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Abstract

We study a new problem named the Time-dependent Electric Vehicle Rout-
ing Problem (TDEVRP) which involves routing a fleet of electric vehicles
to serve a set of customers and determining the vehicle’s speed and depar-
ture time at each arc of the routes with the purpose of minimizing a cost
function. We propose an integer linear programming (ILP) model to formu-
late the TDEVRP and show that the state-of-the-art commercial optimizer
(CPLEX) can only solve instances of very limited sizes (with no more than
15 customers). We thus propose an iterated variable neighbourhood search
(IVNS) algorithm to find near-optimal solutions for larger instances. The key
ingredients of IVNS include a fast evaluation method that allows local search
moves to be evaluated in constant time O(1), a variable neighbourhood de-
scent (VND) procedure to optimize the node sequences, and a departure time
and speed optimization procedure (DSOP) to optimize the speed and depar-
ture time on each arc of the routes. The proposed algorithm demonstrates
excellent performances on a set of newly created instances. In particular,
it can achieve optimal or near-optimal solutions for all small-size instances
(with no more than 15 customers) and is robust for large-size instances where
the gap between the average and the best solution value is consistently lower
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than 2.38%. Additional experimental results on 40 benchmark instances of
the closely related Time-Dependent Pollution Routing Problem indicate that
the proposed IVNS algorithm also performs very well and even discovers 39
new best-known solutions (improved upper bounds).

Keywords: Green Logistics; Time-dependent vehicle routing; Efficient con-
straint handling; Congestion.

1. Introduction

Recent years have witnessed a rapid increase in the use of electric vehi-
cles, as many countries have passed regulations to restrict the production of
fossil vehicles in order to reduce greenhouse gas emissions. With the advance
of electric vehicle technology and social awareness of global warming, there is
an increasing number of people choosing electric vehicles to replace conven-
tional fossil vehicles. Moreover, governments and companies are continually
improving the required infrastructures to boost the popularization of electric
vehicles.

Electric vehicles are powered by electric engines and they use batteries to
store energy. They produce no gas emission and little noise, and the required
recharge and maintenance fees are usually lower than those of the traditional
fossil vehicles. However, as indicated in Schneider et al. (2014), short driv-
ing range and long recharging time are two main factors that handicap the
expansion of electric vehicles. Also, the requirement of frequent recharging
inevitably leads to extra travel distance of electric vehicles.

Additionally, traffic congestion is another important factor that disad-
vantages the use of electric vehicles (Figliozzi, 2011). On the one hand, con-
gestion leads to long travel time, which induces extra costs (e.g., late arrival
at customers in logistics applications) (Franceschetti et al., 2013). On the
other hand, congestion increases the amount of energy consumed by electric
vehicles and further limits their driving range. Efficient routing algorithms
for electric vehicles under congestion will mitigate these difficulties and thus
ease the utilization of electric vehicles in general and in logistics applications
especially.

There exist numerous studies on various electric vehicle routing prob-
lems and their extensions with time window constraints (Caceres-Cruz et al.,
2014). However, to the best of our knowledge, the electric vehicle routing
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problem with time dependency constraint has not been investigated in the
literature. In this work, we take the first step by studying a new problem
named the Time-dependent Electric Vehicle Routing Problem (TDEVRP),
which includes a number of important features that are relevant to real-life
applications of electric vehicles:

• Congestion Period. We define two congestion periods in the start and
end of a given planning horizon, which typically correspond to the
morning peak and evening peak of a day.

• Recharging Decision. The limited driving range of electric vehicles and
the increase of energy consumption caused by congestion require fre-
quent recharging. The decisions on when and which station to recharge
are essential for minimizing the total cost.

• Energy Consumption. In line with Bektas & Laporte (2011) and Demir
et al. (2012), we adopt the energy consumption model proposed by
Barth et al. (2005) and Barth et al. (2015) where the weight, the travel
speed, and the travel distance of a given vehicle determine the energy
consumption of a trip.

The TDEVRP also integrates two realistic models: the time-dependent
vehicle routing problem (TDVRP) and the electric vehicle routing problem
with time window (EVRPTW). As such, the proposed problem is a useful
model to encompass more real-life applications of electric vehicles.

1.1. Related Work

Our proposed TDEVRP is built on top of the basic electric vehicle routing
model with additional constraints such as time window, vehicle capacity and
congestion. This study belongs to the domain of green logistics (Akyelken,
2016), where researchers from different communities have conducted much
research. We provide below a brief review of recent and closely related works
of this study. For a comprehensive survey of green VRP and time-dependent
routing problems, we refer the readers to Lin et al. (2014) and Gendreau
et al. (2015).

The study of greenhouse gas emissions in logistics began with the inves-
tigation of the Pollution Routing Problem (PRP) (Bektas & Laporte, 2011).
The goal of the PRP is to minimize the greenhouse gas emission of the ve-
hicles. Bektas & Laporte (2011) indicated that the speed of a vehicle and
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the traffic condition should be considered when one calculates the energy
consumption and greenhouse gas emission for a trip. An important feature
of the PRP is the flexible speed model that allows drivers to drive at any
speed below a maximum value. Another feature of the PRP is the energy
consumption model which takes into account realistic factors such as travel
distance, travel speed and vehicle weight. To make our TDEVRP close to
reality, we adopt the energy consumption and flexible speed model.

Malandraki & Daskin (1992); Malandraki & Dial (1996) first proposed a
mixed integer formulation for time-dependent vehicle routing problem(TDVRP)
and a heuristic algorithm to solve the problem. Ichoua et al. (2003) pro-
posed a travel time model which guarantees the satisfaction of first-in-first-
out(FIFO) property. Kok et al. (2012); Figliozzi (2011) studied the impact
of congestion including late arrival at customers and increased costs. These
early works on TDVRP, opposed to our work in this paper, did not take into
account the flexible travel speed. Franceschetti et al. (2013) proposed the
Time-Dependent Pollution Routing Problem (TDPRP), which extends the
PRP by taking into account the effects of traffic congestion on the routing of
vehicles and green house gas emission. The authors derived a set of charac-
terizations of the optimal solution for a single-arc version of the TDPRP and
introduced strategies to alleviate the influence of congestion. Their study
also revealed the influences brought by the congestion, such as a dramati-
cally increased fuel consumption and possible post-service delay at customer
nodes.

Erdogan & Miller-Hooks (2012) introduced a Green Vehicle Routing Prob-
lem (GVRP) where a fleet of mixed fueled vehicles is scheduled to reduce
environmental impact. Schneider et al. (2014) presented an electric vehicle
routing problem with time windows where only electric vehicles are involved.
However, as pointed out by Schneider et al. (2014), the limited driving range
causes great challenges on the real-life applications of electric vehicles, espe-
cially in industrial fields like logistics. Goeke & Schneider (2015) studied the
effectiveness of routing a mixed fleet of electric and conventional vehicles.
Also, many extensions have been investigated on the application of electric
vehicles with real-life constraints such as using battery swapping stations
(Chen et al., 2016), adopting partial recharging strategy (Keskin & Catay,
2016) and using a mixed fleet of heterogeneous electric vehicles (Hiermann
et al., 2016). We note that all the above studies on electric vehicles assume
a constant speed.

As technology advances, the capability of electric vehicles is being en-
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hanced. The issue related to electric vehicle routing becomes increasingly
important for their applications in logistics. Since traffic congestion signifi-
cantly increases the energy consumption of electric vehicles, it is a primordial
factor that should be considered when studying electric vehicle routing prob-
lems such as the EVRPTW. Keskin et al. (2019) considered the capacity of
charging stations and modeled the time-dependent waiting time at charging
stations. Shao et al. (2017) proposed a electric vehicle routing problem with
charging time and variable travel time. Although very recent, these studies
still assume a constant speed. However, Franceschetti et al. (2013) proved
in their paper that the optimal speed is not a constant value, but a flexible
value that can vary below a maximum speed. Given this result, we adopt the
flexible speed model and take into consideration the influence of the speed
variation on energy consumption.

In terms of the solution methods for electric vehicle routing problems
with constant speed, a number of effective algorithms exist in the literature.
Most of them fall into the category of heuristic methods due to the NP-
hardness of the problems. Nagata et al. (2010) introduced a time travel
approach which enables efficient evaluation of many local search operators. A
dedicated operator for the EVRPTW was present in Schneider et al. (2014).
A hybrid genetic algorithm was introduced in Vidal et al. (2013) to solve
a large class of routing problems, based on which Hiermann et al. (2016)
developed a large neighbourhood search heuristic combined with a dedicated
local search procedure to solve the EVRPTW with a heterogeneous fleet.

For studies with flexible speed, Kramer et al. (2015a,b) developed a de-
parture time and speed optimization procedure (DSOP) to optimize speed
and departure time on each arc, which serves as a sub-subroutine in an adap-
tive large neighbourhood search heuristic (ALNS) for the PRP (Demir et al.,
2012). Franceschetti et al. (2013, 2016) extended these techniques to the
TDPRP and reported high-quality results on benchmark instances.

After a thorough investigation of the literature, we find that efficient local
search algorithms are still missing in the literature for the VRP variants with
an energy model considering multiple factors(e.g., weight, speed, distance).
This is because an efficient evaluation method for local search operators is
not available. The state-of-the-art algorithm relies on destroy operators and
repair operators under the ALNS framework. We believe the performance of
this algorithm can be further improved if a local search procedure is appropri-
ately incorporated. The variable neighborhood search serves as a framework
for local search operators and illustrates good performance for many VRP
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variations including electric vehicle routing problem with mixed fleet(Rezgui
et al., 2019; Hiermann et al., 2016), vehicle routing problem with divisi-
ble deliveries and pickups(Polat, 2017; Kalayci & Kaya, 2016) and other
variations(Xu & Cai, 2018). Therefore we adopt the IVNS as the general
framework of our algorithm(see Section 3).

The main motivation of this work is to study the routing problem of
electric vehicles with congestion, flexible speed and a realistic energy con-
sumption model. This model is close to real-life applications but absent in
the literature. An efficient solving algorithm for instances with realistic sizes
is also required to improve the transportation capability of electric vehicles.
Moreover, we seek to enhance the solving efficiency of VRP variations with
time-dependent constraints(e.g. TDPRP, TDEVRP) by introducing new ef-
ficient evaluation method for local search operators.

1.2. Contributions of this work

The main contributions of this work are summarized as follows:

1. Problem and model: The Time-dependent Electrical Vehicle Routing
Problem (TDEVRP) proposed in this work integrates the well-studied
TDVRP and EVRPTW which considers recharging decisions, conges-
tion condition, and other traditional factors, such as capacity and time
window constraint. An integer linear programming (ILP) model is pre-
sented to formulate the problem, which enables the use of general ILP
solvers such as CPLEX.

2. Solution algorithm: We develop an iterated variable neighbourhood
search (IVNS) algorithm which integrates a set of complementary search
components including an initial solution construct process, a variable
neighborhood descent(VND), a perturbation procedure and a depar-
ture time and speed optimization process(DSOP). All these algorithm
components are specially designed for the proposed TDEVRP.

3. Incremental evaluation method: we propose a concatenation operator
that allows O(1) evaluation for local moves of all adopted standard
neighborhood structures, which greatly speeds up the search process of
our proposed IVNS algorithm. We show also that the method can be
easily generalized to other time-dependent problems (e.g., agile satel-
lite scheduling (Chu et al., 2017), time-dependent orientation problem
(Gavalas et al., 2015)).
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4. Benchmark instances: We define a set of TDEVRP benchmark in-
stances that we make publicly available. These instances are adapted
from the EVRPTW benchmark instances proposed by Goeke & Schnei-
der (2015) by introducing time-dependent features(Congestion).

5. Computational results: We perform intensive computational experi-
ments with the proposed IVNS algorithm and the general ILP solver
CPLEX. Results show that while CPLEX is successful for small in-
stances with up to 15 nodes, IVNS is indispensable for solving larger
instances. We also test IVNS on the set of 40 benchmark instances of
the tightly-related TDPRP. The results indicate that IVNS not only
dominates the state-of-the-art ALNS algorithm but also discovers new
best solutions (improved upper bounds) for 39 instances.

The rest of the paper is organized as follows. A detailed description of
the TDEVRP and its ILP formulation is presented in Section 2. Section
4 introduces the concatenation operators proposed in this work, based on
which we develop an variable neighbourhood search algorithm in Section 3.
Section 5 presents the computational results and the conclusions are drawn
in Section 6.

2. Problem Description

The TDEVRP is defined on a complete graph G = {N ,A} where a set of
customers, a set of recharging stations, and a depot are included. We denote
the set of customers as C, the set of recharging stations as F and the depot as
N0. We use F ′ as a set of dummy nodes representing the recharging stations
in F multiple times. This is because a station may be visited more than
once in a day and multiple instances of the station are needed to distinguish
these visits. We define N ′0 as a set of dummy nodes of the depot for the same
reason. With these definition, we can define N as N = N ′0 ∪ C ∪ F

′
. A is

the set of arcs connecting each pair of nodes in N .
A homogeneous fleet of K vehicles is available to serve all customers, and

each vehicle is charactered by a capacity limit of Q units, an energy capacity
of Y units and an acquisition cost of h units. We assume that a vehicle
would fully recharge itself each time it visits a recharging station and a fixed
recharging time E is required. Each customer i in C is associated with a
non-negative demand qi, a fixed service time pi and a service time window
[li, ui] in which the service must start. If a vehicle arrives at customer i
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earlier than li, it waits until li and starts service. The start and end of the
planning horizon are denoted as l0 and u0. Without loss of generality, we
assume l0 equals 0.

The goal of the TDEVRP is to serve each customer within their service
time window under congestion conditions and minimize the cost function.
The cost of a trip consists of three parts: an acquisition cost for the vehicle,
driver’s wages, and the energy cost. Driver’s wage is dependent on the dura-
tion of the trip, which covers the period from the departure from the depot
until the return to the depot. The energy consumption model, as proposed in
Franceschetti et al. (2013), is decided by three factors: speed, distance, and
load. Unlike traditional VRP, under congestion situation, it may be better
to wait at customer nodes after service until the end of congestion than to
continue travel immediately (Franceschetti et al., 2013). We call this period
of waiting as a post-service delay. Therefore finding a routing plan is to de-
cide: (i) the set of vehicle routes starting and ending at the depot, (ii) the
speed on each arc, (iii) the departure time from each node. As an extension
of the traditional NP-hard Vehicle Routing Problem (VRP) (Laporte, 1992),
the TDEVRP is computationally challenging.

In what follows, the time-dependency character of the problem is intro-
duced in Section 2.1 and the cost function is introduced in section 2.2. Then
an ILP model is presented in Section2.3.

2.1. Time-dependency

In the TDEVRP, the travel speed is dependent on the departure time.
In congestion periods, a vehicle runs at a low speed, which in turn increases
the driving time. In the work of Franceschetti et al. (2013) and Jabali et al.
(2012), a two-level speed function is used to model the cases where the con-
gestion period is followed by the free-flow period. Such a function models
the cases where congestion happens in the first half of the day.

In this work, we model the congestion by a three-level speed function, as
shown in Figure 1. There are two congestion periods at the beginning and
end of the planning horizon, corresponding to the morning and evening peak
hours when congestion usually happens. Starting from 0, the morning peak
period lasts until T1 with a congestion speed vc. Then a free-flow period
follows until T2 with a free-flow speed limit vf (vf > vc). The evening peak
period lasts until the end of the planning horizon at u0. Vehicles cannot
move at a speed level higher than the given speed limit of each period.
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Time
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Figure 1: Time-dependent speed profile. The planning horizon consists of a congestion
period of length T1, a free-flow period of length T2 − T1 and another congestion period of
length u0 − T2

As vc has a low value, driving during congestion with a speed lower than
vc is never optimal (Franceschetti et al., 2013), which means the speed in
congestion should always be vc. However the best travel speed on free-flow
period can be a value lower than vf and should be decided properly to reduce
the travel cost.

As a result, the time needed to travel across a distance of d units is
dependent on the departure time and travel speed. We adopt the method
proposed by Ichoua et al. (2003) to calculate the travel time. This method
does not assume a constant speed over the entire length of an arc. Instead,
the speed changes when the boundary between two consecutive time periods
is crossed so that the FIFO property is guaranteed. Let T (ts, v, d) denote
the duration of a trip, which starts from ts and travels across a distance of
d units with free-flow speed v. Assume v = vf , we then have the following
piecewise function (d < min((T2 − T1)vf , T1vc)) (see Figure 2):

T (ts, vf , d) =



d
vc
, 0≤ ts≤T1− d

vc

T1−ts+ d−vc(T1−ts)
vf

, T1− d
vc
≤ ts≤T1

d
vf
, T1≤ ts≤T2− d

vf

T2−ts+ d−vf (T2−ts)
vc

, T2− d
vf
≤ ts≤T2

d
vc
, T2≤ ts≤u0

, (1)

2.2. Cost Function

To model the energy consumption of traveling under congestion, we mod-
ify the energy consumption model introduced by Bektas & Laporte (2011).
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Figure 2: Time-dependent travel time profile. There are a number of critical points at
which the gradient changes: 0, T1− d

vc
, T1, T2− d

vf
, T2, u0. 0, T1, T2 and u0 are the adjacent

points of different speed levels defined by Figure 1. [T1 − d
vc
, T1] and [T2 − d

vf
, T2] are two

transition periods in which the trip covers both the congestion period and the free-flow
period.

Specifically, we replace fossil fuel in the model with electric power. The
model describes the energy consumption of a vehicle as a function of speed,
weight, distance, and other factors. In line with Franceschetti et al. (2016),
we consider speed, weight, and distance as contributory factors, and we set
other parameters to be 0.

Let E(d, v, f) denote the energy consumed by a vehicle travelling distance
d at speed v with load f , which is given by:

E(d, v, f) = α(u+ f)d+ β
d

v
+ γdv2, (2)

The energy consumption is divided into three parts: weight module, en-
gine module, and speed module corresponding to the first, second, and third
term of the equation (Franceschetti et al., 2013).

We have µ as curb weight, δ as driver’s wage, and λ as electric price
per unit. Also, α, β, γ are vehicle constants which are determined by vehicle
parameters whose settings are listed in Tabel 1 and the calculation methods
of these values are referred to Franceschetti et al. (2013).

Let C(d, v, f) denote the total travelling cost including the acquisition
cost of vehicles, drivers’ wage and energy cost, then we get a function similar
to Equation 2:

C(d, v, f) = λα(µ+ f)d+ (λβ + δ)
d

v
+ λγdv2 + h, (3)
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Table 1: Cost function parameter settings. The values listed in the table are calculated
with the same methods as Franceschetti et al. (2013).

Notation Description Unit Value
α weight module constant m/s2 0.27272
β engine module constant kJ/s 33
γ speed module constant kg/m 4.58339
λ energy cost per unit £/kwh 0.14
δ driver’s wage per unit time £/s 0.0022
µ curb weight kg 6350
h vehicle acquisition cost £ 200

Table 2: Illustration of different components of cost. The result shown is the cost consumed
by different cost components. The cost is calculated as an empty vehicle drives 100km
with the speed of 1m/s and 25m/s respectively.

Description Cost of 1m/s(£) Cost of 10m/s(£)
weight module cost (λαµd) 67.34 67.34
engine module cost (λβ d

v
) 1283 51.32

speed module cost (λγdv2) 0.1782 111.4
driver cost (δ d

v
) 220 22

vehicle acquisition cost h h

Equations 2 and 3 give the relationship between cost and influential fac-
tors including speed, load and distance. To better illustrate the components
of the cost function, we give an illustration of the cost of each component for
driving 100km under different speed values(e.g., 1m/s, 25m/s). The result
is shown in Table 2.

From the table we see that when driving at a low speed, the engine
module will cause a great cost. The engine module cost contributes more
than 80% to the total cost of low speed driving. And the driver cost is
higher as the journey takes more time. While at high speed, the main cost is
the speed module cost, which contributes around 40% to the total cost. We
see that when the speed changes from 1m/s to 25m/s, the engine module
has decreased from a very large value to a small one while the speed module
has increased from a very small value to a larger one. The weight module
stay unchanged and driver cost decreases too. This result echos Equation 3
as the engine module and driver cost is related with v−1. Weight module is
independent on speed and the speed module is related to v2. When speed
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Figure 3: Travel cost per unit distance as a function of speed. Two important speed values
(Franceschetti et al., 2013) are presented: Ve which minimizes the total energy consumed
and Vt which minimizes the total cost.

increases, the engine module and driver cost will decrease and the speed
module will increase exponentially.

For a given route, the load and the distance are given a fixed value while
the travel speed on each arc is a decision variable. Figure 3 shows how
energy and total cost vary with speed. From the figure we can see a common
character of mobile vehicles: driving too slow or too fast both lead to an
increase in energy consumption and extra cost. As a balance between driver
cost and energy cost, there is one optimal speed value, which minimizes the
total cost.

2.3. An Integer Linear Programming Formulation for TDEVRP

In this section, we present an ILP model to formulate the TDEVRP
problem. As the objective function (Equation 3) is non-linear to the speed
value, we discretize the speed value into k levels as in Bektas & Laporte
(2011). Let R = {1, 2, . . . , k} denote the k speed levels and we have vc =
v1 < v2 < · · · < vk = vf . We also define vmras the vehicle speed in time
interval m with a speed level r, r ∈ R, which indicates v1r, v2r, v5r = vc (we
note that the optimal speed for the congestion period is always vc). Let M be
the set of time intervals and (bm−1, bm] denote the m−th interval as shown in
Figure 2, where M = {1, 2, 3, 4, 5}. Then we have b0 = 0, b1 = T1−d/v2, b2 =
T1, b

3 = T2−d/v4, b4 = T2, b
5 = u0. Time intervals 1, 3 and 5 have a constant

speed while the speed of intervals 2 and 4 changes at T1 and T2.
The model uses the following decision variables:
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T (tmrij , v
mr, i, j) =


dij
vmr , m = 1, 3, 5

T1 − t2rij +
d−v2r(T1−t2rij )

v3r
, m = 2

T2 − t4rij +
d−v4r(T2−t4rij )

v5r
, m = 4

0, else

(4)

E(tmrij , v
mr, i, j) =



α(u+ fij)dij + β
dij
vmr + γdij(v

mr)2, m = 1, 3, 5

α(u+ fij)dij + β(T1 − t2rij +
dij−v2r(T1−t2rij )

v2r
)+

γ((T1 − t2rij )(v2r)3 +
dij−v2r(T1−t2rij )

v3r
(v3r)3), m = 2

α(u+ fij)dij + β(T2 − t4rij +
dij−v4r(T2−t4rij )

v4r
)+

γ((T1 − t4rij )(v4r)3 +
dij−v4r(T2−t4rij )

v5r
(v5r)3), m = 4

0, else
(5)

(1) xij : is a binary variable which equals 1 if a vehicle visit node j after i,
0 otherwise.

(2) zmrij : is a binary variable which equals 1 if a vehicle visits node j after i,
leaving node i during the m− th time interval with free-flow speed vr.

(3) fij : indicates the total amount of commodity flowing from node i to
node j.

(4) tmrij : is a variable that equals the time at which a vehicle leaves node i
during the m− th period to node j with speed vmr.

(5) wi : indicates the time instant at which the service at node i starts.

(6) yi : indicates the energy level of a vehicle at node i.

To put it simply, we rewrite the travel time from node i to node j which
starts at tmrij with speed vmr as T (tmrij , v

mr, i, j) and the corresponding energy
consumption as E(tmrij , v

mr, i, j), shown in Equations 4 and 5.
Given these definitions, we present the ILP model of the TDEVRP as

follows:

Minimize :
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∑
(i,j)∈A

∑
r∈R

∑
m∈M

λE(tmrij , v
mr, i, j) (6)

+
∑

i∈C∪F ′
δ(
∑
j∈N

∑
m∈M

∑
r∈R

tmrij −
∑
j∈N

∑
m∈M

∑
r∈R

tmrji ) (7)

+
∑
i∈N ′0

δ(wi −
∑
j∈N ′0

∑
m∈M

∑
r∈R

tmrji ) (8)

+
∑
j∈N

hx0j (9)

subject to :
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∑
j∈N

x0j ≤ K (10)∑
i∈N

xij = 1, ∀j ∈ C (11)∑
i∈N

xij ≤ 1, ∀j ∈ F ′ (12)∑
i∈N

xji −
∑
i∈N

xij = 0, ∀j ∈ N (13)∑
j∈N

fji −
∑
j∈N

fij = qi, ∀i ∈ C (14)

(qj + µ)xij ≤ fij ≤ xij(µ+Q− qi), ∀(i, j) ∈ A (15)∑
i∈N

∑
m∈M

∑
r∈R

(tmrij + T (tmrij , v
mr, i, j)) ≤ wj, ∀j ∈ C (16)∑

j∈N

∑
m∈M

∑
r∈R

wi + pi ≤ tmrij , ∀i ∈ C (17)

li ≤ wi ≤ ui, ∀i ∈ C (18)

0 ≤ yj ≤ yi − E(tmrij , v
mr, i, j) + Y (zmrij − 1), ∀r ∈ R,m ∈M, i ∈ C, j ∈ N

(19)

0 ≤ yj ≤ Y − E(tmrij , v
mr, i, j), ∀r ∈ R,m ∈M, i ∈ F ′ , j ∈ N

(20)

y0 = Y (21)

zmrij b
m−1
ij ≤ tmrij ≤ zmrij b

m
ij , ∀(i, j) ∈ A,m ∈M, r ∈ R

(22)∑
r∈R

∑
m∈M

zmrij = xij, ∀(i, j) ∈ A (23)

zmrij ∈ {0, 1}, ∀(i, j) ∈ A,m ∈M, r ∈ R
(24)

xij ∈ {0, 1} ∀(i, j) ∈ A (25)

The goal of the TDEVRP problem is to minimize a cost function, which
consists of three parts: the energy cost, drivers’ wages, and a fixed cost. Con-
straint 10 limits the total number of vehicles used. Constraint 11 ensures that
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every customer is visited exactly once and constraint 12 indicates a station
may not be visited in any route. Constraint 13 guarantees the integrity of
routes. Constraint 14 models the commodity flow on each arc and constraint
15 ensures the capacity constraint is satisfied.

Time relations are ensured by constraints 16-18. Constraints 16 and 17
model the travel time and service time. Constraint 18 ensures the time
window constraint is satisfied. The time-dependent travel time is modeled
in T (tmrij , v

mr, i, j) introduced in Equation 4. This variable models the travel
time on an arc as a linear function of the departure time and simplify the
ILP representation of the problem.

Energy consumptions are restricted by constraints 19-20, which confine
the energy consumption driving from node i to node j, differing in whether
node i is a customer or a station. Constraint 21 requires that vehicles are
fully charged when leaving depot. The time-dependent energy consump-
tion is modeled in E(tmrij , v

mr, i, j) introduced in Equation 5. Along with
T (tmrij , v

mr, i, j), these two variables illustrate the new features of TDEVRP.
Constraints 22 and 23 define the relation between decision variables. Con-

straints 24 and 25 confine the values of the decision variables.
Using the above ILP model, the preliminary experimental results showed

that CPLEX is able to solve instances with very limited size(less than 15 cus-
tomers) given a time limit of 5 hours. It is unsurprising since the TDEVRP is
a very challenging NP-hard problem. To solve large-sized real-life problems,
we resort to a heuristic method that is presented in the next section.

3. An Variable Neighbourhood Search Algorithm for TDEVRP

3.1. Main Scheme

In this section, we propose an iterated variable neighbourhood search
(IVNS) algorithm to solve the TDEVRP, as shown in Algorithm 1. The al-
gorithm follows the iterated local search (ILS) (Lourenco et al., 2010) frame-
work and is composed of four main search components.

1. an initial solution construction procedure to generate a starting solu-
tion of the algorithm (Section 3.2). The saving heuristic proposed by
Solomon (1987) is adopted to produce a solution with a fleet of K (the
given max vehicle number) vehicles.
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2. a variable neighbourhood descent procedure (VND) (Section 3.3) which
focus on optimizing the node sequences and reducing the length of
routes by assuming a fixed free-flow speed and zero post-service de-
lay. Four dedicated neighbourhoods (induced by the move operators
Insert, Swap, Exchange, Reverse, see Section 3.3.1) is adopted within
an iterated improvement procedure. Violations for time window con-
straints and energy constraints are allowed during the VND procedure.
When no improvement can be found in any one of the neighbourhoods,
a labeling procedure proposed by Hiermann et al. (2016) is used to
reoptimize the positions of recharging stations within the routes and
the following make-feasible procedure tries to bring the solution back
to the feasible region.

3. a departure time and speed optimization procedure (Section 3.4) which
efficiently optimizes the speed and departure time on each arc based
on the concatenation operators we propose in Section 4.

4. a perturbation phase accepting non-improving moves to diversify the
search (Section 3.5) after each round of optimization.

IVNS starts with an initial solution generated by the procedure given in
Section 3.2. It then repeats a number of ‘while’ loops. At each loop, IVNS
first applies the VND procedure to optimize the node sequence and reduce
the length of routes. Then a DSOP procedure follows to optimize speed and
departure time on each arc. After the DSOP, one loop of search ends and
the best solution found so far is updated if a better feasible solution is found.
At the beginning of next loop, a perturbation procedure is adopted to help
the search to escape from local optimum and displace the search process to a
distant zone of the search space(the VND will finally reach a local optimum
when it terminates, therefore the perturbation procedure is always required).
The search continues until a max loop limit π is reached. If no better solution
is found within τ rounds, the search rolls back to the best feasible solution
found.

3.2. Initial Solution Construction

We use the saving heuristic proposed by Solomon (1987) to construct the
initial solution. It starts with a solution in which each customer is served by a
dedicated vehicle. At each step, the algorithm evaluates the concatenations of
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Algorithm 1 Iterated Variable Neighbourhood Search for the TDEVRP

Input: Initial solution s
Output: Best feasible solution found s∗f

1: s∗ ← s, i← 0, i
′ ← 0

2: while i ≤ π do
3: if i > 0 then
4: s

′ ← Perturbation(s)
5: else
6: s

′ ← s
7: end if
8: s

′ ← V ariableNeighbourhoodDescent(s
′
)

9: s
′ ← DSOP (s

′
)

10: if eva(s
′
) < eva(s∗) then

11: s∗ ← s
′

12: end if
13: if IsFeasible(s

′
) and eva(s∗f ) > eva(s

′
) then

14: s∗f ← s
′
, i
′ ← 0

15: else
16: i

′ ← i
′
+ 1

17: end if
18: if i

′
= τ then

19: s← s∗, i
′ ← 0

20: else
21: s← s

′

22: end if
23: i← i+ 1
24: end while
25: return s∗f
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all pairs of routes and performs the best concatenation to reduce the number
of vehicles. This procedure continues until no improvement can be found.
Note that infeasibility is allowed during the construction for energy and time
window constraints, and the violation is evaluated based on Equation 37.
Thus the initial solution is not necessarily feasible.

As the saving heuristic is not able to insert charging stations into the
routes, a labeling algorithm proposed in Hiermann et al. (2016) is adopted
to add charging stations into the routes constructed by the saving heuristic.
This algorithm is also used after each run of VND.

We note that Mancini (2017) proposed a Multi-Start Constructive Heuris-
tic(MSCH) specially designed for TDVRP. We tested the algorithm on a set
of representative instances. The results indicate that the MSCH algorithm
shows no difference with the Clark and Wright (CW) in the aspect of final so-
lution quality. However, the MSCH requires the IVNS to run more iterations
to reach the best solution and will induce more algorithm running time.

This is because the route number in solutions produced by CW is very
close to the final solution while MSCH produces solutions with too many
routes. Additional iterations are required to reduce the number of routes in
the solution. Therefore we conclude that CW is more suitable for TDEVRP.
In addition, the CW is a classic and well-known heuristic which is still very
popular in recent VRP literature (e.g.,Koc et al. (2014), Franceschetti et al.
(2016)). That is the reason why the CW heuristic is used in this paper.

3.3. Variable Neighbourhood Descent Procedure

The proposed IVNS algorithm includes a Variable Neighbourhood De-
scent procedure which optimizes a given solution (a constructed initial solu-
tion or a perturbed solution) to a local optimum. The pseudo-code of the
VND procedure is shown in Algorithm 2.

The VND procedure employs four neighbourhoods (that rely on four move
operators, namely Insert, Swap, Exchange and Reverse whose definitions are
introduced in Section 3.3.1) in a cyclic manner. Specifically, VND switches
to the next neighbourhood once no improvement can be found in the current
neighbourhood, and it terminates when no improvement can be found in any
of the four neighbourhoods. A subsequent labeling procedure is responsible
for the optimization of the placement of the charging stations (within the op-
timized routes). Since the VND procedure allows search in infeasible space,
a make-feasible procedure (Section 3.3.3) is required to ensure solution feasi-
bility. One prerequisite of the VND procedure is to assume a fixed free-flow
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speed and null post-service delay for this is the necessary condition to use
the efficient evaluation method(see Section 4).

Algorithm 2 Variable Neighbourhood Decent

Input: Current solution s
Output: Best solution found s∗

1: s∗ ← s
2: while true do
3: s

′ ← s∗

4: s∗ ← Decent in Insert Neighbourhood(s∗)
5: s∗ ← Decent in Swap Neighbourhood(s∗)
6: s∗ ← Decent in Exchange Neighbourhood(s∗)
7: s∗ ← Decent in Reverse Neighbourhood(s∗)
8: if s

′
= s∗ then

9: break
10: end if
11: end while
12: s∗ ← Labeling(s∗)
13: s∗ ←MakeFeasible(s∗)
14: return s∗

3.3.1. Neighbourhoods

The proposed VND procedure and labeling procedure rely on six move
operators that are commonly used for other VRP variants (Lin et al., 2014).
We recall the definitions of these move operators below with an illustration
in Figure 4 where a cycle represents a normal node and a triangle indicates
a charging station:

1. Insert (Figure 4(a)) Select a node and insert it into a proper location
of another route. This operator introduces three new arcs and requires
three concatenations to evaluate the move.

2. Swap (Figure 4(b)) Select two nodes from different routes and exchange
their positions. This operator introduces four new arcs and requires
four concatenations to evaluate the move.

3. Exchange (Figure 4(c)) Exchange two subsequences from two different
routes. Choose two proper positions in two routes and exchange the
subsequences after the positions. This operator introduces two new
arcs and requires two concatenations to evaluate the move.
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(a) Insert Remove a node from a se-
quence and insert it into another one.

(b) Swap Swap the locations of two
nodes from different routes.

(c) Exchange Exchange the subse-
quences of two routes.

(d) Reverse Reverse the order of ad-
jacent nodes from the same route.

(e) InsertRemoveStation Insert a
station into a route or remove a sta-
tion from a route.

Figure 4: The move operators used in VND. Solid lines represent the arcs added by the
move and dashed lines are the removed arcs
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4. Reverse (Figure 4(d)) Select a proper position in a route and invert the
sequence of adjacent nodes. Note that the complexity of evaluating a
Reverse move is directly related to the total number of nodes reversed.
For efficiency reason only two nodes are allowed to be inverted in this
work.

5. InsertRemoveStation (Figure 4(e)) Insert a charging station into a route
or remove a charging station from a route. This move is used in the
labeling algorithm which optimizes the charging stations in a route.

The well-known nearest-neighbor heuristic is used to accelerate the search
process by reducing the explored neighborhoods. Specifically a candidate
list is constructed for each node containing the geographically nearest ω
neighboring nodes. The value of ω should be appropriately decided since a
large ω typically requires more running time while a small ω restricts the
search in a limited region (which may reduce search diversity). Typically, a
suitable ω value is determined through computational experiments. Before
the examination of each neighbourhood, all nodes are randomly shuffled,
which usually helps to improve the performance of the VND procedure.

3.3.2. Labeling

In this work we also adopt the labeling algorithm proposed by Hiermann
et al. (2016) to optimize the location of charging stations in routes. It is
designed for electric vehicle routing problems but can be easily adapted to
TDEVRP with the concatenation operators we propose(see Section 4). Pro-
vided with a set of available charging stations, the labeling algorithm can
provide with the optimal recharging plan for a given sequence of customer
nodes. Note that the labeling algorithm do not guarantee the feasibility of
energy constraints for there are routes with no feasible recharging plans. In
this case, the VND turns to a make-feasible procedure to handle the violated
constraints.

3.3.3. Make-feasible

A make-feasible procedure is adopted in case that the VND procedure
provides an infeasible solution. It is conducted as follows. The penalty
parameters in Equation 37 are multiplied by ζ, and the VND procedure
restarts with the infeasible solution as its input. In case the resulting solution
remains infeasible, the penalty parameter is further multiplied by ζ, and
such a multiplication is allowed at most three times. If no feasible solution
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is reached after three turns, the algorithm rolls back to the best feasible
solution reached in the search.

3.4. Departure Time and Speed Optimization Procedure

The VND procedure only optimizes the route sequence. We now focus
on the departure time and speed optimization of each arc of the resulting
solution. Franceschetti et al. (2013) introduced an algorithm to optimize
the departure time and speed of a route by eliminating all the time win-
dows at customer nodes and regarding the whole sequence as a single-arc
route (SINGLE-ARC-DSOP). In case of time window violation, the algo-
rithm restarts on subsequences divided by the node with time window viola-
tion. The algorithm may have to restart for multiple times to find a feasible
solution, and there is no guarantee that a feasible solution can be found.

Based on the proposed efficient evaluation method for the concatenation
operation presented in Section 4, we propose a DSOP procedure which guar-
antees the feasibility of time window constraint and optimizes the speed and
departure time on each arc efficiently.

Algorithm 3 DSOP
Input: A route σ
Output: Departure time ti and Speed vi for each node in σ, i ∈ {1, · · · , n−1}

1: initialize intervariables with max free flow speed vf
2: if TW (σ) ≥ 0,∀t0 ∈ S(TW (σ)) then
3: the route is infeasible.
4: end if
5: for i ∈ {1, · · · , n− 1} do
6: if i = 1 then
7: l

′
i ← 0

8: else
9: l

′
i ← ti−1 +

di−1,i

vi−1

10: end if
11: pre← dummy node of ni with new time window [l

′
i, LS(ni)].

12: post← dummy node of ni+1 with new time window [li+1, LS(ni+1)].
13: ti, vi ← SINGLE-ARC-DSOP(pre, post)
14: end for

The DSOP procedure (see Algorithm 3) first initializes all the inter vari-
ables for each customer with the max free-flow speed vf . It is justified by

23



the fact that if a route violates time window constraint with a max free-flow
speed, it is also infeasible for any speed lower than vf . First, we can ensure
the feasibility of the time window constraint by the inter variable TW (σ).
Then we optimize the speed and departure time on each arc progressively. For
each arc, l

′
i is the earliest start from ni and LS(ni) is the latest start ensuring

the feasibility of the sequence after ni. Then DSOP uses two dummy nodes
with new time windows covering the propagation of time window constraint
to obtain a feasible solution, while SINGLE-ARC-DSOP is used to calculate
the optimal departure time and speed on a single-arc route (Franceschetti
et al., 2013).

3.5. Perturbation

To diversify the search, each time the IVNS algorithm is trapped in a
local optimum, it restarts its search with a new starting solution generated
by the perturbation procedure. The key idea of the perturbation procedure
is to accept non-improvement moves which may deteriorate the solution and
thus lead the search to a distant zone of the search space. For a solution s
and a perturbation move which creates a neighboring solution s

′
, the new

solution s
′

is accepted if (i) s
′

results in an evaluation variance no less than
ξ (ξ(eva(s) − eva(s

′
) ≥ ξ) where ξ is a negative value, (ii) s

′
reduces the

total cost (cost(s) − cost(s′) ≥ 0). The perturbation is applied to the local
optimum solution provided by the VND procedure.

4. An efficient Evaluation Method for Concatenation Operation

In the context of vehicle routing problems, local search move operators
usually first break the routes of the current solution into pieces and then
apply a constant number of concatenation operations to recombine the pieces
into a new solution. The evaluation of this new solution from scratch is very
time-consuming. We note that this new solution is slightly different from
the previous solution. If the new solution can be evaluated incrementally, it
would significantly accelerate the local search process. For this purpose, we
develop an efficient evaluation method for the concatenation operation.

Let σ1 and σ2 denote two sequences of nodes, each of which is associ-
ated with a number of feature values (listed in Table 3 in the context of
EVRPTW). Concatenating these two sequences results in a new sequence
σ1 ⊕ σ2 and the associated feature values of the concatenated sequence can
be calculated efficiently using those of its composing subsequences. This is
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Table 3: Features associated with a route. Storage of these feature values allows efficient
evaluation for a route of EVRPTW.
Feature Explanation
Load the total load on the route.
Dist the total distance traveled.
Dur the duration of traveling across the route.
TW the time window violation of the route.
ES the earliest start time from depot.
LS the latest start time from depot.
e a boolean value indicating whether the route contains a charging station.
EF the energy needed to reach the first charging station.
EL the energy needed from the last charging station to the end of the route.
EV the energy violation of the route.

based on the fact that a solution resulting from a bounded number of arc
exchanges on another solution can be evaluated efficiently (in O(1)) based
on proper data structures characterizing the original solution (Vidal et al.,
2015).

There are many efficient methods for evaluating concatenation operations
for other VRP variants (Vidal et al., 2013; Schneider et al., 2014). However,
in the context of TDVRP, no such evaluation method is available, which lim-
its the application of local search on these problems. The first reason is that
the travel time and energy consumption between two nodes are dependent
on the departure time and travel speed. Different departure time and speed
lead to different travel time and energy consumption, and this information
cannot be represented by a single value. Storing and calculating all these val-
ues corresponding to each departure time is computationally too expensive,
and it requires too much memory. Another reason is that the duration of σ1
varies with departure time, which in turn influences the start time of σ2. The
propagation effect of the departure time dependency makes the evaluation
rather complicated.

In this section, we introduce an efficient method that can overcome the
difficulties mentioned above, and realizes the evaluation of the concatenation
operation for TDEVRP in O(1). We first introduce in Section 4.1 the ana-
lytical results that are useful for presenting the efficient calculation method
of the feature values of the concatenated sequence based on the values of
the composing subsequences in Section 4.2. With the feature values, one
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can compute the cost of a concatenated sequence (corresponding to a route)
based on the proposed cost function. We note that different departure time
of the vehicle at the head of the route (concatenated sequence) lead to differ-
ent route costs, and we aim to identify the one leading to the minimal cost.
In Section 4.3, we present a method that achieves fast identification of such
an optimal departure time.

4.1. Analytical Results for the concatenation operation

As shown in Figure 2, the travel time of a fixed distance is dependent on
the departure time for a given free-flow speed. Additionally, we discover that
given a fixed free-flow speed and no post-service delay, the linear correlation
with departure time also applies to total duration, energy consumption, and
other feature values characterizing the routes.

Theorem 1. For a TDEVRP instance with a fixed free-flow speed and no
post-service delay, the duration, and energy consumption of a route is linearly
dependent on the departure time. The total cost is a continuous piecewise
linear function of departure time.

Proof. Consider a depot-customer-depot route visiting only one customer,
shown in Figure 5, the duration of the route consists of: (i) the travel time
on the first arc, (ii) the travel time on the second arc, (iii) service time at
customer node (iv) waiting time before service in case of early arrival.

Let ts denote the departure time from the depot. The travel time on the
first arc is linearly dependent on ts. The waiting time at the customer node
and departure time from the customer node, which is linearly related to the
travel time, are also linearly dependent on ts. Since the travel time of the
second arc is linearly dependent on the departure time from the customer
node, it is linearly dependent on ts as well. The linear correlation with ts
is propagated because the travel time on each arc is linearly dependent on
the start of the arc. Further, the duration of the route, which is the sum of
several components linearly dependent on ts, is a continuous piecewise linear
function of ts. Similarly, one can easily prove that the energy consumption
and other feature values in Table 3 are also a continuous linear piecewise
function of ts.

According to Franceschetti et al. (2013) and Bektas & Laporte (2011),
the optimal speed of arcs in free-flow period falls in interval [ve, vf ]. Fixing
the free-flow speed to a low value (e.g., ve) may restrict the search space
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Depot

arc1

arc2

Customer

Figure 5: A simple example with one customer.

in a small region, therefore, excludes high-quality solutions, while fixing the
value to a high speed (e.g., vf ) results in high cost for each arc and therefore
increases the total cost. Therefore the free-flow speed should be selected
properly according to the problems at hand (essentially affected by the cost
function curve in Figure 3).

4.2. An efficient feature value calculation method for the Concatenation Op-
eration

For a concatenation operation σ1 ⊕ σ2, we use footnotes to represent the
associated route of a feature value. Featues with footnote 1 are the features
of σ1. Footnote 2 and 12 denotes the feature values of σ2 and σ1 ⊕ σ2. In
the proposed method we extend the feature values used in EVRPTW in the
context of departure time For example, Dur1(ts) denotes the duration of
sequence σ1 which starts at ts and Dur12(ts) denotes the duration of σ1⊕ σ2
which starts at ts. For simplicity the definition of these features are referred
to the original work(Vidal et al., 2015). The value ts indicates the departure
time from the start of σ1(starting depot) and t

′
s indicates the departure time

from the start of σ2(customer node or charging station). Note that a list
instead of a number is needed to store the information of some features as
the feature values vary with the start time of the sequence. Those features
irrelevant to departure time such as distance and earliest start are denoted
as Dist12 and ES12.

In addition to the features in Table 3, new features are required to model
the propagation of linear correlation with departure time. For a concatena-
tion σ1 to σ2, let FT (ts) denote the finish time of the first sequence σ1 with
departure time ts. LetRT (ts) denote the reach time at σ2 when σ1 starts at ts.
By definition FT (ts) = ts + Dur1(ts), RT (ts) = FT (ts) + T (FT (ts), v

′
, i, j),

where node i is the end of σ1, j is the start of σ2 and v
′

is the chosen
free-flow speed. Also for simplicity we denote the travel time on arc (i, j)
T (FT (ts), v

′
, i, j) as Tij(ts) and the energy consumption E(FT (ts), v

′
, i, j) as

Eij(ts).
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Table 4: Features associated with a route. Storage of these feature values allows efficient
evaluation for a route of TDEVRP.
Feature Explanation
Load1, Load2, Load12 the total load for route σ1, σ2 and σ1⊕σ2.
Dist1, Dist2, Dist12 the distance traveled.
ts, t

′
s departure time from the starting of σ1, σ2

dij distance between σ1 and σ2
Dur1(ts), Dur2(t

′
s), Dur12(ts) the duration of traveling across the route

if departure from starting depot at ts.
TW1(ts), TW2(t

′
s), TW12(ts) the time window violation.

FT (ts) the finish time of the first sequence σ1.
RT (ts) the arrival time at σ2.
Tij(ts), Eij(ts) the time and energy consumed from the

last node of σ1 to the start of σ2.
ES1, ES2, ES12 the earliest start time from depot.
LS1, LS2, LS12 the latest start time from depot.
e1, e2, e12 a boolean value indicating whether the

route contains a charging station.
EF1(ts), EF2(t

′
s), EF12(ts) the energy needed to reach the first charg-

ing station.
EN1(ts), EN2(t

′
s), EN12(ts) the energy consumed by traversing the

route.
EL1(ts), EL2(t

′
s), EL12(ts) the energy needed from the last charging

station to the end of the route.
EV1(ts), EV2(t

′
s), EV12(ts) the energy violation of the route.

For clarity purposes, we list all feature values of TDEVRP in Table 4.

4.2.1. Feature value calculation

With these definitions, we present the concatenation of σ1 ⊕ σ2 and the
features characterizing the routes as follows:

Load and distance. The load and distance are calculated as follows:

Load12 = Load1 + Load2 (26)

Dist12 = Dist1 + dij +Dist2 (27)

where node i is the end node of σ1 and node j is the start node of σ2. The
load of σ1 ⊕ σ2 is simply the sum of load of σ1 and σ2. Also, the distance of
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σ1⊕σ2 is the total distance of the two composing sequences plus the distance
from the end node of σ1 to the start node of σ2. The σ1 and σ2 are two partial
routes and may not include the starting or ending depot. Therefore Dist1 do
not include the distance to the ending depot and Dist2 do not include the
distance from the starting depot.

Time features. Let RT−1() denote the inverse function of RT ()(e.g., the
RT−1(ES2) equals to the departure time from depot which makes the arrival
time at σ2 equal to ES2). We first calculate ES12 and LS12 to determine the
time interval in which the optimal departure time falls:

ES12 =


ES1, ES2 ≤ RT (ES1)
LS1, RT (LS1) ≤ ES2

RT−1(ES2), else
(28)

LS12 =


ES1, LS2 ≤ RT (ES1)
LS1, RT (LS1) ≤ LS2

RT−1(LS2), else
(29)

ES12 and LS12 are calculated based on the first-in-first-out property. By
definition of ES(σ) and LS(σ) (Vidal et al., 2013), [ES12, LS12] is reduced
from [ES1, LS1]. The interval [ES1, LS1] is reduced if extra waiting time or
time window violation in σ2 is induced when σ1 is placed before σ2.

If the earliest reach time does not lead to extra waiting time (ES2 ≤
RT (ES1)), ES12 equals ES1 and the interval is not changed. If the latest
reach time leads to extra waiting at σ2 (RT (LS1) ≤ ES2), ES12 equals LS1

and the interval is reduced to a number. If starting at the earliest time leads
to extra waiting time while starting at the latest time does not, ES12 is the
earliest departure time at which exactly no extra waiting time is induced. Let
RT−1 be the inverse function ofRT , and in this case ES12 is thenRT−1(ES2).
LS12 can be calculated in a similar way. If choosing any departure time
within [ES1, LS1] does not lead to extra violation (RT (LS1) ≤ LS2), LS12

equals LS1. If the earliest start results in violation at σ2 (LS2 ≤ RT (ES1)),
the interval is reduced to a number and LS12 equals ES1. For intermediate
situations LS12 equals to RT−1(LS2).

For each ts ∈ [ES12, LS12], the duration Dur12(ts) and time window vio-
lation TW12(ts) are calculated as:

Dur12(ts) = Dur1(ts) +Dur2(t
′

s) + Tij(ts) + ∆WT (30)

TW12(ts) = TW1(ts) + TW2(t
′

s) + ∆TW (31)
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where t
′
s = RT (ts)+∆WT−∆TW , ∆WT = max(ES2−RT (ts)+TW1(ts), 0)

and ∆TW = max(RT (ts)−TW1(ts)−LS2, 0). t
′
s represents the actual start

at σ2 after concatenation. As in the original definition, ∆WT and ∆TW are
the increments of the waiting time and time window violations. Note that
when calculating t

′
s a ∆TW is subtracted to repair the time window violation

(Nagata et al., 2010).
State of charge. Similar to Schneider et al. (2014), we use the following

features to characterize a route: (i) e12, a boolean value indicating whether
route σ1 ⊕ σ2 contains a charging station or not, (ii) EF12(ts), a list storing
the amount of energy required to travel from start of the route to the first
charging station, (iii) EL12(ts), a list storing the energy required to travel
from the last station to the end of the route, (iv) EV12(ts) indicating the
energy violation of route σ1 ⊕ σ2 with start at ts. Note that when a route
contains no charging station, the corresponding EF12(ts) and EL12(ts) are
the total energy needed to traverse the whole route. An additional feature
EN12(ts) is also used to indicate the total energy consumed.

e12 = e1
∨

e2 (32)

EN12(ts) = EN1(ts)+∆EN1+Eij(ts)+EN2(t
′

s) (33)

EF12(ts) =

{
EF1(ts)+∆EF1, ife1
EF1(ts)+∆EF1+Eij(ts)+EF2(t

′
s)−∆EV, else

(34)

EL12(ts) =

{
EL2(t

′
s), ife2

EL1(ts)+∆EL1+Eij(ts)+EL2(t
′
s)−∆EV, else

(35)

EV12(ts) = EV1(ts)+∆EV1+EV2(t
′

s) + ∆EV (36)

where t
′
s = RT (ts)+∆WT+∆TW , ∆EV = max(EL1(ts)+∆EL1+Eij(ts)+

EF2(t
′
s)−Y, 0). ∆EN1,∆EF1,∆EL1,∆EV1 denote the change in the future

values of σ1 in weight module due to the concatenation of σ2.
For a concatenation σ1 ⊕ σ2, the calculation of feature values character-

izing the new route follows three steps: (i) calculate FT (ts) and RT (ts), (ii)
calculate feature values irrelevant to ts: Load12, Dist12, ES12 and LS12, (iii)
calculate the rest of feature values for each ts ∈ [ES12, LS12].

4.2.2. Index set calculation

We define the critical point set of a linear piecewise function where the
gradient changes (e.g. 0, T1 − d

vc
, T1, T2 − d

vf
, T2, u0 in Figure 2) as the index
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set of the function. Recall that the features associated with a route are either
irrelevant to or (piecewise) linearly dependent on ts. Therefore to calculate
the feature values corresponding to each departure time, it is unnecessary to
calculate every time instant in [ES12, LS12]. Instead, it suffices to examine
the critical points of the index set.

The calculation of the index set for each feature is done in a summation
manner (see Equations 30-36). The index set of features on the left hand
side is the union of the index sets on the right hand side. For example,
let S(var) denote the critical point set of a feature var, then for Dur12(ts)
we have S(Dur12(ts)) = S(Dur1(ts)) ∪ S(Dur2(t

′
s)) ∪ S(T12(ts)) ∪ S(∆WT ),

in which S(Dur2(t
′
s)) and S(∆WT ) should be calculated accordingly. Note

that those feature values in S(Dur12(ts)) exceeding the interval [ES12, LS12]
are removed.

4.2.3. Complexity

By definition the size of the index set for each feature is determined by
the time structure of a route, namely, the number of critical points for each
feature of a route σ is O(size(σ)). So the complexity for calculating feature
values with respect to each ts is O(1).

As a result, to calculate and store the feature values characterizing a route
σ, the complexity is O(size(σ)). Therefore, updating the feature values after
a move can be performed in O(size(σ)2), given that the feature values are
stored on every node to characterize the subsequences.

4.3. An efficient method for fast identification of the optimal departure time

The algorithm proposed in this work allows infeasibility of a candidate
solution. For a concatenation operation σ1 ⊕ σ2 the evaluation function for
start time ts is:

eva(σ1 ⊕ σ2) = λEN12(ts) + δDur12(ts) + h+ρeEV12(ts)

+ρcmax(Load12 −Q, 0)+ρtTW12(ts) (37)

The first three terms of Equation 37 are the costs of the trip and the
last three terms are penalty values for constraint violations where ρc, ρe, ρt
are penalty weights for the constraint violations of vehicle capacity, load and
time window.

Different departure times result in different costs for a route, and the
one leading to the minimal cost is selected. According to Theorem 1, the
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cost function is a continuous linear piecewise function of the departure time.
The optimal departure time t∗s belongs necessarily to its critical point set.
Therefore, to evaluate a route, we just need to calculate the feature values
for each t∗s in the index set. Usually, this operation requires O(size(σ)) time.
However, as we show below, we can identify a more efficient way to calculate
the minimal cost.

Theorem 2. Given a fixed free-flow speed and no post-service delay, the
optimal departure time is the one minimizing the duration of the route.

Proof. Theorem 2 exploits the fact that the optimal trip is the one with
the shortest duration.Indeed, given that the cost of a route being composed
of driver cost, energy cost, and a fixed acquisition cost of the vehicle, the
route with the shortest duration minimizes driver’s cost. Recall that the
earliest and the latest departure time of a route(see Section 4.2.1) will re-
sult in exactly the same waiting duration(Schneider et al., 2014). Then the
time consumed at customer nodes and charging stations is fixed for a route.
Therefore, minimal route duration indicates the minimal travel time. As
the free-flow speed is fixed, this also indicates that more distance is trav-
eled within a free-flow period and therefore minimal energy cost. Then we
can conclude that the route with the shortest duration is the route with the
minimal energy cost and therefore the minimal total cost.

Lemma 1. For a route σ in Theorem 2 with a departure time interval
[ESσ, LSσ], the optimal departure time t∗s is given by:

t∗s =


ESσ, ESσ>T1
LSσ, LSσ<T1, FTσ(LSσ)≤T2
T1, ESσ<T1<LSσ, FTσ(T1)≤T2
arg mints Durσ(ts), else

(38)

Proof. When ESσ > T1, the travel starts in a free-flow period and may be
followed by a congestion period. Based on the principle that the vehicle
should travel as much distance as possible in free-flow period, starting at
ESσ results in the longest travel distance in free-flow speed and therefore the
shortest duration of the route. Choosing a departure time later than ESσ
may postpone more trip into congestion period and t∗s = ESσ. Similarly,
we can obtain the optimal departure time for a route if condition LSσ <
T1, FTσ(LSσ)≤ T2 or ESσ < T1 < LSσ, FTσ(T1)≤ T2 is satisfied. For other
occasions there is no explicit conclusion and we need to calculate Durσ to
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determine the optimal departure time. However we can use an approximation
of t∗s to calculate the optimal departure time in O(1).

Lemma 2. For a route σ in Lemma 1, we can use t
′∗
s to approximate the

optimal value of the departure time. Denote the driving distance at free-flow
period as distf , the distance at congestion period as distc, the energy cost of
the weight module as Cw. Then the worst case deviation of the cost evaluation

from the optimal value is
distc(cc−cf )

(distc+distf )cf+Costw
:

t∗s =


ESσ, ESσ>T1
LSσ, LSσ<T1
T1, ESσ<T1<LSσ

(39)

where cc and cf are the driving costs per unit distance with speed levels vc
and vf including the energy cost of the engine module, the energy cost of the
speed module and the driver cost (Equation 3).

Proof. Denote the total waiting and serving time of the route as Ts and
the energy cost of the weight module as Costw. Then the cost of the route
departure at t

′∗
s is Cost(σ, t

′∗
s ) = δTs + cfdistf + ccdistc +Costw. By Lemma

1 we know that if distc = 0, Cost(σ, t
′∗
s ) = Cost(σ, t∗s). In the worst case,

departure at t∗s allows to travel an extra free-flow distance of distc. Figure 6
shows an example of such a case.

In the worst case, we can calculate the cost with the optimal departure
time Cost(σ, t∗s) = δTs + cf (distf + distc) + Costw. Then we can calcu-

late the worst case deviation from the optimal cost: Cost(σ,t
′∗
s )−Cost(σ,t∗s)

Cost(σ,t∗s)
=

distc(cc−cf )
δTs+cf (distf+distc)+Costw

<
distc(cc−cf )

(distc+distf )cf+Costw
. This is estimated to be a very

small value. In the problem setting introduced in Section 2, assume a to-
tal waiting time of 1 hour and zero commodity transferred, the worst case
deviation is only 5.8%.

Note that the result given by Equations 38 and 39 is not the only optimal
value, and there are other possible optimal departure times.

With Lemma 2 the evaluation of a concatenation σ1 ⊕ σ2 follows three
steps: (i) calculate RT (ts), ES12 and LS12. (ii) calculate the approximate
optimal departure time t

′∗
s according to Equation 39. (iii) calculate variables

characterizing the route with departure time t
′∗
s and evaluate the route based

on these variables. The complexity of the concatenation evaluation is there-
fore O(1). Note that the concatenation operations works under the condition
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Ts distf distc

departure at ts
'*

departure at ts
*

waiting or serving period

driving period

0 T1 T2 u0

Figure 6: A simple example of worst case evaluation with only one customer. In this case
departure at t∗s will drive the most extra distance (distc) within free-flow period compared
with the case departure from t

′∗
s = T1. The distance from the depot and the node after

the depot equals or close to 0.

that the free-flow speed is fixed and there is no post-service delay. This is
why our VND procedure also works under the same condition.

5. Computational Results

To evaluate the efficiency of the proposed IVNS algorithm, we carry out
extensive experiments on a set of TDEVRP benchmark instances we cre-
ated. We compare the results of IVNS with those produced by CPLEX on
small-sized instances. We also report the computational results on large-
sized instances. To compare the performance of the IVNS algorithm with
state-of-the-art algorithms, we run IVNS on a set of popular benchmark in-
stances of the related Time-dependent Pollution Routing Problem (TDPRP)
and report the comparative results.

If not stated otherwise, the presented results are the average of 20 inde-
pendent runs. The instances and results are available online1.

The IVNS algorithm was coded in C++ and run on a Linux cluster system
with an AMD Opteron 4184 processor (2.8 GHz and 2 GB RAM) running
Ubuntu 12.04. For the general CPLEX solver, we used the latest version
12.6.

5.1. Parameter settings

The proposed IVNS algorithm relies on a set of correlated parameters. To
achieve a reasonable tuning of the parameters, we adopt the iterated F-race

1https://www.researchgate.net/project/TDEVRP
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Table 5: Parameters for the IVNS algorithm.

Description Test Range Value
vs fix free-flow speed used for local search [54, 120] 90
ω size of neighbourhood for each node [10, 20] 15
ζ violation parameter increment multiplier [5, 50] 10
ξ threshold value to accept a bad move [−5,−15] −10
π max iteration number [10, 30] 15
τ loop to roll back without improvement [1, 5] 3
ρt violation weight for time violation [0.0005, 0.0015] 0.001
ρc violation weight for loading violation [0.05, 0.15] 0.1
ρe violation weight for energy violation [0.001, 0.01] 0.005

(IFR) method which allows an automated parameter configuration (Birattari
et al., 2010). Table 5 presents the final values for each parameter, together
with the range of values determined by preliminary experiments. We use the
100-node instances as training set and tuning budget is 1000 runs of IVNS.

We conclude the influence of the parameters as follows. The solution
quality increases as the values of ω ad π rise and remains steady after a
particular point. These particular points for π) and ω need to be identified
in order to guarantee the good performance of IVNS. The speed value (vs)
has a significant impact on the final output. As we have analysed in Section
2.2, the speed parameter should be set a value neither too high nor too low.
The tuning results show that the total cost is 50% lower when choosing the
best value (90km/h) than choosing another worse value (120/54km/h). For
the rest of the parameters(ξ, ζ, τ, ρt, ρc, ρe), the algorithm performance is not
sensitive to their settings.

5.2. TDEVRP Benchmark Instances

The benchmark instances of the TDEVRP problem proposed in this pa-
per were modified from the benchmark instances introduced by Goeke &
Schneider (2015) for the related EVRPTW problem. The benchmark set
is composed of nine sets of a number of nodes varying from 10 to 200, 20
instances for each size (180 instances in total). The instances contain: (i) dis-
tances between each pair of nodes which is based on the actual geographical
distance of randomly selected cities from the United Kingdom, (ii) demand,
service duration and time window at each customer node. (iii) max number
of vehicles. We raise the number of the available vehicles for all instances
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Table 6: Parameters to character the TDEVRP benchmark instances.
Notation Description Unit Value
T1 end of morning peak s 3600
T2 start of evening peak s 28800
u0 length of planning horizon s 32400
vf max free-flow speed km/h 90
vc max congestion speed km/h 10
Y vehicle battery capacity kwh 200
Q vehicle loading capacity kg 3650

to make them feasible in the time-dependent setting. We note that for the
instance TDEVRP 20 17, no feasible solution exists, so we fix the instance
data to allow feasible solutions by slightly altering the distance matrix. Table
6 presents the parameters in the time-dependent model.

5.3. Results on the TDEVRP instances

This section presents the results of the proposed IVNS algorithm on the
set of 180 TDEVRP instances we introduce in Section 5.2.

First, we solve the ILP model introduced in Section 2.3 by CPLEX on
small instances and compare the results with those of the IVNS algorithm.
Franceschetti et al. (2013) indicated that it is never optimal to drive under
ve in a free-flow period. So we discretize the free-flow speed into 15 levels
from ve to vf when using CPLEX. Experimental results show that within a
time limit of 5 hours CPLEX can only solve instances with 10 and 15 nodes.
The results are shown in Table 7.

As shown in Table 7, the proposed IVNS algorithm can achieve near-
optimal results for all small TDEVRP instances with small deviations (less
than 3%), and for 20 out of 40 instances IVNS algorithm achieves the optimal
solution. In 11 cases, the deviation is a small negative value, implying that
IVNS algorithm achieves better results on these instances than CPLEX. This
is because when solving by CPLEX, the discretized speed levels may make it
impossible to reach the theoretical optimal speed for some arcs, while IVNS
algorithm allows continuous speed values.

The average running times of the IVNS algorithm on 10-node and 15-
node instances are 9.13s and 20.31s respectively, while the average running
times of CPLEX are correspondingly 2.3h and 4.2h (the running times of
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those instances that cannot be solved to optimality within 5 hours is set to
5 hours).

Table 8 to 10 present the results of the IVNS algorithm on all TDEVRP
instances. And Table 12 lists the average running times across all problem
sizes.

The proposed IVNS is robust as there is a low gap between the best and
average results. While for many small instances, the IVNS algorithm can
find near-optimal solutions, its performance on these instances is relatively
unstable across different runs with a gap up to 15.13%. However, the algo-
rithm is more robust on larger instances with a maximum gap of 2.38% than
on small instances.

5.4. Sensitivity Analysis on the influence of congestion

In this section, we present additional experimental results to show how
congestion affects the solution of TDEVRP. For this purpose, we extend the
traffic peak period from one hour to three hours. In this case, a day is
composed of a 3-hour morning peak period, a 3-hour free-flow period and a
3-hour evening peak period. Detailed results are reported in Table 11.

From Table 11 we can see that compared to the 1-hour case, the 3-hour
congestion requires more cost to complete the task with an average increase
of 11.09%(maximum 23.58%). The increase of energy cost is larger than
the increase of total cost in percentage for each instance(averagely 15.87%).
We can conclude that the energy consumption contributes more than other
costs(e.g., driver, fixed cost). This conclusion is expected because Figure 3
shows that a low travel speed results in an increase in both energy cost and
total cost.

From Table 11 we can also see that multiple times of recharging are re-
quired when congestion becomes longer. For 11(out of 20) instances multiple-
recharging for at least one vehicle is required. In the worst case (see Instance
15) 4 vehicles need to recharge for more than one time during a day. While
in the 1-hour congestion setting, there is no need of multiple-recharging.

We can therefore conclude that a long congestion may lower the trans-
portation efficiency (at large extent) in the context of electric vehicle be-
cause multiple-recharging inevitably induces extra travel distance and re-
quires more traval time. In this regard, electric vehicles suffers more from
a long congestion than traditional vehicles. It is more crucial for electric
vehicles to avoid congestion, or they should be equipped with replaceable
batteries to avoid multiple recharging along the road.
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5.5. Analysis on the effectiveness of the concatenation operators

To validate the effectiveness of the proposed evaluation method, we pro-
vide a set of comparison results where the fast evaluation method is not
adopted. In this case, for each move of the VND procedure, the new route
has to be evaluated by calculating the costs and constraint violations arc by
arc from the beginning to the end of the route(the complexity is O(n)). As
the comparison experiment gets exactly the same result with Section 5.3, we
only presents the running time for both sets in Table 12.

The running time of the proposed IVNS can be up to 4500 seconds for
some 200-node instances. Such a computational overhead is quite acceptable
given the very high complexity of the TDEVRP problem. While for the
comparison set the running time is much longer for all problem sizes. For
200-node instances the running time withour the fast evaluation method can
be 66,963 seconds(more than 18 hours). This result proves the fact that
proposed fast evaluation method greatly enhaces the calculation efficiency
of local search moves and therefore the local search method can serve as an
alternative solution method for time-dependent vehicle routing problems.

5.6. Results on TDPRP instances

To further validate the effectiveness of the proposed IVNS algorithm, we
conducted experiments on the closely related TDPRP instances. We com-
pare the IVNS algorithm with the state-of-the-art ALNS algorithm proposed
by Franceschetti et al. (2016), which holds the best-known results in the
literature for the tested instances.

The problem instances proposed by Franceschetti et al. (2016) were cre-
ated based on the PRPLIB in which the same graphs as the TDEVRP in-
stances are used. The planning horizon consists of an initial congestion period
and a free-flow period (a two-level speed function). The length of the con-
gestion period is calculated based on the time windows of customer nodes to
make sure there are feasible solutions to the instances. Moreover, drivers are
paid from the beginning of the planning horizon instead of their departure
time. In this case we simply replace the electric energy cost with fossil fuel
cost and no other adaptations of IVNS is required.

The IVNS algorithm achieves almost the same results as ALNS on the
small instances with no more than 25 nodes, therefore we focus on the larger
instances with 100 and 200 nodes. The comparative results between INVS
and ALNS are reported in Tables 13 and 14.
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From the results, we can see that the proposed IVNS outperforms ALNS
and achieves better average values on all 100-node and 200-node problem
instances of TDPRP. For 39 out of 40 instances IVNS find new best results.
Moreover, IVNS is more robust as the gap is lower than ALNS. Results of
Wilcoxon sighed-rank test validates the advantages of IVNS with a very small
two-sided p value.

Note that Theorem 2 does not apply when the drivers are paid from the
beginning of the planning horizon, and this enhances the complexity of a
local search move evaluation to O(n), which causes a significant increase on
algorithm running time.

6. Conclusion

In this paper, a new problem called the Time-dependent Electric Vehicle
Routing Problem (TDEVRP) is introduced. TDEVRP considers the routing
of electric vehicles under congestion. Time window, vehicle capacity, and bat-
tery charging constraints are also considered. This problem is close to reality,
but it is NP-hard and very difficult from the computational perspective.

We propose an ILP model to formulate the problem. Based on this model,
experimental results show that CPLEX is only able to solve problems of
very limited size (with less than 15 nodes). To solve large-sized problems,
we develop an variable neighbourhood search (IVNS) algorithm. IVNS fol-
lows the well-known iterated local search framework and is composed of a
variable neighbourhood descent procedure (VND) and a perturbation proce-
dure. The VND examines four neighbourhoods in a cyclic manner until no
improvement can be found in any of the neighbourhoods. The efficiency of
the IVNS algorithm is largely determined by the evaluation of an elementary
concatenation operation which is frequently invoked in local search moves.
For this reason, we proposed an efficient method to evaluate the concatena-
tion operation with time complexity of O(1). We note that this method can
apply to other time-dependent problems even if the linear relationship does
not apply(e.g., agile satellite scheduling (Chu et al., 2017), time-dependent
orientation problem(Gavalas et al., 2015)).

To evaluate the performance of the proposed IVNS algorithm, we created
a set of TDEVRP instances that were extended from the benchmark instances
of EVRPTW. Experimental results show that the IVNS demonstrates excel-
lent performance. For small instances, the proposed IVNS can find optimal
or near-optimal results very fast (within seconds). For large size instances,
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the gap between the average and best solution value is tiny (no more than
2.38%) for most instances. Furthermore, we compare the proposed IVNS
with the state-of-the-art ALNS, which produces the best result in literature.
We test these two algorithms on time-dependent pollution routing problem
instances, and the comparative results show that the IVNS algorithm eas-
ily dominates ALNS. In particular, the IVNS discovers 39 new best-known
solutions out of 40 benchmark instances available in the literature.

We conducted an additional experiment to show that a long congestion
may lower the transportation efficiency (at large extent) in the context of
electric vehicle due to multiple-charging. Based on this result, we would
suggest the decision makers to avoid congestion routes when they plan routes
for their vehicle drivers and to use vehicles with replaceable batteries to
avoid multiple recharging.For future work, we would like to consider partial
charging and replacable battery in the TDEVRP. It is because, in reality,
drivers may prefer a partial charging in certain situations(Keskin & Catay,
2016). And a replacable battery will certainly solve the case of multiple
recharging.
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