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This paper presents an effective perturbation-based thresholding search for two popular and challenging

packing problems with minimal containers: packing N identical circles in a square and packing N identi-

cal spheres in a cube. Following the penalty function approach, we handle these constrained optimization

problems by solving a series of unconstrained optimization subproblems with fixed containers. The proposed

algorithm relies on a two-phase search strategy that combines a thresholding search method reinforced by

two general-purpose perturbation operators and a container adjustment method. The performance of the

algorithm is assessed relative to a large number of benchmark instances widely-studied in the literature.

Computational results show a high performance of the algorithm on both problems compared to the state-

of-the-art results. For circle packing, the algorithm improves 156 best-known results (new upper bounds)

in the range of 2 ≤N ≤ 400 and matches 242 other best-known results. For sphere packing, the algorithm

improves 66 best-known results in the range of 2 ≤N ≤ 200, while matching the best-known results for 124

other instances. Experimental analyses are conducted to shed light on the main search ingredients of the

proposed algorithm consisting of the two-phase search strategy, the mixed perturbation and the parameters.

Key words : Circle and sphere packing, global optimization, constrained optimization, nonlinear non-convex

optimization, heuristics.
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1. Introduction

Packing N non-overlapping objects (e.g., circles, spheres) in a regular convex container

(e.g., square, cube in Euclidean space Rd, d≥ 2) such that the packing density is maximized

covers a class of widely studied geometrical optimization problems (Addis et al. (2008),

Weaire and Aste (2008)). For the two-dimensional case with d = 2, the corresponding

problems are called circle packing problems, among which the problem of Packing Equal

Circles in a Square (PECS) is the most representative (Addis et al. (2008), Schaer (1965)).

For the three-dimensional case with d= 3, the corresponding problems are called sphere

packing with the problem of Packing Equal Spheres in a Cube (PESC) (Schaer (1966))

being the most studied.

Given N unit circles {c1, c2, . . . , cN}, PECS consists of packing these N circles into a

square container without overlap, such that the size of the square container is minimized.

Formally, PECS can be expressed as a nonlinear programming problem as follows:

Minimize L (1)

Subject to
√

(xi−xj)2 + (yi− yj)2 ≥ 2,1≤ i 6= j ≤N (2)

|xi|+ 1.0≤ 1

2
L, i= 1,2, . . . ,N (3)

|yi|+ 1.0≤ 1

2
L, i= 1,2, . . . ,N (4)

where L is the size of the square container (i.e., the length of sides) with a center at the

origin of the two-dimensional Cartesian coordinate system and (xi, yi) and (xj, yj) denote

respectively the centers of unit circles ci and cj. The constraints (2) are called the non-

overlapping constraints and guarantee that no overlap occurs between any two unit circles,

and the constraints (3) and (4) are called the containment constraints and ensure that all

N unit circles are completely contained in the square container. The formulation can be

easily extended to PESC in R3 space as follows:

Minimize L (5)

Subject to
√

(xi−xj)2 + (yi− yj)2 + (zi− zj)2 ≥ 2,1≤ i 6= j ≤N (6)

|xi|+ 1.0≤ 1

2
L, i= 1,2, . . . ,N (7)



Lai, Hao, Xiao and Glover: Packing Equal Circles and Spheres in a Container
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2022-01-OA-004, accepted 31 January 2023 3

|yi|+ 1.0≤ 1

2
L, i= 1,2, . . . ,N (8)

|zi|+ 1.0≤ 1

2
L, i= 1,2, . . . ,N (9)

where (xi, yi, zi) and (xj, yj, zj) denote respectively the centers of unit spheres si and sj,

and L is the size of cube container. The constraints (6) ensure that any two unit spheres

do not overlap, and the constraints (7)–(9) ensure that all N unit spheres are contained

in the cube container.

PECS is the most widely studied circle packing problem and is also known as the point

arrangement problem in a square (Akiyama et al. (2002), Casado et al. (1998), Costa

(2013), Goldberg (1970)) and as the continuous N -dispersion problem in a square (Dai

et al. (2021), Dimnaku et al. (2005), Drezner and Erkut (1995)). PECS can also be viewed

as a special case of Latin hypercube design (LHD) with Euclidean distance in a square

(Van Dam et al. (2007)). In addition, an equivalent formulation of PECS is that of packing

N congruent circles into a unit square such that the common radius r of circles is maximized

(Addis et al. (2008)).

Both PECS and PESC are general and natural models that can formulate a number

of applications, including circular cutting, container loading, facility layout, and so on

(Castillo et al. (2008)). Thus, developing high-performance algorithms for PECS and PESC

can be useful for solving these real-world applications. It has been established that PECS

and PESC are NP-hard (Demaine et al. (2010)), making it unlikely to solve these problems

exactly. As a result, it is of value to develop effective heuristic algorithms able to find

high-quality solutions for challenging problem instances.

This work is dedicated to the design and implementation of a high-performance heuris-

tic algorithm for both PECS and PESC, with the following contributions. First, a

perturbation-based thresholding search (PBTS) algorithm is proposed to solve the con-

strained PECS and PESC problems by solving a series of unconstrained subproblems with

a penalty function approach. For each unconstrained subproblem with a fixed container size

L, PBTS employs a thresholding search procedure and a container adjustment procedure

to explore various candidate configurations. The thresholding search integrates two types

of perturbations and an effective local optimization method. Second, we provide extensive

computational results on popular benchmark instances of PECS and PESC and report 156

new best-known results for PECS in the range of 2 ≤ N ≤ 400 and 66 new best-known
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results for PESC in the range of 2≤N ≤ 200. Third, we investigate the main components

of the proposed algorithm to shed light on their roles.

The rest of paper is organized as follows. In Section 2, we review the related studies

in the literature. In Section 3, we give an unconstrained optimization formulation for the

PECS and PESC problems with a container of fixed size. Section 4 describes the proposed

algorithm in detail. The algorithm’s performance is assessed by extensive computational

experiments in Section 5 and several essential components of the algorithm are analyzed

and discussed in Section 6. The concluding section summarizes our findings and provides

research perspectives for future research.

2. Literature Review

Since the pioneering study of Schaer (1965), PECS and PESC have become the subject of

widespread research, leading to a large number of theoretical and computational results.

For a comprehensive review of the PECS studies prior to 2006, the reader is referred to

the book of Szabó et al. (2007). Below we briefly review the most representative studies of

PECS and PESC, including both exact methods and heuristic methods.

2.1. Exact methods

Table 1 Exact approaches for PECS and PESC.

Year Approach Authors N Problem
1965 mathematical method Schaer (1965) N ≤ 9 PECS
1966 mathematical method Schaer (1966) N ≤ 9 PESC
1970 mathematical method Schwartz (1970) N = 6 PESC
1983 mathematical method Wengerodt (1983) N = 16 PESC
1987 mathematical method Wengerodt (1987) N = 14 PESC
1987 mathematical method Wengerodt and Kirchner (1987) N = 36 PESC
1999 mathematical method Hujter (1999) N = 10 PECS
1999 computer-aided approach Nurmela et al. (1999) N ≤ 27 PECS
2002 computer-aided approach Locatelli and Raber (2002) {10− 35,38,39} PECS
2005 computer-aided approach Markót and Csendes (2005) N ≤ 30 PECS
2009 mathematical method Joós (2009) N = 14 PESC
2013 computer-aided approach Costa et al. (2013) N ≤ 50 PECS
2013 computer-aided approach Costa (2013) N ≤ 40 PECS
2021 computer-aided approach Markót (2021) N ≤ 33 PECS

Table 1 summarizes the main studies related to exact methods, which focus on obtaining

a proven optimal solution. These studies adopt two approaches. The first approach aims

to prove global optimality of a solution by means of a mathematical method, as in the

work of Schaer (1965, 1966), Schwartz (1970), Wengerodt (1983, 1987), Wengerodt and

Kirchner (1987), Hujter (1999), Joós (2009). For example, Schaer (1965, 1966) provided a
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proof of optimality for solutions to some small PECS and PESC instances with N ≤ 9. In

2009, Joós (2009) provided an optimality proof for the PESC solution with N = 14.

The second approach aims to determine the optimal solution by a computer-aided

method. For example, Nurmela et al. (1999) determined the optimal solutions of PESC for

N ≤ 27 using a specific method to enumerate the possible combinations. In 2002, Locatelli

and Raber (2002) found the optimal PECS solutions within a precision of 10−5 for N ≤ 35,

38 and 39 by a branch-and-bound algorithm with several efficient pruning strategies. In

2005, Markót and Csendes (2005) determined the optimal PECS solutions for the instances

with up to N = 30 circles by a branch-and-bound algorithm based on interval analysis,

and Markót (2021) recently improved the algorithm and extended the results to N = 33.

Costa et al. (2013) proposed an improved branch-and-bound algorithm by considering the

impact of symmetry-breaking constraints.

2.2. Heuristic methods

Table 2 Heuristic approaches for PECS and PESC.

Year Approach Authors N Problem
1971 constructive method Goldberg (1971) N ≤ 27 PESC
1995 multi-start method Maranas et al. (1995) N ≤ 30 PECS
1996 billiard simulation method Graham and Lubachevsky (1996) N ≤ 61 PECS

1997 multi-start method Nurmela and Österg̊ard (1997) N ≤ 50 PECS
1998 TAMSASS-PECS Casado et al. (1998) N ≤ 100 PECS
2000 two-phase method Boll et al. (2000) N ≤ 50 PECS
2004 perturbed billiard simulation Gensane (2004) N ≤ 32 PESC
2007 modified billiard simulation Szabó and Specht (2007) N ≤ 200 PECS
2008 monotonic basin hopping Addis et al. (2008) N ≤ 130 PECS , PESC
2008 population basin hopping Addis et al. (2008) N ≤ 130 PECS , PESC
2010 greedy vacancy search Huang and Ye (2010) N ≤ 200 PECS
2012 variable neighborhood search M’Hallah and Alkandari (2012) N ≤ 55 PESC
2019 clustering-based heuristic Bagattini et al. (2019) N ≤ 120 PESC
2022 two-phase heuristic Amore and Morales (2022) 254≤N ≤ 9996 PECS

Heuristic methods undertake to find a high-quality (not necessarily optimal) solution

within a reasonable computation time. The related PECS and PESC studies are sum-

marized in Table 2, including the most representative approaches such as multi-start

algorithms (Maranas et al. (1995), Nurmela and Österg̊ard (1997)), billiard simulation

methods and their variants (Graham and Lubachevsky (1996), Gensane (2004), Szabó and

Specht (2007)), threshold accepting search (Casado et al. (1998)), monotonic basin hopping

search and its variants (Addis et al. (2008)), the clustering-based heuristic (Bagattini et al.

(2019)), variable neighborhood search (M’Hallah and Alkandari (2012)), greedy vacancy
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search (Huang and Ye (2010)), and two-phase optimization (Amore and Morales (2022),

Boll et al. (2000)).

In detail, Maranas et al. (1995) proposed a multi-start algorithm for PECS and reported

computational results for n≤ 30, including an improved solution for N = 15. The algorithm

employs a randomized initialization method and a non-linear programming solver as its

local optimization procedure. In 1996, using a billiard simulation method, Graham and

Lubachevsky (1996) reported several dense packing configurations for PECS and investi-

gated repeated patterns for dense packing configurations. In 1997, Nurmela and Österg̊ard

(1997) reported the putative optimum solutions for N ≤ 50 with a multi-start strategy to

minimize the energy function E(X) =
∑

i<j(
λ
d2ij

)M where dij is the distance between the

centers of two circles ci and cj that are restricted to lie in a unit square, λ is a scaling

factor, and M is a positive integer whose value defines an energy function. Starting with

a small M value (in the range 10 ≤M ≤ 100) and a random initial solution, the algo-

rithm minimizes a sequence of energy functions E(X) with an increasing M value. When

M reaches a very large value (e.g., M = 106 ), the solutions of E(X) converge to a local

optimal solution of PECS (Hardin and Saff (2005)), where the minimum distance between

the centers of circles is the common diameter of circles. In 1998, Casado et al. (1998) pro-

posed a threshold accepting algorithm for PECS, called TAMSASS-PECS, which gradually

decreases the threshold value used to accept the new solutions as the search progresses,

like the temperature parameter in simulated annealing. The algorithm was evaluated on

the instances with N ≤ 100.

Several important studies have been reported during the next ten years. In 2000, Boll

et al. (2000) proposed a two-phase algorithm for PECS by combining two heuristic strate-

gies, and reported improved packing configurations for N = 32,37,48,50. In 2004, Gensane

(2004) proposed a perturbed billiard simulation method for PESC and improved the best-

known results for all instances in the range of 11 ≤N ≤ 26 except for N = 13,14,18. In

2007, Szabó and Specht (2007) obtained putatively optimal configurations by means of a

modified billiard simulation algorithm for PECS instances with N ≤ 200. Based on the

conjecture that the objective functions of PECS and PECS have a funneling landscape,

Addis et al. (2008) proposed the monotonic basin hopping algorithm and the population

basin hopping algorithm. These algorithms improved the previous best-known results for

32 PECS instances in the range of N ≤ 130 and one PESC instance with N = 28.
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Considering the research conducted since 2010, the following studies deserve mention.

In 2010, by detecting and utilizing vacant holes of a packing configuration, Huang and Ye

(2010) proposed the greedy vacancy search algorithm for PECS, which improved the pre-

vious best-known results for 42 instances with N ≤ 200. In 2012, M’Hallah and Alkandari

(2012) devised a variable neighborhood search algorithm for PESC and reported exper-

imental results for N ≤ 55. In 2019, Bagattini et al. (2019) presented a clustering-based

heuristic algorithm for PESC and reported three new best-known results for N = 83, 96,

109. Based on the method of Nurmela and Österg̊ard (1997), Amore and Morales (2022)

recently proposed a two-phase heuristic algorithm for PECS and reported results on seven

selected large-scale instances in the range of 254≤N ≤ 9996.

Most notably, the popular Packomania website (Specht (2021)) shows that over the

past 20 years many researchers continually improved the best-known results for PECS

and PESC, even though many algorithms used to find these improved solutions were not

published. For example, a special packing program called Packntile from the Pack’n’tile

contest (http://www.algit.eu/htmlji/Packntile/Packing_Contest_01052010.html)

provided the best-known results for a number of PECS and PESC instances. Kolossváry

and Bowers (2010) improved the best-known PESC results by means of the hidden-force

algorithm for N = 83, 94, 95. Cantrell provided the best-known solutions for many PECS

and PESC instances (see Specht (2021)). The Packomania website (Specht (2021)), which

provides a detailed and updated history of PECS and PESC problem results, discloses

that the best-known results are continually being improved. This suggests that there is

still room for further improvement, in spite of the fact that a large number of approaches

have been proposed and tested. In this study, our goal is to advance the state-of-the-art

by introducing an effective hybrid algorithm for PECS and PESC problems.

3. Modeling of the PECS and PESC problems

As noted, the constrained optimization PECS and PESC packing problems are difficult to

tackle by means of popular local search approaches. Nevertheless, the objective functions

of PECS and PESC can be regarded as strictly monotonic with respect to the container

size L. Thus, by fixing the value of L, we can use the penalty function method to con-

vert these constrained optimization problems into a series of unconstrained optimization

subproblems with L values that gradually become smaller, and then solve these uncon-

strained subproblems via an unconstrained optimization method. With this in mind, the
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following subsections provide an unconstrained formulation for PECS and PESC in which

the container size L is fixed.

3.1. PECS with a fixed container size L (PECS-L)

The unconstrained subproblems (denoted by PECS-L) focus on seeking a non-overlapping

packing configuration of N circles in a square container with a fixed-size L. Following the

popular penalty function approach used for the circle packing problems (Huang and Ye

(2010, 2011), Lai et al. (2022b)) and the geometry optimization of clusters (Mart́ınez et al.

(2009)), we employ overlapping depths between the circles and between the circles and

container borders to define the objective function of the unconstrained PECS subproblems.

Given a fixed size L of a square container and a candidate packing configuration X defined

by the coordinate vector X = (x1, y1, . . . , xN , yN) of N circles, the objective function EL(X)

of the PECS-L subproblem with fixed L is defined as follows.

EL(X) =
N−1∑
i=1

N∑
j=i+1

l2ij +
N∑
i=1

(l2ix + l2iy) (10)

with

lij =max{0,2−
√

(xi−xj)2 + (yi− yj)2} (11)

lix =max{0, |xi|+ 1− L
2
} (12)

liy =max{0, |yi|+ 1− L
2
} (13)

where lij represents the overlapping depth between two circles ci and cj, lix is the over-

lapping depth between a circle ci and the vertical border of the container, and liy is the

overlapping depth between a circle ci and the horizontal border of the container. Fig. 1

illustrates these three categories of possible overlaps for an infeasible packing configuration.

The problem defined by Eqs. (10)-(13) is an unconstrained minimization problem whose

objective function EL(X) measures the degree of non-overlapping constraint violation by

the candidate solution X. As a result, X is a feasible solution if EL(X) = 0, and else X is

an infeasible solution.

3.2. PESC with a fixed container size L (PESC-L)

The PESC problem is a natural extension of the PECS problem in three-dimensional

Euclidean space R3. As for PECS, the corresponding subproblems with fixed L values

(denoted by PESC-L) of PESC can be defined as follows.
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Figure 1 Possible overlaps in an infeasible packing configuration for PECS.

Let L be a given size of cube container. For a solution X = (x1, y1, z1, . . . , xN , yN , zN)

with (xi, yi, zi) being the center of the unit sphere si (1 ≤ i ≤N), the objective function

EL(X) of PESC-L can be defined as:

EL(X) =
N−1∑
i=1

N∑
j=i+1

l2ij +
N∑
i=1

(l2ix + l2iy + l2iz) (14)

where lij (= max{0,2 −
√

(xi−xj)2 + (yi− yj)2 + (zi− zj)2}) represents the overlapping

depth between two unit spheres si and sj, lix is the overlapping depth between a sphere si

and the planes x= L
2

or x=−L
2
, liy denotes the overlapping depth between a sphere si and

the planes y = L
2

or y =−L
2
, and liz represents the overlapping depth between a sphere si

and the planes z = L
2

or z =−L
2
. As for PECS-L, EL(X) measures the degree of constraint

violation for the candidate solution X, and X is a feasible solution if EL(X) = 0 and else

X is an infeasible solution.

4. The Proposed PBTS Algorithm

Our proposed perturbation-based thresholding search algorithm for PECS and PESC is

a stochastic optimization algorithm for solving the equal circle packing and equal sphere

packing problems in a regular convex container. The main framework and the components

of the algorithm are described in this section, employing the basic idea of handling the
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constrained PECS and PESC problems by solving a series of unconstrained optimization

subproblems PECS-L and PESC-L with fixed decreasing L values.

4.1. Main framework of the proposed PBTS algorithm

Algorithm 1: Main framework of the PBTS algorithm
Input: Number of unit circles (or spheres) to be packed (N), maximum time limit (tmax), packing

density of initial solution (p0)

Output: The best packing found (X∗) and the size of container (Lb)

1 /* First Phase of the Search, where EL(X)< 10−25 implies that X is approximately

feasible */

2 p← p0, Flag← 1

3 L←
√

N×π
p

/* L= 3

√
4×N×π
3×p for PESC */

4 X←RandomPacking(L)

5 X← ThresholdSearch(X,L,F lag)

6 while EL(X)< 10−25 do
7 p ← p+ 10−3× rand(0,1)

8 L←
√

N×π
p

/* L= 3

√
4×N×π
3×p for PESC */

9 X← ThresholdSearch(X,L,F lag)
10 end

11 (X,L)←AdjustContainer(X,L)

12 Lb←L, X∗←X

13 /* Second Phase of the Search */

14 while time() ≤ tmax do
15 X←RandomPacking(Lb)

16 X← ThresholdSearch(X,Lb, F lag) /* Algorithm 4 */

17 if EL(X)< 10−25 then
18 (X,L)←AdjustContainer(X,Lb) /* Algorithm 5 */

19 if L<Lb then
20 Lb←L, X∗←X

21 else
22 Flag← (Flag+ 1)%2

23 end
24 else
25 Flag← (Flag+ 1)%2 /* Change the type of perturbation */

26 end
27 end

The PBTS algorithm is described in Algorithm 1, where X∗ and Lb denote respectively

the best feasible (i.e., non-overlapping) solution found so far and the corresponding con-

tainer size (i.e., the side length of a square or cube container), and where X denotes the

current solution. As shown in Algorithm 1, the procedure is composed of two search phases,
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in which the first phase aims to quickly find a high-density packing configuration by grad-

ually reducing the container size and the second phase searches for the globally optimal

solution by a multi-start approach. To ensure an effective search, the algorithm relies on

a container adjustment method and a thresholding search procedure integrating a mixed

perturbation strategy and local optimization.

In the first phase (lines 2–12), starting from an empirically estimated packing density

p (p = p0), the algorithm randomly generates a first initial packing configuration X in

a container of size L, where L is determined according to the density p (lines 2–4). For

the PECS problem, L is determined as L =
√

N×π
p

since the packing density p of a fea-

sible configuration with N unit circles in a square of size L is calculated as p = N×π×r2
L2 ,

where r (r = 1.0) is the radius of unit circles. For the PESC problem, L is determined as

L= 3

√
4×N×π

3×p , since the packing density p of a feasible configuration with N unit spheres in

a cube of size L is calculated as p=
N× 4

3
×π×r3

L3 . From this initial configuration X, a thresh-

olding search procedure is applied to search for a non-overlapping packing configuration

for the current L value by minimizing the objective function EL(X) defined in Section 3

(line 5). Subsequently, the search process enters a ’while’ loop (lines 6–10) in which the

packing density p is increased at each iteration by setting p← p+ 10−3× rand(0,1) where

rand(0,1) denotes a random number between 0 and 1. Then L is recalculated according to

the updated packing density p, and the current configuration X is further improved by the

thresholding search procedure under the new L value. The ’while’ loop terminates once the

thresholding search method fails to find a non-overlapping solution for the current L value.

The resulting configuration is then slightly adjusted by a container adjustment method to

obtain a non-overlapping configuration for which the container size L is locally optimized,

and the resulting solution and its L value are saved as X∗ and Lb (lines 11–12).

In the second phase, the search executes a second ’while’ loop until the time limit (tmax)

is reached (lines 14–27). At each iteration, a random packing X is first generated in a

container with the current best size Lb and then improved by the thresholding search pro-

cedure (lines 15–16). Subsequently, the container adjustment method is used to minimize

the container size L once a feasible packing configuration X is obtained, while maintaining

the configuration feasibility (line 18). The best configuration found so far X∗ and the cor-

responding Lb are updated if the value of Lb is improved (line 20). To enhance the search

robustness, the type of perturbation employed in the thresholding search procedure is then
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changed if the value of Lb has not been improved after the current thresholding search and

container adjustment (lines 22 and 25). Finally, X∗ and Lb are returned as the output of

the algorithm.

4.2. Local optimization

Given an input solution X, to reach a nearest local minimum solution with respect to the

objective function EL(X) in Section 3 and Uλ(X,L) defined in Eq. (16), the thresholding

search and container adjustment procedures both employ a popular and efficient quasi-

Newton method called L-BFGS (Liu and Nocedal (1989)). In particular, the L-BFGS

method employed by the proposed algorithm uses a line search method proposed by Hager

and Zhang (2005) and is in most cases able to reach a high precision of 10−13 with respect

to the maximum norm ||g||∞ of gradient g of the objective function.

4.3. Perturbation operators

To ensure efficiency and generality, the thresholding search procedure (Section 4.4) employs

two complementary and general-purpose perturbation operators to jump out of local opti-

mum traps. The first is called the uniformly random perturbation (URP) which is widely

used in the field of global optimization (Addis et al. (2008), Doye et al. (2004), Leary

(2000), Wales and Doye (1997)). The second is called the sequential random perturbation

(SRP) proposed in this study. These two perturbation operators are adaptively employed

in the optimization process to enhance robustness (see Algorithm 1).

Algorithm 2: Uniformly random perturbation

1 Function URP ()

Input: Input solution X = (X[1],X[2], . . . ,X[n]), number of variables n (n= 2N for PECS and 3N

for PESC), perturbation strength η0

Output: The perturbed solution X

2 for i← 1 to n do
3 X[i]←X[i] + η0× rand(−1,1) /* Perturb each component of X */

4 end

4.3.1. Uniformly random perturbation. As shown in Algorithm 2, the URP operator

drastically modifies the current solution in an uniformly random fashion. Given a candi-

date solution X = (X[1],X[2], . . . ,X[n]) with n variables, the URP operator shifts each
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component X[i] of X in an interval (−η0, η0), (i.e., X[i]←X[i] + rand(−η0, η0), 1≤ i≤ n),

where rand(−η0, η0) represents a uniformly distributed random number in the interval

(−η0, η0) and η0 is a parameter called the perturbation strength and is set to 0.8 by default

according to the study of Grosso et al. (2010).

4.3.2. Sequential random perturbation. Unlike the URP operator and most pertur-

bation strategies in the literature, the SRP operator (described in Algorithm 3) consists

of a series of small random perturbations, where each small perturbation is followed by a

very short local optimization. Specifically, to obtain a high-quality offspring solution, the

SRP operator performs consecutively Imax iterations (lines 3–15), each being composed of

a small URP operation (lines 4–6) and a constant step gradient descent method consisting

of only m steps (lines 7–12), where m is a parameter. The perturbation strength (η) is

gradually decreased by a factor β as the number of iterations increases (line 13).

ctiveobje function

ctiveobje function

E

X

The

transform

)(XEL

)(XEP

LThe ed

Figure 2 A schematic diagram illustrating the effects of the sequential random perturbation in the one-

dimensional case. The black line is the original potential energy surface EL(X) of the objective function

and the red dotted line represents the surface (EPL (X)) transformed by the SRP perturbation operator.

Note that the transformation of potential energy surface does not change the global optimum solution

of the problem.
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Algorithm 3: Sequential random perturbation

1 Function SRP ()

Input: Input solution X = (X[1],X[2], . . . ,X[n]), number of variables n (= 2N for PECS and 3N

for PESC), perturbation strength η, parameters Imax, m, σ, β ∈ (0,1)

Output: The perturbed solution X

2 I← 0

3 while I < Imax do
4 for i← 1 to n do
5 X[i]←X[i] + η× rand(−1,1) /* Perturb each coordinate of X */

6 end

7 for m′← 1 to m do
8 g← gradient(E,X) /* Calculate the gradient of function E(X) */

9 for i← 1 to n do

10 X[i]←X[i]−σ× η× g[i]

||g||

11 end
12 end

13 η← β× η /* Reduce the perturbation strength by a factor β */

14 I← I + 1
15 end

The SRP operator is designed to skip low-quality local optimal solutions by using a

number of small perturbations and the subsequent short local optimizations. As a result,

the landscape of the objective function EL(X) is in effect smoothed by eliminating many

small barriers. Figure 2 gives a schematic illustration of the expected effect of the SRP

operator on the landscape of objective function EL(X). By this effect, the SRP operator

helps the algorithm to sample a smaller and more promising set of local minima, and

benefits the global optimization of function EL(X) in a number of cases, without changing

the global optimum solution of the problem.

It is worth noting that the SRP operator does not require problem-specific knowledge

and is a general-purpose method. Thus, it can be applied to the global optimization of

any non-convex functions with a first-order derivative. The computational experiments in

Section 6.1 show that this perturbation operator is very useful to enhance the effectiveness

and efficiency of the algorithm for many instances and significantly outperforms some

popular perturbation operators.
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4.4. Thresholding search method

Algorithm 4: Thresholding search method for the unconstrained global optimiza-

tion
1 Function ThresholdSearch

Input: Input solution X, size L of container, shrinkage factor µ (µ< 1.0), acceptance rate ρ
(ρ< 1.0), the depth of search (MaxIter), perturbation type Flag, and the parameters T ,
ηmin and ηmax.

Output: The best solution found (Xb)
2 X←Local Optimization(X) /* Minimize function EL(·) from X */
3 Xb←X
4 NoImprove← 0, t← 0, ThE← 10−4, Naccept← 0, Nreject← 0 /* Initialization */
5 while (NoImprove ≤ MaxIter) ∧ (EL(Xb)> 10−25) do
6 η← η(t) /* Determine the strength of perturbation */
7 if Flag= 1 then
8 Xnew←URP (X,η) /* Perform the URP perturbation */
9 else

10 Xnew← SRP (X,η) /* Perform the SRP perturbation */
11 end
12 Xnew←Local Optimization(Xnew) /* Minimize function EL(·) */
13 ∆E←EL(Xnew)−EL(X)
14 if (∆E <ThE)∧ (∆E 6= 0) then
15 X←Xnew

16 Naccept←Naccept + 1
17 else
18 Nreject←Nreject + 1
19 end
20 if Naccept >ρ×Nreject then
21 ThE← µ ∗ThE /* Decrease the threshold value ThE */
22 else
23 ThE← 1

µ
∗ThE /* Increase the threshold value ThE */

24 end
25 if EL(X)<EL(Xb) then
26 Xb←X /* Save the best solution found */
27 NoImprove← 0
28 else
29 NoImprove←NoImprove+ 1
30 end
31 t← t+ 1
32 end

To search for the global optimal solution of a nonlinear non-convex objective function

EL(X) defined in Section 3, our algorithm employs a thresholding search procedure which

follows the general threshold accepting method (Dueck and Scheuer (1990), Moscato and

Fontanari (1990)) and is a variant of the dynamic thresholding search method proposed

by Lai et al. (2022b). The thresholding search procedure aims to find a feasible packing

configuration of N unit circles (or spheres) for a fixed size (L) of square or cube container.

In our approach, it executes both a local search and two complementary perturbations.

The thresholding search procedure (denoted by ThresholdSearch) is described in Algo-

rithm 4. Starting with an input solution X, ThresholdSearch first obtains a local optimal
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solution of EL(X) by performing the L-BFGS local optimization method (Liu and Nocedal

(1989)) and saves the obtained solution as the best solution found so far (Xb) (lines 2–3).

Subsequently, the thresholding search procedure performs a ’while’ loop until the current

best solution Xb cannot be improved for MaxIter consecutive iterations or a feasible pack-

ing configuration X (i.e., EL(X)< 10−25) is found, where MaxIter is a parameter called

the search depth (lines 4–32).

At each iteration, the current solution X is first perturbed by the URP or SRP operator

(see Section 4.3) according to the parameter Flag with the perturbation strength η deter-

mined as follows. For the URP operator, the strength η is set to a constant η0. For the

SRP operator, to ensure a good tradeoff between search intensification and diversification,

η is fixed by the following periodic function with respect to the number t of iterations:

η(t) = ηmin +
ηmax− ηmin

2
× [1 + sin(t× 2π

T
)] (15)

where T is the period that is set to 72 in this work, and ηmin and ηmax represent respectively

the minimum and maximum values of η(t). Fig. 3 shows the change of η(t) as the number

of iterations (t), which discloses how the value of η(t) changes periodically in [ηmin, ηmax]

as a function of number of iterations. Note that the function η(t) is a simple variant of the

trigonometric function sin(t) that is a well-known periodic function, where the parameters

ηmin and ηmax were empirically determined.
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Figure 3 The change of strength of perturbation (η) as a function of the number of iterations.
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Following this, the perturbed solution X is improved by the L-BFGS local optimization

method. The newly obtained offspring solution Xnew is accepted as the current solution

if the gap between the objective values of Xnew and X (i.e., ∆E =EL(Xnew)−EL(X)) is

smaller than a threshold value (ThE) that is adaptively adjusted according to the current

acceptance rate. Specifically, ThE is decreased by multiplying by a factor µ ∈ (0,1) if

Naccept > ρ×Nreject, and is increased by dividing by µ otherwise, where Naccept represents

the number of current acceptances, Nreject represents the number of current rejections, and

ρ is a parameter representing the expected acceptance rate (hence a larger ρ value supports

a higher acceptance rate for the offspring solutions).

Compared with the dynamic thresholding search method in Lai et al. (2022b), the cur-

rent thresholding search procedure has two noteworthy features. First, it relies on two

complementary perturbations that are applied adaptively and a periodic function is used

to determine dynamically the perturbation strength for the SRP operator to reach a desir-

able tradeoff between search intensification and diversification. Second, the acceptance rate

for new solutions determined by the parameter ρ, makes it possible to control the search

behavior of the procedure.

Finally, it should be emphasized that this thresholding search method is of a general

nature and can be applied to the global optimization of other non-convex differentiable

functions, such as solving systems of nonlinear equations (Pei et al. (2019)) and optimizing

general nonlinear functions (Bierlaire et al. (2010)).

4.5. Packing refinement by container adjustment

Algorithm 5: Container adjustment method

1 Function AdjustContainer

Input: Input solution s0 = (X0,L0), maximum number of iterations K (= 15)

Output: The feasible local optimum configuration s= (X,L)

2 X←X0, L←L0, λ← 106

3 for i← 1 to K do
4 (X,L) ← Local Optimization(Uλ,X,L) /* Minimize Uλ(X,L) using L-BFGS */

5 λ← 5×λ
6 end

The container adjustment method is another main component of the proposed algorithm,

whose goal is to slightly adjust the size L of the container and the coordinates of N circles
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(or spheres) for a given packing configuration such that the resulting solution becomes

feasible while the size L of container is locally minimized.

Container adjustment can also be considered as a problem of finding a local minimum

for a constrained optimization problem, starting from a given solution. In this study,

we employ the sequential unconstrained minimization technique (SUMT) (Fiacco and

McCormick (1964)). The SUMT method first converts the constrained optimization prob-

lem to a sequence of unconstrained problems, and then solves them in order until a feasible

local minimum is reached. For the studied circles and sphere packing problems, the corre-

sponding constrained optimization problems (Eqs. (1)-(4)) are converted into the following

unconstrained optimization problems.

Minimize Uλ(X,L) =
L2

λ
+E(X,L) (16)

where λ is a penalty factor and its each value λ0 defines an unconstrained optimization

function Uλ0(X,L), and L is a variable representing the size of a square or cube container.

The term E(X,L) containing 2N +1 variables (or 3N +1 variables for the PESC problem)

measures the degree of constraint violations and can be written as follows:

E(X,L) =
N−1∑
i=1

N∑
j=i+1

l2ij +
N∑
i=1

(l2ix + l2iy + l2iz) (17)

where lij represents the overlapping depth between two unit circles (or spheres) ci and cj,

and lix, liy, and liz represent respectively the overlapping depths between a unit circle (or

sphere) ci and the border of the container in the different coordinate axes (see Section 3

for the detailed description). For the PECS problem in two-dimensional Euclidean space

R2, liz should be omitted.

The container adjustment method is described in Algorithm 5. Starting from an input

solution (X0,L0) and an initial λ value (set to 106), the procedure performs K iterations to

obtain a feasible packing configuration in which the size L of container is locally minimized.

At each iteration, the L-BFGS method is applied to minimize Uλ(X,L), and then the value

of λ is increased by a factor of 5 and the resulting solution is used as the input solution

of the next iteration. Eventually, a feasible packing configuration (X,L) with E(X,L) = 0

will be obtained when the penalty factor λ reaches a very large value.

The container adjustment method described here is a simple variant of previous ones used

in (Huang and Ye (2010), Lai et al. (2022b)), which have been shown to be very efficient for
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circle packing problems. It is worth noting that the present container adjustment method

is able to reach a high-precision result and is much more robust than the popular bisection

method in (Huang and Ye (2011)) since the occasional failure of the local optimization

procedure (i.e., L-BFGS) in the bisection method will result in an inaccuracy of the result.

5. Computational Experiments and Assessments

In this section, we present extensive computational experiments to assess the performance

of the proposed algorithm for solving the PECS and PECS problems. The assessment is

based on well-known benchmark instances and comparisons with the best-known results

shown at the Packomania website (Specht (2021)).

The codes of the proposed PBTS algorithm, the best solutions found in this work, and

the detailed computational results of algorithm are available from the online supplement

of the paper (Lai et al. (2022a)).

5.1. Parameter Settings and Experimental Protocol

Table 3 Settings of parameters
ParametersSection Description Values
p0 4.1 packing density of initial solution {0.5,0.7}
MaxIter 4.4 search depth of thresholding search 400
µ 4.4 parameter used to tune the threshold ThE 0.6
ρ 4.4 acceptance rate of solutions for thresholding search 0.5
Imax 4.3 number of iterations for SRP perturbation 50
m 4.3 parameter in SRP perturbation operator 5
σ 4.3 coefficient used in SRP perturbation 4.0
β 4.3 coefficient used in SRP perturbation 0.99
η0 4.3.1 strength of URP perturbation 0.8
ηmax 4.4 maximum strength of SRP perturbation {0.45,0.8}
ηmin 4.4 minimum strength of SRP perturbation {0.1,0.2}

The parameters employed by our algorithm are indicated in Table 3. The default settings

of these parameters were empirically determined via preliminary experiments. The values

of parameter p0 representing the packing density of initial solutions were empirically set

to 0.5 and 0.7 for PESC and PECS, respectively. The values of parameters ηmin and ηmax

were respectively set to 0.2 and 0.45 for PECS, and 0.1 and 0.8 for PESC. The default

settings for the other parameters are given in Table 3.

Our algorithm was implemented in the C++ language and was executed on a computer

with an Intel(R) Xeon (R) Platinum 9242 CPU (2.3 GHz), and running under a Linux

operating system. Due to its stochastic nature, the algorithm was independently performed

multiple times with different random seeds for each tested instance to assess the overall
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and average performance of the algorithm. For the PECS problem, the algorithm was inde-

pendently executed 20 times for each instance in the range of 2≤N ≤ 400. The maximum

time limit (tmax) per run was set according to the instance size (N): 2 hours for N ≤ 100, 4

hours for 101≤N ≤ 200, 8 hours for 201≤N ≤ 300, and 12 hours for 301≤N ≤ 400. These

time limits are consistent with those used in (Huang and Ye (2010)) to ensure a meaning-

ful comparison between the proposed algorithm and the state-of-the-art algorithms in the

literature. For the PESC problem, our algorithm was independently executed 10 times for

each instance in the range of 2≤N ≤ 200, and the maximum time limit per run tmax was

set to 1 hour for N ≤ 50, 4 hours for 51≤N ≤ 100, and 10 hours for 101≤N ≤ 200, given

that the PESC problem contains more decision variables than the PECS problem for a

same N value.

5.2. Computational results and comparison on the PECS instances

Tables 4–6 summarize the computational results of the algorithm on the PECS problem in

the range of 2≤N ≤ 400. Table 4 reports the detailed results for 40 representative PECS

instances, while the detailed computational results for the remaining instances are available

in the online supplement of the paper (Lai et al. (2022a)). The first and second columns of

Table 4 indicate the size of instances (N) and the best-known results (L∗) in terms of the

objective value, and the results of our algorithm are shown in columns 3–8, including the

best objective value (Lbest) over 20 independent runs, the average objective value (Lavg),

the worst objective value (Lworst), the difference between Lbest and L∗, the success rate

(SR) of obtaining the best objective value (Lbest), and the average running time in seconds

for each run of the algorithm to obtain its final result (time(s)). For Lbest, Lavg, Lworst,

the improved results are indicated in bold compared to the best-known result L∗, and the

worse results are indicated in italics. In addition, the last three rows of the table indicate

the numbers of instances for which the proposed algorithm obtained a better, equal, or

worse result compared to the best-known result L∗ in terms of Lbest, Lavg, and Lworst.

Table 4 shows that the proposed algorithm is very efficient compared to the state-of-

the-art results in the literature. In terms of Lbest, the algorithm improves and matches

respectively the best-known results for 16 and 23 out of the 40 instances, and misses the

best-known result only for one instance. The average result Lavg of the algorithm is better

than and equal to the best-known result L∗ respectively for 16 and 19 instances. It is worth

noting that even the worst result Lworst over 20 runs of the algorithm improves and matches
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Table 4 Computational results and comparison on 40 representative PECS instances in the range of

2 ≤N ≤ 400. In terms of Lbest, Lavg and Lworst, results better than the best-known results L∗ are indicated in

bold and worse results are indicated in italics.

PBTS (this work)
N L∗ (Specht (2021)) Lbest Lavg Lworst Lbest−L∗ SR time(s)
91 18.692734847 18.692734847 18.692734847 18.692734847 0.0 20/20 220
92 18.755713984 18.755713984 18.755713984 18.755713984 0.0 20/20 1024
93 18.894150540 18.894150540 18.894150540 18.894150540 0.0 20/20 71
94 18.941057478 18.941057478 18.941057478 18.941057478 0.0 20/20 243
95 19.076554913 19.076554913 19.076554913 19.076554913 0.0 20/20 359
96 19.129447365 19.129447365 19.129447365 19.129447365 0.0 20/20 150
97 19.188408788 19.188408788 19.188408788 19.188408788 0.0 20/20 233
98 19.218577371 19.218577371 19.218577371 19.218577371 0.0 20/20 348
99 19.238684303 19.238684303 19.238684303 19.238684303 0.0 20/20 37
100 19.454847253 19.454847253 19.454847253 19.454847253 0.0 20/20 326
191 26.635323947 26.635323947 26.635323947 26.635323947 0.0 20/20 490
192 26.706309251 26.706309251 26.706309251 26.706309254 0.0 19/20 4035
193 26.792374948 26.792374956 26.792393690 26.792540178 8.23E-09 2/20 10165
194 26.840126463 26.836480274 26.837233280 26.838362788 -3.65E-03 12/20 3250
195 26.872063371 26.872063371 26.872063371 26.872063371 0.0 20/20 574
196 26.992467225 26.992467225 26.992467225 26.992467225 0.0 20/20 414
197 27.121091211 27.121091211 27.121091211 27.121091211 0.0 20/20 4324
198 27.194835943 27.194835943 27.194845501 27.194857182 0.0 11/20 4335
199 27.272163202 27.272163202 27.272163226 27.272163412 0.0 11/20 6157
200 27.312853154 27.312853154 27.323213491 27.327787437 0.0 2/20 6734
291 32.737055178 32.713223771 32.713223771 32.713223771 -2.38E-02 20/20 10660
292 32.784245264 32.771377288 32.771377288 32.771377288 -1.29E-02 20/20 3335
293 32.803781063 32.803747327 32.803747329 32.803747333 -3.37E-05 9/20 5671
294 32.827175126 32.827175126 32.827175126 32.827175126 0.0 20/20 5856
295 32.847220793 32.847220793 32.847220793 32.847220793 0.0 20/20 13273
296 32.939976201 32.939965541 32.939965541 32.939965541 -1.07E-05 20/20 9668
297 32.991738983 32.990170865 32.990170865 32.990170865 -1.57E-03 20/20 5128
298 33.024730665 33.024730665 33.024730665 33.024730665 0.0 20/20 4681
299 33.058743039 33.058648838 33.058648838 33.058648838 -9.42E-05 20/20 6103
300 33.091154939 33.091154939 33.091154939 33.091154939 0.0 20/20 7146
391 37.786012401 37.769753050 37.769763033 37.769777333 -1.63E-02 5/20 29084
392 37.861151301 37.836566990 37.837784516 37.839320024 -2.46E-02 1/20 34452
393 37.919186895 37.899488243 37.899704475 37.900021701 -1.97E-02 3/20 31459
394 37.930436797 37.930272137 37.930278074 37.930310285 -1.65E-04 4/20 24346
395 37.962314535 37.960263101 37.960273664 37.960474373 -2.05E-03 19/20 14013
396 37.975202348 37.975202348 37.975627191 37.983699109 0.0 18/20 25958
397 38.023361885 38.023245990 38.023250121 38.023252875 -1.16E-04 8/20 23505
398 38.082889973 38.053496853 38.066853125 38.082490840 -2.94E-02 4/20 11965
399 38.148780581 38.128423455 38.128423455 38.128423455 -2.04E-02 20/20 7370
400 38.164523000 38.164286993 38.164286993 38.164286993 -2.36E-04 20/20 9305
#Improved 16 16 16
#Equal 23 19 18
#Worst 1 5 6

Table 5 Summary of computational results for the PECS problem

N #Instance #Improve #Equal #Worse
2-50 49 0 49 0
51-100 50 0 50 0
100-150 50 1 49 0
151-200 50 7 42 1
201-250 50 25 25 0
251-300 50 35 15 0
301-350 50 45 5 0
351-400 50 43 7 0
Total 399 156 242 1
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Table 6 Improved results for 156 instances of PECS in the range of N ≤ 400 in terms of Lbest, compared to the

best-known results (BKR) in the literature.

N BKR Lbest N BKR Lbest N BKR Lbest

106 19.993921681 19.993921677 275 31.760669189 31.727696959 342 35.353034567 35.349992599
153 24.010218767 24.004609758 277 31.876485279 31.875605745 343 35.444701701 35.424528912
157 24.259862394 24.259862387 278 31.904139803 31.896621548 344 35.501634171 35.494954267
170 25.252698973 25.252697180 282 32.271825992 32.247367828 345 35.565061674 35.557861904
171 25.325602865 25.325594655 283 32.349428155 32.328946505 346 35.620800461 35.615716868
172 25.417214968 25.404460665 284 32.371743196 32.371671534 347 35.658729029 35.653297131
181 25.985618408 25.975260489 285 32.442795717 32.440898585 348 35.685807919 35.685495033
194 26.840126463 26.836480274 286 32.453648756 32.453626290 349 35.719505469 35.718924303
205 27.576876117 27.567250117 288 32.572406278 32.571998609 350 35.771493660 35.771461077
207 27.677311798 27.677311693 290 32.658281934 32.619667676 351 35.793678470 35.793675756
210 27.865431130 27.865264940 291 32.737055178 32.713223771 352 35.952656162 35.915743200
215 27.999469469 27.999457017 292 32.784245264 32.771377288 353 35.995094545 35.984799658
216 27.999894488 27.999890345 293 32.803781063 32.803747326 354 36.006531662 36.006336175
218 28.396275192 28.396274204 296 32.939976201 32.939965541 355 36.098028799 36.075573954
219 28.505470621 28.503438714 297 32.991738983 32.990170865 356 36.125768096 36.098038505
220 28.581964018 28.579623308 299 33.058743039 33.058648838 357 36.144514642 36.143900174
221 28.650217350 28.647970386 301 33.107664708 33.107188751 359 36.245440882 36.214080980
223 28.746373096 28.744925481 302 33.115483620 33.114674076 360 36.313349883 36.296057544
224 28.791478737 28.791012002 305 33.369469591 33.365641905 361 36.329623084 36.316021050
225 28.892529959 28.872701621 306 33.472130383 33.433775371 362 36.351806981 36.351199205
226 28.980195790 28.977237925 307 33.533342804 33.528160031 364 36.393238790 36.367921257
227 29.047402657 29.043187997 308 33.592291592 33.581624679 365 36.440462302 36.430903871
229 29.166477858 29.142413853 309 33.662242538 33.653059584 366 36.449293679 36.448985622
230 29.186674755 29.186139367 310 33.708969061 33.706874743 367 36.461059367 36.461059364
232 29.331629096 29.331615175 311 33.766968464 33.763821954 370 36.617447623 36.616904172
233 29.372019605 29.371417294 312 33.810134916 33.800477552 371 36.630690132 36.630690061
235 29.412549407 29.412498235 313 33.819660112 33.819647499 374 36.860238563 36.860209804
237 29.498377024 29.498316339 314 33.863166811 33.863128095 375 36.905797738 36.905763282
240 29.666279530 29.666279350 315 33.977361251 33.977355640 376 36.934713162 36.933889065
244 29.914182807 29.912487768 316 34.106569996 34.066488590 377 36.956938729 36.951443202
246 29.968323001 29.967083687 317 34.157653052 34.139244391 378 36.964726408 36.964387688
249 30.335969818 30.330357801 318 34.230632899 34.212087493 379 37.168995378 37.163358097
250 30.417031057 30.413810109 319 34.278012052 34.244701317 380 37.268203266 37.254728252
251 30.514477048 30.488615243 320 34.301272474 34.296258944 381 37.328685368 37.317946628
252 30.556359106 30.554594854 321 34.330158112 34.304146089 382 37.399833611 37.367815912
254 30.637242017 30.629122311 322 34.384694645 34.363743605 383 37.453237457 37.427104603
255 30.688409827 30.688395200 323 34.453936080 34.443942400 384 37.509762344 37.480145181
256 30.724745895 30.724745891 324 34.469293461 34.469293437 385 37.524483179 37.520288824
257 30.824174685 30.818433601 325 34.497557560 34.495918525 386 37.555106698 37.553644453
259 30.971015228 30.959405025 326 34.538708641 34.530949661 387 37.596693465 37.561988045
260 31.002117303 30.976264045 327 34.591603459 34.591579616 388 37.634842769 37.626421391
261 31.021231115 31.020513868 328 34.627862893 34.627258700 389 37.669261935 37.668211363
263 31.135387935 31.135221398 330 34.665648167 34.665385656 390 37.697840561 37.696589756
264 31.200792357 31.198320781 331 34.757395176 34.757317756 391 37.786012401 37.769753050
265 31.217512841 31.217512377 332 34.790927642 34.790437779 392 37.861151301 37.836566990
266 31.255856470 31.252989666 333 34.824467247 34.824467058 393 37.919186895 37.899488243
267 31.262745851 31.262008812 334 34.848927176 34.848252392 394 37.930436797 37.930272137
268 31.304614023 31.290274210 335 34.888861313 34.888813154 395 37.962314535 37.960263101
269 31.314762420 31.314762419 336 34.923285419 34.923052382 397 38.023361885 38.023245990
271 31.437717984 31.437713367 338 34.974622430 34.974609760 398 38.082889973 38.053496853
272 31.553295627 31.553030915 339 34.987295963 34.987292522 399 38.148780581 38.128423455
273 31.605207996 31.605028606 341 35.292676076 35.276436460 400 38.164523000 38.164286993

the best-known result for 16 and 18 instances, respectively. Moreover, the success rate is

100% for 25 out of the 40 instances, occurring notably for the cases with N ≤ 100. It can

be concluded that the proposed algorithm is very efficient compared to the previous PECS

algorithms. By the way, we point out that according to our experiments the performance

of the proposed algorithm does not depend on the formulation of the PECS problem, and
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(a) Previous best packing for N = 106 (b) Improved packing for N = 106 (c) Previous best packing for N = 153

(d) Improved packing for N = 153 (e) Previous best packing for N = 181 (f) Improved packing for N = 181

Figure 4 Comparisons between the previous best-known solution and the improved solution for 3 representative

instances in the range of N ≤ 200.

our algorithm is able to obtain similar results with the equivalent formulation by Addis

et al. (2008) mentioned in Section 1.

Tables 5 and 6 summarize the computational results for all 399 instances in the range

of 2≤N ≤ 400. Table 5 shows that the proposed algorithm improves, matches and misses

the best-known results respectively for 156, 242 and 1 instance. The improved results are

summarized in Table 6, together the best-known results in the literature, which shows that

for the widely studied instances in the literature (i.e., N ≤ 200), our algorithm improves the

best-known results for 8 instances and the smallest size is N = 106. For the 200 instances

in the range of 201 ≤ N ≤ 400, the algorithm improves the best-known results for 148

instances. These outcomes indicate that the proposed algorithm significantly outperforms

the existing PECS algorithms in the literature.
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(a) N = 230 (b) N = 249 (c) N = 275

(d) N = 283 (e) N = 343 (f) N = 360

(g) N = 382 (h) N = 388 (i) N = 400

Figure 5 Improved packing configurations found in this work for 9 representative PECS instances in the range

of 201 ≤N ≤ 400.

To provide a visual comparison between the previous best-known solutions and the

improved solutions for some representative instances, Fig. 4 gives a graphical representation

of the previous best-known solutions and the improved solutions of the three instances
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for N = 106, 153 and 181. For the instance with N = 106, the previous best-known result

and the improved result respectively yield L∗ = 19.993921681 and Lbest = 19.993921677,

and the difference between Lbest and L∗ is very small (i.e., Lbest − L∗ = −3.74 × 10−9).

However, as observed from the subfigures (a) and (b) of Fig. 4, the difference between

these two solutions in the graphical representation is significant, which means that a very

small difference in the result can lead to two significantly different configurations and that

there exist a number of configurations with very similar L values. For N = 153 and 181, the

improved solution differs from the previous best-known solution by being more compact

and symmetrical.

To give an intuitive impression about the nature of the best configurations found in

this work, Fig. 5 provides the graphical representations for several representative best

configurations. These representations disclose that the best configurations found in this

work exhibit a variety of packing patterns.

5.3. Computational results and comparison on the PESC instances

(a) N = 96 (b) N = 109

Figure 6 Improved packing configurations for 2 representative PESC instances.

Table 7 Summary of computational results for the PESC problem

N #Instance #Improve #Equal #Worse
2-50 49 0 48 1
51-100 50 2 42 6
100-150 50 33 16 1
151-200 50 31 18 1
Total 199 66 124 9
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Table 8 Improved best results for 66 instances of PESC in the range of N ≤ 200, compared to the best-known

results (BKR) in the literature (Specht (2021)).

N BKR Lbest N BKR Lbest N BKR Lbest

94 8.923821830 8.923821803 132 9.900529520 9.900168047 174 10.731753582 10.723893469
96 8.956098398 8.956012987 134 9.969788469 9.968398864 175 10.747079787 10.746999788
101 9.071067812 9.071067798 135 9.997248155 9.992767099 176 10.769091939 10.769085289
102 9.071067812 9.071067752 136 10.005773959 10.002501384 177 10.797319352 10.795952217
109 9.256067536 9.256055096 137 10.009904202 10.009483099 178 10.874840404 10.843408746
110 9.315177255 9.315142168 138 10.013103535 10.013103499 179 10.906678902 10.878347102
111 9.350891923 9.350777107 139 10.013875394 10.013871054 180 10.908568331 10.907954805
112 9.381202299 9.381195998 145 10.182224825 10.182224821 181 10.934189362 10.925071993
113 9.432624730 9.432624729 146 10.234614828 10.234607999 182 10.945963366 10.925072004
114 9.466230073 9.466077280 147 10.261562986 10.261561623 183 10.948204573 10.943111098
115 9.511189528 9.506114111 148 10.300703719 10.297021071 184 10.949401271 10.949347370
116 9.521926074 9.521920535 149 10.326031998 10.323831269 185 10.954519536 10.953766994
117 9.536291586 9.535542146 150 10.341280996 10.333464149 186 10.955528631 10.954992621
118 9.539688701 9.539355204 151 10.365253238 10.358713606 187 10.956001897 10.955754270
119 9.541327956 9.541325287 152 10.374597071 10.372956934 191 11.064604714 11.050914327
120 9.542056732 9.542033251 154 10.397742319 10.392876250 192 11.071024807 11.068578718
123 9.647335796 9.647281695 155 10.432530776 10.420260141 193 11.071067812 11.070025179
124 9.655733621 9.655730130 157 10.450379879 10.450379451 194 11.071067812 11.070959098
125 9.656804408 9.656804109 158 10.466444211 10.450379879 197 11.183482546 11.148837915
127 9.734886581 9.734698832 159 10.468298279 10.468298215 198 11.216034385 11.210995781
129 9.831897328 9.831895609 160 10.475182230 10.475182106 199 11.249615229 11.225541804
131 9.877737172 9.877735748 161 10.479983040 10.479983036 200 11.271851411 11.249879531

To further check the effectiveness of our PBTS algorithm for the PESC problem, we ran

the algorithm 10 times to solve each instance in the range of 2≤N ≤ 200. The summary

results of the experiment are reported in Table 7 and the improved results are listed in

Table 8. Detailed computational results are provided in the online supplement of the paper

(Lai et al. (2022a)).

Table 7 indicates that the proposed PBTS algorithm is very competitive compared to the

existing PESC algorithms, improving the best-known result for 66 out of the 199 instances,

matching the best-known results on 124 instances, and missing the best-known result on

only 9 instances. Interestingly, the proposed algorithm improves or matches the best-known

results with greater frequency as the number (N) of spheres increases. Meanwhile, for our

algorithm, the PESC problem is evidently more difficult than the PECS problem, as our

algorithm fails to find the best-known results for 9 small instances of PESC. Thus, it is

very likely that the best results found by our algorithm are suboptimal for many instances

and there is still room for improvement.

Table 8 shows that the proposed algorithm is able to improve the best-known results for

a large number of PESC instances but the improvement in the objective value is small.

Nevertheless, the newly found solutions have configurations that differ appreciably from

the previous best configurations. As shown in Section 5.2, a very small improvement (such

as 10−8) in the objective value can lead to a completely different packing configuration.
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To give a further intuitive impression about the nature of the best solutions found in

this work, Fig. 6 provides a graphical representation for the improved solutions of two

representative PESC instances. According to the Packomania website (Specht (2021)), the

best-known results of these two instances have been improved at different times by various

methods, and the current best-known solutions were found by a recent clustering-based

heuristic algorithm of Bagattini et al. (2019).

In summary, the fact that the proposed PBTS algorithm further improves the best-

known results with a high success rate shows that the algorithm is remarkably effective for

the PESC problem.

6. Analysis

We now turn to an analysis of two important elements of the PBTS algorithm, i.e., the per-

turbation operators and the two-phase search strategy. The sensitivity analysis of several

important parameters is also provided in the online supplement (Lai et al. (2022a)).

6.1. Importance of hybrid perturbation

To assess the importance of the hybrid perturbation by which thresholding search adap-

tively integrates the two different perturbation operators (SRP and URP), we compare the

proposed algorithm with three algorithmic variants, two of which respectively employ only

SRP or URP as its perturbation operator, and the third employs a variant of URP denoted

URP-DS in which the perturbation strength dynamically change in an interval [0.6,1.0] as

a function of the number of iterations (η(t) in Eq. (15)). The proposed algorithm and its

three variants were each executed 100 times to solve six representative instances.

To analyze and compare the behaviors of these algorithms, we used the empirical run-

time distribution (RTD) for stochastic optimization methods (Hoos and Stützle (2000)).

For a given instance, the cumulative empirical RTD of an algorithm is a function P mapping

the run-time t to the probability of obtaining the current best-known solution within time

t. Specifically, the function P is defined as follows:

P (t) =
|{j : rt(j)≤ t}|

Q
(18)

where rt(j) is the running time of the j-th successful run to obtain the current best-known

solution (i.e., the best packing configuration found in this work) and Q is the number of

runs performed (where Q= 100 in this experiment). As demonstrated in (Hoos and Stützle
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(b) N = 181 of PECS
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(c) N = 194 of PECS
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(d) N = 228 of PECS
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(e) N = 258 of PECS
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(f) N = 291 of PECS

Figure 7 Empirical run-time distribution of the proposed algorithms with different perturbation strategies on the

representative instances.

(2000)), the empirical RTD provides an efficient graphic representation for studying the

behavior of stochastic optimization algorithms.

The experimental results are summarized in Fig. 7, which shows that the performance

of each algorithm is strongly related to its perturbation operator. For example, for the

PESC problem with N = 72, the algorithm with the SRP operator performs very well, and

its success rate P (t) increases rapidly to 100% as the running time t increases. However,

the success rate of the algorithm with the URP operator remains 0 as the running time

increases, showing that the SRP operator significantly outperforms the URP operator on

this instance and plays a key role in finding high-quality solutions. On the contrary, for the

PECS problem with N = 194, the URP operator demonstrates a high performance, while

the SRP operator results in a constant success rate of 0, indicating that the URP operator

appreciably outperforms the SRP operator on this instance. This phenomenon whereby

the URP and SRP operators are in effect complementary is the fundamental motivation

underlying our hybrid perturbation strategy. By adaptively combining the SRP and URP
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operators, the hybrid perturbation strategy is able to make full use of the advantages

of these operators and avoid their shortcomings, thus enhancing the robustness of the

proposed algorithm.

Finally, Fig. 7 shows that the hybrid perturbation strategy performs very well on all the

tested instances compared to other three perturbation strategies and enables the algorithm

to find improved best configurations for some hard instances (e.g., N = 181 and 291) with

a success rate of 100%.

6.2. Effect of the two-phase search strategy
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Figure 8 Comparisons between the two-phase and one-phase strategies on the representative instances.

The two-phase search strategy is another important feature of the proposed algorithm,

where the first phase of algorithm undertakes to find a high-density packing configuration

as quickly as possible (by gradually reducing the size of container) and the second phase

is the main search engine whose goal is to search for the globally optimal solution by a

multi-start design. To show the effect of the two-phase strategy, we carry out an experiment

based on six representative instances. In this experiment, we create a one-phase variant
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of the algorithm by disabling its first phase (lines 4–11 of Algorithm 1), while keeping

the other components unchanged. Then, we run both the two-phase algorithm and the

one-phase variant 100 times to solve each instance and report their empirical run-time

distributions of algorithms in Fig. 8.

Fig. 8 shows that for most instances the two-phase search algorithm has a better per-

formance. Specifically, for 5 out of the 6 tested instances, the probability of obtaining the

best-known solution within a given computational time is higher with the two-phase search

strategy than with the one-phase search strategy. This experiment confirms the important

role of the first phase of the algorithm, which significantly speeds up the search process.

7. Conclusions and Future Work

This paper presents a two-phase stochastic optimization algorithm for two challenging

global optimization problems that have numerous applications: the Packing Equal Circles

in a Square (PECS) problem and the Packing Equal Spheres in a Cube (PESC) prob-

lem. Our proposed algorithm is composed of a thresholding search method (combining

local optimization and perturbation) and a container adjustment procedure. Computa-

tional results on a large number of widely studied benchmark instances show that the

proposed algorithm is very efficient compared to the previous algorithms in the literature.

In particular, for PECS, our algorithm improves the best-known results for 156 instances

in the range of 2≤N ≤ 400 and matches the best-known results for 242 other instances.

For PESC, our algorithm improves 66 best-known results in the range of 2≤N ≤ 200 and

matches the best-known results for 124 instances. Additional experiments are performed

to understand the influence of the search components and disclose the importance of the

adaptive perturbation strategy.

For future research, three directions can be pursued. First, the algorithm can be adapted

to solve other equal circle packing and equal sphere packing problems, such as packing

equal circles into a larger circle (López and Beasley (2011), Mladenović et al. (2005), Stoyan

et al. (2020)) or into a non-convex polygon container (Dai et al. (2021)), packing equal

circles on the unit sphere (Clare and Kepert (1991)), packing equal spheres into a larger

sphere (Birgin and Sobral (2008), Hifi and Yousef (2019)), and so on. The code of our

algorithm that we make publicly available facilitates such applications. Second, the pro-

posed approach could be extended to non-uniform size circle and sphere packing problems
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such as those studied in (Grosso et al. (2010), Pintér et al. (2018), Stoyan et al. (2020))

by jointly using the present perturbation strategies and the swap moves that exchange the

positions of two different-size circles or spheres. Third, the thresholding search framework

and the accompanying perturbation strategy are of a general nature. As such, they can be

applied to the global optimization of any non-convex function having a first derivative.
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Hoos HH, Stützle T (2000) Local search algorithms for SAT: An empirical evaluation. Journal of Automated

Reasoning 24(4):421–481.



Lai, Hao, Xiao and Glover: Packing Equal Circles and Spheres in a Container
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2022-01-OA-004, accepted 31 January 2023 33

Huang W, Ye T (2010) Greedy vacancy search algorithm for packing equal circles in a square. Operations

Research Letters 38(5):378–382.

Huang W, Ye T (2011) Global optimization method for finding dense packings of equal circles in a circle.

European Journal of Operational Research 210(3):474–481.

Hujter M (1999) Some numerical problems in discrete geometry. Computers & Mathematics with Applications

38(9-10):175–178.

Joós A (2009) On the packing of fourteen congruent spheres in a cube. Geometriae Dedicata 140(1):49–80.
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