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Abstract: Constraint logic programming (CLP) is a powerful paradigm combining constraint and
logic programming. At the heart of any CLP system there is a constraint solving mechanism i.e.
constraint solving algorithm. In this paper, we present the algorithm and its Prolog implementation of
a finite domain CLP system called Conslog. The algorithm is a variation of Waltz-like algorithm
combining backtracking. It uses the interval calculus to largely reduce the search space, a dynamic
constraint selection rule to choose constraints to be refined and a heuristic variable selection rule
for value generations. Particular attention is devoted to detail the interval calculus as constraint
refining technique. An example is presented. Some constraint solving algorithms such as generate-
and-test, backtracking, forward-checking and consistency-checking are reviewed and discussed.

1. Imntroduction

Constraint Logic Programming (CLP) [Jaffar & Lassez 87] is a powerful programming paradigm
combining constraint programming and logic programming. Constraint programming aims at solving
Constraint Satisfaction Problems (CSPs) by using some efficient constraint solving techniques. Logic
programming, thanks to its declaritivity and its expression power, can be used to elegantly formulate
many CSPs as well as other applications. However, solving CSPs in Prolog-like systems is by no means
efficient. The brute-force "generate-and-test” solving strategy of these systems is too primitive. CLP
tries to put together the best features of these two paradigms. Several CLP have been reported, for
example, Prolog III [Colmerauer 87], CLP(R) [Jaffar & Michaylov 87], and Chip [Dincbas et al 83].

Recently, a new approach to CLP has been proposed [Hao & Chabrier 90a]. Philosophically,
grouping a set of functionalities into a single unit often causes problems such as overheads, difficuity
of implementation and unextensibility. Specializing the functionalities into different parts is more
desirable. Contrary to the previous systems which are built in some "tightly coupled” manner, the
proposed approach distinguishes a pre-compilation phase and a proper constraint solving phase. The
last can be probably further decomposed into static and dynamic solving of constraints. This
approach favors optimizations by avoiding some useless computation. Also, systems based on this
approach have the desirable modularity. Implementations become easier because different
functionalities are isolated into different parts. A prototype called Conslog, which is based on the
proposed approach, has been implemented in Prolog. The Conslog system consists of two parts, a
partial evaluator [Hao & Chabrier 90b] and a constraint solver in finite domain. The partial evaluator
is used to pre-compile constraint logic programs. The pre-compilation consists mainly of carrying out
logical inferences, unfolding predicate callings, propagating instantiated values and collecting
constraints. The collected constraints constitute the input for the constraint solver. The partial
evaluator establishes a kind of "bridge" between logic programming and constraint solving. Thanks to
the partial evaluator, the problem remained for the solver becomes a pure constraint solving problem.
Many techniques developed in constraint programming can be investigated and integrated. Besides,
the system is extensible. Vertically, each part of the system can be improved independently.
Horizontally, other solvers for other domains can be built and connected to the partial evaluator
without affecting the existing system.

In this paper, we will concentrate on algorithmic aspects of Conslog's actual solver and its
implementation issues in Prolog. The solver uses a variation of Waltz-like algorithm combining
backtracking. The algorithm integrates the interval calculus to largely reduce domains of variables of
constraints. Forward-checking is equally used to deal with disequality constraints. Special attention
will be put on the refining techniques based on interval calculus.

2. Problem Definition: Finite Domain CSPs
A finite domain CSP is defined by a finite set of variables, a collection of finite sets of possible
values and a finite set of n-ary relations on variables. These relations are called constraints. We will
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consider a special class of CSPs where variables take their values from positive integers. Many
problems ranging from puzzles to integer programming such as cryptarithmetic problem, map
colouring, resource allocation, scheduling and so on fall into this class. A CSP can be represented
more formally by a 3-tuple {V,D,C} with

V=( V1,V2,..,Vn } set of variables

D=( D1,D3,....Dq ) collection of possible value sets

where Dj=( djj | djj is a possible value of Vj ] (1sisn) called domains of variables

C={ Ci(Vii1,...,Vik) | Ci is a relation on variables Vj1,...,Vike V } (1sk<n)
Solving a CSP means to determine all possible assignments of values to variables such that all the
constraints are satisfied at the same time. A value djjeDj of Vi is consistent with respect to
constraint Cy(X,Y,...,Vi,...Z) if 3djeD¥x, d2eDy,..., dpe Dz such that Ci(d1.d2,....djj,....dp) is true.
Otherwise djj is inconsistent. A variable Vj is consistent if Vdjje Dj, djj is consistent with respect to
the constraint Ci(...,Vi,...). A constraint Ci(Vj1,...,Vik) is consistent if Vij j=1,...k are consistent. Note
" that reaching consxstency for all constraints mvolved in a CSP is only a neccessary. not a sufficient
condition for solving the CSP.

3. Algorithms for CSPs

There exist several algorithms for CSP solving [Mackworth 87]. Mackworth classifies them into two
categories: backtracking and consistency-checking. The simplest algorithm consists of generating a
value djje Dj for each Vie V involved in at least one Cie C and then testing the truth values of all the
Cie C. If the conjunction of these Ci is evaluated to false, another assignment is generated and tested
again. This "generate-and-test” algorithm 1is correct but very inefficient, because the generating
space D=D1*D2*...*Dp may be very large. A first improvement concerns generating partial assignment
in some fixed order. As soon as some Cie C becomes instantiated, its truth value is tested soon. If Ci is
false, the actual partial assignment can not be part of any final solution. Backtracking occurs on the
last instantiated variable with untried values. The advantage of this backtracking algorithm is that
the search space below the failure is cut down. However, backtracking suffers from the "thrashing"
behavior [Mackworth 77] which characterizes the fact that the backtracking doesn't remember already
discovered failures and may rediscover many times the same failures in the later backtrack search.
Note that solving mechanisms of Prolog-like systems implement this kind of searching. However, since
many CSPs are NP-complete, there is no hope to solve these problems in polynomial time in general.
Backtracking algorithms are unavoidable. The best one can do is to incorporate some techniques such
as intelligent backtracking and consistency-enforcing to reduce the most the later search space.

One of such techniques is forward-checking [Haralick & Shapiro 80]. In forward-checking
algorithms, we generate also values for variables. However, after each generation, Constraints are used
to logically delete inconsistent values of other variables making the constraints consistent. Then we
instantiate another variable, eliminate all the inconsistent values and so on. At each stage, the
remaining values of future variables are consistent with past instantiations with respect to the
constraints. Search space is definitely reduced each time an inconsistent value is eliminated. It is
clear that reasonning with forward-checking is different from the "generate-and-test”. By comparison
with the passive use of constraints in "generate-and-test”, using constraints in this way is called
active use of constraints [Gallaire 85]. Forward-checking in logic programming has been first defined
and investigated in [Van Hentenryck and Dincbas 87]. A constraint is said forward checkable if all
but ome variable of the constraint are instantiated. Disequality (=) constraints are best suited for the
forward-checking. For other constraints containing N-variables (N>2) other techniques such as
interval calculus are needed. For example, with the above definition of forward-checking, conmstraint
X+2*Y+Z=V+3*W can not be activated, while interval calculus can probably reduce the domains of
variables directly from the constraint. We will develop this idea in the next section.

Another family of algorithms concerns so-called consistency algorithms [Mackworth 77]. The
main idea is similar to that of forward-checking, i.e. constraints are actively used to eliminate
inconsistent values that can not participate in any final solution. Deleting inconsistent values from
domains by using constraints is called consistency-checking or constraint refining. Like forward-
checking, the deletion of one inconsistent value may lead to deletion of another, which may lead to
further deletion of another, and so on. The successive deletion of inconsistent values constitutes
"constraint propagation”. The difference of this class of algorithms with the previous ones is that
here, we don't generate values for variables. A variable Vj gets its value djj only when its domain Dj
is reduced to a singleton {dij]. If, during the consistency-checking, some variable's domain is reduced
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to empty, there exists some contradiction among the constraints. Consistency can be rcached at
several levels in terms of constraint networks. There exist algorithms for reaching node, arc, path and
k-consistency (k < the number of variables in a given CSP) [Freuder 78]. Waltz's filtering (Waltz 74] is
an arc consistency algorithm. Whether a consistency algorithm can find solutions depends on the
consistency level that can be reached by the algorithm. In general, consistency algorithms alone can
not solve CSPs completely. Some variables may still have multiple values in their domains after the
application of algorithms. Instantiating these variables requests some search techmiques. Algorithms
integrating consistency checking and searching are called cooperative algorithms. We present now the
algorithm of Conslog's solver which is a variation of Waltz-like algorithm combining backtracking.

4. The Algorithm of Conslog's Solver
4.1. General Algorithm
The proposed approach in [Hao & Chabrier 90a] makes the work of the solver simple. The solver works
with a set of constraints together with domain information which come from the partial evaluator.
Constraints take the form ICi*Xi©ZIDj*Yj with Ci, Dj20, Xi, Yj variables of positive integer and ©e (=, =,
>, 2, <, £}. A constraint is called active if domains of its variables can be possibly reduced by this
constraint. Note that this definition is less restricted than that for the forward-checkable mentioned
in the previous section. Changes in a variable’s domain make some constraints active (woken
constraints), but not necessarily forward-checkable. To refine a variable by a constraint is to reduce
the variable's domain by deleting inconsistent values with respect to the constraint. To refine an
(active) constraint means to use the constraint to refine all its variables. The refining of variables
and constraints is carried out by refining procedures which will be defined later. A constraint is
solved if it is sufficiently instantiated and its truth value is evaluated to true.
Algorithm:
ACTIVE <-- Set of active constraints; NON-ACTIVE <-- Set of non active constraints;
WHILE ACTIVE #Empty & NON-ACTIVE #Empty DO
BEGIN
S1: WHILE ACTIVE = Empty DO
BEGIN )
a: Choose a constraint C from ACTIVE;
b: Refine C /* if the domain of a variable is reduced to empty,
there is some inconsistency. Backtrack or stop with failure */
¢: Move woken constraints from NON-ACTIVE to ACTIVE;
d: IF Cissolved THEN Throw C away ELSE Put C into NON-ACTIVE;
END { while}
S2: a: Choose a variable X;
b: Generate a value belonging to its domain Dy,
c: Move woken constraints from NON-ACTIVE to ACTIVE;
END ({while}
S3: IF ACTIVE =Empty & NON-ACTIVE =Empty THEN End with success
In the algorithm, Sl.a, called constraint selection rule (CSR), corresponds to the computation rule in
logic programming. In our system, a dynamic CSR is used. The CSR chooses first the strongest
constraint to refine. For exampie, E#7 will be chosen before E+B+2*C=5*A+D. S1.b contains different
refining procedures. Consistency-checking happens here. Inconsistent values of variables with
respect to the current context will be eliminated by the refining procedures. A constraint after
refining will become consistent in the sense of §2. For different kinds of conmstraints, there are
different refining procedures. For = constraints, forward-checking is used. For =, <, <, >, 2 constraints,
interval calculus is used. If a domain after refinement (RD) becomes a singleton, the single value is
directly assigned to the variable and propagated to other constraints. If RD is empty, backtracking
occurs on generated values by S2. If the constraint is completely instantiated, its truth value is
tested. A false value leads also to backtracking. S2 is a generating procedure defining a heuristic
variable selection rule (VSR). When there is no more active constraint and there are still unsolved
constraints, the VSR selects the smallest domain variable and generates for it a value from its domain.
The generated value is propagated to all concerned constraints. This makes some of constraints active
and thus stimulates again the above refining procedures. S3 corresponds to the successful ending of
the algorithm when all the constraints are solved.
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We see that a variable can get its values in two ways. One concerns the genmerated values in S2.b.
The other is that variable's domain is reduced into a singleton by the refining procedures in S1.b.
These two ways of instantiating variables are very different in nature. The first consists of
arbitrarily giving a value and then waiting to see if this instantiation is conmsistent. On the contrary,
an instantiation in the second way is a logical consequence implied by the constraints.

4.2. Interval Calculus Based Refining Procedure

General interval arithmetic has been studied in [Alefeld & Herzberger 83], discussed in [Davis 87].
We use the term "Interval Calculus” to denote the limited interval arithmetic in integer. The interval
calculus has been discussed and used in Alice [Lauriere 76] and Chip [Dincbas et al 87].

An interval is defined as a set of integers in increasing order. An interval is consecutive if
every integer between its two bounds belongs to the interval. Otherwise it is non-consecutive ome. A
consecutive interval can be represented by its two bounds. For a non consecutive interval, it is
represented by enumerating all its elements between lower and upper bounds. First we suppose that
all intervals are consecutive. Let's look at a very simple example. We have ten coins of one dollar, ten
coins of two dollars and ten coins of five dollars, we want to know how many ways there may be to get
21 dollars. The problem can be easily defined by the constraint X+2*Y+5*Z=21 with X,Y,Ze (1,...,10}.
Before beginning any enumeration, we use the constraint to refine the constraint. Since 2*Y=21-
(X+5*Z)<21-(1+5*1)=15, we get Y<7. Similarly, we have Z<3 and X is unchanged. Reasonning like this
constitutes the basic idea of the interval calculus based refining procedures. General constraints of
the form P<YCi*Xi<Q with Ci, P, Q20, Xie {ai,bi} can be refined using the following formula:

Xie (max{ai,(P-B)/Ci}, min{bi,(Q-A)/Ci}} with A=ZCj*aj, B=ZCj*bj (j»i)
Constraints of the form Y Ci*Xi©IDj*Yj with Ci, Dj20, Xi, Yj variables and ©¢ (=, >, 2, <, <} can be
effectively refined after transforming into the above form. In the following, we detail the refining
procedure for constraints of the form TCi*Xi=IDj*Yj with Xie (ai,bi}, Yje {uj,vj}. For other constraints,
refining proceduces can be defined similarly. The refining steps to be taken for TCi*Xi=ZDj*Yj are:
step 1: Calculate A1=YCi*ai, B1=XCi*bi, A2=%dj*uj, B2=Zdj*vj

step 2: A=max{Al,A2}, B=min{B1,B2}

step 3: If — (A>B) then refine ASYCi*Xi<B and A<IDj*Yj<B else there is a contradiction
Or better, we can distinguish different cases for step 3.

case 1: A=B then refine A<YCi*Xi<A and AsTIDj*Yj<A
case 2: A<B then
if Al<A2(so A=A2) then
+ B1<B2(so B=B2) then refine A<YCi*Xi and YDj*Yj<B
¢ B1>B2(so B=B1) then refine A<YCi*Xi<B
« B1=B2 then refine A<ZCi*Xi
if A1>A2(so A=Al) then
» B1>B2(so B=B2) then refine ZCi*Xi<B and A<IDj*Yj
« B1<B2(so B=B1) then refine A<IDj*Yj<B
» B1=B2 then refine ASTDj*Y]j
if Al=A2 then
« BI>B2(so B=B2) then refine LCi*Xi<B
« B1<B2(so B=B1) then refine TDj*Yj<B
» B1=B2 then ICi*Xi=IDj*Yj is consistent, no refinement is needed
case 3: All other cases are contradiction
It is natural to do refining for consecutive intervals, because the interval calculus is based only on
bounds of intervals. The technique can be used to deal with non consecutive intervals as well. The
domain after refinement (RD) is not a simple replacement by the resulting interval (RI) from interval
calculus, rather it is the intersection between the initial domain (ID) and the resulting interval, i.e.
RD=(vi | vieID & vie RI}. Thus the existing "holes" are kept in the resulting domain. For binary
constraints, the interval calculus is simplified to the comparison of different bounds of two domains.
For # constraints $Ci*Xi=IDj*Yj, interval calculus can not help much and forward-checking technique
is used. For example, from X=Y with Xe {2,3,4} and Ye {2,3,4) nothing new can be deduced. With this
kind of constraints, we can not do better than forward-checking, i.e. we must wait until all but one
variable is left uninstantiated.



5. A Prolog Implementation of the Algorithm

The algorithm and the different refining techniques presented above have been implemented in Seria
"Prolog [Meier et al 88]. The input of the solver consists of a goal to be solved, a set of constraints "and
the variable-domain information. Only the goal is explicitely given to the solver, the rest of the input
data comes from a file created and used by the partial evaluator. Data structures used are mainly
lists. A set of constraints is represented by a list. Variable-domain information is represented by a
list of pair (X,Dx). The domain Dx itself is a list containing the possible values of the variable X. The
implementation consists of essentially three parts: a control structure, refining procedures and a
value generation procedure. The control structure corresponds to the two WHILE_DO loops in the
algorithm. It is a four parameters predicate control (Goal, Actives, Non_Actives, Var_Dom) which says
"Given a set of constraints "Actives"+"Non_Actives” with domain information "Var_Dom", find all
variable bindings for the variables in "Goal" ". The refining procedures are based on interval calculus
and forward-checking. Encoding them in Prolog is technical but almost straightforward. In total, the
solver requires about nine hundreds lines of code. No special language features such as delay or
corouting are needed. More details can be found in [Hao & Chabrier 89].

6. An Example _
Find for each letter in the formula SEND+MORE=MONEY a different number between 0 and 9 such that
the formula holds in the decimal system. The problem is easily stated in Conslog as follows:

domain(sendmory([0...,9],[0,..,9],[0,...9],[0,..,9],[0,...9],[0,...9],[0,..,9].[0...,9]).

sendmory([S,E.N,D,M,0O,R,Y]):-

M=0, $#0, 1000*S+91*E+10*R+D = 9000*M+900*0+90*N+Y,
alldifferent([S,E,N,D,M,0,R,Y]).

alldiff([XIXs]):- outof(X,Xs), alldiff(Xs).

alldiff([ D).

outof(X,[Y1Ys]):- X+Y, outof(Ys).

outof (X,[ 1.
The program is first pre-compiled (once and for all) by the partial evaluator with the goall:-
peval(sendmory([S,E,N,D,M,0,R,Y])). The partial evaluator peval collects the first three constraints of
"sendmory”. When it reaches "alldiff", unfolding " takes place. Unfolding "outof” makes explicit all #
constraints. Finally, the partial evaluation produces a file containing the constraints: (M=0, S0,
1000*S+91*E+10*R+D=9000*M+900*0+90*N+Y, S#E,S#N,S#D,52M,520, S#R, S#Y, E=N,E+D, E=M, E=Q, E=R,
E=Y, N2D, N=M, N=2O, N=R, N=Y, DM, D=0, D=R, DY, M#0O, M=R, M=Y, O=R, O=Y, R+Y). Note that, thanks
to the dynamic CSR, the order of the constraints is not important at all. Now the solver can be run with
the goal ?:-conslog(sendmory([S,E,N,D,M,O,R.Y])). M=0 and S=0 are successively chosen and refined
removing 0 from DM and Ds. Next the only equality constraint is refined by the interval calculus
based refining procedure, giving S to 9, M to 1, and reducing Do to (0,1]. Refining = constraints leads
to the removal of 9 and 1 from concerned domains instantiating O to its single possible value 0. The .
equality constraint, which becomes active again, is refined giving the following state: S=9, M=1, O=0,
Ee (4,....7}), Ne (5,....8}, D,R,Ye (2,...,8). Now there is no more active constraint. The VSR is called to
choose the smallest domain variable E. Instantiating E to 4e DE leads to a contradiction. Backtracking
occurs on next untried value 5¢ DE. Refining the equality constraint instantiates N to 6 and R to 8 and
reduces Dp to {7,8) and Dy to (2,3]}. Removing 8¢ Dp by D=R instantiates D to its single possible value
7. Refining again the equality constraint instantiates the last variable Y with 2. In total, we obtain the
result in less than 2 seconds on a sun3/110 with only one backtrack. Note that the solver works at
meta level.

Other problems such as N-queens, zebra, magic square and map colouring problems can be also
specified and solved easily.

7. Related Work

Generally speaking, our work is related to CLP systems such as Prolog III, CLPR) and especially Chip.
However, there are some differences. The most important difference is the philosophical one
discussed in the first section. Another difference with Prolog-III and CLP(R) is that they work in
numerical domains such as rational and real with the Simplex algorithm. Our work has been
influenced by some constraint manipulation ideas of the Alice system. Alice supports some kind of
mathematical language. The language offered by Conslog takes the form of logic programming. At the
technical level, unlike Alice, Conslog doesn't create new constraints during constraint solving.
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8. Conclusion

The algorithm and its implementation issues of a finite domain constraint solver are presented. The
solver is an independent part of a finite domain CLP system Conslog. The solver integrates constraint
refining procedures into a Waltz-like algorithm combining backtracking. Particular attention has
been put on the using of the interval calculus as constraint refining technique. Forward-checking is
also used to deal with = constraints. The CSR and VSR make almost unimportant the constraint order in
a program. An example is described to show the behavior of the system. The implementation in Prolog
was almost straightforward and caused no special difficulties. Our experiences showed that new ideas
about CLP can be easily prototyped with existing logic programming systems. An experimental
laboratory has been built to do further investigations. Prototypes built as such are portable. The
techniques described here could be aslo useful for real-valued problems. Besides, the solver can be
used to solve boolean problems where variables takes values from {0,1].
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