.1
0
0
.7
5

1
1
3
8
5

1
1
1
6
7
.7
7
1
2
9
.9
8

1
7
4
.3
3
5
1
1
5
6
3

1
1
5
6
3

0
3
8
.3
5
5

1
1
5
6
3

1
1
5
6
2
.0
2
3
.9
4

1
8
1
.2
4
8
1
1
5
6
3

1
1
5
6
3

0
2
8
.8
4
1

1
1
5
6
3

1
1
5
6
3

0
3
7
.8
7
7

3
0
0
2
8
5
0
.1
5
0
.8
5

1
2
4
0
2

1
2
2
4
8
.4
2
2
2
.1
2

3
1
6
.7
6
7
1
2
6
0
7

1
2
6
0
7

0
2
4
.9
6
7

1
2
6
0
7

1
2
3
6
4
.5
5
8
3
.0
3

2
4
0
.3
3
3
1
2
6
0
7

1
2
5
3
6
.0
2

8
7
.5
1
2
3
5
.4
5
0
1
2
6
0
7

1
2
4
3
0
.5
1

7
3
.8
6

2
1
6
.4
6
5

4
0
0
3
8
5
0
.1
0
0
.7
5

1
1
4
8
4

1
1
3
2
5
.8
8
3
8
.6
5

2
2
9
.3
7
0
1
1
4
8
4

1
1
4
8
4

0
1
0
.8
7
0

1
1
4
8
4

1
1
4
8
4

0
3
1
.8
0
1

1
1
4
8
4

1
1
4
8
4

0
0
.2
9
6

1
1
4
8
4

1
1
4
8
4

0
7
.6
4
3

4
0
0
3
8
5
0
.1
5
0
.8
5

1
0
7
1
0

1
0
2
9
3
.9
6
1
7
3
.8
5

2
4
1
.0
6
8
1
1
2
0
9

1
1
2
0
9

0
1
6
.4
7
8

1
1
2
0
9

1
1
1
5
7
.2
6
8
7
.2
9

1
4
1
.5
2
5
1
1
2
0
9

1
1
2
0
9

0
7
2
.0
2
0

1
1
2
0
9

1
1
2
0
9

0
4
6
.8
0
0

5
0
0
4
8
5
0
.1
0
0
.7
5

1
1
7
2
2

1
1
6
7
5
.5
1
5
5
.5
3

2
2
6
.6
0
4
1
1
7
7
1

1
1
7
4
6
.1
9
5
7
.9
8
2
9
3
.5
1
4
1
1
7
7
1

1
1
7
2
9
.7
6
6
.5
9

3
4
9
.5
4
5
1
1
7
7
1

1
1
7
5
5
.4
7

1
9
.7
4
2
0
6
.1
9
9
1
1
7
7
1

1
1
7
7
1

0
3
1
.1
7
1

5
0
0
4
8
5
0
.1
5
0
.8
5

1
0
1
9
4

9
7
0
3
.5
6

1
1
4
.8
5
2
3
8
3
.0
2
1
1
0
1
9
4

1
0
1
6
3
.7
6
8
2
.1
1
9
2
.1
2
1

1
0
2
3
8

1
0
1
3
3
.9
4
9
4
.7
2

3
6
9
.3
7
5
1
0
2
3
8

1
0
2
0
2
.9
0

1
6
.2
5
2
9
3
.1
4
0
1
0
2
3
8

1
0
2
0
5
.6
2
1
6
.3
3

3
8
9
.5
3
6

1
0
0
1
0
0
0
.1
0
0
.7
5
∗

1
4
0
4
4

1
4
0
4
4

0
1
.3
7
4

1
4
0
4
4

1
4
0
4
4

0
0
.5
1
8

1
4
0
4
4

1
4
0
4
4

0
3
8
.2
4
5

1
4
0
4
4

1
4
0
4
4

0
0
.0
2
3

1
4
0
4
4

1
4
0
4
4

0
6
.6
3
9

1
0
0
1
0
0
0
.1
5
0
.8
5
∗

1
3
5
0
8

1
3
5
0
8

0
1
.5
7
2

1
3
5
0
8

1
3
5
0
8

0
2
.9
2
3

1
3
5
0
8

1
3
4
5
1
.5
0
1
2
6
.4
9
7
0
.5
8
7

1
3
5
0
8

1
3
5
0
8

0
3
3
.4
0
3

1
3
5
0
8

1
3
5
0
8

0
5
5
.1
0
3

2
0
0
2
0
0
0
.1
0
0
.7
5

1
2
5
2
2

1
2
4
8
0
.6
2
6
5
.0
5

2
0
7
.6
6
7
1
2
5
2
2

1
2
5
2
2

0
0
.8
1
2
5

1
2
5
2
2

1
2
5
2
2

0
5
4
.7
8
0

1
2
5
2
2

1
2
5
2
2

0
4
8
.2
0
6

1
2
5
2
2

1
2
5
1
8
.2
8

2
1
.1
5

7
0
.4
1
1

2
0
0
2
0
0
0
.1
5
0
.8
5

1
2
3
1
7

1
2
2
1
7
.8
1
9
3
.3
6
1

2
2
9
.8
2
4
1
2
3
1
7

1
2
3
1
7

0
0
.9
5
0

1
2
3
1
7

1
2
2
8
0
.0
7
5
7
.7
7

2
3
8
.3
4
8
1
2
3
1
7

1
2
3
1
7

0
7
2
.4
9
5

1
2
3
1
7

1
2
3
1
6
.2
1

7
.8
6

9
2
.1
5
5

3
0
0
3
0
0
0
.1
0
0
.7
5

1
2
7
3
6

1
2
6
7
6
.7
8
3
5
.2
0

2
4
1
.7
7
4
1
2
8
1
7

1
2
8
0
6
.4
4
1
5
.3
9
2
9
.0
7
4

1
2
8
1
7

1
2
8
1
7

0
6
6
.4
0
3

1
2
8
1
7

1
2
8
1
7

0
7
4
.2
4
7

1
2
8
1
7

1
2
8
1
3
.7
0

9
.9
0

1
6
5
.6
1
8

3
0
0
3
0
0
0
.1
5
0
.8
5

1
1
4
2
5

1
1
2
6
0
.2
5
1
0
3
.9
5

1
5
2
.3
2
9
1
1
5
8
5

1
1
5
8
5

0
5
.9
8
5

1
1
5
8
5

1
1
5
1
2
.1
8
7
3
.1
5

2
2
0
.1
0
0
1
1
5
8
5

1
1
5
8
4
.1
7

8
.2
6

1
4
1
.4
6
4
1
1
5
8
5

1
1
5
8
5

0
1
5
6
.3
3
3

4
0
0
4
0
0
0
.1
0
0
.7
5

1
1
5
6
9

1
1
3
0
1
.5
6
7
4
.8
8

3
2
2
.1
4
3
1
1
6
6
5

1
1
4
8
4
.2
0
7
2
.9
5
4
5
.0
2
5

1
1
6
6
5

1
1
6
6
5

0
1
8
.7
3
3

1
1
6
6
5

1
1
6
6
5

0
6
4
.1
2
6

1
1
6
6
5

1
1
6
5
7
.0
8

1
0
.5
6

9
0
.4
2
3

4
0
0
4
0
0
0
.1
5
0
.8
5

1
0
9
2
7

1
0
7
2
1
.4
5
2
2
1
.3
8

7
7
.0
3
7

1
1
3
2
5

1
1
3
2
5

0
5
.9
0
2

1
1
3
2
5

1
1
3
2
5

0
7
6
.0
0
0

1
1
3
2
5

1
1
3
2
5

0
1
7
.5
9
1

1
1
3
2
5

1
1
3
0
9
.2
0

1
1
2
.4
6
1
2
5
.9
5
0

5
0
0
5
0
0
0
.1
0
0
.7
5

1
0
9
4
3

1
0
8
7
1
.2
2
3
9
.9
3

4
1
.3
8
3

1
1
1
0
9

1
1
0
2
6
.2
4
5
1
.6
2
3
4
0
.9
5
8
1
1
2
4
9

1
1
2
4
3
.4
0
2
7
.4
3

1
3
4
.1
8
6
1
1
2
4
9

1
1
2
4
8
.9
6

0
.4
0

1
4
6
.0
4
0
1
1
2
4
9

1
1
2
4
9

0
2
9
.9
0
5

5
0
0
5
0
0
0
.1
5
0
.8
5

1
0
2
1
4

1
0
0
6
9
.3
3
1
0
3
.3
3

1
0
1
.9
2
6
1
0
3
8
1

1
0
2
1
3
.2
5
7
1
.3
0
2
2
0
.3
2
8
1
0
3
8
1

1
0
2
9
3
.8
9
8
5
.5
3

2
3
7
.8
9
4
1
0
3
8
1

1
0
3
6
2
.6
3

5
2
.2
5
1
5
6
.3
3
1
1
0
3
8
1

1
0
3
6
5
.5
2
4
9
.4
1

1
6
9
.0
8
4

8
5
1
0
0
0
.1
0
0
.7
5
∗

1
2
0
4
5

1
2
0
4
5

0
1
7
.1
9
9

1
2
0
4
5

1
2
0
4
5

0
0
.0
5
6

1
2
0
4
5

1
2
0
4
5

0
2
.7
9
8

1
2
0
4
5

1
2
0
4
5

0
0
.0
7
5

1
2
0
4
5

1
2
0
4
5

0
3
.1
1
7

8
5
1
0
0
0
.1
5
0
.8
5
∗

1
2
3
6
9

1
2
3
6
9

0
0
.3
4
2

1
2
3
6
9

1
2
3
6
9

0
0
.0
8
8

1
2
3
6
9

1
2
3
1
5
.5
3
6
2
.6
0

1
7
.4
7
0

1
2
3
6
9

1
2
3
6
9

0
1
0
.1
7
5

1
2
3
6
9

1
2
3
6
9

0
2
6
.2
4
0

1
8
5
2
0
0
0
.1
0
0
.7
5

1
3
6
9
6

1
3
6
6
7
.6
3
2
6
.5
6

2
4
4
.2
0
5
1
3
6
9
6

1
3
6
9
6

0
0
.4
8
9

1
3
6
9
6

1
3
6
9
5
.6
0
3
.6
8

1
2
4
.1
3
6
1
3
6
9
6

1
3
6
9
6

0
5
.8
5
1

1
3
6
9
6

1
3
6
9
6

0
7
.0
8
9

1
8
5
2
0
0
0
.1
5
0
.8
5

1
1
2
9
8

1
1
2
9
8

0
3
8
.4
3
9

1
1
2
9
8

1
1
2
9
8

0
0
.4
8
6

1
1
2
9
8

1
1
2
7
6
.1
7
8
3
.7
8

1
3
9
.8
6
5
1
1
2
9
8

1
1
2
9
8

0
6
.3
7
3

1
1
2
9
8

1
1
2
9
8

0
3
0
.6
8
9

2
8
5
3
0
0
0
.1
0
0
.7
5

1
1
5
6
8

1
1
5
6
3
.8
0
1
0
.4
1

2
0
3
.8
7
4
1
1
5
6
8

1
1
5
6
8

0
1
3
.6
3
0

1
1
5
6
8

1
1
5
6
8

0
2
5
.1
2
8

1
1
5
6
8

1
1
5
6
8

0
3
0
.6
1
8

1
1
5
6
8

1
1
5
6
7
.7
0

2
.9
9

1
7
.7
0
6

2
8
5
3
0
0
0
.1
5
0
.8
5

1
1
7
1
4

1
1
4
3
6
.9
3
1
0
1
.8
5

4
6
3
.4
6
6
1
1
8
0
2

1
1
8
0
2

0
2
.1
3
5

1
1
8
0
2

1
1
7
9
0
.4
3
2
7
.5
1

2
0
6
.4
2
2
1
1
8
0
2

1
1
7
9
9
.2
7

9
.9
5

1
6
8
.9
0
4
1
1
8
0
2

1
1
7
9
8
.8
8

1
0
.5
8

1
8
6
.6
8
5

3
8
5
4
0
0
0
.1
0
0
.7
5

1
0
4
8
3

1
0
2
8
7
.3
6
8
0
.6
1

5
3
.4
5
9

1
0
6
0
0

1
0
5
5
2
.7
3
7
4
.6
8
1
0
0
.1
5
5
1
0
6
0
0

1
0
5
3
6
.5
3
5
6
.0
8

2
3
4
.4
7
5
1
0
6
0
0

1
0
6
0
0

0
7
3
.0
8
7

1
0
6
0
0

1
0
5
9
9
.7
0

1
.7
1

1
5
0
.5
0
5

3
8
5
4
0
0
0
.1
5
0
.8
5

1
0
3
0
2

1
0
1
8
4
.0
9
1
3
8
.0
0

2
3
0
.0
7
7
1
0
5
0
6

1
0
4
7
2
.4
0
6
7
.2
0
1
6
8
.8
7
0
1
0
5
0
6

1
0
5
0
2
.6
4
2
3
.5
2

1
2
9
.5
0
5
1
0
5
0
6

1
0
5
0
6

0
5
8
.2
4
0

1
0
5
0
6

1
0
5
0
4
.2
3

1
6
.0
8

1
3
3
.3
4
0

4
8
5
5
0
0
0
.1
0
0
.7
5

1
1
0
3
6

1
0
8
8
3
.1
9
4
8
.5
8

6
6
.0
2
9

1
1
3
2
1

1
1
1
4
2
.2
7
6
2
.5
1
2
2
3
.3
8
7
1
1
3
2
1

1
1
3
0
6
.4
7
3
6
.0
0

2
0
7
.1
1
8
1
1
3
2
1

1
1
3
1
8
.8
1

1
0
.9
5
1
2
1
.4
9
4
1
1
3
2
1

1
1
3
2
1

0
5
4
.1
7
8

4
8
5
5
0
0
0
.1
5
0
.8
5

1
0
1
0
4

9
6
6
5
.7
0

1
4
2
.5
7

4
9
.4
3
8

1
0
2
2
0

1
0
2
0
8
.9
6
3
.2
6

1
4
3
.9
9
9
1
0
2
2
0

1
0
1
7
9
.4
5
4
6
.9
7

2
3
8
.6
3
0
1
0
2
2
0

1
0
2
1
9
.7
6
1
.6
8

1
1
8
.5
6
4
1
0
2
2
0

1
0
2
1
9
.0
4

3
.2
6

1
2
3
.0
5
2

#
A
v
g

1
1
8
7
3
.8
3
1
1
7
4
8
.0
7
6
1
.5
6

1
5
6
.3
3
2
1
1
9
6
7
.4
7
1
1
9
3
8
.1
0
2
4
.2
9
6
5
.1
9
4

1
1
9
7
3
.6
0
1
1
9
3
2
.3
9
4
0
.5
4

1
3
8
.4
7
6
1
1
9
7
3
.6
0
1
1
9
6
8
.5
6
7
.8
7

7
8
.1
6

1
1
9
7
3
.6
0
1
1
9
5
3
.7
2

1
8
.9
8
7
9
6
.7
2
9

16

T
a
b

le
2.

C
o
m

p
u

ta
ti

on
al

re
su

lt
s

of
th

e
M

S
B

T
S

al
go

ri
th

m
an

d
th

e
re

fe
re

n
ce

al
go

ri
th

m
s

on
th

e
30

b
en

ch
m

ar
k

in
st

an
ce

s
of

S
et

II
.

In
st
a
n
ce
/
A
lg
o
ri
th

m
D
H
J
a
y
a
[1
7
]

H
B
P
S
O
/
T
S
[2
1
]

I2
P
L
S
[9
]

K
B
T
S
[2
2
]

M
S
B
T
S

f
b
e
s
t

f
a
v
g

st
d

t a
v
g
(s
)
f
b
e
s
t

f
a
v
g

st
d

t a
v
g
(s
)
f
b
e
s
t

f
a
v
g

st
d

t a
v
g
(s
)
f
b
e
s
t

f
a
v
g

st
d

t a
v
g
(s
)
f
b
e
s
t

f
a
v
g

st
d

t a
v
g
(s
)

6
0
0
5
8
5
0
.1
0
0
.7
5

9
6
4
0

9
4
4
9
.9
7

6
0
.2
2

6
9
0
.4
8
9
9
7
4
1

9
7
2
4
.6
0

7
.6
8

5
7
6
.2
6
0
9
7
5
0

9
7
3
4
.7
4

1
3
.3
9

4
7
9
.3
5
6
9
9
1
4

9
9
1
4

0
2
0
9
.6
7
9
9
9
1
4

9
9
1
4

0
1
8
1
.9
5
2

6
0
0
5
8
5
0
.1
5
0
.8
5

9
1
8
7

8
9
9
8
.4
5

7
9
.1
7

8
8
1
.2
9
5
9
3
5
7

9
1
7
4
.1
6

1
4
3
.1
9
4
1
3
.1
5
7
9
3
5
7

9
3
2
4
.6
2

1
6
.6
7

4
5
7
.8
0
7
9
3
5
7

9
3
5
4
.5
2

9
.1
8

2
6
3
.6
8
4
9
3
5
7

9
3
5
7

0
5
9
.3
8
2

7
0
0
6
8
5
0
.1
0
0
.7
5

9
7
9
0

9
6
0
2

5
5
.9
6

5
4
3
.2
3
6
9
8
8
1

9
7
9
2
.2
3

5
1
.0
6

8
8
1
.9
9
9
9
8
8
1

9
8
1
9
.2
4

3
8
.7
4

3
6
3
.9
4
5
9
8
8
1

9
8
4
4
.9
6

1
1
.8
8
4
5
5
.7
1
3
9
8
8
1

9
8
8
1

0
2
8
.4
7
4

7
0
0
6
8
5
0
.1
5
0
.8
5

9
1
0
6

8
8
9
4
.0
9

1
4
0
.4
8
4
2
6
.0
8
8
9
1
3
5

8
9
4
0
.6
5

1
0
9
.7
8
6
8
9
.7
5
9
9
1
6
3

9
1
3
5
.2
7

4
.9
0

6
7
1
.1
3
2
9
1
6
3

9
1
3
8
.3
6

9
.1
0

5
2
4
.7
9
9
9
1
6
3

9
1
6
3

0
1
0
2
.3
7
9

8
0
0
7
8
5
0
.1
0
0
.7
5

9
7
7
1

9
5
4
0
.0
8

4
7
.9
5

6
3
7
.3
3
1
9
8
3
7

9
7
3
6
.8
9

4
6
.1
1

7
7
7
.7
5
5
9
8
2
2

9
6
7
8
.8
9

8
0
.6
7

7
1
9
.9
8
6
9
8
3
7

9
8
0
8
.8
6

2
0
.4
2
4
8
3
.3
8
4
9
9
3
7

9
9
3
7

0
2
5
9
.1
6
0

8
0
0
7
8
5
0
.1
5
0
.8
5

8
7
9
7

8
6
4
9

6
3
.0
1

2
3
6
.7
9
8
8
9
0
7

8
8
7
2
.8
4

8
4
.3
6

4
1
8
.0
3
3
8
9
0
7

8
7
8
0
.3
2

4
3
.3
4

6
7
4
.2
3
1
9
0
2
4

8
9
5
5
.2
9

4
9
.0
7
4
7
4
.6
4
3
9
0
2
4

8
9
8
6
.2
5
2
5
.3
8
4
8
6
.6
6
6

9
0
0
8
8
5
0
.1
0
0
.7
5

9
4
5
5

9
2
4
9
.5
3

1
0
9
.1
4
6
8
7
.1
5
0
9
6
1
1

9
5
6
0
.9
3

8
9
.4
3

5
1
4
.9
2
2
9
6
1
1

9
5
3
7
.6
1

6
1
.4
2

5
1
1
.2
4
5
9
7
2
5

9
6
1
6
.7
0

2
4
.8
5
6
0
9
.8
1
1
9
7
2
5

9
7
2
5

0
1
9
2
.2
1
3

9
0
0
8
8
5
0
.1
5
0
.8
5

8
4
1
8

8
2
4
4
.4
7

8
7
.9
3

3
1
6
.6
0
4
8
4
8
1

8
2
0
8
.2
2

1
0
8
.5
6
3
3
2
.1
0
2
8
4
8
1

8
4
2
6
.3
6

4
4
.7
6

5
4
1
.6
7
0
8
6
2
0

8
5
2
6
.5
5

4
8
.3
7
2
7
4
.6
5
3
8
6
2
0

8
5
6
6
.7
1
3
1
.1
8
9
7
8
.5
7
3

1
0
0
0
9
8
5
0
.1
0
0
.7
5

9
4
2
4

9
3
0
6
.8
6

4
5
.0
1

3
0
9
.8
7
3
9
6
6
8

9
2
7
8
.5
0

1
2
5
.8
0
6
2
0
.4
3
6
9
5
8
0

9
2
2
1
.2
3

1
0
3
.1
8
3
2
9
.7
4
3
9
6
6
8

9
4
9
6
.6
3

7
4
.3
5
4
8
7
.9
2
5
9
6
8
9

9
6
3
2
.5
9
2
9
.5
6
6
7
1
.1
9
2

1
0
0
0
9
8
5
0
.1
5
0
.8
5

8
4
3
3

8
2
8
0
.5
2

9
0
.8
7

3
1
2
.5
8
9
8
4
4
8

8
1
2
9
.0
8

9
2
.7
1

5
6
4
.8
4
8
8
4
4
8

8
2
6
8
.1
8

1
3
5
.5
5
5
4
1
.6
0
6
8
4
5
3

8
4
4
8
.0
5

0
.5
0

9
4
1
.5
6
5
8
4
5
5

8
4
5
3
.3
6
0
.7
7

6
3
4
.0
0
6

6
0
0
6
0
0
0
.1
0
0
.7
5

1
0
5
0
7

1
0
5
0
4
.2
5
1
9
.6
7

3
2
1
.1
9
6
1
0
5
1
8

1
0
5
1
7
.8
9
1
.0
9

6
0
.2
5
4

1
0
5
2
4

1
0
5
2
0
.7
0
2
.9
9

5
1
3
.5
3
7
1
0
5
2
4

1
0
5
2
1
.7
2
2
.9
1

4
0
4
.6
9
7
1
0
5
2
4

1
0
5
2
4

0
1
6
.3
7
7

6
0
0
6
0
0
0
.1
5
0
.8
5

8
9
1
0

8
7
8
5
.6
4

4
3
.4
6

5
7
1
.9
6
5
9
0
2
4

8
9
0
2
.3
3

2
7
.2
7

2
1
4
.2
6
1
9
0
6
2

9
0
2
2
.9
7

4
6
.2
8

4
5
6
.3
8
6
9
0
6
2

9
0
6
1
.1
6

4
.7
8

2
5
5
.3
4
2
9
0
6
2

9
0
6
2

0
2
2
4
.6
2
6

7
0
0
7
0
0
0
.1
0
0
.7
5

9
5
1
2

9
4
0
9
.0
1

2
8
.7
0

8
0
9
.8
3
6
9
7
8
6

9
6
7
9
.5
6

7
2
.5
1

2
1
5
.9
1
0
9
7
8
6

9
7
4
2
.7
3

4
0
.8
7

3
8
3
.7
0
0
9
7
8
6

9
7
8
6

0
9
7
.3
1
6

9
7
8
6

9
7
8
6

0
6
4
.8
6
8

7
0
0
7
0
0
0
.1
5
0
.8
5

9
1
2
1

8
9
8
5
.5
1

6
5
.9
0

5
0
7
.6
5
6
9
1
7
7

9
0
0
3
.1
5

1
3
8
.4
6
6
5
9
.1
9
4
9
2
2
9

9
1
5
5
.7
9

1
8
.6
1

4
4
5
.1
9
4
9
2
2
9

9
1
8
7
.5
5

2
0
.7
0
4
8
6
.3
0
4
9
2
2
9

9
2
2
9

0
9
6
.4
7
2

8
0
0
8
0
0
0
.1
0
0
.7
5

9
8
9
0

9
6
5
6
.3
8

5
1
.4
2

5
6
7
.0
9
0
9
9
3
2

9
8
2
3
.1
7

1
1
3
.2
0
6
0
7
.5
0
6
9
9
3
2

9
6
8
5
.7
9

7
2
.0
6

8
6
8
.2
2
7
9
9
3
2

9
9
3
0
.5
6

1
4
.3
3
2
1
4
.2
8
6
9
9
3
2

9
9
3
2

0
2
1
.0
3
2

8
0
0
8
0
0
0
.1
5
0
.8
5

8
9
6
1

8
7
7
4
.1
8

5
9
.7
8

1
6
1
.6
8
8
8
9
0
7

8
7
3
2
.9
4

1
6
0
.0
7
5
9
0
.8
8
3
8
9
6
1

8
9
0
9
.5
0

1
0
.9
1

2
7
.1
7
0

9
1
0
1

8
9
3
6
.1
2

3
9
.5
5
3
2
1
.8
5
9
9
1
0
1

9
1
0
1

0
1
2
9
.3
9
5

9
0
0
9
0
0
0
.1
0
0
.7
5

9
5
2
6

9
4
6
2
.8
6

3
7
.8
3

6
7
0
.9
9
0
9
7
4
5

9
6
3
9
.6
0

5
1
.1
3

5
9
8
.5
2
0
9
7
4
5

9
6
6
0
.1
2

3
6
.6
8

3
4
1
.1
1
0
9
7
4
5

9
7
2
9
.5
1

3
0
.0
6
3
6
8
.8
0
7
9
7
4
5

9
7
4
5

0
4
5
.9
5
0

9
0
0
9
0
0
0
.1
5
0
.8
5

8
7
1
8

8
4
9
2
.8
8

6
2
.3
1

7
0
2
.6
5
5
8
9
1
6

8
6
1
7
.2
0

2
1
0
.5
4
6
6
5
.7
9
8
8
9
1
6

8
9
1
6

0
1
1
6
.6
9
4
8
9
9
0

8
9
1
8
.9
6

1
4
.5
0
6
7
2
.5
7
4
8
9
9
0

8
9
9
0

0
2
3
7
.8
6
5

1
0
0
0
1
0
0
0
0
.1
0
0
.7
5
9
3
4
8

9
2
5
0
.8
0

5
3
.6
5

5
4
2
.1
8
7
9
5
0
9

9
2
7
3
.6
4

8
2
.5
7

8
0
2
.6
5
2
9
5
4
4

9
2
5
5
.7
3

1
4
2
.3
3
8
7
6
.6
6
9
9
5
4
4

9
4
3
1
.4
7

6
0
.8
4
5
1
0
.6
6
0
9
5
5
1

9
5
5
1

0
1
4
2
.7
1
2

1
0
0
0
1
0
0
0
0
.1
5
0
.8
5
8
3
3
0

8
0
3
7
.9
2

7
1
.8
7

9
3
2
.6
1
4
8
1
3
4

7
8
7
2
.8
4

9
5
.7
6

9
7
.9
0
9

8
3
7
9

8
2
0
6
.4
9

6
8
.5
2

6
3
2
.3
3
4
8
4
7
4

8
3
7
6
.2
0

2
7
.1
2
5
0
0
.4
3
5
8
5
3
8

8
4
9
7
.3
9
2
8
.4
6
5
0
5
.9
5
4

5
8
5
6
0
0
0
.1
0
0
.7
5

1
0
3
0
0

1
0
1
6
1
.4
5
7
2
.8
1

9
8
.1
8
6

1
0
3
9
3

1
0
1
9
1
.0
1
1
0
2
.3
5
7
2
9
.4
2
2
1
0
3
9
3

1
0
3
6
6
.1
5
2
9
.8
3

4
9
9
.3
1
1
1
0
3
9
3

1
0
3
9
3

0
8
9
.7
8
5

1
0
3
9
3

1
0
3
9
3

0
7
3
.0
9
3

5
8
5
6
0
0
0
.1
5
0
.8
5

9
0
3
1

8
9
4
4
.2
2

6
1
.7
2

6
1
6
.6
3
1
9
2
5
6

9
2
5
6

0
1
0
3
.6
3
7
9
2
5
6

9
2
5
6

0
2
6
4
.8
7
6
9
2
5
6

9
2
5
6

0
8
4
.3
5
9

9
2
5
6

9
2
5
6

0
9
9
.1
6
3

6
8
5
7
0
0
0
.1
0
0
.7
5

1
0
0
7
0

9
9
5
3
.5
5

4
9
.0
2

4
3
0
.1
8
0
1
0
1
2
1

9
9
0
9

3
0
.8
2

1
2
3
.0
1
2
1
0
1
2
1

9
9
7
9
.7
0

8
6
.1
3

5
4
0
.2
8
9
1
0
1
2
1

1
0
1
1
4
.9
6
3
1
.8
7
2
3
0
.9
1
8
1
0
1
2
1

1
0
1
2
1

0
9
.2
2
9

6
8
5
7
0
0
0
.1
5
0
.8
5

9
1
0
2

8
8
6
0
.7
9

1
0
6
.4
2
1
5
9
.9
7
6
9
1
7
6

8
9
3
6
.4
7

1
3
5
.6
4
6
4
5
.1
5
3
9
1
7
6

9
1
3
9
.1
8

5
2
.8
0

4
6
1
.0
5
1
9
1
7
6

9
1
7
6

0
1
4
0
.1
5
1
9
1
7
6

9
1
7
6

0
9
6
.8
5
9

7
8
5
8
0
0
0
.1
0
0
.7
5

9
1
2
3

8
8
8
5
.0
9

5
4
.1
4

3
1
6
.4
9
4
9
3
8
4

9
1
6
3
.9
0

7
0
.9
1

3
3
9
.4
1
5
9
3
8
4

9
2
3
6
.1
0

9
5
.5
6

5
7
6
.7
3
8
9
3
8
4

9
3
8
4

0
1
3
6
.1
7
3
9
3
8
4

9
3
8
2
.6
8

9
.2
4

2
1
0
.3
1
5

7
8
5
8
0
0
0
.1
5
0
.8
5

8
5
5
6

8
4
8
2
.3
3

5
1
.4
5

6
0
4
.6
2
5
8
5
7
2

8
3
2
2
.1
7

5
7
.5
3

6
6
5
.5
1
4
8
6
6
3

8
5
5
8
.5
1

7
9
.5
1

5
8
6
.0
4
7
8
7
4
6

8
6
4
3
.9
3

4
7
.9
2
4
6
7
.3
3
4
8
7
4
6

8
6
8
4
.5
8
3
6
.4
1
7
2
0
.7
6
5

8
8
5
9
0
0
0
.1
0
0
.7
5

9
1
3
7

9
0
7
9
.0
9

4
6
.7
0

5
9
0
.3
7
6
9
2
3
2

9
1
2
1
.2
4

4
8
.9
2

4
5
5
.1
0
4
9
2
3
2

9
1
0
6
.3
1

6
2
.2
8

4
5
2
.3
6
0
9
3
1
8

9
2
3
6
.1
6

2
1
.3
2
2
8
1
.6
3
2
9
3
1
8

9
3
1
8

0
8
1
.9
3
2

8
8
5
9
0
0
0
.1
5
0
.8
5

8
2
1
7

7
8
8
1
.4
4

6
5
.8
4

1
4
0
.9
3
5
8
2
7
7

7
9
0
0
.5
7

1
3
1
.6
5
2
9
6
.0
6
1
8
4
2
5

8
2
6
8

1
0
4
.3
4
4
8
4
.8
5
9
8
4
2
5

8
3
1
1
.6
8

4
6
.8
0
6
2
5
.8
2
9
8
4
2
5

8
4
1
1
.7
2
9
.8
8

5
7
3
.5
2
6

9
8
5
1
0
0
0
0
.1
0
0
.7
5

9
0
6
7

8
9
9
4
.4
8

4
4
.9
9

3
1
3
.0
9
4
9
1
1
3

8
9
3
8
.3
8

6
6
.6
4

9
6
7
.3
1
5
9
0
4
7

8
9
1
7
.4
8

1
2
6
.3
7
8
9
.7
6
0

9
1
9
3

9
1
0
5
.8
4

7
4
.7
6
3
1
9
.3
5
6
9
2
3
4

9
1
9
3
.1
5
1
3
.2
6
8
5
5
.6
4
5

9
8
5
1
0
0
0
0
.1
5
0
.8
5

8
4
5
3

8
4
2
5
.2
7

4
8
.7
4

5
0
3
.9
7
6
8
1
7
2

7
9
5
8
.2
4

1
2
1
.5
6
3
5
0
.6
4
0
8
5
2
8

8
2
3
3
.0
5

1
1
9
.9
8
2
8
3
.9
0
1
8
5
2
8

8
4
8
8
.1
3

3
3
.4
7
4
5
0
.7
1
1
8
6
1
2

8
5
7
8
.2
0
3
2
.4
7
6
2
8
.4
3
5

#
A
v
g

9
1
9
6
.6
7
9
0
4
1
.4
0

6
2
.5
4

4
8
2
.0
9
6
9
2
8
0
.3
3
9
1
0
5
.9
1

8
5
.9
1

4
9
9
.2
4
8
9
3
1
0
.1
0
9
2
0
2
.0
9

5
7
.9
6

4
7
3
.0
3
1
9
3
5
2
.3
0
9
3
0
3
.1
0

2
3
.9
5
3
7
9
.4
7
9
9
3
6
2
.9
3
9
3
5
1
.5
9
7
.2
2

2
8
0
.9
4
0

17

Table 3
Summarized comparisons of the MSBTS algorithm against each reference algorithm
over the two sets of benchmark instances.

Algorithm pair Instance setIndicator#Wins#Ties#Lossesp-value

MSBTS vs. DHJaya [17] Set I (30) fbest 16 14 0 4.82e-4

favg 23 6 1 1.37e-4

Set II (30) fbest 30 0 0 1.82e-06

favg 30 0 0 1.86e-09

MSBTS vs. HBPSO/TS [21]Set I (30) fbest 2 28 0 1.80e-1

favg 11 12 7 1.33e-1

Set II (30) fbest 20 10 0 5.96e-5

favg 29 1 0 2.56e-6

MSBTS vs. I2PLS [9] Set I (30) fbest 0 30 0 NA

favg 19 5 6 2.64e-2

Set II (30) fbest 15 15 0 8.83e-5

favg 29 1 0 2.56e-6

MSBTS vs. KBTS [22] Set I (30) fbest 0 30 0 NA

favg 6 11 13 9.10e-2

Set II (30) fbest 7 23 0 1.80e-2

favg 24 5 1 1.57e-5

the Wilcoxon signed-rank test in the last row.

From Table 4, we observe that the proposed MSBTS algorithm is very
competitive compared to the reference algorithms in terms of Tbest and Tavg.
In particular, MSBTS attains the smallest Tbest values for 22 instances (out
of 30) against 0 for DHJaya, HBPSO/TS, I2PLS and 8 for KBTS. Also,
MSBTS has a better average performance according to the #Avg values in
the last row. The p-values (< 0.05) from the Wilcoxon signed-rank test
clearly indicate that differences between MSBTS and the compared
algorithms are statistically significant.

To further illustrate the computational efficiency of MSBTS compared to the
reference algorithms, we plot the points (Ti, ρi) based on two SUKP instances
of Set II and show the time-to-target plots in Fig. 5. The X-axis in each sub-
figure indicates the time to achieve the target value, and the Y-axis is the
cumulative probability of reaching the given target value. We observe that the
cumulative probability of each algorithm increases with the run-time. However,
MSBTS (also KBTS) attains a high probability (over 90%) in a very short
computation time (less than 20 seconds) on both instances, while the other
algorithms perform poorly. Regarding MSBTS and KBTS, in order to attain
a probability of 99.5% of reaching the target value, MSBTS requires about 12
seconds on both instances, while KBTS consumes around 42 seconds and 26
seconds. Note that DHJaya failed to obtain the probability of 99.5% within
the time limit of 1000s on both instances. This experiment demonstrates the
computational efficiency of the proposed MSBTS algorithm.

18

Table 4
Time-to-target analysis on the SUKP instances of Set II.

Instance/Algorithm Target
DHJaya HBPSO/TS I2PLS KBTS MSBTS

Tbest(s) Tavg(s) Tbest(s) Tavg(s) Tbest(s) Tavg(s) Tbest(s) Tavg(s) Tbest(s) Tavg(s)

600 585 0.10 0.75 9500 100.079 523.459 3.470 9.353 3.741 11.927 0.213 0.618 0.654 1.297

600 585 0.15 0.85 9100 65.826 566.872 67.883 382.176 6.599 59.784 3.486 12.187 1.244 9.123

700 685 0.10 0.75 9700 270.577 561.072 11.334 133.119 11.657 66.970 1.216 7.799 0.858 5.310

700 685 0.15 0.85 9100 106.614 427.274 123.888 526.406 9.663 178.041 1.647 42.561 1.370 23.398

800 785 0.10 0.75 9500 160.885 650.605 18.534 132.560 25.917 241.929 1.272 15.965 1.325 7.600

800 785 0.15 0.85 8700 151.590 516.174 68.445 323.062 15.246 102.963 5.448 55.774 2.492 7.798

900 885 0.10 0.75 9400 313.696 560.054 37.409 271.706 13.254 295.578 1.530 28.776 3.346 8.834

900 885 0.15 0.85 8400 221.799 400.128 499.176 652.865 13.318 459.241 2.592 60.691 2.139 9.243

1000 985 0.10 0.75 9000 291.897 421.090 9.114 97.051 13.008 150.602 1.061 21.855 0.639 16.614

1000 985 0.15 0.85 8300 293.618 574.331 678.089 820.440 530.745 530.745 6.685 116.893 10.870 25.255

600 600 0.10 0.75 10500 67.558 369.584 16.691 51.810 5.938 31.448 2.589 58.678 1.041 5.271

600 600 0.15 0.75 8800 68.179 560.449 6.067 131.515 5.670 40.425 1.170 5.538 0.697 5.450

700 700 0.10 0.75 9500 654.112 743.459 9.297 163.108 9.090 99.874 1.769 12.083 0.721 4.817

700 700 0.15 0.85 9100 105.922 521.651 111.166 690.543 23.306 265.033 4.807 29.800 2.098 19.571

800 800 0.10 0.75 9800 573.460 576.004 180.088 549.453 866.553 866.553 9.431 213.756 6.618 21.098

800 800 0.15 0.85 8800 162.727 575.454 114.424 508.682 15.821 131.655 1.385 27.487 2.459 8.224

900 900 0.10 0.75 9500 220.422 603.266 33.222 261.629 11.589 46.073 1.275 8.965 2.809 6.297

900 900 0.15 0.85 8600 235.578 459.369 50.142 554.410 12.601 84.906 1.033 10.397 0.912 8.208

1000 1000 0.10 0.75 9300 327.772 784.859 76.998 560.236 30.069 412.291 2.125 149.036 18.468 43.389

1000 1000 0.15 0.85 8000 294.562 530.699 76.860 548.614 25.684 225.339 2.132 24.634 1.218 8.561

585 600 0.10 0.75 10000 64.865 245.444 15.053 83.161 6.935 17.042 1.614 5.787 0.746 2.510

585 600 0.15 0.85 9000 65.337 528.534 8.954 63.449 7.319 96.275 1.033 21.288 1.005 21.108

685 700 0.10 0.75 10000 333.101 472.050 137.383 171.016 108.642 484.414 13.512 235.948 2.818 5.230

685 700 0.15 0.85 9000 154.648 514.173 189.391 531.964 19.709 299.990 3.127 45.425 1.370 29.075

785 800 0.10 0.75 8900 155.496 484.831 9.029 96.090 11.278 104.360 0.756 7.486 0.765 2.847

785 800 0.15 0.85 8500 150.938 607.258 679.254 679.254 27.872 358.703 10.115 155.450 2.401 22.656

885 900 0.10 0.75 9100 222.106 619.250 30.648 425.582 36.186 415.666 6.096 73.726 4.159 17.378

885 900 0.15 0.85 8000 346.018 631.780 228.520 564.195 28.099 209.716 1.941 17.235 1.746 7.186

985 1000 0.10 0.75 8900 300.232 540.491 278.500 651.225 36.254 428.971 12.316 113.230 9.698 48.404

985 1000 0.15 0.85 8100 281.460 437.529 109.148 276.985 47.763 287.634 1.088 12.129 0.997 10.208

#Avg 9073 225.369 533.573 129.272 363.722 65.984 233.472 3.482 53.040 2.923 13.732

#Best - 0 0 0 0 0 0 8 2 22 28

#p-value - 1.86e-09 1.86e-09 1.86e-09 1.86e-09 1.86e-09 1.86e-09 2.48e-2 9.31e-09 - -

!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

!"+

#

! #!! $!! %!! &!! '!! (!!)!! *!! +!! #!!!

!
"#
$
%$
&'
&(
)

*&+, (# (%"-,(.%'/, #0 123! &45(%46,
789:8;;:;<=;:;<79

!"#$"

%#$"

&'()"

*#("+,$"

-*./0/

!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

!"+

#

! #!! $!! %!! &!! '!! (!!)!! *!! +!! #!!!

!
"#
$
%$
&'
&(
)

*&+, (# (%"-,(.%'/, #0 123! &45(%46,
>;;:>;;:;<=;:;<79

!"#$"

%#$"

&'()"

*#("+,$"

-*./0/

Fig. 5. Cumulative probability distributions for the time to reach a target value.

19

4 Analysis

In this section, we perform additional experiments to investigate the influences
of the main ingredients of the MSBTS algorithm. Specifically, we study the
effect of the parameter γv of the hash functions (Section 4.1), the error rates of
hash functions (Section 4.2) and the benefit of the solution-based tabu search
strategy (Section 4.3).

4.1 Sensitivity analysis of hash functions

Hash functions are the key ingredients of the MSBTS algorithm. Now, we
analyze the influence of the parameter γv (v = 1, 2, 3) involved in the hash
functions (see Section 2.4.2) on the performance of the MSBTS algorithm.
As indicated in [31], the proper settings of γv should satisfy two conditions:
(1) the hash values of each candidate solution should be no more than the
allowed maximum integer to avoid overflow; (2) the distribution of hash
values of different candidate solutions should be wide enough to reduce
possible collisions. We have carried out preliminary experiments for γv used
in the hash functions. Experimental results show that a large γv value
(> 2.8) will lead to integer overflow for instances with more than 985 items
or elements. On the other hand, a small γv value (< 1.0) will lead to the
same values of bWv

i c (Wv
i = iγv) for adjacent items, increasing the

probability of collisions. For example, assuming γv=0.9, the bWv
i c values of

the adjacent items 501 and 502 are both 269 (W501 = 5010.9 = 269.06,
W502 = 5020.9 = 269.55). Given two neighboring solutions S1 and
S2 = S1 ⊕ swap(500, 501) where the swap operator was defined in Section
2.4.1, they will get the same hash value. As we focus on the ranges (1.0, 2.8)
to analyze the influence of the parameter γv.

For this purpose, we tested different groups of parameters (γ1, γ2, γ3) (see
Table 5) on 10 representative SUKP instances, i.e., 785 800 0.15 0.85,

800 785 0.10 0.75, 800 785 0.15 0.85, 885 900 0.15 0.85, 900 885 0.15 0.85,

985 1000 0.10 0.75, 985 1000 0.15 0.85, 1000 985 0.10 0.75, 1000 985 0.15 0.85,

1000 1000 0.15 0.85. These 10 instances are denoted by G1 to G10 in Table 5,
respectively. For the experiment, we performed 30 independent runs for each
setting of parameters on each instance with the cut-off time of 1000 seconds,
and recorded the average objective values (favg). In fact, we do not provide
the best object values (fbest) here, since most of the fbest values obtained
with different group of parameters (γ1, γ2, γ3) are exactly the same.

Table 5 displays the comparative results of this experiment, where the first
row shows the label of each tested instance and the first column indicates the

20

setting of the parameters (γ1, γ2, γ3). The favg values of each group of γv are
shown in rows 2 to 21, respectively. In addition, the last row #std gives the
standard deviation of each column and the last column #Avg presents that
the average values of each row.

From Table 5, we observe that the parameter γv is not sensitive for our
algorithm. First, the results obtained from different groups of parameters are
very similar in terms of #Avg values. Specially, there are 12 out of 20 groups
of parameters that obtained the same favg value on instance G4. Second, the
small #std values of each column indicate that the standard deviations of
the results shown in the columns are relatively low. The p-value of 0.633
(> 0.05) from the Friedman statistical test again confirms that there are no
significant differences among the tested results. This analysis indicated that
any γv value in the interval (1.0, 2.8) is suitable for the proposed algorithm.

Table 5
Influence of the hash functions on the average performance of MSBTS algorithm.

(γ1, γ2, γ3)/
G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 #Avg

Instance

(1.1,1.3,1.5) 8665.77 9930.33 9004 8408.87 8578.23 9190.07 8579.50 9647.67 8453.80 8491.90 8895.01

(1.1,1.5,1.9) 8687.90 9937 8985.50 8411 8577.10 9191.87 8575.17 9627.50 8453.27 8490.07 8893.64

(1.2,1.4,1.8) 8687.90 9937 8983.67 8412.20 8579.27 9190.73 8583.83 9638.50 8453.60 8487.93 8895.46

(1.2,1.6,2.0) 8693.43 9937 8992.83 8413.80 8576.07 9192.53 8579.50 9631.60 8453.20 8500.37 8897.03

(1.3,1.5,1.7) 8671.30 9937 9000.17 8411.67 8581.43 9192.93 8577.33 9636.10 8453.43 8490.77 8895.21

(1.3,1.7,2.1) 8690.67 9937 8985.50 8413.80 8566.33 9189.03 8577.33 9631.60 8453.13 8491.70 8893.61

(1.4,1.6,2.0) 8687.90 9933.67 8994.67 8411.47 8582.53 9191.80 8573 9626.13 8453.27 8486.93 8894.14

(1.5,1.7,1.9) 8679.60 9937 8989.17 8412.20 8568.43 9189.73 8573 9631 8453.33 8496.10 8892.96

(1.5,1.9,2.3) 8685.13 9933.67 8983.67 8412.20 8571.67 9191.80 8579.50 9636.80 8453.40 8492.47 8894.03

(1.6,1.8,2.2) 8679.60 9937 8989.17 8412.20 8568.43 9189.73 8573 9631 8453.33 8496.10 8892.96

(1.7,1.9,2.1) 8685.13 9933.67 8985.50 8412.20 8573.90 9190.50 8573 9637.50 8453.40 8492.47 8893.73

(1.7,2.1,2.5) 8682.37 9933.67 8981.83 8412.20 8573.90 9191.57 8575.17 9637.50 8453.40 8492.47 8893.41

(1.8,2.0,2.4) 8685.13 9933.67 8983.67 8412.20 8571.67 9191.80 8579.50 9636.80 8453.40 8492.47 8894.03

(1.9,2.1,2.3) 8682.37 9933.67 8981.83 8412.20 8573.90 9191.57 8577.33 9637.20 8453.40 8492.47 8893.59

(1.9,2.3,2.7) 8682.37 9933.67 8981.83 8412.20 8573.90 9191.57 8577.33 9637.50 8453.40 8492.47 8893.62

(2.0,2.2,2.6) 8685.13 9933.67 8985.50 8412.20 8573.90 9190.50 8573 9637.50 8453.40 8492.47 8893.73

(1.1,1.2,2.7) 8693.43 9937 8983.67 8410.60 8568.40 9191.20 8573 9636.67 8453.40 8494.33 8894.17

(1.1,1.8,2.7) 8679.60 9933.67 8985.50 8412.73 8571.73 9191.57 8573 9643 8453.40 8490.33 8893.45

(1.1,2.0,2.7) 8676.83 9933.67 8981.83 8412.20 8573.90 9191.57 8575.17 9637.20 8453.40 8492.47 8892.82

(1.1,2.5,2.7) 8676.83 9933.67 8981.83 8412.20 8571.73 9191.57 8575.17 9637.20 8453.33 8492.47 8892.60

#std 6.93 1.96 6.30 1.04 4.35 0.99 3.10 4.94 0.14 2.88 -

4.2 Error rates of hash functions

An error occurs when an unvisited solution is wrongly forbidden by the hash
functions and the associated hash vectors. To calculate the error rates of
hash functions, we ran our SBTS procedure for 104 iterations on two SUKP
instances: 1000 1000 0.10 0.75, 1000 1000 0.15 0.85. During the search, each

21

encountered solution is recorded in a pool POP . We use a counter c1 to
count the number of solutions forbidden (classified as tabu) by the hash
functions. Another counter c2 (error counter) will be incremented by 1 if the
solution is not included in POP . Then the error rate is obtained by c2/c1.
We perform additional experiments to investigate two factors that affect the
error rates of the hash functions: 1) the length L of the hash functions, and
2) the number of the hash vectors.

The role of the length L is to ensure that the hash vectors are long enough
to be able to record the sampled solutions. A proper setting of L should not
only avoid memory overflow, but also keep the error rates at a low level.
The results of preliminary experiments indicate that a large L value (> 108)
leads to memory overflow. Thus we carried out an experiment to check the
error rates of the hash vectors with L ranging from 105 to 108. The error
rate plots are shown in Fig. 6, where the iterations of the SBTS procedure
and the corresponding error rates are displayed on the X-axis and the Y -axis,
respectively.

!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

!"+

#

! $!!! &!!! (!!! *!!! #!!!!

!
""
#
"
"$
%&
'

(%&"$%)#*' #*+,-./+)*'%$*0&+1222312223241232456+

!"#"$%&'

!"#"$%&(

!"#"$%&)

!"#"$%&*

!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

!"+

#

! $!!! &!!! (!!! *!!! #!!!!

!
""
#
"
"$
%&
'

(%&"$%)#*' #*+,-./+)*'%$*0&+1222312223241532465+

!"#"$%&'

!"#"$%&(

!"#"$%&)

!"#"$%&*

Fig. 6. Impact of the length L of hash vectors on the error rate of the solution-based
tabu search procedure.

Fig. 6 shows that our algorithm can keep the error rate at a low level (< 0.07)
with L ranging from 106 to 108. In particular, when the values of L are 107

and 108, the corresponding curves almost overlap and stay under 0.02. The
error rates increase dramatically (more than 0.5) as the number of iterations
increases for L ≤ 105. Considering that the time complexity of evaluating a
neighboring solution is O(1), a large L value will not significantly affect the
computation time. Thus any L value in the interval [106, 108] is suitable for
the proposed algorithm (L = 108 in the MSBTS algorithm).

22

!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

!"+

#

! $!!! &!!! (!!! *!!! #!!!!

!
""
#
"
"$
%&
'

(%&"$%)#*' #*+,-./+)*'%$*0&+1222312223241232456+

!"#$%&'%$()*+,-#*'

!%.//$%&'%$()*+,-#*'

!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

!"+

#

! $!!! &!!! (!!! *!!! #!!!!

!
""
#
"
"$
%&
'

(%&"$%)#*' #*+,-./+)*'%$*0&+1222312223241532465+

!"#$%&'%$()*+,-#*'

!%.//$%&'%$()*+,-#*'

Fig. 7. Impact of the number of hash vectors on the error rate of the solution-based
tabu search procedure.

The role of the hash vectors is to record the solutions encountered during
the search, and the number of the hash vectors can significantly affect the
error rates. We performed another experiment to analyze the error rates when
using two or three hash vectors. As the error rate plots in Fig. 7 show, the
SBTS procedure has an error rate of nearly 0.9 with two hash vectors over
104 iterations. The error rate with one hash vector will be naturally higher
than that with two hash vectors for the same number of iterations. On the
contrary, the error rate remains very low (< 0.02) with three hash vectors
over 104 iterations. So three hash vectors can effectively identify the previously
encountered solutions, which justifies the use of three hash vectors in MSBTS.

4.3 Analysis of solution-based tabu search

The solution-based tabu search strategy is the most innovative component of
the MSBTS algorithm. To understand its influence on the algorithm, we
created a MSBTS variant; named MABTS where the solution-based tabu
search procedure is replaced by an attributed-based tabu search procedure.
For this experiment, we employed the attributed-based tabu search method
introduced in [22], which is one of the best SUKP algorithm. Thus, except
the tabu search procedure, MABTS shares the other components of MSBTS.

Considering that our algorithm mainly shows its superiority on the large
instances, we carried out this experiment based on Set II, where each
instance was independently solved by each algorithm 30 times, each run
being limited to 1000 seconds.

The experimental results are reported in Table 6. The first column shows
the names of the instances. The results of the two compared algorithms are
respectively presented in columns 2 to 7, including the best objective value
(fbest), the average objective value (favg), the standard deviation over 30 runs

23

(std). To facilitate the comparison, we also provide the similar #Avg, #Best
and p-values as described in Section 3.4.

Table 6 shows that MSBTS significantly outperforms MABTS, achieving
better fbest values (marked in bold) for 17 out of the 30 instances and equal
results for the remaining 13 instances. When comparing the favg values,
MSBTS again dominates MABTS for all the instances. Moreover, the std
values of MSBTS are very small, indicating that MSBTS is highly robust.
Furthermore, the small p-values (< 0.05) show that there is a significant
difference between MSBTS and MABTS. This experiment confirms that the
solution-based tabu search strategy constitutes one key ingredient of our
algorithm.

5 Conclusions

The Set-Union Knapsack Problem attracts more and more attention in
recent years due to its theoretical and practical interest. Inspired by the fact
that the solution-based tabu search has been successfully applied to solve
several difficult binary optimization problems, we devised the first multistart
solution-based tabu search algorithm for solving SUKP. The proposed
MSBTS algorithm uses its solution-based tabu search procedure to find
high-quality local optima and the multistart mechanism to overcome deep
local optima traps. MSBTS has several desirable features such as simple
design and implementation as well as absence of parameters.

We performed extensive experimental assessments of the proposed algorithm
on two sets of 60 benchmark instances. The comparisons with the
state-of-the-art algorithms demonstrated the high competitiveness of our
algorithm in terms of solution quality, computational efficiency and
robustness. In particular, we demonstrated the interest of the MSBTS
algorithm to deal with large instances and reported new lower bounds for 7
large and difficult instances (with 585 to 1000 items and elements).

This work thus provides a useful tool for solving the general Set-Union
Knapsack Problem. Moreover, since a number of real-world applications can
be conveniently formulated by SUKP, the proposed algorithm can be
hopefully applied to these practical problems. The availability of the code of
the MSBTS algorithm will facilitate such applications.

Finally, this work provides another supporting evidence for using the solution-
based tabu search strategy to solve binary problems. As such it would be
interesting to verify the effectiveness of this approach on additional problems
including those related to knapsack.

24

Table 6
Comparison between MSBTS and MABTS on the instances of Set II.

Instance/Setting
MSBTS MABTS

fbest favg std fbest favg std

600 585 0.10 0.75 9914 9914 0 9914 9801.57 72.65

600 585 0.15 0.85 9357 9357 0 9357 9329.40 23.76

700 685 0.10 0.75 9881 9881 0 9841 9814.37 34.83

700 685 0.15 0.85 9163 9163 0 9135 9126.67 14.16

800 785 0.10 0.75 9937 9937 0 9811 9679.73 61.37

800 785 0.15 0.85 9024 8992.83 27.25 9024 8892.53 51.21

900 885 0.10 0.75 9725 9725 0 9611 9503.63 53.57

900 885 0.15 0.85 8620 8576.07 27.14 8499 8459.87 26.51

1000 985 0.10 0.75 9689 9631.60 28.92 9580 9411.37 58.09

1000 985 0.15 0.85 8455 8453.20 0.60 8448 8359.30 106.74

600 600 0.10 0.75 10524 10524 0 10524 10519.67 3.54

600 600 0.15 0.75 9062 9062 0 9062 9058.20 11.40

700 700 0.10 0.75 9786 9786 0 9786 9770.20 37.93

700 700 0.15 0.85 9229 9229 0 9177 9145.20 30.65

800 800 0.10 0.75 9932 9932 0 9932 9734.87 64.12

800 800 0.15 0.85 9101 9101 0 8956 8907.10 14.88

900 900 0.10 0.75 9745 9745 0 9660 9629.20 36.02

900 900 0.15 0.85 8990 8990 0 8916 8911.03 17.49

1000 1000 0.10 0.75 9551 9551 0 9357 9269.87 92.10

1000 1000 0.15 0.85 8538 8500.37 28.65 8381 8282.20 73.08

585 600 0.10 0.75 10393 10393 0 10393 10325.43 34.75

585 600 0.15 0.85 9256 9256 0 9256 9256 0

685 700 0.10 0.75 10121 10121 0 10121 9944.10 59.12

685 700 0.15 0.85 9176 9176 0 9176 9144.97 31.29

785 800 0.10 0.75 9384 9384 0 9384 9229.37 93.68

785 800 0.15 0.85 8746 8693.43 40.00 8663 8526.57 59.71

885 900 0.10 0.75 9318 9318 0 9232 9158.57 40.38

885 900 0.15 0.85 8425 8413.80 7.33 8425 8276.07 42.39

985 1000 0.10 0.75 9234 9192.53 14.12 9193 9030.77 54.53

985 1000 0.15 0.85 8612 8579.50 32.50 8461 8384.43 75.03

#Avg 9362.93 9352.61 6.88 9309.17 9229.41 45.83

#Best 30 30 - 13 0 -

p-value 2.93e-4 2.563e-06 - - - -

Declaration of competing interest

The authors declare that they have no known competing interests that could
have appeared to influence the work reported in this paper.

25

Acknowledgments

We are grateful to the reviewers for their useful comments and suggestions
which helped us to significantly improve the paper. We would like to thank
Dr. Congcong Wu, Dr. Geng Lin, Dr. Xiangjing Lai and their co-authors
for sharing the codes of their algorithms ([17], [21], [32]). Support from the
China Scholarship Council (Grant 201706290016) for the first author is also
acknowledged.

References

[1] O. Goldschmidt, D. Nehme, G. Yu, Note: On the set-union knapsack problem,
Nav. Res. Log. 41 (6) (1994) 833–842.

[2] H. Kellerer, U. Pferschy, D. Pisinger, Knapsack problems, Springer, 2004.

[3] B. Schneier, Applied cryptography - protocols, algorithms, and source code in
C, 2nd Edition, John Wiley & Sons, 1996.

[4] S. B. Navathe, S. Ceri, G. Wiederhold, J. Dou, Vertical partitioning algorithms
for database design, ACM Trans. Database Syst. 9 (4) (1984) 680–710.

[5] M. Tu, L. Xiao, System resilience enhancement through modularization for
large scale cyber systems, in: 2016 IEEE/CIC International Conference on
Communications in China (ICCC Workshops), IEEE, 2016, pp. 1–6.

[6] W. D. Lister, R. G. Laycock, A. M. Day, A key-pose caching system for
rendering an animated crowd in real-time, Comput. Graph. Forum 29 (8) (2010)
2304–2312.

[7] A. Arulselvan, A note on the set union knapsack problem, Discret. Appl. Math.
169 (2014) 214–218.

[8] R. Taylor, Approximations of the densest k-subhypergraph and set union
knapsack problems, arXiv preprint :1610.04935 (2016).

[9] Z. Wei, J. Hao, Iterated two-phase local search for the set-union knapsack
problem, Future Gener. Comput. Syst. 101 (2019) 1005–1017.

[10] Y. He, H. Xie, T. Wong, X. Wang, A novel binary artificial bee colony algorithm
for the set-union knapsack problem, Future Gener. Comput. Syst. 78 (2018) 77–
86.

[11] F. B. Özsoydan, A. Baykasoglu, A swarm intelligence-based algorithm for the
set-union knapsack problem, Future Gener. Comput. Syst. 93 (2019) 560–569.

[12] A. Baykasoğlu, F. B. Ozsoydan, M. E. Senol, Weighted superposition attraction
algorithm for binary optimization problems, Oper. Res. (2018) 1–27.

26

[13] F. B. Özsoydan, Artificial search agents with cognitive intelligence for binary
optimization problems, Comput. Ind. Eng. 136 (2019) 18–30.

[14] Y. He, X. Wang, Group theory-based optimization algorithm for solving
knapsack problems, Knowl. Based Syst. (2018) 104445.

[15] Y. Feng, H. An, X. Gao, The importance of transfer function in solving set-union
knapsack problem based on discrete moth search algorithm, Mathematics 7 (1)
(2019) 17.

[16] Y. Feng, J. Yi, G. Wang, Enhanced moth search algorithm for the set-union
knapsack problems, IEEE Access 7 (2019) 173774–173785.

[17] C. Wu, Y. He, Solving the set-union knapsack problem by a novel hybrid jaya
algorithm, Soft Comput. 24 (3) (2020) 1883–1902.

[18] X. Liu, Y. He, Estimation of distribution algorithm based on lévy flight for
solving the set-union knapsack problem, IEEE Access 7 (2019) 132217–132227.

[19] I. Gölcük, F. B. Ozsoydan, Evolutionary and adaptive inheritance enhanced
grey wolf optimization algorithm for binary domains, Knowl. Based Syst. 194
(2020) 105586.

[20] H. H. Hoos, T. Stützle, Stochastic Local Search: Foundations & Applications,
Elsevier / Morgan Kaufmann, 2004.

[21] G. Lin, J. Guan, Z. Li, H. Feng, A hybrid binary particle swarm optimization
with tabu search for the set-union knapsack problem, Expert Syst. Appl. 135
(2019) 201–211.

[22] Z. Wei, J. Hao, Kernel based tabu search for the set-union knapsack problem,
Expert Syst. Appl. 165 (2020) 113802.

[23] F. Glover, M. Laguna, Tabu search, Springer Science+Business Media New
York, 1997.

[24] Y. Lu, B. Cao, C. Rego, F. Glover, A tabu search based clustering algorithm
and its parallel implementation on spark, Appl. Soft Comput. 63 (2018) 97 –
109.

[25] I. Polak, M. Boryczka, Tabu search in revealing the internal state of rc4+ cipher,
Appl. Soft Comput. 77 (2019) 509 – 519.

[26] Q. Zhou, J. Hao, Z. Sun, Q. Wu, Memetic search for composing medical crews
with equity and efficiency, Appl. Soft Comput. 94 (2020) 106440.

[27] W. B. Carlton, J. W. Barnes, A note on hashing functions and tabu search
algorithms, Eur. J. Oper. Res. 95 (1) (1996) 237–239.

[28] D. L. Woodruff, E. Zemel, Hashing vectors for tabu search, Annals OR 41 (2)
(1993) 123–137.

[29] X. Lai, J. Hao, F. W. Glover, Z. Lü, A two-phase tabu-evolutionary algorithm
for the 0-1 multidimensional knapsack problem, Inf. Sci. 436-437 (2018) 282–
301.

27

[30] X. Lai, J. Hao, D. Yue, Two-stage solution-based tabu search for the
multidemand multidimensional knapsack problem, Eur. J. Oper. Res. 274 (1)
(2019) 35–48.

[31] Y. Wang, Q. Wu, F. W. Glover, Effective metaheuristic algorithms for the
minimum differential dispersion problem, Eur. J. Oper. Res. 258 (3) (2017)
829–843.

[32] X. Lai, D. Yue, J. Hao, F. W. Glover, Solution-based tabu search for the
maximum min-sum dispersion problem, Inf. Sci. 441 (2018) 79–94.

[33] J. Chang, L. Wang, J. Hao, Y. Wang, Parallel iterative solution-based tabu
search for the obnoxious p-median problem, Comput. Oper. Res. 127 (2020)
105155.

[34] E. D. N. Ruiz, X. Yang, Improved tabu search and simulated annealing methods
for nonlinear data assimilation, Appl. Soft Comput. 83 (2019).

[35] M. Shahmanzari, D. Aksen, A multi-start granular skewed variable
neighborhood tabu search for the roaming salesman problem, Appl. Soft
Comput. (2020) 107024.

[36] Y. Chen, J. Hao, An iterated “hyperplane exploration” approach for the
quadratic knapsack problem, Comput. Oper. Res. 77 (2017) 226–239.

[37] R. M. Aiex, M. G. C. Resende, C. C. Ribeiro, TTT plots: a perl program to
create time-to-target plots, Optim. Lett. 1 (4) (2007) 355–366.

[38] C. C. Ribeiro, I. Rosseti, R. V. Campos, Exploiting run time distributions to
compare sequential and parallel stochastic local search algorithms, J. Global
Optimization 54 (2) (2012) 405–429.

28

	Introduction
	Multistart solution-based tabu search for the SUKP
	Search space, solution representation, and evaluation function
	Main framework
	Greedy randomized initialization
	Solution-based tabu search
	Computational complexity and discussion

	Computational results and comparisons
	Benchmark instances
	Experimental settings
	Computational results
	Time-to-target analysis

	Analysis
	Sensitivity analysis of hash functions
	Error rates of hash functions
	Analysis of solution-based tabu search

	Conclusions
	References

