
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

Solving the Single Row Facility Layout Problem by
K-Mebdoids Memetic Permutation Group

Lixin Tang, Senior Member, IEEE, Zuocheng Li, and Jin-Kao Hao*

Abstract— The single row facility layout problem (SRFLP) is
concerned with arranging facilities along a straight line so as to
minimize the sum of the products of the flow costs and distances
between all facility pairs. SRFLP has rich practical applications
and is however NP-hard. In this paper, we first investigate a
dedicated symmetry-breaking approach based on permutation
group theory for reducing the solution space of SRFLP. Relevant
symmetry properties are identified through the alternating group
of the original solution space or the corresponding coordinate
rotation space. Then, a memetic algorithm is proposed to explore
promising search regions regarding the reduced solution space.
The memetic algorithm employs a problem-specific crossover
operator guided by k-medoids clustering technique to pro-
duce meaningful offspring solutions. The algorithm additionally
uses a simulated annealing procedure to intensively exploit a
given search region and a distance-and-quality based population
management strategy to ensure a reasonable diversity of the
population. Experimental results on commonly used benchmark
instances and newly introduced large-scale instances with sizes
up to 2000 facilities show that the proposed algorithm competes
favorably with state-of-the-art SRFLP algorithms. It attains all
but one previous best known upper bounds and discovers new
upper bounds for 33 instances out of the 93 popular benchmark
instances.

Index Terms—Single row facility layout, permutation group,
memetic search, k-medoids clustering, simulated annealing.

I. INTRODUCTION

THE SINGLE row facility layout problem (SRFLP) is a
popular combinatorial optimization problem. It consists

of arranging facilities along a straight line while minimizing
the sum of the products of the flow costs and distances between
all pairs of facilities.

Formally, let N={1,...,N} be the set of given facilities, ΠN

the set of all permutations of facilities in N (the cardinality is
N !), cij = cji the flow cost between facilities i ∈ N and j ∈
N , and `i the length of facility i. SRFLP can be formulated
as follows [1]–[4]:

min
π∈ΠN

f(π) =
∑

i,j∈N ,i<j
cπi,πj

dπi,πj
, (1)

This research was partially supported by the Major Program of National
Natural Science Foundation of China (71790614), the Major International
Joint Research Project of the National Natural Science Foundation of China
(71520107004) and the 111 Project (B16009). (Corresponding author: Jin-
Kao Hao)

L. Tang is with Frontier Science Center for Industrial Intelligence and
Systems Optimization, Northeastern University, Shenyang 110819, China (e-
mail: lixintang@mail.neu.edu.cn).

Z. Li is with Key Laboratory of Data Analytics and Optimization for Smart
Industry (Northeastern University), Ministry of Education, Shenyang 110819,
China (e-mail: zuocheng li@163.com).

J.K. Hao is with LERIA, Université d’Angers, 2 Boulevard Lavoisier,
Angers 49045, France (e-mail: jin-kao.hao@univ-angers.fr).

Manuscript received Sept 2021; revised Jan 2022; accepted March 2022.

where dπi,πj
is the distance that is defined as follows:

dπi,πj
=
`πi

2
+
∑

i<k<j
`πk

+
`πj

2
. (2)

SRFLP was first studied as far back as the 1960s [5]. It
occurs in numerous practical applications, including gener-
ating physical layout in circuit design [6], determining ma-
chine sequence in manufacturing systems [7] and sequencing
workstations in automated guided vehicle (AGV) systems [1].
SRFLP is known to be NP-hard [8] and so is a computationally
challenging research problem.

Given its theoretical importance and application focuses, a
number of solution methods have been proposed for solving
SRFLP, which can be generally classified as exact algorithms
and metaheuristic algorithms. A comprehensive review of
solution methods for SRFLP till 2015 can be found in [9].
Due to the NP-hardness of SRFLP, exact algorithms often
require a prohibitively expensive time for large-sized instances.
The best performing exact algorithms including the branch-
and-cut algorithm [10], semidefinite programming algorithms
[11], [12] and the cutting plane algorithm [13] may fail to
address instances with up to 42 facilities. Even the currently
most effective semidefinite programming method [8] still has
difficulties for instances with N>110. For large-sized instances
that cannot be handled by exact algorithms, metaheuristic
algorithms can be suitable alternatives to obtain high-quality
suboptimal solutions within reasonable computation time.

In recent years, several metaheuristic algorithms have been
used to solve SRFLP. In [1], [4], search approaches based
on the so-called greedy randomized adaptive search procedure
(GRASP), named GRASP-PR and GRASP-F, were proposed
to solve SRFLP with size N>300. Palubeckis [2], [3] investi-
gated novel speed-up solution evaluation techniques and pro-
posed a multi-start simulated annealing (MSA) and a variable
neighborhood search (VNS-LS3) to solve SRFLP considering
many new instances. Samarghandi and Eshghi [14] studied
a tabu search where they introduced a speed-up strategy to
enhance the efficiency of the algorithm for a special case of
SRFLP. Kothari and Ghosh [15] presented a tabu search with
pairwise 2-opt and insertion neighborhoods to solve SRFLP.
In [16], a genetic algorithm (GA) with problem-specific im-
provement strategies was proposed to solve the problem. Other
metaheuristic algorithms, such as scatter search [17], the cross-
entropy algorithm [18], and ant colony optimization [19], were
also developed for the problem. These studies motivate our
metaheuristic search model for SRFLP.

Despite the effectiveness and efficiency of these reviewed
metaheuristic algorithms, few methods can solve large-scale

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2

SRFLP. Only solution approaches of [1]–[4] can find a high-
quality suboptimal solution for instances with 300 ≤ N ≤
1000. This can be due to the fact that almost no metaheuristic
algorithms have used the inherent symmetric properties of the
solution space of SRFLP to improve the search efficiency.
Besides, existing algorithms are also short of pertinent models
to learn valuable knowledge while identifying building blocks
in discrete search spaces. These motivate us to consider the
symmetric features of the solution space of SRFLP and so
devise a learning based metaheuristic algorithm able to solve
large-scale problem.

In this paper, we investigate for the first time a dedicated
symmetry-breaking method based on permutation group the-
ory for reducing the solution space of SRFLP. Given the
characteristics of the reduced solution space, a k-me doids
memetic permutation group algorithm (KMPG) is designed
for SRFLP. Like most memetic algorithms, the solution quality
of KMPG also depends on a suitable local search procedure.
However, no efficient incremental evaluation technique is
known to assess the quality of candidate solutions. In this case,
solution methods like tabu search and variable neighborhood
search are unsuitable since the time of each iteration will be
too expensive. Simulated annealing has been successful to
a number of related facility layout problems [20]–[22]. The
simplicity of simulated annealing makes it an interesting local
search tool in our case because the search process is guided
only by a simple annealing function. Thus, in KMPG we
embed a simulated annealing based local search procedure.
The contributions of this work are summarized as follows.

First, from a perspective of solution approach, the proposed
KMPG algorithm considers the symmetric features of the
solution space of SRFLP, aiming to explore more promising
search regions with less effort. For this, a dedicated symmetry-
breaking strategy based on the permutation group theory
is presented. Indeed, for SRFLP, although previous studies
offer various theoretical analysis on solution structures, we
are not aware of any effective symmetry-breaking approach
based on inherent mathematical properties for reducing the
solution space. In particular, the KMPG algorithm combines a
problem-specific crossover operator guided by the k-medoids
clustering technique to produce promising offspring solutions,
a symmetry-breaking-based simulated annealing procedure
to perform local optimization, and a distance-quality-based
population management strategy to strengthen the diversity
of the population. These search components work together to
attain a suitable balance between the global exploration and the
local exploitation. We note that, this is the first approach that
employs machine learning mechanism and strict mathematical
method to guide the search behavior of the algorithm.

Second, from a perspective of computational performance
and resulting advances, we provide comparisons of the KMPG
algorithm and the most effective state-of-the-art SRFLP al-
gorithms of [1]–[4] on traditional benchmark instances and
newly introduced large-scale instances. Especially, we report
new upper bounds for 33 out of the 93 traditional benchmark
instances. To the best of our knowledge, this is the first
solution method achieving such a performance regarding the
popular benchmark instances. Moreover, we make the 20 new

instances (with 1050≤N≤2000) publicly available and present
for the first time upper bounds on them, which would be
valuable for future research on SRFLP. Note that existing
method s have been only used to handle instances with N
≤1000. This indicates that the KMPG algorithm is capable of
offering a good performance for large-scale SRFLP instances.
Given that SRFLP has a number of real-life applications, the
proposed KMPG algorithm will be particularly useful if large-
sized practical cases are considered.

Third, the idea of the proposed symmetry-breaking method
is of generic nature and could be advantageously adopted
by other SRFLP algorithms. Considering the problem-specific
features of solved problems, the search components based
on the permutation group and the k-medoids clustering of
this work could inspire effective search approaches for other
permutation problems. More generally, since any finite abstract
group is isomorphic to a permutation group, the proposed
symmetry-breaking approach can be used to identify mean-
ingful symmetric features for other combinatorial optimization
problems. However, the symmetric features is only one of sev-
eral solution features for combinatorial optimization problems,
so the case of the permutation group in this work could inspire
useful methods for finding other types of solution properties.
Furthermore, there may be certain kinds of symmetric struc-
tures in some optimization and machine learning methods.
Thus, the philosophy of the permutation group in this work can
be potentially used to discover useful symmetric information
for relevant optimization and machine learning methods, for
which few studies exist in the literature.

The rest of this paper is organized as follows. Section II
introduces necessary preliminaries. Section III presents the
KMPG algorithm. Experimental results and comparisons are
reported in Section IV. In Section V, we draw concluding
comments. The proofs of proposed theorems are given in the
Appendix and some of experimental results are provided as
supplementary files.

II. PRELIMINARIES

In KMPG, we use a permutation of N facilities to represent
a candidate solution. There is thus a “one-to-one” mapping
between the search space of KMPG and the solution space of
SRFLP. Below, we first perform an analysis of SRFLP in terms
of the permutation group theory and then introduce the pro-
posed solution properties and symmetry-breaking approach.

A. Permutation Group and Single Row Facility Layout

Mathematically, any solution of KMPG with N facilities is
an element of a certain permutation group formed by a subset
of ΠN . Meanwhile, all permutations in ΠN form a symmetric
group of degree N and order N !. That is, the search space of
KMPG is composed of the entire permutations of the related
symmetric group. Especially, the population of KMPG at each
generation is a permutation group of the symmetric group. As
such, the permutation group theory is, in nature, suitable to
analyze and understand the search space of KMPG. Thereby,
we can discover useful solution properties of KMPG. Note
that in this work the symmetric group is also denoted by ΠN .

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 3

Indeed, research on permutation theory started from the
seminal work of Cayley in 1849 [23]. To present the solution
properties of SRFLP, the following well-known definitions of
the permutation group theory will be used [24].

Definition 1: Given a permutation formed by a product of
transpositions, if there is an odd number of transpositions, then
it is an odd permutation . Otherwise, it is an even permutation.

Note that we can calculate the number of transpositions
based on cycle form. For example, a cycle form of π =
[5, 7, 6, 1, 4, 3, 2] is shown in Fig. 1. Then, it has a product
of 4 transpositions (1, 5)(5, 4)(2, 7)(3, 6) and so is an even
permutation. The number of transpositions may not be unique,
but the sign of the permutation is either always even (i.e., sign
“1”) or always odd (i.e., sign “−1”). The time complexity of
determining the sign is O(N). In Section II-B, the signs will
be used as key indicators in analyzing the symmetric solution
properties of KMPG, as well as in guiding the dedicated
crossover and local search operators in Section III.

Fig. 1. Illustration of a cycle form of permutation (π = [5, 7, 6, 1, 4, 3, 2]).

Definition 2: Given a symmetric group ΠN , all even permu-
tations form an alternating group AN that has N !/2 elements.
It is worth noting that AN is a subgroup of ΠN with the
identity [1, ..., N]. Take an SRFLP instance with 3 facilities for
example, and we illustrate the relationship between ΠN and
AN in Fig. 2. Apparently, the alternating group can inspire an
idea of considering either sign “1” or sign“-1”, reducing thus
the search space of KMPG while getting rid of any information
loss. In Section II-B, we will propose the symmetric solution
properties of KMPG by employing the alternating group.

Fig. 2. Symmetric group and alternating group (for SRFLP with 3 facilities).

Definition 3: Given two solutions πa and πb, the distance
dist(πa,πb) is the number of transpositions for transforming
one solution into another. If dist(πa,πb) is an odd or even
number, then they have an odd distance or even distance.

For example, πa = [5, 7, 6, 1, 4, 3, 2] can be transformed
to πb = [5, 4, 7, 6, 1, 3, 2] according to a product of trans-
positions (5, 4)(4, 3)(3, 2), giving dist(πa,πb) = 3. Often,
the distance is not unique, but it is always odd or even.
Since there is no intuitive distance between two permutations,
such a distance provides an alternative metric to assess the
relationships among permutations. In Section II-C, the distance
is used to measure the relationship between two neighborhood
solutions in the proposed symmetry-breaking approach.

B. Proposed Solution Properties of KMPG

To analyze the features of the search space of KMPG, we
first present the sign properties of solutions in ΠN . Let α =
inverse(π) = [πN , πN−1, ..., π1] be the inverse form of π ∈
ΠN . We have the following Theorem 1.

Theorem 1: Suppose that π is an even permutation. Then
α is an odd permutation if and only if N ∈ {K|(K = 4k +
2) ∨ (K = 4k + 3),∀k ∈ N}.

As Theorem 1 shows, even if a solution of KMPG and its
inverse form may have different permutation signs, they have
the same objective value. In this case, one can attempt to find
useful symmetric features of the search space of KMPG based
on permutation signs. Take the even π = [5, 7, 6, 1, 4, 3, 2] in
Fig. 1 for example, and α = inverse(π) = [2, 3, 4, 1, 6, 7, 5]
with a product of 5 transpositions (1, 2)(2, 3)(3, 4)(5, 6)(6, 7)
is an odd permutation. Obviously, we have f(π) = f(α)
according to Eq. (1), indicating thus a basic symmetric feature
associated with permutation signs.

Without loss of generality, in this work we consider even
permutations in the alternating group AN and have the fol-
lowing Theorem 2.

Theorem 2: Suppose that π ∈ AN satisfies N ∈ {K|(K =
4k + 2) ∨ (K = 4k + 3),∀k ∈ N}. Then ¬∃α ∈ AN : α =
inverse(π) holds.

Take the symmetric group for SRFLP in Fig. 2 for example,
and the permutations in A3 = {[1, 2, 3], [2, 3, 1], [3, 1, 2]} are
not inverse to each other. Nevertheless, each permutation in
Π3\A3 = {[3, 2, 1], [1, 3, 2], [2, 1, 3]} corresponds to a unique
permutation in A3 that has the same objective value. Based on
Theorems 1 and 2, we give the solution properties of KMPG
in Theorem 3, regarding the condition N ∈ {K|(K = 4k +
2) ∨ (K = 4k + 3),∀k ∈ N}.

Theorem 3 (Scenario 1): Suppose that π ∈ AN satisfies
N ∈ {K|(K = 4k + 2) ∨ (K = 4k + 3),∀k ∈ N}. Then
∃β ∈ ΠN\AN : f(π) = f(β) holds.

As Theorem 3 indicates, given that N ∈ {K|(K = 4k+2)∨
(K = 4k+3),∀k ∈ N} is satisfied, there exists a symmetric re-
lationship between even and odd permutations in ΠN in terms
of objective function landscape. As such, we can identify each
pair of symmetric solutions of the objective function landscape
based on the permutation signs, as illustrated in Fig. 3. Accord-
ingly, the search space of KMPG can be reduced by consid-
ering only even permutations in the alternating group during
the search process. For example, in Fig. 2, there are 6 per-
mutations in Π3, i.e., [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2]
and [3, 2, 1], and one can consider only the even permutations
[1, 2, 3], [2, 3, 1], [3, 1, 2] while discarding the other 3 permu-
tations during the search process of KMPG.

1 N

f

1 N 1 N

ΠN ΠN AN

Fig. 3. Illustration of solution properties in Theorem 3 (Scenario 1).

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 4

However, Theorem 3 above is not available concerning N ∈
{K|(K = 4k + 4) ∨ (K = 4k + 5),∀k ∈ N}. It can be due
to the fact that any permutation and its inverse form have the
same sign for such a case (the contrapositive of Theorem 1).
As such, it is necessary to perform further analysis on the
solution properties of KMPG in addition to the conclusion of
Theorem 3. For this, we propose to consider a mapping search
space of KMPG from a perspective of the coordinate rotation
of the original SRFLP. Let L be the set of fixed facilities,
which is defined as follows:

L =

{
{N} N ∈ {K|K = 4k + 4}
{N − 1, N} N ∈ {K|K = 4k + 5} ,∀k ∈ N, (3)

where L also denotes the cardinality of the set. Take π =
[3, 1, 4, 2, 5] for example, and we can write πL=2 = [3, 1, 2]
where the fixed facilities are 4 and 5.

Let ΠLN be the symmetric group regarding L fixed facilities
out of N facilities, and ALN the alternating group identified
from ΠLN . For the coordinate rotation of the original search
space of KMPG, we have the following Theorem 4.

Theorem 4 (Scenario 2): Suppose that πL ∈ ALN satisfies
N ∈ {K|(K = 4k + 4) ∨ (K = 4k + 5),∀k ∈ N}. Then
∃βL ∈ ΠLN\ALN : f(π) = f(β) holds.

From Theorem 4, one observes that the symmetric solutions
of the objective function landscape can be identified by means
of the coordinate rotation of the original search space. Thereby,
we can reduce the computational effort of KMPG by restrict-
ing the search space to the corresponding alternating group.
Theorem 4 (Scenario 2) is illustrated in Fig. 4. It shows that
KMPG can be afforded more opportunities to discover promis-
ing search regions within the mapping (rotated) search space
without any information loss of the original search space. Take
SRFLP with 4 facilities for example, and we have A1

4 =
{[4,1,2,3], [4,2,3,1], [4,3,1,2], [1,4,2,3], [2,4,3,1], [3,4,1,2],
[1,2,4,3], [2,3,4,1], [3,1,4,2], [1,2,3,4], [2,3,1,4], [3,1,2,4]}.
Each permutation in A1

4 corresponds a unique permutation
in Π1

4\A1
4 ={[4,3,2,1], [4,1,3,2], [4,2,1,3], [3,4,2,1], [1,4,3,2],

[2,4,1,3], [3,2,4,1], [1,3,4,2], [2,1,4,3], [3,2,1,4], [1,3,2,4],
[2,1,3,4]} that has the same objective value. In this case, one
can consider only the 12 permutations in A1

4 while discarding
the other 12 permutations in Π1

4\A1
4 during the search process

of KMPG.

1 N

f f

1 N -L 1 N -L 1 N -L

NP
L

NP
L

NA
L

NP

NA

(Original search space) (Mapping search space)

Fig. 4. Illustration of solution properties in Theorem 4 (Scenario 2).

C. Proposed Symmetry-breaking Approach of KMPG

The proposed symmetry-breaking method aims to reduce
the search space of KMPG for discovering promising solu-
tions. According to Theorems 3 and 4, we restrict the search
space of KMPG to the alternating group of the original or

mapping search space. For a permutation π, the symmetry-
breaking method works as follows. The sign of π (Scenario
1) or πL (Scenario 2) is checked. If π or πL is odd, we set
π = inverse(π) to guarantee an even sign of the permutation.
The time complexity of the above procedure is O(N).

On the other hand, we need to ensure even signs for the
local search operator of KMPG. For permutation problems,
representative neighborhood structures include Insert and In-
terchange [2], [25], [26]. In KMPG, we adopt the Insert
neighborhood that shows a good performance for SRFLP [2].
In Section IV, we will conduct discussions on the effectiveness
of the two neighborhood structures. The adopted Insert-based
neighborhood structure concerned with Scenarios 1 and 2 is
shown in Fig. 5. We present the symmetry-breaking method
for the local search operator of KMPG in Algorithm 1. It
shows that the sign of the improved permutation is always even
regarding the original or mapping search space of KMPG. As
such, the local search operator can efficiently exploit given
search regions while having no impact on the consistency
of the search process of KMPG. In the worst case, the time
complexity of the symmetry-breaking method is O(N).

4k =

h

1 5 3 2 4

1 2 5 3 4

1 3 2

1 2 3

L
pp

L
h

2l =

' 3k =

' 2l =

4l =

h

1 5 3 2 4

1 3 2 5 4

p

2k =

1 3 2

1 2 3

p

h

3k =

1l =

Scenario 1 Scenario 2

(,) 0Dist =
L Lp h (,) 1Dist =

L Lp h(,) 2Dist =p h

Fig. 5. Adopted Insert-based neighborhood structure.

Algorithm 1: Symmetry Breaking for Local Search
Input: Scenario, π (π or πL is even) and η = insert(π, k, l)
Output: updated π (π or πL is even)

1 switch Scenario do
2 case 1 do
3 dist(π,η) := |k − l|; break; /*as shown in Fig. 5*/

4 case 2 do
5 if πk > N − L then
6 dist(πL,ηL) := 0; /*as shown in Fig. 5*/
7 else
8 Find positions k′ and l′ in permutations πL and ηL;
9 dist(πL,ηL) := |k − l′|; /*as shown in Fig. 5*/

10 break;

11 if dist(π,η) or dist(πL,ηL) is odd then
12 π ← η; /*if even distance*/
13 else
14 π ← inverse(η); /*if odd distance*/

15 return π

III. K-MEDOIDS MEMETIC PERMUTATION GROUP
ALGORITHM FOR SRFLP

In this section, the proposed KMPG algorithm is detailed
based on the preliminaries in Section II. In the following, we
present the general scheme of the KMPG algorithm and then
its search components.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 5

A. General Scheme

Like any population-based evolutionary algorithm (such as
[27]–[29]), memetic algorithms use a search model composed
of evolutionary algorithms and local search operators to attain
a suitable balance of exploration and exploitation [30], [31].
The primary highlight of KMPG consists in the dedicated
symmetry-breaking method based on the permutation group
for reducing the search space (Section II). Thereby, KMPG
integrates complementary search components to discover high-
quality solutions, including population initialization (Section
III-B), k-medoids clustering based crossover (Section III-C),
simulated annealing based local search (Section III-D), and
distance-and-quality based population management (Section
III-E). Let genMax be the maximum generation of KMPG, ps
the population size, πP(gen) = {πP1 (gen), ...,πPps(gen)} the
population at generation gen, and gBest(gen) the global best
solution found so far at generation gen. The KMPG algorithm
for SRFLP is given in Algorithm 2.

Algorithm 2: Main Framework of the KMPG Algorithm
Input: SRFLP instance and parameters of KMPG
Output: gBest(genMax)

1 for gen := 0 to genMax do
2 if gen = 0 then
3 Initialize πP(gen) wherein each permutation has even

sign regrading original or mapping search space;
/*Section III-B*/

4 Initialize global best solution gBest(gen);
5 else
6 Perform k-medoids clustering based crossover operator

to generate an even offspring solution regarding original
or mapping search space; /*Section III-C*/

7 Perform simulated annealing based local search to obtain
improved even offspring solution with respect to original
or mapping search space; /*Section III-D*/

8 Update global best solution gBest(gen);
9 Perform distance-and-quality population management

and update πP(gen); /*Section III-E*/

10 return gBest(genMax)

As Algorithm 2 shows, KMPG starts its search with
the initial population belonging to the relevant alternating
group (Line 2). Next, it uses the k-medoids clustering based
crossover to generate an offspring solution, which inherits
valuable genetic information. Thereafter, KMPG undergoes
the simulated annealing based local search to improve the
offspring solution (Line 7) and the distance-and-quality based
population management to ensure a healthy population (Line
9). The algorithm stops and returns the best solution found
when genMax generations are performed.

B. Population Initialization

The population initialization of KMPG is different from GA
in that KMPG works with a population of local optimal solu-
tions that are obtained by a local optimization procedure, while
this is not the case for GA. Note that the initial population
of GA can be generated randomly or by greedy algorithms.
KMPG considers both the quality and diversity when generat-
ing the initial population. It first randomly generates ps even

permutations regarding the original or mapping search space
that are improved by the local search operator (Section III-D).
An Insert-based perturbation is then introduced to enhance
population diversity, where the symmetry-breaking method is
used to ensure even signs. Especially, a discrete function is
used to measure the similarity between two permutations [17]:

simi(πa,πb) =
∑

1≤i≤N
|i− rp(πai ,πb)|, (4)

where rp(πai ,π
b) represents the relative position of πai in πb.

Take πa = [4, 1, 3, 2] and πb = [1, 4, 2, 3] for example, and
we have simi(πa,πb) = |1−2|+|2−1|+|3−4|+|4−3| = 4.
Apparently, the smaller the simi is, the larger the similarity
between the two permutations is. The population initialization
procedure is given in Algorithm 3. In the worst case, its time
complexity is O(ps4 ·N).

Algorithm 3: Population Initialization Procedure
Input: Scenario, ps and gen = 0
Output: initial πP(gen)
/*generate permutations with even signs*/

1 for p := 1 to ps do
2 Randomly generate πPp (gen);
3 πPp (gen)← inverse(πPp (gen)), if πPp (gen) or πPp (gen)L

is odd; /*symmetry breaking based on Scenario*/
4 Improve πPp (gen) by local search operator; /*Section III-D*/

/*Insert-based perturbation*/
5 Set count := 0;
6 while count < ps · (ps− 1)/2 do
7 for p := 1 to ps− 1 do
8 for q := p+ 1 to ps do
9 if simi(πPp (gen),πPq (gen)) = 0 then

10 while simi(πPp (gen),πPq (gen)) = 0 do
11 Randomly generate k 6= l ∈ {1, ..., N};
12 πPq (gen)← Insert(πPq (gen), k, l);

13 else
14 count := count+ 1;

15 for p := 1 to ps do
16 πPp (gen)← inverse(πPp (gen)), if πPp (gen) or πPp (gen)L

is odd; /*symmetry breaking based on Scenario*/

17 return πP(gen)

C. Proposed K-medoids Clustering Based Crossover

It is widely recognized that crossover operator plays a cru-
cial role within a memetic algorithm [32]. A suitable crossover
operator should pass problem-specific genetic knowledge from
parent solutions to offspring solutions. For this, we go deep
into the problem-specific properties of KMPG and have the
following Theorem 5.

Theorem 5: For any facility nx ∈ {1, ..., N} (N > 3), there
are N !/4 permutations in AN (Scenario 1) or ALN (Scenario
2) such that rp(nx,π) ≤ dN/2e (∀π ∈ AN or ALN).

As Theorem 5 shows, there is a special “quasi-symmetry”
of the search space of KMPG (i.e., AN or ALN). Such “quasi-
symmetry” means that any permutation corresponds to a cer-
tain permutation in the search space that has similar objective
value, due to the features presented in Theorem 5. For exam-
ple, we consider nx = 3 and enumerate all the 12 permutations

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 6

of AL4 in Fig. 6. There are 6 permutations in AL(A)
4 such that

facility 3 is in the first half of them. One can also find a pair
of πa ∈ AL(A)

4 (e.g. [2,3,1,4] in Fig. 6) and πb ∈ AL(B)
4 (e.g.

[4,1,2,3] in Fig. 6) satisfying simi(πa, inverse(πb)) = 2, so
that πa and πb have similar objective values. Given that πa

and πb are parent solutions for crossover operator, pertinent
problem-specific genetic knowledge is likely to be lost.

2 3 1 4

2 3 4 1

3 1 2 4

3 1 4 2

3 4 1 2

4 3 1 2

4 1 2 3

1 4 2 3

4 2 3 1

2 4 1 3

1 2 4 3

1 2 3 4

()
4
A

A
L ()

4
B

A
L

Fig. 6. Illustration of “quasi-symmetry” of the search space of KMPG.

In view of the above “quasi-symmetry” of the search space
of KMPG, it is reasonable to select parent solutions for the
crossover operator from only one of the two sets:

A
(L)(A)
N = {π|rp(nx,π) ≤ dN/2e ,∀π ∈ A(L)

N ,

nx ∈ {1, ..., N}} ,
(5)

and
A

(L)(B)
N = A

(L)
N \A

(L)(A)
N . (6)

Based on Eqs. (5) and (6), we treat the permutations found
by KMPG as two categories in the sense that they account
for distinct “quasi-symmetry” scenarios. As Tang and Meng
[33] pointed out, machine learning can provide guidance for
optimization algorithms. This motivates us to adopt clustering
method to analyze the population of KMPG while guiding
the crossover operator. Classical clustering techniques consist
mainly of k-means and k-medoids methods [34]. Since the
solutions of KMPG are defined in discrete domains, the cluster
centers should be feasible permutations. It is, thus, suitable to
use the k-medoids method. The k-medoids clustering method
is extensively used for clustering problems where the value
of k depends strongly on problem-specific properties. Here in
our case we fix k = 2 accordingly.

To be specific, we first partition the population into two
clusters using the k-medoids algorithm, and then select par-
ent solutions of interest from the resulting clusters for the
crossover operator. Again, the similarity in Eq. (4) is used as a
“clustering distance” between permutation pairs. The adopted
k-medoids clustering algorithm starts with two random centers.
Next, each permutation of the population is attributed to the
closest cluster, each center is set to the permutation that has
the smallest sum of similarity of permutations belonging to
that cluster, and the procedure continues until the centres don’t
change anymore. Note that the k-medoids clustering algorithm
is invoked if and only if the population is updated (Section
III-E). Take N = 8 and ps = 10 for example, and we illustrate
the resulting clusters of the k-medoids clustering algorithm in
Fig. 7. In Section IV, we will perform relevant discussions
on the KMPG variants considering different versions of k-
medoids clustering based crossovers to verity the reasonability
of the adopted k-medoids clustering algorithm.

Let pr be the rate of reserving partial facilities, and πC1 and
πC2 the resulting clusters of the k-medoids algorithm. The k-

2 7 6 8

3 6 7 5

3 7 2 5

5 4 3 1

8 4 2 1

8 4 6 1

Cluster 1

2 7 8 5

6 3 7 4

4 6 3 1

8 5 2 1

1 5 4 8

1 2 6 4

1 6 2 4

2 7 6 3

8 5 7 3

8 5 3 7

1 6 3 4

1 3 4 5

8 5 7 2

8 2 7 6

Cluster 2

()gen
P

p

Fig. 7. Illustration of resulting clusters of k-medoids clustering algorithm.

medoids clustering based crossover is given in Algorithm 4.
In the worst case, its time complexity is O(ps ·N).

Algorithm 4: K-medoids Clustering Based Crossover
Input: Scenario, πC1 , πC2 and pr
Output: offspring solution π
/*preparations for crossover*/

1 Set nr := bN · (1− pr)c; /*number of reserved facilities*/
2 Randomly select a cluster k ∈ {1, 2} such that |πCk | > 1;
3 Calculate number of distinct facilities for each position, denoted

by nd = {nd1, ..., ndN}, according to solutions in cluster k;
4 Identify reserved positions, denoted by nm = {nm1, ..., nmnr},

that correspond to the smallest nr numbers in nd;
/*generate offspring solution*/

5 Randomly select two parent solutions p and q (p 6= q) as well as
a reference solution r from cluster k;

6 Initialize π ← ∅ and cp := 1 and cq := 1 for solutions p and q;
/*cp and cq are available positions of p and q*/

7 for i := 1 to nr do
8 πnmi ← π

Ck
r,nmi ; /*build partial offspring solution*/

9 for (i := 1 to N)∧(πi = ∅) do
10 while cp (cq) is not available do
11 cp (cq) := cp (cq) + 1; /*current available positions*/

12 if random[0, 1] ≤ 0.5 then πi ← π
Ck
p,cp; else πi ← π

Ck
q,cq;

/*symmetry-breaking procedure*/
13 π← inverse(π), if π or πL is odd; /*based on Scenario*/
14 return π

In Algorithm 4, preparations for the crossover operator are
made first (Lines 1 to 4). Especially, we identify reserved
positions based on the overall features of the selected cluster
(Line 4). Then, the partial offspring solution is built using
the reserved facilities of the reference solution to inherit good
properties (Lines 7 to 8). Next, we complete the offspring solu-
tion with uniformly selected available facilities from the parent
solutions to ensure diversity (Lines 9 to 12). Complementing
the reserved and uniformly selected facilities, the dedicated
crossover operator has the advantage of producing meaningful
offspring solutions regarding both quality and diversity.

D. Simulated Annealing Based Local Search Considering
Symmetry Breaking

To intensively examine neighbor solutions, the general sim-
ulated annealing procedure and the objective gain calculation
method of [2] are used. However, we perform the local search
in the philosophy of the dedicated symmetry breaking (see
Algorithm 1), which is thus different from [2].

The simulated annealing procedure has two nested loops,
namely outer loop and inner loop. Let nout be the number

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 7

of the outer loop, nin the number of the inner loop, tmax the
maximum temperature, ct the cooling factor of temperature,
tmin the minimum temperature, nsam the sample size for
calculating tmax, and pl the coefficient for determining nin.
The simulated annealing procedure is presented in Algorithm
5. As mentioned in [2], the time complexity of calculating the
objective gain of the Insert-based neighborhood structure is
O(N), so the time complexity of Algorithm 5 is O(nout ·N2).

Algorithm 5: Simulated Annealing Procedure
Input: Scenario, ct, nsam, tmin, pl and offspring solution π
Output: improved π

1 Set tmax := max1≤r≤nsam |f(insert(π, kr, lr))− f(π)| where
kr and lr (kr 6= lr) are randomly selected from {1, ..., N};

2 Set nout := b(log tmin − log tmax)/ log ctc and nin := pl ·N ;
3 Initialize temperature T := tmax;
4 Set β := π and f(β) := f(π); /*record offspring solution*/
5 for p := 1 to nout do
6 for q := 1 to nin do
7 Initialize acceptance flag accept := 0;
8 Randomly select k and l (k 6= l) from {1, ..., N};
9 Calculate objective gain δ := f(insert(β, k, l))− f(β);

10 if δ ≤ 0 then
11 Set accept := 2;
12 else
13 if random[0, 1] ≤ exp (−δ/T) then
14 Set accept := 1;

15 if accept = 0 then
16 continue;
17 else
18 η ← insert(β, k, l); /*neighborhood moving*/
19 Update β based on η by using symmetry-breaking

procedure in Algorithm 1; /*based on Scenario*/

20 Set T := ct · T ; /*temperature cooling*/

21 if f(β) < f(π) then
22 Set π := β and f(π) := f(β);

23 return π

In Algorithm 5, to guide the simulated annealing procedure
to the reduced search space, the symmetry-breaking method
in Algorithm 1 is used to modify the accepted neighboring
solutions (Line 19). Thanks to the control of the permutation
signs of neighbor solutions, KMPG is afforded more possibil-
ities, yet requires less computational efforts to find promising
solutions in a given search region.

E. Distance-and-quality Based Population Management
To maintain a health population and avoid a premature

convergence, we use a population updating mechanism similar
to [31]. The adopted mechanism simultaneously considers
offspring solution’s quality and its distance to the permutations
in the population. Since the entire search behavior of KMPG is
restricted to the reduced search space, any offspring solution
π satisfies π 6= inverse(πPp (gen)) (∀p ∈ {1, ..., ps}). For
this reason, we calculate the similarity between π and each
πPp (gen) according to Eq. (4). If one of the ps similarities is
0, π is dropped and the population is not updated. Otherwise,
if π is better than the worst permutation in the population,
the worst one is replaced by π; else, we drop π. The time
complexity of updating the population is O(N).

IV. EXPERIMENTAL RESULTS

A. Benchmark Instances and Experimental Setup
To evaluate the performance of the proposed KMPG algo-

rithm, we conduct extensive experiments on four sets of well-
known benchmark instances and one set of newly introduced
large-scale instances. In recent years, the four sets of the
traditional benchmark instances have been commonly used to
test the performance of SRFLP algorithms. These five sets are
summarized as follows1.
• Amaral set (3 instances): This set contains 3 medium

scale instances with N = 110.
• Anjos set (40 instances): This set includes 20 small-scale

instances with N = 60 to 80, 10 medium scale instances
with N = 200 and 300, and 10 large-scale instances with
N = 400 and 500.

• Sko set (40 instances): This set consists of 20 small-scale
instances with N = 64 to 100, 10 medium scale instances
with N = 200 and 300, and 10 large-scale instances with
N = 400 and 500.

• Palubeckis set (50 instances): This set is composed of
20 medium scale instances with N = 110 to 300, and 30
large-scale instances with N = 310 to 1000.

• RanLarge set (20 instances): This set contains 20 new
large-scale instances introduced in this paper with N =
1050 to 2000. Based on the generation methods of [2] and
[3], the length of each facility and the flow cost of each
facility pair are randomly generated from {1, ..., 10} and
{0, ..., 10}, respectively.

Note that the 40 small-scale instances with N ≤ 100 in the
Anjos and Sko sets are ignored because the best known upper
bounds can be easily attained by KMPG with short running
times. Hence, there are a total of 113 instances including 93
traditional benchmark instances and 20 new instances.

For each instance, KMPG and compared algorithms (if
source codes are available) are independently run 30 times
with different random seeds. The results are reported as BEST,
AVG and SD, which are the best objective value, average
objective value and standard deviation of solved solutions.
Meanwhile, we use NoB to represent the total number of
instances for which an algorithm can obtain the best result of a
quality indicator. To analyze the statistical significance of the
comparisons between KMPG and the compared algorithms,
the p-values from the nonparametric Friedman test with a
confidence interval (CI) of 95% are provided. Besides, we
mark the BEST of an instance with an asterisk (*) to indicate
a strictly best objective value among the compared algorithms,
which also corresponds to a newly discovered upper bound.
KMPG is coded in C++ and complied using g++ (with ‘-
O3’ flag), and all experiments are carried out on a computing
platform with an AMD Opteron-6134 2.3 GHz CPU and 2
GB memory under Linux.

B. Parameter Tuning
The parameters of KMPG include the population size ps,

the rate of reserving partial facilities pr, the coefficient for

1Instances are available at http://dx.doi.org/10.13140/RG.2.2.27898.41926

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 8

determining the inner loop number pl, the temperature cooling
factor ct, the minimum temperature tmin, and the sample
size nsam. As mentioned in [2], the settings of ct, tmin and
nsam are well known, which have relatively less impact on
the performance of the simulated annealing procedure. In our
preliminary experiments, we observed that KMPG can achieve
good search performances by adopting the following values:
ct = 0.95, tmin = 0.0001, and nsam = 5000. Therefore, the
parameter tuning of KMPG is devoted to finding a suitable
combination of ps, pr and pl. Toward this goal, we carry out
the design of experiment (DOE) based on the instance “p450”
in the Palubeckis set in which the orthogonal array L3

5 with
25 parameter combinations is used. For each combination,
we independently run KMPG 30 times with the CPU time
3600s and adopt AVG as response value. The orthogonal array
and response values are given in Table I, in which each
combination of parameter values corresponds to a certain AVG
value. Thereby, we can determine the parameters of KMPG
and check the robustness of KMPG to the parameters.

TABLE I
ORTHOGONAL ARRAY AND RESPONSE VALUES

Combination Combination
No. ps pr pl AVG No. ps pr pl AVG

1 30 0.5 150 324488489.5 14 30 0.9 200 324488494.7
2 30 0.7 50 324488506.7 15 15 0.9 10 324491451.1
3 25 0.7 150 324488495.3 16 20 0.7 10 324491140.6
4 20 0.9 150 324488492.1 17 20 0.3 200 324488492.7
5 10 0.3 150 324488493.1 18 15 0.5 200 324488491.5
6 25 0.1 200 324488491.9 19 10 0.7 200 324488491.6
7 25 0.5 10 324491040.1 20 10 0.1 10 324490741.2
8 20 0.5 100 324488495.8 21 30 0.1 100 324488492.3
9 15 0.7 100 324488495.6 22 20 0.1 50 324488503.6
10 10 0.5 50 324488518.1 23 15 0.3 50 324488518.3
11 15 0.1 150 324488495.1 24 10 0.9 100 324488493.1
12 25 0.3 100 324488492.1 25 30 0.3 10 324491561.8
13 25 0.9 50 324488521.9 — — — — —

Based on the results of Table I, the estimated level trends
are shown in Fig. 8. Therefore, we set the three parameters
of KMPG as follows: ps = 10, pr = 0.1, and pl = 100.
We also conduct additional experiments for tuning these three
parameters considering other instances, while the results are
the same as mentioned above. Moreover, we perform the
analysis of variance (ANOVA) with the 95% CI to examine
the sensitivity of the three parameters, as shown in Table II.

3025201510

M
ar

g
in

al
 m

ea
n

3
.2

E
8

3
.2

E
8

3
.2

E
8

3
.2

E
8

(a) ps

0.90.70.50.30.1

M
ar

g
in

al
 m

ea
n

3
.2

E
8

3
.2

E
8

3
.2

E
8

3
.2

E
8

(b) pr

2001501005010

M
ar

g
in

al
 m

ea
n

3
.2

E
8

3
.2

E
8

3
.2

E
8

3
.2

E
8

(c) pl

Fig. 8. Estimated Level trends of ps, pr and pl (marginal means of AVG).

As Table II shows, the p-values for ps and pr are larger than
0.05 and, in turn, reveal the robustness of KMPG to these two
parameters. In addition, the p-value for pl is smaller than 0.05,
which can thus confirm the reasonability of the integration of
the global search model and the local search procedure.

TABLE II
ANOVA RESULTS OF PARAMETERS

Parameter Mean square F-value p-value Rank
ps 21271.835 0.989 0.450 3
pr 22437.413 1.043 0.425 2
pl 7229561.398 336.052 0.000 1

C. Comparisons of KMPG and State-of-the-art Algorithms

In this section, we report comparative results with the most
recent state-of-the-art SRFLP algorithms with respect to the
five sets of benchmark instances2. According to the results
of experiments in one of the latest works on SRFLP [1], the
following four algorithms can be regard as the best performing
ones: GRASP-F (2019) [1], GRASP-PR (2016) [4], VNS-
LS3 (2015) [3] and MSA (2017) [2]. To our knowledge, the
best known upper bounds (BKS) in the literature are achieved
by these four algorithms together. We thus use them as the
reference algorithms for the comparisons.

1) Computational Results for Amaral and Anjos Sets: For
the Amaral and Anjos sets, we use GRASP-F and GRASP-PR
as reference algorithms. Since the source codes of GRASP-F
and GRASP-PR are not available to us, we adopt the results
of these two algorithms reported in the related references.
Considering the differences in computer configurations and
programming environments, the running times of KMPG and
the compared algorithms will not be further discussed. For
each run, the stopping condition of KMPG is a cutoff CPU
time of 3600s. In terms of BEST, AVG and SD, the comparative
results on the 23 instances in the Amaral and Anjos sets
are summarized in Fig. 9. The statistical significance of the
comparisons is given in Table III.

KMPGGRASP-PRGRASP-F

23

4

0

23

4

0

23

9 9

N
o
B

25

20

15

10

5

0

SD

AVG

BEST

Fig. 9. Summary of comparisons of GRASP-F, GRASP-PR and KMPG on
the 23 instances in the Amaral and Anjos sets with N = 110 to 500. Note
that only BEST values were provided for GRASP-PR in [4].

TABLE III
STATISTICAL SIGNIFICANCE OF COMPARISONS BETWEEN GRASP-F ,

GRASP-PR AND KMPG (AMARAL AND ANJOS SETS)

p-value for algorithm pair
Indicator KMPG vs. GRASP-F Sig. KMPG vs. GRASP-PR Sig.
BEST 0.000 Yes 0.000 Yes
AVG 0.000 Yes — —
SD 0.000 Yes — —

From Fig. 9, we can see that KMPG outperforms the
compared algorithms associated with BEST, AVG and SD. In

2Details of comparative results of KMPG and state-of-the-art algorithms
are available at http://dx.doi.org/10.13140/RG.2.2.29156.71041

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 9

Table III, the p-values are all less than 0.05, which shows
the significance of difference between KMPG and the two
reference algorithms.

In addition to the above summary, we report the detailed
results of KMPG in Table IV. For each instance, the average
CPU time in seconds (i.e., T(s)), which is related to the best
objective value found for the first time during the search
process of KMPG, is listed for information. The results show
that KMPG has a good search performance for large-scale
instances with N ≥ 400. On the other hand, the values of SD
are 0 for 12 out of 23 instances, which indicates the robustness
of KMPG. To our knowledge, for the Amaral and Anjos sets,
KMPG is the first method achieving such a stable performance.
Especially, KMPG is able to discover new upper bounds for
11 out 23 instances, while reaching the BKS for the other
12 instances. These newly obtained upper bounds show the
convergence of KMPG for finding high-quality solutions of
SRFLP.

TABLE IV
RESULTS OF KMPG ON THE AMARAL AND ANJOS SETS

KMPG (this work)
Instance BKS BEST AVG SD T(s)
Amaral 110 1 144296664.5 144296664.5 144296664.5 0.0 40.6
Amaral 110 2 86050037 86050037 86050037.0 0.0 44.6
Amaral 110 3 2234743.5 2234743.5 2234743.5 0.0 4.2
Anjos 200 1 305461818 305461818 305461818.0 0.0 1464.3
Anjos 200 2 178806828.5 178806828.5 178806828.5 0.0 1012.1
Anjos 200 3 61891275 61891275 61891275.0 0.0 1056.0
Anjos 200 4 127735691 127735691 127735691.0 0.0 1786.7
Anjos 200 5 89057121.5 89057121.5 89057121.5 0.0 371.3
Anjos 300 1 1549423272 *1549422266 1549422301.1 28.1 2010.9
Anjos 300 2 955538302.5 955538302.5 955538302.5 0.0 1595.7
Anjos 300 3 308257630.5 308257630.5 308257630.5 0.0 1284.8
Anjos 300 4 602873168.5 602873168.5 602873168.5 0.0 1246.0
Anjos 300 5 466151295 *466150775 466150901.5 84.6 2055.7
Anjos 400 1 4999816802 *4999801252.5 4999804517.2 3219.6 1849.7
Anjos 400 2 2910265496 *2910265439 2910265560.3 57.2 1688.9
Anjos 400 3 920861309 *920860291 920860560.2 117.2 1887.3
Anjos 400 4 1805638949 1805638949 1805638949.0 0.0 1779.2
Anjos 400 5 1401835315 *1401831869.5 1401832115.8 231.5 2010.2
Anjos 500 1 12290696250 *12290667266 12290684656.0 11093.8 1774.3
Anjos 500 2 7491700551 *7491697298.5 7491721869.3 13710.8 1850.2
Anjos 500 3 2478348156 *2478331774 2478337666.0 3804.8 1684.8
Anjos 500 4 4281107260 *4281106062.5 4281107387.9 790.1 1679.3
Anjos 500 5 3675369229 *3675293000.5 3675296069.6 4218.4 2168.8

* KMPG discovers new upper bounds for 11 out of the 23 instances.

2) Computational Results for Sko Set: In terms of BEST,
AVG and SD, we summarize the comparisons of GRASP-F,
GRASP-PR and KMPG on the 20 instances in the Sko set in
Fig. 10. It should be noted that we also adopt the results of the
two reference algorithms from the related references and the
same stopping condition as mentioned in subsection IV-C1.
In addition, the corresponding p-values for the two algorithm
pairs are listed in Table V. Moreover, the results of KMPG
are provided in Table VI.

TABLE V
STATISTICAL SIGNIFICANCE OF COMPARISONS BETWEEN GRASP-F ,

GRASP-PR AND KMPG (SKO SET)

p-value for algorithm pair
Indicator KMPG vs. GRASP-F Sig. KMPG vs. GRASP-PR Sig.
BEST 0.000 Yes 0.000 Yes
AVG 0.000 Yes — —
SD 0.000 Yes — —

KMPGGRASP-PRGRASP-F

N
o
B

20

15

10

5

0

20

00

20

00

20

4

2

SD

AVG

BEST

Fig. 10. Summary of comparisons of GRASP-F, GRASP-PR and KMPG on
the 20 instances in the Sko set with N = 200 to 500.

TABLE VI
RESULTS OF KMPG ON THE SKO SET

KMPG (this work)
Instance BKS BEST AVG SD T(s)
Sko 200 1 3231044 *3230706 3230708.0 1.6 2056.3
Sko 200 2 7758927 7758927 7758927.0 0.0 1473.0
Sko 200 3 12739043 12739043 12739043.0 0.0 1632.2
Sko 200 4 20260531 20260531 20260531.0 0.0 1624.9
Sko 200 5 26871976.5 26871976.5 26871976.5 0.0 2054.9
Sko 300 1 11251960 *11249787 11249811.9 11.6 1739.3
Sko 300 2 28991854 *28991767 28991778.1 5.0 1841.5
Sko 300 3 48791025.5 *48790881.5 48790882.9 2.8 1898.4
Sko 300 4 71185259.5 *71185096.5 71185109.4 14.0 1678.0
Sko 300 5 86789543.5 *86789519.5 86789746.0 229.3 1695.0
Sko 400 1 26708999 *26696039 26696113.8 30.0 1806.7
Sko 400 2 67950673 *67950486 67950507.8 13.0 1709.1
Sko 400 3 115881934 *115881368 115881475.1 67.6 1764.3
Sko 400 4 162933020 *162932778 162932804.1 14.5 1696.8
Sko 400 5 227633018.5 *227632499.5 227632525.5 12.7 1285.8
Sko 500 1 52873391 *52853174 52853510.6 168.1 1723.7
Sko 500 2 127364274 *127362138 127362192.5 33.8 2004.8
Sko 500 3 230919458.5 *230877719.5 230877781.1 33.7 1490.4
Sko 500 4 340274982 *340273141 340278964.6 6217.1 1955.6
Sko 500 5 445699477 *445698570 445698708.0 82.3 2146.7

* KMPG discovers new upper bounds for 16 out of the 20 instances.

It can be seen from Fig. 10 and Table V that KMPG achieves
a more competitive performance than the reference algorithms.
As Table VI shows, KMPG attains all the BKS and finds
new upper bounds for 16 out 20 instances. For the instances
Sko 200 2 to 5 that match the best known upper bounds, the
SD values are all 0, confirming the robustness of KMPG. For
the Sko set, KMPG is also the first method that achieves such
performance in terms of both convergence and stability.

From the above results, one concludes that the population-
based KMPG is more suitable than single trajectory methods.
This is because, in KMPG, the population-based search model
can capture valuable information while requiring less effort.
Due to GRASP is one of the best performing search models
for combinatorial optimization problems, it is worthwhile to
devise effective methods based on our symmetry-breaking
method and GRASP for SRFLP in future research.

3) Computational Results for Palubeckis Set: We use VNS-
LS3 and MSA as the reference algorithms, which hold the best
known results for the Palubeckis set. The source codes of the
reference algorithms are available to us, making it possible to
perform a fair comparison. For each instance, we execute the
three algorithms with a cutoff time of 3600s. The results are
reported in Table VII.

From Table VII, we observe that KMPG outperforms the
reference algorithms for all the instances regarding BEST, AVG
and SD. The p-values are all less than 0.05, which indicates
the significance of the difference between KMPG and the

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 10

TABLE VII
COMPARISONS OF VNS-LS3, MSA AND KMPG ON THE PALUBECKIS SET

VNS-LS3 MSA KMPG (this work)
Instance BKS BEST AVG SD BEST AVG SD BEST AVG SD T(s)
p110 4435868 4435868 4435868.0 0.0 4435868 4435868.0 0.0 4435868 4435868.0 0.0 18.0
p120 6282721 6282721 6282721.0 0.0 6282721 6282721.0 0.0 6282721 6282721.0 0.0 39.3
p130 7880929.5 7880929.5 7880929.5 0.0 7880929.5 7880929.5 0.0 7880929.5 7880929.5 0.0 40.3
p140 9257162 9257162 9257162.0 0.0 9257162 9257162.0 0.0 9257162 9257162.0 0.0 181.4
p150 10624389.5 10624389.5 10624411.0 115.6 10624389.5 10624389.5 0.0 10624389.5 10624389.5 0.0 458.4
p160 14873277 14873277 14873277.0 0.0 14873277 14873277.0 0.0 14873277 14873277.0 0.0 355.6
p170 16630187 16630187 16630187.0 0.0 16630187 16630187.0 0.0 16630187 16630187.0 0.0 170.7
p180 18746031.5 18746031.5 18746031.5 0.0 18746031.5 18746031.5 0.0 18746031.5 18746031.5 0.0 329.3
p190 24453272 24453272 24453379.0 400.4 24453272 24453272.0 0.0 24453272 24453272.0 0.0 227.9
p200 27482649.5 27482649.5 27482649.5 0.0 27482649.5 27482649.5 0.0 27482649.5 27482649.5 0.0 1212.8
p210 29512000.5 29512000.5 29512323.6 823.7 29512000.5 29512000.5 0.0 29512000.5 29512000.5 0.0 383.8
p220 37351850.5 37351850.5 37355394.4 4082.4 37351850.5 37351850.5 0.0 37351850.5 37351850.5 0.0 1026.2
p230 46744886 46744886 46744886.0 0.0 46744886 46744886.0 0.0 46744886 46744886.0 0.0 143.2
p240 46717781 46717781 46718520.1 3446.8 46717781 46717781.0 0.0 46717781 46717781.0 0.0 758.9
p250 54526293.5 54526293.5 54532207.4 5695.7 54526293.5 54526295.1 3.2 54526293.5 54526293.5 0.0 1497.5
p260 63300360.5 63300360.5 63306142.0 8940.0 63300360.5 63300440.3 277.9 63300360.5 63300360.5 0.0 1675.8
p270 68960438.5 68960438.5 68960438.5 0.0 68960438.5 68960438.5 0.0 68960438.5 68960438.5 0.0 935.5
p280 73845821 73845821 73861709.0 13956.7 73845821 73845821.0 0.0 73845821 73845821.0 0.0 1041.8
p290 86255267.5 86255267.5 86264186.5 10237.6 86255267.5 86255423.9 126.6 86255267.5 86255287.2 12.9 1596.4
p300 95937735 95937735 95949587.9 17670.6 95937735 95937735.7 2.5 95937735 95937735.0 0.0 1903.5
p310 105754955 105754955 105763088.2 12716.6 105754955 105754969.3 60.1 105754955 105754955.0 0.0 1719.0
p320 119522881.5 119522881.5 119544321.6 18806.3 119522881.5 119523002.4 207.6 119522881.5 119522889.0 9.3 1650.3
p330 124891823.5 124891823.5 124906998.0 34457.0 124891823.5 124891823.6 0.5 124891823.5 124891823.5 0.0 1449.5
p340 129796777.5 129796777.5 129810720.0 17371.1 129796777.5 129796786.1 24.8 129796777.5 129796777.8 0.7 1797.6
p350 149594388 149594388 149595230.2 1471.4 149594388 149594388.3 1.5 149594388 149594388.0 0.0 1193.3
p360 141122187 141122187 141138594.3 19708.2 141122187 141122284.6 256.0 141122187 141122190.6 3.8 1798.5
p370 174663159.5 174663159.5 174692270.7 27993.2 174663159.5 174663159.5 0.0 174663159.5 174663159.5 0.0 1125.3
p380 189452403.5 189452403.5 189502413.3 31974.3 189452403.5 189461691.8 6617.3 189452403.5 189455471.4 5526.8 1661.9
p390 208688557 208688557 208693245.3 9043.1 208688557 208688559.6 3.1 208688557 208688557.0 0.0 1490.7
p400 213768810.5 213768810.5 213848612.5 67994.7 213768810.5 213768899.0 316.1 213768810.5 213768810.5 0.0 1772.4
p410 243494269 243494269 243570586.1 74788.7 243494269 243494572.3 306.4 243494269 243494279.0 14.8 1674.5
p420 270756527.5 270756527.5 270811024.1 42410.3 270756527.5 270756803.4 1387.2 270756527.5 270756539.8 9.8 1518.4
p430 286334521.5 286351751.5 286408285.1 49235.7 286335277.5 286344928.3 5844.4 *286335267.5 286339826.8 847.1 2177.1
p440 301067264.5 301067264.5 301165922.1 74547.3 301067264.5 301067292.7 28.9 301067264.5 301067268.7 9.1 1722.5
p450 324488485 324488485 324573532.8 60206.5 324488485 324489383.6 1774.1 324488485 324488493.2 9.1 1819.8
p460 314884659 314884659 315010645.1 63683.2 314884659 314885000.5 1071.4 314884659 314884665.7 5.5 1876.8
p470 379529990 379529990 379655676.2 86359.1 379530013 379535885.7 4198.6 379529990 379533829.4 1566.3 1712.1
p480 366821075 *366821074 366978488.1 102207.1 366821075 366821571.3 1479.2 *366821074 366821095.6 14.4 2017.8
p490 413901954.5 413901954.5 414076791.0 145356.9 413901954.5 413902076.0 108.6 413901954.5 413901999.4 21.1 1818.0
p500 465570835.5 465594639.5 465788516.5 124793.2 465570835.5 465580952.1 7862.5 465570835.5 465572650.0 1953.2 1476.7
p550 587090450.5 587108114.5 587518463.1 156550.5 587090450.5 587097195.0 8468.8 587090450.5 587090798.2 1137.9 1806.5
p600 801567664.5 801690450.5 802124564.8 304503.0 801567667.5 801594835.8 12810.8 *801567648.5 801581607.9 10990.1 1990.5
p650 927512834 927952277 928277814.3 207330.6 927512856 927549195.7 41294.0 927512856 927514366.0 2968.9 1779.2
p700 1158462340 1159000394 1159546083.0 236033.4 1158462512 1158608173.9 69306.8 *1158462254 1158530076.7 58893.9 1994.9
p750 1438408860.5 1438608485.5 1439876911.8 513149.4 1438408866.5 1438451140.7 51290.7 *1438408836.5 1438423171.8 8659.0 1819.6
p800 1861593391 1862675842 1863417335.3 453352.1 1861593391 1861731247.2 76969.0 1861593391 1861663477.8 32127.9 2093.0
p850 2126675923 2127852799 2128931188.6 549425.5 2126675923 2126998373.6 138431.2 2126675923 2126737164.2 50596.1 2439.5
p900 2600124305 2601629984 2602727296.1 636069.3 2600124395 2600327533.4 115827.6 *2600003561 2600220480.5 55532.9 2124.5
p950 2993153592.5 2994239057.5 2996450969.5 889743.9 2993153592.5 2993293074.1 188240.7 2993153592.5 2993182477.4 29802.4 2207.9
p1000 3426647267 3428816846 3430872286.5 749515.8 3426647371 3427074861.0 363800.6 *3426646969 3426854979.9 140676.7 2051.8
NoB 38 10 10 42 17 16 50 50 50
p-value 0.001 0.000 0.000 0.005 0.000 0.000

* KMPG discovers new upper bounds for 6 out of the 50 instances.

ARE

-4.0E-04

-2.0E-04

0.0E+00

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

1.2E-03

1.4E-03

1.6E-03

1.8E-03
 VNS-LS3

 KMPG

(a)

ARE

-4.0E-05

-2.0E-05

0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1.2E-04

1.4E-04

1.6E-04

1.8E-04
 MSA

 KMPG

(b)

Fig. 11. Violin plots for the solutions of VNS-LS3, MSA and KMPG on the
30 instances in the Palubeckis set with N = 310 to 1000. These plots are
based on an average relative error ARE=(AVG−BKS)/BKS.

reference algorithms. Especially, KMPG attains all but one
best known upper bounds and discovers 6 new upper bounds
for the 50 instances. To further show the statistical distributions

of the results, we draw the violin plots for algorithm pairs
“KMPG vs. VNS-LS3” and “KMPG vs. MSA” in Fig. 11. It
is clear then that KMPG has better statistical distributions than
the reference algorithms.

In view of the results in subsections IV-C1 to IV-C3, the
integration of the population-based model and our symmetry-
breaking method can be considered as an effective strategy
for solving SRFLP. These results also indicate that, although
the four reference algorithms are all based on single trajectory
models, it is still highly desirable to investigate other kinds of
population-based search models with our symmetry-breaking
method for SRFLP. However, this is obviously beyond the
scope of this work.

4) Computational Results for RanLarge Set: We here adopt
VNS-LS3 and MSA as the reference algorithms, because
they are among the best performing SRFLP algorithms for
large-scale instances currently available in the literature. The
comparison results are reported in Table VIII. It is worth

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 11

noting that we use the same experimental settings as the ones
mentioned in subsection IV-C3, except that KMPG and the
reference algorithms are run with a CPU time of 6000s. It can
be observed from Table VIII that KMPG performs significantly
better than the reference algorithms with less than 0.05 p-
values. These results verify the competitive performance of
KMPG for solving large-scale SRFLP instances. Since we
introduce for the first time these large-scale SRFLP instances
with N = 1050 to 2000, the reported best known upper bounds
can be useful for future research.

Based on the results of Table VIII, we draw the violin
plots for algorithm pairs “KMPG vs. VNS-LS3” and “KMPG
vs. MSA” in Fig. 12. Meanwhile, we give the box plots for
instances L1300, L1500, L1700 and L1900 in Fig. 13. It is
clear that KMPG achieves a more competitive distribution than
the two reference algorithms. The competitiveness of KMPG
may benefit from the interactions of the dedicated search
components based on both the mathematical properties and
machine learning mechanism. Toward that end, there would
be a large potential to solve large-scale SRFLP instances with
KMPG. Given that SRFLP has strong application focuses,
KMPG will be particularly helpful to decision makers in
different real-life fields.

ARE

-2.0E-04

0.0E+00

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

1.2E-03

1.4E-03

1.6E-03

1.8E-03
 VNS-LS3

 KMPG

(a)

ARE

0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1.2E-04

1.4E-04

1.6E-04

1.8E-04

2.0E-04

2.2E-04
 MSA

 KMPG

(b)

Fig. 12. Violin plots for the solutions of VNS-LS3, MSA and KMPG on the
20 instances in the RanLarge set with N = 1050 to 2000.

D. Assessments of KMPG’s Search Components
1) Effectiveness of Main Search Components: The main

search components of KMPG are the symmetry-breaking
mechanism, the k-medoids clustering based crossover, and
the simulated annealing based local search. To assess their
impacts, we consider the following variants. 1) KMPG V1 is
a KMPG variant where the symmetry-breaking mechanism is
disabled; 2) KMPG V2 is a KMPG variant where the parent
solutions for the crossover are randomly selected from the
current population rather than from one resulting cluster of the
k-medoids clustering method; and 3) KMPG V3 is a KMPG
variant where the Insert-based neighborhood is replaced by the
Interchange-based neighborhood. Note that in KMPG V3 the
objective gain method of [2] is used. For a fair comparison, we
run KMPG and the variants with the same CPU time of 3600s.
For the 30 instances in the Palubeckis set with N = 310 to
1000, the results are summarized in Fig. 143. Meanwhile, the
p-values for three algorithm pairs are given in Table IX.

3Details of comparative results of KMPG and the three variants are available
at http://dx.doi.org/10.13140/RG.2.2.20243.81448

(a) L1300 (b) L1500

(c) L1700 (d) L1900

Fig. 13. Box plots for the solutions of VNS-LS3, MSA and KMPG on the
instances L1300, L1500, L1700 and L1900 in the RanLarge set.

KMPGKMPG_V3KMPG_V2KMPG_V1

N
o
B

30

20

10

0

000

30

000

30

0

1818

29

SD

AVG

BEST

Fig. 14. Summary of comparisons of the three variants (V1-V3) and KMPG.

From Fig. 14, one can observe that KMPG outperforms
KMPG V1, indicating that the proposed symmetry-breaking
strategy strengthens the search ability. We see that KMPG is
afforded more opportunities to find promising search regions
within the reduced search space. In this sense, it can be further
used to improve other SRFLP algorithms. Meanwhile, KMPG
outperforms KMPG V2 which verifies the effectiveness of
the k-medoids clustering based crossover. This also indicates
that machine learning is suitable for capturing useful problem-
specific solution features to guide effective search components
(such as crossover operators), which could be extensively
advocated in other metaheuristic algorithms. Moreover, KMPG
outperforms KMPG V3 for all the instances regarding BEST,
AVG and SD. Therefore, adopting the Insert-based neighbor-
hood leads to better local exploitation than the Interchange
neighborhood. It would be worthwhile to consider investigat-
ing other neighborhood structures with our symmetry-breaking
method for SRFLP algorithms. Furthermore, we can see from
Table IX that the p-values are all less than 0.05. These results
reveal that the main search components are significant for
enhancing the performance of KMPG. We also draw the
related violin plots in Fig. 15. Apparently, KMPG can obtain
more consistent results than the three variants.

2) Contributions of Main Search Components: To further
assess the contributions of the main search components for

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 12

TABLE VIII
COMPARISONS OF VNS-LS3, MSA AND KMPG ON THE RANLARGE SET

VNS-LS3 MSA KMPG (this work)
Instance BEST AVG SD BEST AVG SD BEST AVG SD T(s)
L1050 3652253111.5 3653599680.5 794299.4 *3649886413.5 3650216755.7 177492.2 3649886570.5 3650019879.0 58804.1 3252.7
L1100 4267978583 4269654379.8 989581.3 4264719909 4265092238.0 326248.7 *4264699102 4264937600.2 121001.7 3465.1
L1150 4783709999.5 4785589142.2 1044003.7 4780194693.5 4780806644.3 305159.7 *4780188161.5 4780690360.7 139226.5 3515.8
L1200 5436307666.5 5438482630.4 995662.5 *5432873749.5 5433486809.9 404550.2 5432876337.5 5433346735.8 197955.4 3539.1
L1250 6036980599.5 6039825925.2 1396372.1 6033618049.5 6034080821.1 266008.9 *6033543601.5 6033871375.4 132482.2 3468.9
L1300 6904829425.5 6907410707.6 1572324.3 6899176958.5 6900498196.9 685456.7 *6899176513.5 6899566161.8 405966.9 3822.7
L1350 7675172460 7677922118.7 1577113.1 7670259077 7670914983.6 349804.0 *7669901243 7670530490.3 282670.3 3659.1
L1400 8545759893 8548988557.8 1671990.6 *8539721102 8540279120.3 309799.6 8539828377 8540164010.6 129739.0 3275.6
L1450 9665703631.5 9670338419.3 2014737.9 *9660010880.5 9661174962.0 726253.5 9660242222.5 9660731379.0 249577.5 3708.8
L1500 11033752227.5 11037714178.5 1969400.8 11026341357.5 11027124527.5 469127.9 *11026245477.5 11026822635.4 182347.5 3425.6
L1550 11912003713.5 11917653668.7 2205007.9 11904973241.5 11906000461.8 833114.2 *11904924505.5 11905351094.2 210377.0 3734.8
L1600 13481309883.5 13485844536.6 2459184.7 *13471833322.5 13472960008.5 652443.4 13471891763.5 13472271299.8 190160.4 3722.1
L1650 14497146697 14501954272.8 2663528.2 14486392919 14488145456.0 1003295.6 *14486152642 14487014957.8 449324.7 4159.2
L1700 15795655978.5 15799940029.5 2186238.1 15784470479.5 15785694873.1 864671.4 *15784233191.5 15784890053.2 275940.7 4588.5
L1750 16813954935 16820330045.9 3145316.3 16804575189 16806214588.0 945783.7 *16804197725 16805170276.0 401763.6 4872.9
L1800 18396571638 18401930006.0 2601497.2 18384379806 18386199663.3 895394.7 *18384140209 18385034553.9 359149.8 5399.0
L1850 20152085395 20158070655.6 2505175.2 20141394830 20142991949.8 977860.4 *20140843753 20141773315.9 453570.8 5402.5
L1900 21874225895 21880275442.8 3369975.4 21859348121 21861997946.5 1117974.6 *21858740700 21860417333.8 662456.6 5367.7
L1950 23145487034.5 23150221230.4 2860263.4 23127328719.5 23130194933.8 1504215.0 *23126765575.5 23127911906.3 539894.6 5316.6
L2000 25541775753.5 25552878153.1 4591220.2 25529989111.5 25531913514.6 1304330.7 *25529463596.5 25530358759.6 397758.0 5400.6
NoB 0 0 0 5 0 0 15 20 20
p-value 0.000 0.000 0.000 0.025 0.000 0.000

* The strictly best values of BEST among the three algorithms are also reported as BKS for the 20 instances.

TABLE IX
STATISTICAL SIGNIFICANCE OF COMPARISONS BETWEEN KMPG V1,

KMPG V2, KMPG V3 AND KMPG

p-value for algorithm pair
Indicator KMPG vs. V1 Sig. KMPG vs. V2 Sig. KMPG vs. V3 Sig.
BEST 0.002 Yes 0.001 Yes 0.000 Yes
AVG 0.000 Yes 0.000 Yes 0.000 Yes
SD 0.000 Yes 0.000 Yes 0.000 Yes

ARE

-4.0E-05

-2.0E-05

0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1.2E-04

1.4E-04

1.6E-04

1.8E-04

2.0E-04

2.2E-04
 KMPG_V1

 KMPG

(a)

ARE

-5.0E-05

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04
 KMPG_V2

 KMPG

(b)

ARE

0.0E+00

2.0E-04

4.0E-04

 KMPG_V3

 KMPG

(c)

Fig. 15. Violin plots for the solutions of KMPG (V1-V3) and KMPG on the
30 instances in the Palubeckis set with N = 310 to 1000.

the performance of KMPG, we perform an analysis on the
relationships between the three variants and KMPG. For this,
the objective values obtained by a given variant and KMPG
are treated as two variables. Thereby, the degree of correlation
between them can be captured. Obviously, a larger degree of
correlation implies a larger contribution of the corresponding
component for the performance of KMPG. We give the related

scatter plots and fit lines in Fig. 16.

Variant

K
M

P
G

 V3

 V2

 V1

(a) p650

Variant

K
M

P
G

 V3

 V2

 V1

(b) p750

Variant

K
M

P
G

 V3

 V2

 V1

(c) p850

Variant

K
M

P
G

 V3

 V2

 V1

(d) p950

Fig. 16. Scatter plots and fit lines for KMPG (V1-V3) and KMPG on the
instances p650, p750, p850 and p950 in the Palubeckis set.

Fig. 16 shows that there exist dependencies between the
three variants and KMPG in terms of the considered instances,
confirming that the performance of KMPG is closely related to
its main search components. In addition, the gradients of the
fit lines for KMPG V1 and KMPG V2 are relatively larger
than those of KMPG V3, which means that the proposed
symmetry-breaking approach and k-medoids clustering based
crossover contribute more significant than the simulated an-
nealing based local search. Considering the symmetry features
of SRFLP, KMPG can be afforded more opportunities to find
promising solutions with less computational effort. Therefore,
one can try to extend relevant works on inherent symmetric
features and machine learning guided search components for
solving other combinatorial operation problems.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 13

E. Discussions

In this section, we provide discussions on KMPG con-
cerning the following issues: 1) the performance of KMPG
with other versions of k-medoids clustering guided crossover
operators; 2) the performance of KMPG with a variable
neighborhood descent (VND) based local search; and 3) the
performance of KMPG with a long CPU time. Thereby, we
can obtain useful insights into the impacts of the k-medoids
clustering based crossover operator and the simulated anneal-
ing based local search procedure, and assess the potential of
KMPG for further resulting advances4.

1) Performance of KMPG Considering Other Versions of
K-medoids Clustering Based Crossovers: We introduce three
variants of KMPG as follows. 1) KMPG C1 is a KMPG
variant where we select two parent solutions from one cluster
such that they have the smallest similarity among all solution
pairs of the cluster; 2) KMPG C2 is a KMPG variant where
we generate the offspring solution using all solutions of one
cluster; and 3) KMPG C3 is a KMPG variant where we
generate two offspring solutions associated with two resulting
clusters at each generation of KMPG. To make a fair compar-
ison, we run KMPG and the three variants with the same CPU
time of 3600s. Results on the 30 instances in the Palubeckis
set with N = 310 to 1000 are summarized in Fig. 17. In
addition, the p-values for the three algorithm pairs are given
in Table X. Moreover, we draw the trends of T(s) in Fig. 18.

KMPGKMPG_C3KMPG_C2KMPG_C1

N
o
B

30

20

10

0

77
8

21

5

8
6

25

18

14
16

28

SD

AVG

BEST

Fig. 17. Summary of comparisons of KMPG (C1-C3) and KMPG.

TABLE X
STATISTICAL SIGNIFICANCE OF COMPARISONS BETWEEN KMPG C1,

KMPG C2, KMPG C3 AND KMPG

p-value for algorithm pair
Indicator KMPG vs. C1 Sig. KMPG vs. C2 Sig. KMPG vs. C3 Sig.
BEST 0.001 Yes 0.000 Yes 0.008 Yes
AVG 0.000 Yes 0.000 Yes 0.000 Yes
SD 0.003 Yes 0.000 Yes 0.006 Yes

As Fig. 17 shows, for the values of NoB, KMPG reports the
values of 28, 25, and 21 out of the 30 instances with respect
to BEST, AVG, and SD that are much better than those of the
three variants. Meanwhile, we find from Table X and Fig. 18
that the p-values are all less than 0.05 and the four algorithms
have similar trends of T(s). These results prove the benefit
of the k-medoids clustering technique for improving KMPG,
which can be due to the fact that the k-medoids clustering
method is able to help the crossover operator to pass pertinent
genetic knowledge from parent solutions to offspring solutions.

4Details of discussions on KMPG with respect to the three issues are
available at http://dx.doi.org/10.13140/RG.2.2.22760.39683

Instance (p310 - p1000)

302928272625242322212019181716151413121110987654321

T
(s

)

3000

2500

2000

1500

1000

KMPG
KMPG_C3
KMPG_C2
KMPG_C1

Fig. 18. Trends of T(s) for KMPG (C1-C3) and KMPG.

As such, the underlying idea could inspire effective search
methods for SRFLP or other permutation problems.

2) Performance of KMPG Considering VND Based Local
Search: We introduce a variant of KMPG using VND based
local search, namely, KMPG VND. KMPG VND is the same
as KMPG except that the simulated annealing procedure is
replaced by the VND method [35]. KMPG VND adopts two
neighborhoods, i.e., the Insert-based neighborhood and the
Interchange-based neighborhood. Note that in KMPG VND
the objective gain methods of [2] are used as well. In [3], the
VND-based local search is used in VNS-LS3 which helps the
algorithm to obtain high-quality solutions of SRFLP. Thus, the
VND method can be seen as one of the most effective local
search methods for SRFLP. Accordingly, the comparisons of
KMPG VND and KMPG are useful to show the effectiveness
and reasonability of the simulated annealing procedure. We
run KMPG and KMPG VND with the same CPU time of
3600s. For the 30 instances in the Palubeckis set with N =
310 to 1000, we give the trends of three introduced indicators
in Fig. 19.

From Fig. 19, one observes that KMPG performs better
than KMPG VND associated with the trends of Sub(AVG)
and SD, indicating that the simulated annealing procedure of
KMPG is beneficial to enhance the search performance. On
the other hand, KMPG has smaller values of T(s) for almost
all these instances, which shows the efficiency of adopting the
simulated annealing procedure.

3) Performance of KMPG With a Long CPU Time: We
examine whether KMPG can still find better solutions if it
is run with a long CPU time. For this, we run KMPG with
the CPU time of 7200s (denoted as KMPG L). For the 30
instances in the Palubeckis set with N = 310 to 1000, the
trends of the three indicators are given in Fig. 20.

As shown in Fig. 20, the values of Sub(AVG) are no
less than 0 for relatively large-scale instances among the 30
instances, whereas KMPG L has smaller values of SD for
most instances. In addition, KMPG L corresponds to larger
T(s) for each instance, confirming the reasonability of the
above solution improvements. Therefore, KMPG is capable
of finding even better results if it is given more CPU time.

V. CONCLUSION

We proposed a k-medoids memetic permutation group al-
gorithm (KMPG) to solve the well-known single row facility
layout problem (SRFLP). To the best of our knowledge,
this is the first memetic algorithm based on the permutation
group theory for SRFLP. KMPG combined a permutation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 14

302928272625242322212019181716151413121110987654321

S
u

b
 (

A
V

G
)

4.E6

3.E6

2.E6

1.E6

0.E0 0.0

(a) Instance (p310 - p1000)

302928272625242322212019181716151413121110987654321

S
D

6.E5

4.E5

2.E5

0.E0

KMPG

KMPG_VND

(b) Instance (p310 - p1000)

302928272625242322212019181716151413121110987654321

T
(s

)

3500

3000

2500

2000

1500

1000

KMPG

KMPG_VND

(c) Instance (p310 - p1000)
Fig. 19. Trends of quality indicators for KMPG VND and KMPG on the 30
instances in the Palubeckis set with N = 310 to 1000. Note that in (a) we
use Sub(AVG) = AVG(KMPG VND) − AVG(KMPG) for each instance.

group based symmetry-breaking method to reduce the solution
space of SRFLP, a k-medoids clustering guided crossover
to produce meaningful offspring solutions that are improved
by a simulated annealing based optimization procedure, and
a distance-and-quality population management strategy to
ensure a suitable diversity of the population. Complement-
ing each other, these search components worked together to
achieve a desirable balance of exploration and exploitation of
the search process of KMPG.

Experimental results on 113 benchmark instances, including
93 traditional instances and 20 newly introduced large-scale
instances, showed that KMPG performed better than the state-
of-the-art methods. In particular, KMPG attained all but one
previous best known upper bounds and found new upper
bounds for 33 out of the 93 traditional instances. We presented
for the first time upper bounds on the 20 new instances, which
would be useful for performance assessment of new SRFLP
algorithms.

The idea of integrating search components based on the
permutation group and the k-medoids clustering is of generic
scientific applicability. It would be interesting to investigate its
application to more permutation problems, such as permutation
flow-shop scheduling problem (PFSP), quadratic assignment
problem (QAP), and traveling salesman problem (TSP). More-
over, the permutation group theory accounts for many basic
solution features in discrete search domains, the findings of
this work could be extended to other solution methods for
combinatorial optimization problems.

302928272625242322212019181716151413121110987654321

S
u

b
 (

A
V

G
)

1.E5

9.E4

8.E4

7.E4

5.E4

4.E4

3.E4

2.E4

6.E3

-6.E3
0.0

(a) Instance (p310 - p1000)

302928272625242322212019181716151413121110987654321

S
D

1.E5

1.E5

1.E5

8.E4

6.E4

4.E4

2.E4

0.E0

KMPG

KMPG_L

(b) Instance (p310 - p1000)

302928272625242322212019181716151413121110987654321
T

(s
)

5000

4000

3000

2000

1000

KMPG

KMPG_L

(c) Instance (p310 - p1000)
Fig. 20. Trends of quality indicators for KMPG L and KMPG on the 30
instances in the Palubeckis set with N = 310 to 1000. Note that in (a) we
use Sub(AVG) = AVG(KMPG) − AVG(KMPG L) for each instance.

ACKNOWLEDGMENT

We thank Dr. Palubeckis for sharing the problem instances
and making the codes of MSA and VNS-LS3 publicly avail-
able, which helped us to sufficiently conduct our experiments.
We are grateful to the reviewers for their comments and
suggestions.

REFERENCES

[1] G. L. Cravo and A. R. Amaral, “A grasp algorithm for solving large-scale
single row facility layout problems,” Computers & Operations Research,
vol. 106, pp. 49–61, 2019.

[2] G. Palubeckis, “Single row facility layout using multi-start simulated
annealing,” Computers & Industrial Engineering, vol. 103, pp. 1–16,
2017.

[3] ——, “Fast local search for single row facility layout,” European Journal
of Operational Research, vol. 246, no. 3, pp. 800–814, 2015.

[4] M. Rubio-Sánchez, M. Gallego, F. Gortázar, and A. Duarte, “Grasp with
path relinking for the single row facility layout problem,” Knowledge-
Based Systems, vol. 106, pp. 1–13, 2016.

[5] D. M. Simmons, “One-dimensional space allocation: an ordering algo-
rithm,” Operations Research, vol. 17, no. 5, pp. 812–826, 1969.

[6] T. S. Moh, S. L. Hakimi, and W. M. Moh, “Almost linear time optimiza-
tion for single-row floorplanning,” in Proceedings of the 37th Midwest
Symposium on Circuits and Systems, 1994.

[7] M. S. Kumar, M. N. Islam, N. Lenin, D. Vignesh Kumar, and D. Ravin-
dran, “A simple heuristic for linear sequencing of machines in layout
design,” International Journal of Production Research, vol. 49, no. 22,
pp. 6749–6768, 2011.

[8] P. Hungerländer and F. Rendl, “A computational study and survey
of methods for the single-row facility layout problem,” Computational
Optimization and Applications, vol. 55, no. 1, pp. 1–20, 2013.

[9] B. Keller and U. Buscher, “Single row layout models,” European Journal
of Operational Research, vol. 245, no. 3, pp. 629–644, 2015.

[10] A. R. Amaral and A. N. Letchford, “A polyhedral approach to the single
row facility layout problem,” Mathematical Programming, vol. 141, no. 1,
pp. 453–477, 2013.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 15

[11] M. F. Anjos and A. Vannelli, “Computing globally optimal solutions for
single-row layout problems using semidefinite programming and cutting
planes,” INFORMS Journal on Computing, vol. 20, no. 4, pp. 611–617,
2008.

[12] M. F. Anjos and G. Yen, “Provably near-optimal solutions for very large
single-row facility layout problems,” Optimization Methods & Software,
vol. 24, no. 4-5, pp. 805–817, 2009.

[13] A. R. Amaral, “A new lower bound for the single row facility layout
problem,” Discrete Applied Mathematics, vol. 157, no. 1, pp. 183–190,
2009.

[14] H. Samarghandi and K. Eshghi, “An efficient tabu algorithm for the
single row facility layout problem,” European Journal of Operational
Research, vol. 205, no. 1, pp. 98–105, 2010.

[15] R. Kothari and D. Ghosh, “Tabu search for the single row facility layout
problem using exhaustive 2-opt and insertion neighborhoods,” European
Journal of Operational Research, vol. 224, no. 1, pp. 93–100, 2013.

[16] D. Datta, A. R. Amaral, and J. R. Figueira, “Single row facility layout
problem using a permutation-based genetic algorithm,” European Journal
of Operational Research, vol. 213, no. 2, pp. 388–394, 2011.

[17] R. Kothari and D. Ghosh, “A scatter search algorithm for the single
row facility layout problem,” Journal of Heuristics, vol. 20, no. 2, pp.
125–142, 2014.

[18] X. Ning and P. Li, “A cross-entropy approach to the single row facility
layout problem,” International Journal of Production Research, vol. 56,
no. 11, pp. 3781–3794, 2018.

[19] J. Guan and G. Lin, “Hybridizing variable neighborhood search with ant
colony optimization for solving the single row facility layout problem,”
European Journal of Operational Research, vol. 248, no. 3, pp. 899–909,
2016.

[20] C. Chen and L. K. Tiong, “Using queuing theory and simulated anneal-
ing to design the facility layout in an agv-based modular manufacturing
system,” International Journal of Production Research, vol. 57, no. 17,
pp. 5538–5555, 2019.

[21] A. Tayal and S. P. Singh, “Integrating big data analytic and hybrid firefly-
chaotic simulated annealing approach for facility layout problem,” Annals
of Operations Research, vol. 270, no. 1, pp. 489–514, 2018.

[22] M. Z. Allahyari and A. Azab, “Mathematical modeling and multi-start
search simulated annealing for unequal-area facility layout problem,”
Expert Systems with Applications, vol. 91, pp. 46–62, 2018.

[23] A. Cayley, “Note on the theory of permutations,” Philosophical Maga-
zine, vol. 34, no. 232, pp. 527–529, 1849.

[24] P. J. Cameron, Permutation groups. Cambridge University Press, 1999.
[25] B. Qian, L. Wang, R. Hu, W.-L. Wang, D.-X. Huang, and X. Wang, “A

hybrid differential evolution method for permutation flow-shop schedul-
ing,” The International Journal of Advanced Manufacturing Technology,
vol. 38, no. 7-8, pp. 757–777, 2008.

[26] Z.-Q. Zhang, B. Qian, R. Hu, H. P. Jin, and L. Wang, “A matrix-cube-
based estimation of distribution algorithm for the distributed assembly
permutation flow-shop scheduling problem,” Swarm and Evolutionary
Computation, early access, Oct. 1, 2021.

[27] L. Tang, Y. Zhao, and J. Liu, “An improved differential evolution
algorithm for practical dynamic scheduling in steelmaking-continuous
casting production,” IEEE Transactions on Evolutionary Computation,
vol. 18, no. 2, pp. 209–225, 2013.

[28] L. Tang, Y. Dong, and J. Liu, “Differential evolution with an individual-
dependent mechanism,” IEEE Transactions on Evolutionary Computation,
vol. 19, no. 4, pp. 560–574, 2014.

[29] L. Tang and X. Wang, “A hybrid multiobjective evolutionary algorithm
for multiobjective optimization problems,” IEEE Transactions on Evolu-
tionary Computation, vol. 17, no. 1, pp. 20–45, 2012.

[30] X. Chen, Y.-S. Ong, M. H. Lim, and K. C. Tan, “A multi-facet survey on
memetic computation,” IEEE Transactions on Evolutionary Computation,
vol. 15, no. 5, pp. 591–607, 2011.

[31] Y. Zhou, J. K. Hao, Z. Fu, Z. Wang, and X. Lai, “Variable population
memetic search: A case study on the critical node problem,” IEEE
Transactions on Evolutionary Computation, vol. 25, no. 1, pp. 187–200,
2021.

[32] J.-K. Hao, “Memetic algorithms in discrete optimization,” in Handbook
of Memetic Algorithms. Springer, 2012, pp. 73–94.

[33] L. Tang and Y. Meng, “Data analytics and optimization for smart
industry,” Frontiers of Engineering Management, vol. 8, no. 2, pp. 157–
171, 2021.

[34] P. Arora, Deepali, and S. Varshney, “Analysis of k-means and k-medoids
algorithm for big data,” Procedia Computer Science, vol. 78, pp. 507–512,
2016.

[35] X. Lai and J.-K. Hao, “Iterated variable neighborhood search for the
capacitated clustering problem,” Engineering Applications of Artificial
Intelligence, vol. 56, pp. 102–120, 2016.

APPENDIX

PROOFS OF PROPOSED THEOREMS 1 TO 5

In the following, we detail the proofs of Theorems 1 to 5
proposed in Sections II and III.

Theorem 1: Suppose that π is an even permutation. Then
α is an odd permutation if and only if N ∈ {K|(K = 4k +
2) ∨ (K = 4k + 3),∀k ∈ N}.

Proof: Since π is an even permutation, one can repre-
sent it by employing a product of transpositions with even
number, that is, π = (T11, T12), ..., (T2l,1, T2l,2) (l ∈ N)
according to Definition 1. Then, we can transform π into
α, that is, α = (T11, T12), ..., (T2l,1, T2l,2)(1, N)(2, N −
1), ..., (bN/2c , dN/2e+ 1). If α is an odd permutation, then
2l + bN/2c is an odd number. We thus have N ∈ {K|(K =
4k + 2) ∨ (K = 4k + 3),∀k ∈ N}.

Theorem 2: Suppose that π ∈ AN satisfies N ∈ {K|(K =
4k + 2) ∨ (K = 4k + 3),∀k ∈ N}. Then ¬∃α ∈ AN : α =
inverse(π) holds.

Proof: We first assume that there exists α ∈ AN such
that α = inverse(π). Then, according to Theorem 1, one
can obtain α from π by using transpositions (1, N), (2, N −
1), ..., (bN/2c , dN/2e+ 1). Obviously, bN/2c is always odd
and α is thus an odd permutation, which contradicts the initial
assumption that there exists such a permutation α.

Theorem 3 (Scenario 1): Suppose that π ∈ AN satisfies
N ∈ {K|(K = 4k + 2) ∨ (K = 4k + 3),∀k ∈ N}. Then
∃β ∈ ΠN\AN : f(π) = f(β) holds.

Proof: From Theorem 1, the inverse form of each even
permutation in ΠN is an odd permutation. And, as Theorem
2 shows, any pairs of solutions in AN do not display an
inverse relationship between them. In this case, each even
permutation in AN has a corresponding odd permutation in
ΠN\AN with the same objective function. Therefore, we have
∃β ∈ ΠN\AN : f(π) = f(β), ∀π ∈ AN , with respect to
N ∈ {K|(K = 4k + 2) ∨ (K = 4k + 3),∀k ∈ N}.

Theorem 4 (Scenario 2): Suppose that πL ∈ ALN satisfies
N ∈ {K|(K = 4k + 4) ∨ (K = 4k + 5),∀k ∈ N}. Then
∃βL ∈ ΠLN\ALN : f(π) = f(β) holds.

Proof: First, it is apparent that there are N !/4 permutations
in both sets CN ⊂ AN and DN ⊂ ΠN\AN regarding ALN .
And, each permutation in CN (or DN) has an inverse form
in AN\CN (or ΠN\{AN ∪DN}). From Theorem 2, we have
ηL 6= inverse(ξL) and hence η 6= inverse(ξ) (∀η, ξ ∈ CN)
and, likewise, η′ 6= inverse(ξ′) (∀η′, ξ′ ∈ DN). Besides, we

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 16

have γ 6= inverse(ρ) (∀γ ∈ CN and ∀ρ ∈ DN) based on
Theorem 1. We can therefore conclude the theorem.

Theorem 5: For any facility nx ∈ {1, ..., N} (N > 3), there
are N !/4 permutations in AN (Scenario 1) or ALN (Scenario
2) such that rp(nx,π) ≤ dN/2e (∀π ∈ AN or ALN).

Proof: For Scenario 1, we first assume that there exist
N !/4 + n0 (n0 > 0) permutations in AN such that each π
of them satisfies rp(nx,π) ≤ dN/2e. Then, we transform
each π as follows: interchange(π, rp(nx,π), dN/2e+ 1)→
interchange(π, dN/2e+1, dN/2e+2). We can obtain N !/4+
n0 different even permutations and each π′ of them satisfies
rp(nx,π′) > dN/2e, so there will be 2 · (N !/4+n0) > N !/2
permutations in AN . This does not satisfy Theorem 3, and,
thus, contradicts the initial assumption. If we assume a permu-
tation number N !/4−n0, the same conclusion can be drawn.
Likewise, the conclusion for Scenario 2 can be proved.

