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Abstract

In supervised classification of Microarray data, gene selection aims at
identifying a (small) subset of informative genes from the initial data in order
to obtain high predictive accuracy. This paper introduces a new embedded
approach to this difficult task where a Genetic Algorithm (GA) is combined
with Fisher’s Linear Discriminant Analysis (LDA). This LDA-based GA al-
gorithm has the major characteristic that the GA uses not only a LDA clas-
sifier in its fitness function, but also LDA’s discriminant coefficients in its
dedicated crossover and mutation operators. Computational experiments on
seven public datasets show that under an unbiased experimental protocol,
the proposed algorithm is able to reach high prediction accuracies with a
small number of selected genes.

Key words: Gene selection, Classification, Dedicated genetic algorithm,
Linear discriminant analysis.

1. Introduction

The DNA Microarray technology permits to monitor and to measure gene
expression levels for tens of thousands of genes simultaneously in a cell mix-
ture. This technology enables to consider cancer diagnosis based on gene
expressions [3, 5, 1, 16]. Given the very high number of genes, it is useful to
select a limited number of relevant genes for classifying tissue samples.
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Three main approaches have been proposed for gene selection. Filter
methods achieve gene selection independently of the classification model.
They rely on a criterion that depends only on the data to assess the impor-
tance or relevance of each gene for class discrimination. A relevance scoring
provides a ranking of the genes from which the top-ranking ones are generally
selected as the most relevant genes. As many filter methods are univariate,
they ignore the correlations between genes and provide gene subsets that
may contain redundant information.

In wrapper approaches, gene subset selection is performed in interaction
with a classifier. The goal is to find a gene subset that achieves the best
prediction performance for a particular learning model. To explore the space
of gene subsets, a search algorithm (e.g. a Genetic Algorithm - GA) is
’wrapped’ around the classification model which is used as a black box to
assess the predictive quality of the candidate gene subsets. Wrapper methods
are computationally intensive since a classifier is built for each candidate
subset.

Embedded methods are similar to wrapper methods in the sense that the
search of an optimal subset is performed for a specific learning algorithm,
but they are characterized by a deeper interaction between gene selection
and classifier construction.

Generally, wrapper and embedded methods use a search algorithm for
the purpose of exploring a given space of gene subsets. Among different
options, GAs are probably the most popular choice. Indeed, one finds from
the literature a large number of studies using GAs (often in combination with
other techniques) for gene selection. For some representative examples, see
the following references [23, 34, 31, 24, 6, 29, 50, 19, 26]. All these methods
share a set of common characteristics: they represent a pre-selected gene
subsets by a binary vector, employ standard (blind) or specific crossover and
mutation operators to evolve a population and use a specific classifier (kNN,
SVM...) for fitness evaluation.

In this paper, we propose a new embedded approach to gene subset se-
lection for Microarray data classification. Starting with a set of pre-selected
genes using a filter (typically more than 100 genes), we use a dedicated Ge-
netic Algorithm combined with Fisher’s Linear Discriminant Analysis (LDA)
to explore the space of gene subsets. More specifically, our dedicated GA uses
the LDA classifier to assess the fitness of a given candidate gene subset and
LDA’s discriminant coefficients to inform the genetic search operators. This
LDA-based GA is to be contrasted with many GAs that rely only on random
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search operators without taking into account problem knowledges.
To evaluate the usefulness of the proposed LDA-based GA, we carry out

extensive experiments on seven public datasets and compare our results with
15 best performing algorithms from the literature. We observe that our
approach is able to achieve a high prediction accuracy (from 96% to 100%)
with a small number of informative genes (often less than 20). To understand
the behavior of the proposed algorithm, we also study the impact of the
LDA-based genetic operators on the evolutionary process as well as other
important parameters of the proposed algorithm.

The remainder of this paper is organized as follows. Section 2 recalls the
main characteristics of Fisher’s LDA and discusses the calculus that must be
done in the case of samples of small size. Section 3 presents our LDA-based
GA for gene selection and classification. Section 4 shows the experimental
results and comparisons. Section 5 is dedicated to additional studies on
the LDA-based crossover operator and other important parameters of the
proposed algorithm. Finally conclusions are provided in Section 6.

2. LDA and Small Sample Size Problem

2.1. Linear discriminant analysis

LDA is a well-known dimension reduction and classification method,
where the data are projected into a low dimension space such that the classes
are well separated. LDA has recently been used for Microarray data analysis
[12, 47, 48].

As we use this method for binary classification problems, we shall restrict
the explanations to this case. We consider a set of n samples belonging to
two classes C1 and C2, with n1 samples in C1 and n2 samples in C2. Each
sample is described by q variables. So the data form a matrix X = (xij), i =
1, . . . , n; j = 1, . . . , q. We denote by µk the mean of class Ck and by µ the
mean of all the samples:

µk =
1

nk

∑
xi∈Ck

xi and µ =
1

n

∑
xi

xi =
1

n

∑
k

nkµk

The data are described by two matrices SB and SW , where SB is the between-
class scatter matrix and SW the within-class scatter matrix defined as follows:

SB =
∑
k

nk(µk − µ)(µk − µ)t (1)
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SW =
∑
k

∑
xi∈Ck

(xi − µk)(xi − µk)t (2)

If we denote by SV the covariance matrix for all the data, we have SV =
SB + SW .

LDA seeks a linear combination of the initial variables on which the means
of the two classes are well separated, measured relatively to the sum of the
variances of the data assigned to each class. For this purpose, LDA deter-
mines a vector w such that wtSBw is maximized while wtSWw is minimized.
This double objective is realized by the vector wopt that maximizes the cri-
terion:

J(w) =
wtSBw

wtSWw
(3)

One can prove that the solution wopt is the eigen vector associated to the
sole eigen value of S−1W SB, when S−1W exists. Once this axis wopt is determined,
LDA provides a classification procedure (classifier), but in our case we are
particularly interested in the discriminant coefficients of this vector: the
absolute value of these coefficients indicates the importance of the q initial
variables for the class discrimination.

2.2. Generalized LDA for small sample size problems

When the sample size n is smaller than the dimensionality of samples
q, SW is singular, and it is not possible to compute S−1W . To overcome the
singularity problem, recent works have proposed different methods like the
null space method [48], orthogonal LDA [46], uncorrelated LDA [47, 46] (see
also [33] for a comparison of these methods). The two last techniques use the
pseudo inverse method to solve the small sample size problem and this is the
approach we apply in this work. When Sw is singular, the eigen problem is
solved for S+

wSb, where S+
w is the pseudo inverse of Sw. The pseudo-inverse of

a matrix can be computed by Singular Value Decomposition. For a matrix A
of size m× p, the singular values of A, noted σi, are the non negative square
roots of AtA. The singular value decomposition of A is A = UΣV t, where U
of size m×m and V of size n× n are orthogonal and

Σ =

[
D 0
0 0

]
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with D a diagonal matrix containing the elements σi. If we note Σ+ the
matrix

Σ+ =

[
D−1 0

0 0

]
(where the 0 blocks have the appropriate sizes), the pseudo inverse of A is
then defined as A+ = V Σ+U t.

2.3. Application to gene selection

Microarray data generally contain less than one hundred samples de-
scribed by at least several thousands of genes. We limit this high dimen-
sionality by a first pre-selection step, where a filter criterion (t-statistic here)
is applied to determine a subset of relevant genes (see Section 4.2 for more
details). In this work, we typically retain 100 genes from which an intensive
exploration is realized using a genetic algorithm to select smaller subsets. In
this process, LDA is used as a classification method to evaluate the classifi-
cation accuracy that can be achieved on a candidate gene subset. Moreover
the coefficients of the eigen vector calculated by LDA are used to evaluate
the importance of each gene for class discrimination.

For a selected gene subset of size p, if p ≤ n, we rely on the classical LDA
(Section 2.1) to obtain the projection vector wopt, otherwise we apply the
generalized LDA (Section 2.2) to obtain this vector. We explain in Section
3 how the LDA-based GA explores the search space of gene subsets.

3. LDA-based Genetic Algorithm

Given a set of p top ranking genes pre-selected with a filter (typically
p ≥ 100, in this work, p = 100 or 150), our LDA-based GA is used to
conduct a combinatorial search within the space of size 2p. The purpose of
this search is to determine among the possible gene combinations small sized
gene subsets allowing a high predictive accuracy. In what follows, we present
the general procedure and then describe the components of the LDA-based
Genetic Algorithm. In particular, we explain how LDA is combined with the
Genetic Algorithm.

3.1. General GA procedure

Our LDA-based Genetic Algorithm (LDA-GA) follows the conventional
schema of a generational GA and uses also an elitism strategy.
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� Initial population: The initial population is generated randomly in such
a way that each chromosome contains a number of genes ranging from
p× 0.6 to p× 0.75. The population size is fixed at 100 in this work.

� Evolution: The chromosomes of the current population P are sorted
according to the fitness function (see Section 3.3). The ”best” 10%
chromosomes of P are directly copied to the next population P ′ and
removed from P . The remaing 90% chromosomes of P ′ are then gen-
erated by using crossover and mutation.

� Crossover and mutation: Parent chromosomes are determined from the
remaining chromosomes of P by considering each pair of adjacent chro-
mosomes. By applying our specialized crossover operator (see Section
3.4), one child is created each time. This child undergoes then a mu-
tation operation (see Section 3.5) before joining the next population
P ′.

� Stop condition: The evolution process ends when a pre-defined num-
ber of generations is reached or when one finds a chromosome in the
population having a very small gene subset (fixed at 2 genes in this
work).

Notice that LDA-GA shares some similarities (encoding) with the em-
bedded genetic algorithm of [19], but remains different as to the design of
the dedicated crossover and mutation operators.

3.2. Chromosome encoding

Conventionally, a chromosome is used simply to represent a candidate
gene subset. In our GA, a chromosome encodes more information and is
defined by a couple:

I = (τ ;φ)

where τ and φ have the following meaning. The first part (τ) is a binary vector
and effectively represents a candidate gene subset. Each allele τi indicates
whether the corresponding gene gi is selected (τi=1) or not selected (τi=0).
The second part of the chromosome (φ) is a real-valued vector where each φi
corresponds to the discriminant coefficient of the eigen vector for gene gi. As
explained in Section 2, the discriminant coefficient defines the contribution
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of gene gi to the projection axis wopt. A chromosome thus can be represented
as follows:

I = (τ1, τ2, . . . , τp;φ1, φ2, . . . , φp)

The length of τ and φ is defined by p, the number of genes pre-selected
with the t-statistic filter.

Notice that this chromosome encoding is more general and richer than
those used in most genetic algorithms for feature selection in the sense that
in addition to the candidate gene subset, the chromosome includes other in-
formation (LDA discriminant coefficients here) which are useful for designing
powerful crossover and mutation operators (see Sections 3.4 and 3.5).

3.3. Fitness evaluation

The purpose of the genetic search in our LDA-GA approach is to seek
”good” gene subsets having the minimal size and the highest prediction ac-
curacy. To achieve this double objective, we devise a fitness function taking
into account these (somewhat conflicting) criteria.

To evaluate a chromosome I=(τ ;φ), the fitness function considers the
classification accuracy of the chromosome (f1) and the number of selected
genes in the chromosome (f2). More precisely, f1 is obtained by evaluating
the classification accuracy of the gene subset τ using the LDA classifier on
the training dataset and is formally defined as follows1:

f1(I) =
TP + TN

TP + TN + FP + FN
(4)

where TP and TN represent respectively the true positive and true negative
samples, i.e. the correct classifications; FP (FN) is the number of negative
(positive) samples misclassified into the positive (negative) samples.

The second part of the fitness function f2 is calculated by the formula:

f2(I) =

(
1− mτ

p

)
(5)

where mτ is the number of bits having the value ”1” in the candidate gene
subset τ , i.e. the number of selected genes; p is the length of the chromosome
corresponding to the number of the pre-selected genes from the filter ranking.

1For simplicity reason, we use I (chromosome) instead of τ (gene subset part of I) in
the fitness function even if it is the gene subset τ that is effectively evaluated.
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Then the fitness function f is defined as the following weighted aggrega-
tion:

f(I) = αf1(I) + (1− α)f2(I) subject to 0 ≤ α ≤ 1 (6)

where α is a parameter that allows us to allocate a relative importance factor
to f1 or f2. Assigning to α a value greater than 0.5 will push the genetic search
toward solutions of high classification accuracy (probably at the expense of
having more selected genes). Inversely, using small values of α helps the
search toward small sized gene subsets. So varying α will change the search
direction of the genetic algorithm. In Section 5.2, we provide a study on the
influence of this parameter on the performance of the algorithm.

Finally, notice that f takes values from interval [0, 1]; a solution with a
large value is then better than a solution with a small value.

3.4. LDA-based crossover

It is now widely acknowledged that, whenever it is possible, genetic opera-
tors such as crossover and mutation should be tailored to the target problem.
In other words, in order for genetic operators to fully play their role, it is
preferable to integrate problem-specific knowledges into these operators. In
our case, we use the discriminant coefficients from the LDA classifier to design
our crossover and mutation operators. Here, we explain how our LDA-based
crossover operates.

The crossover combines two parent chromosomes I1 and I2 to generate a
new chromosome Ic in such a way that 1) top ranking genes in both parents
are conserved in the child and 2) the number of selected genes in the child Ic

is no greater than the number of selected genes in the parents. The first point
ensures that ”good” genes are transmitted from one generation to another
while the second property is coherent with the optimization objective of
small-sized gene subsets.

More formally, let I1=(τ 1;φ1) and I2=(τ 2;φ2) be two parent chromo-
somes, Ic=(τ c;φc) the child which will be generated by crossover, κ ∈ [0, 1)
a parameter indicating the percentage of genes that will not be transmitted
from the parents to the child. Then our LDA-based crossover performs the
following steps to generate Ic, the child chromosome.

1. According to κ determine the number of genes of I1 and I2 (more
precisely, τ 1 and τ 2) that will be discarded, denote them by n1 and n2;
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2. Remove respectively from τ 1 and τ 2, the n1 and n2 least ranking genes
according to the LDA discriminant coefficients;

3. Merge the modified τ 1 and τ 2 by the logic AND operator to generate
τ c;

4. Apply the LDA classifier to τ c, fill φc by the resulting LDA discriminant
coefficients;

5. Create the child Ic=(τ c;φc).

Before inserting the child into the next population, Ic undergoes a mu-
tation operation. In Section 5.1, we will show a comparative study of this
LDA-based crossover operator with the well-known one-point and uniform
crossovers.

3.5. LDA-based mutations

In a conventional GA, the purpose of mutation is to introduce new genetic
materials for diversifying the population by making local changes in a given
chromosome. For binary coded GAs, this is typically realized by flipping the
value of some bits (1 → 0, or 0 → 1). In our case, mutation is used for
dimension reduction; each application of mutation eliminates a single gene
(1→ 0). To determine which gene is discarded, two criteria are used, leading
to two mutation operators.

� Mutation using discriminant coefficient (M1): Given a chromosome
I=(τ ;φ), we identify the smallest LDA discriminant coefficient in φ
and remove the corresponding gene (this is the least informative genes
among the current candidate gene subset τ).

� Mutation by discriminant coefficient and frequency (M2): This muta-
tion operator relies on a frequency information of each selected gene.
More precisely, a frequency counter is used to count the number of times
a selected gene is classified (according to the LDA classifier) as the least
informative gene within a gene subset. Based on this information, we
remove the gene that has the highest counter, in other words, the gene
that is frequently considered as a poor predictor by the classifier.

3.6. Chromosome regeneration

As explained above, our crossover and mutation operators remove pro-
gressively irrelevant genes at each generation. As such, when the search
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progresses, a chromosome could become ”empty”, i.e. all the genes of the
chromosome are removed. When this happens, a simple regeneration strat-
egy is applied to replace the ”empty” chromosome by a new chromosome
generated according to procedure explained in Section 3.1.

4. Experiments on Microarray datasets

In this section, we present experimental results provided by our LDA-
GA algorithm. We first recall the characteristics of the publicly available
Microarray datasets used in our experiments and then define precisely the
experimental setting in order to give an unbiased evaluation of the quality of
our solutions. Computational results are also contrasted with several other
gene selection methods proposed recently in the literature.

4.1. Microarray gene expression datasets

To assess the performance of our LDA-based genetic algorithm, we decide
to perform our experiments on seven well-known public datasets that pro-
vide binary classification problems: Leukemia, Colon cancer, Lung cancer,
Prostate cancer, Central nervous system embryonal tumor(CNS), Ovarian
cancer and Lymphoma (DLBCL). A summary about the datasets is provided
in Table 1, where we recall the number of genes, the number of samples and
the first publication that has presented an analysis of this dataset.

Table 1: Summary of datasets used for experimentation.

Dataset Genes Samples References

Leukemia 7129 72 Golub et al [16]
Colon 2000 62 Alon et al [3]
Lung 12533 181 Gordon et al [17]

Prostate 12600 109 Singh et al [41]
CNS 7129 60 Pomeroy et al [37]

Ovarian 15154 253 Petricoin et al [36]
DLBCL 4026 47 Alizadeh et al [1]

4.2. Pre-selection with t-statistic

Given the very high dimension of the datasets, embedded approaches
usually begin with a pre-selection step to retain a reduced number of p genes
to limit the computation time of the learning step. In our case, we employ a
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ranking-based t-statistic filter to pre-select 100 to 150 genes. The t-statistic
filter is a conventional tool for the selection of differentially expressed genes.

In our context, the pre-selection step is applied to the training samples
of each fold of a 10-fold cross-validation process (see next Section and Figure
1).

In addition to t-statistic, we also experimented two other filters (BSS/WSS
and Wilcoxon) for pre-selection. We observed that the classification accuracy
is often slightly better with t-statistic than with these other filters when the
number of the pre-selected genes is high (p ≥ 100). Moreover, we assessed
the possibility of using LDA for pre-selection. We noticed that with our 10-
fold cross-validation process, this is too time-consuming to be an interesting
option (due to the matrix operations explained in Section 2.2).

4.3. Experimental setting

The quality of a selected gene subset is assessed by its capability to lead
to an efficient classifier. The importance of a rigorous estimation of classifier
accuracy is a well known issue in machine learning. The evaluation of a clas-
sification model built on a training set may be performed on an independent
test set. Such a protocol is meaningful when a great number (at least several
hundreds) of labeled examples are available, so that the initial dataset can
be split into a training dataset and a test set of reasonable sizes.

When the labeled samples are scarce, which is the case for Microar-
ray data, the estimation of prediction accuracy can be realized via cross-
validation. In the k-fold cross-validation protocol, the initial dataset D is
split into k subsets of approximately the same size D1, . . . , Dk. The learn-
ing algorithm is applied k times to build k classifiers: in step i, the data
subset Di is left out as a test set, the classifier is induced from the training
dataset D −Di and its accuracy Acci is estimated on Di. The accuracy es-
timate computed by k-fold cross-validation is then the mean of the Acci, for
1 ≤ i ≤ k. When the number of folds (iterations) is equal to the number of
initial samples, the so-called Leave-One-Out-Cross-Validation (LOOCV) pro-
tocol provides an unbiased estimate of the generalization accuracy. However,
this estimate has a high variance [13] and requires important computational
efforts, since a classifier is trained in each iteration. Empirical studies [21, 8]
have shown that 10-fold cross-validation is a good choice to obtain an al-
most unbiased estimate, with small variance and reasonable computational
time. It is also recommended to use stratified cross-validation where each
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Figure 1: Cross-validation schema for gene selection and classification

fold contains approximately the same proportions of classes as the initial
dataset.

As pointed out in [4, 40, 22, 2], it is important to include gene selection
into the cross-validation schema in order to avoid the selection bias that
overestimates predictive accuracy. Selection bias occurs when the accuracy
of a model is assessed on samples that play a role in the construction of
the model. Therefore selecting a subset of genes on the entire dataset and
then performing cross-validation to estimate a classifier model is a biased
protocol. In a correct experiment design, the dataset must be split before
gene selection is achieved: each step of cross-validation performs gene selec-
tion and classification. Moreover, since we integrate a pre-selection step (see
Section 4.2), only the training samples of each fold are used to calculate the
t-statistic score of each gene. The whole experimental process is described
in Figure 1.

Our experiments are conducted according to this schema. LDA-GA is
applied on the training set in order to select a relevant gene subset and
to obtain a classifier. We have seen that our fitness function relies on two
criteria, the accuracy f1 and the number of genes f2, that are aggregated
in a unique value by the formula f(I) = αf1(I) + (1 − α)f2(I) . In this
experiment, we focus on the accuracy, so the fitness function is defined with

12



α = 0.75. In Section 5, we present further experiments with different values
of α. Therefore to have clear and consistent notations, we name F0.75 the
fitness function used in this current experiment.

Because of the stochastic nature of our LDA-GA algorithm, we run 10
executions of this schema and we retain the best solution found during these
10 executions.

We have explained in Section 3 that our LDA-GA can apply two kinds of
mutation (M1 and M2). That is why we report in the following subsection
two results for each dataset: LDA−GAM1/F0.75 uses mutation M1 and the
fitness function defined by parameter α = 0.75. LDA − GAM2/F0.75 uses
mutation M2 and the same fitness function.

4.4. Computational results

A great number of works study the problem of gene selection and classifi-
cation of Microarray data. These studies are based on a variety of approaches
on the one hand, and employ often different pre-processing techniques, eval-
uation schema, and experiment protocols on the other hand. Due to these
variations, a fair and exhaustive comparison among any methods becomes a
very challenging and even impossible task.

The main purpose of this section is to show the range of performance
that can be achieved by our LDA-GA on the seven tested datasets, under
the strict and unbiased experimental protocol with 10-fold cross-validation
described in Section 4.3. In order to give some idea of the performance of our
algorithm relative to other state-of-the-art approaches and only for this pur-
pose, we selected 15 recent gene selection algorithms (published since 2004)
which represent a variety of approaches (Bayesian learning, boostrapping,
ensemble machine learning, ensemble of neural networks, combined SVM,
minimum redundancy...). All the methods use a process of cross-validation,
notice however that sometimes the papers do not explain precisely how the
experimentation is conducted.

Table 2 presents the results obtained by our LDA-GA together with re-
sults reported in these 15 references on the seven datasets. An entry with the
symbol (-) means that the paper does not treat the corresponding dataset.
It should be clear that any numerical comparison must be interpreted with
caution.

From Table 2, one observes that LDA-GA (two last lines) is able to reach
a high classification accuracy of at least 96% for all the seven datasets (100%
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for four of them) with at most 24 genes. Now, let us give more comments on
the results of LDA-GA.

For the Leukemia dataset, LDA−GAM2 obtains a perfect classification
with 3 or 5 genes. To complete the information given in Table 2, we must
precise that LDA-GA also found other gene subsets (with 5 to 10 genes)
achieving a perfect cross-validation classification. More precisely, one of these
subsets contains the genes in positions 3, 12, 63, 72, and 81 ranked by t-
statistic filter. Another gene subset that achieves a perfect classification
contains the genes ranked in positions: 1, 2, 19, 72 and 81. These solutions
show the limit of filter-based approaches that can miss easily relevant genes
because they typically retain a small number of top-ranking genes (say 30)
for classification. At the same time, these results show the usefulness of
exploring larger gene subsets including those that are not top-ranked.

For the Colon tumor dataset which is known to be difficult for many
methods, LDA-GA obtains a good performance: 98.3% with 14 genes and
91.9% with only 4 genes. It has been pointed out in [14] that six samples
are often misclassified. These six samples are the tumor tissues T30, T33
and T36 and the normal tissues: N8, N34 and N36 (more details in [3]). If
we exclude these six samples from the dataset, our method achieves a 100%
accuracy. So our results are perfectly consistent with the observations about
this dataset and this confirms the quality of our approach.

For the Lung dataset, our algorithm achieves an almost perfect prediction
accuracy (99.3%) with 7 and 10 genes.

For the Prostate cancer we obtain a high performance with a very reduced
number of genes: 96% with 8 genes.

For the CNS dataset, LDA−GAM2 reaches a perfect discrimination with
24 genes.

For the Ovarian cancer dataset, we obtain a perfect classification with 18
genes. Notice that a perfect rate is reported in [30] with 50 genes. However
the dataset used in [30] (30 cancerous and 24 normal samples, 1536 genes)
is different from the Ovarian cancer dataset described in Table 1 (91 normal
and 162 cancerous samples, 15154 genes).

The most remarkable results for our approach concern the DLBCL dataset.
We obtain a perfect prediction with only 3 or 4 genes while the previously
reported results are below 98% with at least 20 genes.

These results show that LDA-GA performs globally very well on these
different datasets.

Finally, let us mention that the computing time of LDA-GA (programmed
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Author Leuk. Colon Lung Prostate CNS Ovar. DLBCL
Ye et al 97.5 85.0 – 92.5 – – –

[47]
Liu et al 100 91.9 100 97.0 – 99.2 98

[28] 30 30 30 30 – 75 30
Tan & Gilbert 91.1 95.1 93.2 73.5 88.3 – –

[42]
Ding & Peng 100 93.5 97.2 – – – –

[10]
Cho & Won 95.9 87.7 – – – – 93.0

[9] 25 25 25
Yang et al 73.2 84.8 – 86.88 – – –

[45]
Peng et al 98.6 87.0 100 – – – –

[35] 5 4 3
Wang et al 95.8 100 – – – – 95.6

[43] 20 20 20
Huerta et al 100 91.4 – – – – –

[6]
Pang et al 94.1 83.8 91.2 – 65.0 98.8 –

[32] 35 23 34 46 26
Li et al 97.1 83.5 – 91.7 68.5 99.9 93.0

[25] 20 20 20 20 20 20
Zhang et al 100 90.3 30 100 95.2 80 – 92.2

[49] 30 30 30 30 30 30
Yue et al 83.8 85.4 – – – – –

[48] 100 100
Hernandez et al 91.5 84.6 – – – – –

[19] 3 7
Li et al 100 93.6 – – – – –

[26] 4 15

LDA−GAM1/F0.75 100 91.9 99.3 96.0 86.6 100 100
3 4 10 53 34 18 4

LDA−GAM2/F0.75 100 98.3 99.3 96.0 100 98.8 100
5 14 7 8 24 17 3

Table 2: Results of our LDA-based GA equipped with mutation operators M1 and M2
(two last lines). These results are obtained by strictly following the unbiased experimental
protocol defined in Section 4.3. For indicative purpose, are equally shown the results of
15 other recent methods which are based on a cross-validation process. Each cell contains
the classification accuracy and the number of genes when this is available. Any numerical
comparison must be interpreted with caution.
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in Matlab) for processing a dataset varies from several minutes to one hour
on a PC with 3.4GHz CPU and 2G RAM.

4.5. Discussion

As mentioned previously, the proposed approach is able to explore many
gene combinations and return different (small) gene subsets with a high pre-
diction rate. This feature is particularly interesting from a practical point of
view since these multiple results may constitute valuable sources for further
biological studies. For example, based on these gene subsets, one can easily
identify frequently selected genes so that a particular attention can be put
on them. According to a preliminary examination that we carried out on
Leukemia, Colon cancer and DLBCL, we observe that the algorithm is able
to find repeatively a number of genes which are known as biomarkers for the
concerned cancer. Moreover, for those genes which are repeatively selected,
yet not reported in any biological study, they may constitute interesting can-
didates for more focused biological investigations.

5. Additional studies of the proposed algorithm

One originality of our approach is the design of a dedicated crossover
operator that is informed by the coefficients of a LDA classifier. The first
part of this section studies the impact of this specific crossover operator on
the evolutionary process. In a second part, we also provide experimental
results that show the influence of some other parameters or components of
the genetic algorithm.

5.1. LDA-based crossover v.s. random crossovers

For simplicity reason, we use AND to designate our dedicated crossover
operator because its main operation is to take the intersection of the parent
genes in order to transmit relevant information to the offspring. We believe
that this LDA-based crossover operator is one of the driving forces of our
genetic algorithm. To confirm this, we compare the performance of AND
against two random crossover operators (single point and uniform crossovers).
These standard operators combine parts of two parents in a stochastic way
without the help of problem specific knowledge. The performance of each
crossover is based on a running profile of the best fitness of the population
as a function of the number of generations.
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In order to enable a fair comparison, all the crossover operators are tested
based on the LDA-GA algorithm under the same experimental conditions on
three datasets (Leukemia, Colon cancer, Lung cancer). More specifically,
the following parameters were used in this experiment: a) population size
|P | = 50, b) maximal number of generations is fixed at 250, c) individual
length (number of pre-selected genes) p = 150, d) weighting coefficient of
the fitness function α = 0.5, e) mutation probability for random mutation
is fixed at 0.01, f) single point and uniform crossover probability is fixed
at 0.875. The general settings for our LDA based crossover operator are
explained in Section 3. Figure 2 shows the comparative results of the same
GA with those different crossover operators. Given the stochastic nature of
the GA, each curve represents the evolution of the best fitnesses averaged
over 10 independent runs.

From this figure, it is observed that our informed operator (AND) allows
the algorithm to obtain consistently better solutions. More specifically, on
the Colon dataset, a fitness value of 0.80 is rapidly reached by the best in-
dividual within 20 generations with the AND operator. With the two other
crossover operators, this fitness value is reached only after 100 generations.
A weak dominance of AND can still be observed for the Leukemia dataset
for which the curves of AND and Uniform remain close until 120 generations.
This is not so surprising because previous studies have shown that the dis-
crimination is easy for this dataset and consequently even a random operator
can obtain good results. For Lung dataset, the profile of AND is globally
better than those of the competing crossovers, leading to the highest fitness
value from 120 generations. In conclusion, this experiment tends to confirm
the superiority of the informed crossover operator in guiding the GA in its
exploration of the search space. The performance of our LDA-GA can thus
be partially attributed to the dedicated crossover operator.

5.2. Influence of algorithm parameters

The fitness function defined in Section 3.3 combines two criteria, the
classifier accuracy and the number of the selected genes. These criteria are
aggregated in a sole value (f ∈ [0, 1]) by a weighted sum where the parameter
α determines the importance of each criterion (see Equation 6). Varying the
value of α would allow the search to focus on one criterion or another. We
study the effect of this parameter α in the following experiments.

We carry out an experiment where the fitness function uses α = 0.25
(call it LDA − GA/F0.25); therefore the algorithm puts more emphasis on
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Figure 2: Evolution profile of the best fitness of the LDA-GA equipped with the ded-
icated crossover operator (AND) in comparison with the profile obtained with Uniform
and Single-point crossover operators. The curves represent the best fitness averaged over
10 independent runs.

18



the number of selected genes. In another experiment (LDA − GA/F0.75), f
is based on α = 0.75 and the classification accuracy takes more importance
(this last setting was used in Section 4). Since we run LGA-GA with either
M1 or M2 mutation operator, this gives four algorithm combinations.

Additionally, we use this opportunity to check the influence of the pop-
ulation size by using three different sizes (30, 50 and 100) with each of the
four algorithm combinations. The results of these experiments are presented
in Table 3.

Leuk. Colon Lung Prostate CNS Ovar. DLBL
Pop. size = 30

LDA−GAM1/F0.25 93.0(1) 82.2(1) 95.9(1) 92.1(1) 73.3(1) 84.1(1) 80.8(1)
LDA−GAM2/F0.25 94.4(1) 82.2(1) 95.9(1) 91.1(1) 76.6(1) 84.5(1) 80.8(1)
LDA−GAM1/F0.75 (100)4 (98.3)10 (99.3)8 (97.0)10 (98.3)12 (100)28 (100)6
LDA−GAM2/F0.75 (100)5 (98.3)19 (99.3)7 (98.0)35 (98.0)35 (100)25 (100)5

Pop. size = 50
LDA−GAM1/F0.25 94.4(1) 64.5(1) 95.3(1) 92.1(1) 73.3(1) 79.8(1) 91.4(1)
LDA−GAM2/F0.25 94.4(1) 64.5(1) 93.2(1) 92.1(1) 73.3(1) 80.6(1) 87.2(1)
LDA−GAM1/F0.75 (100)13 (91.9)14 (99.3)9 (94.1)18 (88.3)44 (98.8)35 (100)6
LDA−GAM2/F0.75 (100)28 (98.3)10 (99.3)10 (95.0)38 (88.3)44 (100)34) (100)6

Pop. size = 100
LDA−GAM1/F0.25 83.3(2) 83.8(2) 93.9(2) 75.4(1) 60.0(1) 88.5(1) 70.2(2)
LDA−GAM2/F0.25 94.4(1) 83.8(2) 95.3(1) 88.2(1) 66.6(1) 87.7(1) 72.3(1)
LDA−GAM1/F0.75 (100)3 (91.9)4 (99.3)10 (96.0)53 (86.6)34 (100)18 (100)4
LDA−GAM2/F0.75 (100)5 (98.3)14 (99.3)7 (96.0)8 (100)24 (98.8)17 (100)3

Table 3: Influence of α used in the fitness function with α = 0.25 and α = 0.75. In each
cell, the first number is the classification accuracy and the second one is the number of
selected genes. The brackets indicate which of these two criteria is dominant in the fitness
function. Results are reported on the LDA-GA equipped with mutation operators M1
and M2, run with three population sizes.

The results of this table show that α does have a clear influence on the
search direction of the genetic algorithm. A smaller value of α allows the
search to obtain smaller sized gene subsets at the price of lower classification
accuracy and vice-versa.

One also observes that the LDA-GA is able to achieve very good perfor-
mance even with a small population of 30 individuals. However the popu-
lation size of 100 provides a slight improvement in the sense that it offers a
better compromise between two objectives: good classification accuracy and
small number of genes. This is particularly true for the algorithms with the
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fitness function named F0.75 since we obtain a perfect classification of 100%
in 6 cases with less than 24 genes.

5.3. Influence of the pre-processing step

The search space of our LDA-GA is delimited by a first step which pre-
selects a limited number of genes (100 - 150 in this paper) with the t-statistic
filter criterion. One may wonder whether changing the filtering criterion
and the number of selected genes affects the performance of the approach.
In [7], an exhaustive study is presented concerning the influence of data
pre-processing and filtering criteria on the classification performance. Three
filtering criteria, BSS/WSS, t-statistic and Wilcoxon test were compared, and
the results did not show strong dominance of one criterion with respect to the
others, although t-statistic led to slightly better results on some datasets like
Colon and CNS. However, the fuzzy pre-processing for data normalization
and redundancy reduction presented in [7] does show a positive influence on
the classification performance whatever the filtering criterion that is applied
after.

Finally, even if we used in this paper 100 and 150 pre-selected genes as the
input of the LDA-GA, the proposed LDA-GA can be applied with a larger
input. In this case, the algorithm will explore more gene combinations at the
price of more computing resources.

6. Conclusions and discussion

In this paper, we have introduced a new embedded approach to gene
subset selection for cancer classification of Microarray data. The proposed
approach begins with a (t-statistic) filter that pre-selects a first set of genes
(100 or 150 in this paper). To further explore the combinations of these
genes, we rely on a hybrid Genetic Algorithm combined with Fisher’s Linear
Discriminant Analysis. In this LDA-GA, LDA is used not only to assess
the fitness of a candidate gene subset, but also to inform the crossover and
mutation operators. This GA and LDA hybridization makes the genetic
search highly effective for identifying small and informative gene subsets.

In addition, the bi-criteria fitness function provides a flexible way for the
LDA-GA to explore the gene subset space either for the minimization of the
selected genes or for the maximization of the prediction accuracy.

We have extensively evaluated our LDA-based GA approach on seven
public datasets (Leukemia, Colon, DLBCL, Lung, Prostate, CNS and Ovar-
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ian) using a rigorous 10-fold cross-validation process. Computational results
on these datasets show that under the unbiased experimental protocol, the
proposed algorithm is able to reach high prediction accuracies (96% to 100%)
with a small number of selected genes (3 to 24).

The proposed approach has another practically useful feature for biologi-
cal analysis. In fact, instead of producing a single solution (gene subset), our
approach can easily and naturally provide multiple non-dominated solutions
that constitute valuable candidates for further biological investigations.

Finally, it should be noticed that the approach exposed in this paper is
general in the sense that the LDA classifier can be replaced by other linear
classifiers. Indeed, a linear classifier naturally provides ranking or discrimi-
nation information about the genes that can be favorably used in the design
of search operators of a genetic algorithm.
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