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Abstract

Global optimization of high-dimensional non-convex functions arises in many important
applications and researches. In this paper, we focus on the minimum energy configuration
problem on the unit sphere, whose goal is to determine the minimum-energy configuration ofN
particles interacting via the standard Coulomb potential or the discrete logarithmic potential on
the unit sphere. This is a classic global optimization problem with many important applications
in mathematics, physics, biology and chemistry, and is one of the 18 great mathematical
problems for the twenty-first century listed by the Fields Medal winner S. Smale (Smale,
1998). To determine the minimum-energy configuration for these two potential functions, we
propose a population-based global optimization algorithm that combines a two-phase local
optimization method with early-stopping strategy, a random perturbation operator, a distance-
based population update strategy using a novel distance function to measure the difference
between solutions, and a population rebuilding method. Computational results show that the
proposed algorithm is very competitive compared to the best known results in the literature. In
particular, it improves the best-known result for one instance of the classic Thomson problem
(i.e., N = 360) widely studied in the literature. The configurations of instances with up to
N = 500 particles are systematically optimized for the first time by the proposed algorithm
for the discrete logarithmic potential. The comparative study shows that the putative optimal
configurations have a high similarity for the Coulomb and logarithmic potentials and that the
defects play an important role in reducing the energy of configuration. The energies of particles
on the putative optimal configurations are analyzed for the studied logarithmic potential.

1. Introduction
Global optimization of high-dimensional non-convex functions with a first-order derivative arises in a number of

researches and applications, such as the predictions of ground-state structures of clusters, crystals, and biomolecules
(Wei, 2019; Doye, Leary, Locatelli and Schoen, 2004; Wales and Scheraga, 1999; Wales and Ulker, 2006). In general,
global optimization is computationally challenging due to the fact that the number of local minima on the potential
energy surface (PES) of the objective function increases exponentially as the problem size increases, the highly
competing local minima may be separated from each other by high barriers on the PES (Doye, Miller and Wales,
1999), while the global optimum solution may locate at a very narrow and deep funnel on the PES of objective
function. A large number of studies have been dedicated to global optimization problems, such as those reported
in (Shao, Shangguan, Tao, Zheng, Liu and Wen, 2018; She, Fournier, Yao, Wang and Hu, 2022; Dao, Abhary and
Marian, 2017; Leary, 2000; McAllister and Floudas, 2010; Wales and Scheraga, 1999). In this paper, we focus on the
minimum energy configuration problem on the unit sphere (Calkin, Kiang and Tindall, 1986; Smale, 1998), which is
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a classical global optimization problem with a number of important applications in e.g. mathematics, physics, biology
and chemistry.

Given N identical particles !N = {r1, r2,… , rN} interacting via a pairwise potential E(!N ) on the surface of
the unit sphere S2 = {r ∈ R3 ∶ ‖r‖ = 1}, the minimum energy configuration problem on the unit sphere is to
determine the lowest-energy configuration of these N particles. In mathematics and physics, one of the most widely-
studied potentials is the Riesz s-energy (Saff and Kuijlaars, 1997). Specifically, given N identically charged particles
!N = {r1, r2,… , rN} confined on the unit sphere S2 and a positive real-valued number s (s > 0), the Riesz s-energy
Es(!N ) of !N is defined as (Hardin and Saff, 2005):

Es(!N ) =
N−1
∑

i=1

N
∑

j=i+1

1
‖ri − rj‖s

. (1)

where ‖ri − rj‖ =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2, (xi, yi, zi) and (xj , yj , zj) denote respectively the Cartesian
coordinates of the particles ri and rj .

When s = 1, the Riesz s-energy is the well-known Coulombic potential, and the corresponding global optimization
problem is called the Thomson problem which was originally proposed by J.J. Thomson in 1904 (Thomson, 1904).

When s approaches to 0, the potential function takes another formulation that is called the discrete logarithmic
potential and can be written as follows (Dragnev, Legg and Townsend, 2002):

E0(!N ) =
N−1
∑

i=1

N
∑

j=i+1
log( 1

‖ri − rj‖
) (2)

It is worth noting that the minimization of the potential function E0(!N ) is equivalent to the maximization of the
product of distances between particles (i.e.,

∏

i<j ‖ri − rj‖) (Smale, 1998).
Determining the minimum energy configuration of N particles interacting via the Coulombic potential or the

discrete logarithmic potential on the unit sphere is a very difficult task. This is especially true when large instances
with N ≥ 400 are considered. This is because the number of local optimal solutions increases exponentially with the
number (N) of particles (Erber and Hockney, 1995), and the computational complexity of locating a local minimum
solution grows quadratically with N and thus the local optimizations are very time-consuming even for the medium
instances. Thus, these problems are usually used as benchmark systems for evaluating the performance of various
global optimization algorithms in the literature. Moreover, together with several other well-known mathematical
problems like the Riemann Hypothesis, Poincaré conjecture and the computational complexity problem “Does P =
NP?", the minimum energy configuration problems on the unit sphere with the Coulombic and the discrete logarithmic
potentials are among the 18 great mathematical problems for the twenty-first century listed by the Fields Medal winner
S. Smale (Smale, 1998).

The minimum energy configuration problems on the sphere with the Coulombic potential and the discrete
logarithmic potential have numerous applications in various fields. For example, the global minimum solutions of
the Thomson problem (with the Coulombic potential) are typically related to the ground-state structures of spherical
viruses (Baker, Olson and Fuller, 1999; Li, Roy, Travesset and Zandi, 2018; Martín-Bravo, Llorente, Hernández-Rojas
and Wales, 2021; Zandi, Dragnea, Travesset and Podgornik, 2020), so determining the global minimum solution
of the Thomson problem can help to determine the geometrical structures of many spherical viruses. A number
of molecules have a spherical structure (e.g., C60 molecules), which corresponds to the global minimum solution
of the corresponding Thomson problem (Kroto, Heath, O’Brien, Curl and Smalley, 1985; Wales, McKay and
Altschuler, 2009; Saff and Kuijlaars, 1997), where the atoms are arranged on a spherical surface. In electrostatics,
locating identical point charges on a sphere so that the Coulomb potential of the system is minimized is an important
and challenging problem (Bowick, Cacciuto, Nelson and Travesset, 2002; Saff and Kuijlaars, 1997). In addition,
determining the global minimum solution of the logarithmic potential on the sphere is a relevant issue in the field of
computational complexity (Smale, 1998; Saff and Kuijlaars, 1997).

Due to the practical importance and computational difficulty of the minimum energy configuration problems on
the sphere, a large number of theoretical and computational studies have been reported in the literature to predict
and describe the global minimum solutions. Indeed, research on more efficient algorithms able to better solve these
problems will significantly contribute to finding better solutions to many practical problems as well. In this work, we
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focus on computational methods and provide the following related literature review. For the related theoretical studies,
the interested readers are referred to (Katanforoush and Shahshahani, 2003; Saff and Kuijlaars, 1997).

In 1986, Wille proposed a simulated annealing algorithm for the Thomson problem and reported the first putative
optimal configurations for N ≤ 20 (Wille, 1986). In 1994, Altschuler et al. presented a Monte Carlo algorithm based
on the Metropolis accepting criterion and reported the putative optimal solutions for 66 ≤ N ≤ 100. In 1995, Erber
and Hockney further improved the best-known results for N = 69, 86, 87. In 1996, Morris et al. introduced a genetic
algorithm and reported the putative optimal solutions for N ≤ 200 (Morris, Deaven and Ho, 1996).

In 1997, Altschuler et al. studied the possible global minimum lattice configurations for the Thomson problem
(Altschuler, Williams, Ratner, Tipton, Stong, Dowla and Wooten, 1997) and conjectured that the icosahedral lattice
configurations are the global minimum solutions for N = 10 (p2 + q2 + pq) + 2 where p and q are positive integers.
However, by improving the best-known results for some large instances, Pérez-Garrido et al. subsequently pointed out
that the icosahedral lattice configurations are not necessarily the global minimum configurations for these N values.
To systematically analyze the global minimum structures of the Thomson problem, in 2006 and 2009 (Wales and
Ulker, 2006; Wales et al., 2009), Wales et al. predicted the global minima for a number of instances by the popular
basin hopping algorithm (Wales and Doye, 1997). Their computational results further confirmed that the icosahedral
lattice configurations are not necessarily the global minimum configurations especially for large instances and that
adding dislocation defects to icosahedral lattice configurations is able to efficiently lower their energies.

In 2015, Calef et al. investigated the number of local minima for the generalized Thomson problem (Calef,
Griffiths and Schulz, 2015) and confirmed that the number of local minima grows exponentially with the number N
of particles. At the same year, Mehta et al. explored the potential energy landscape of the Thomson problem via the
Newton homotopies method (Mehta, Chen, Morgan and Wales, 2015). In 2016, Mehta et al. further showed that the
local minima are always close to the global minimum solution for small instances with N ≤ 147, and that the set
of local minima exhibits a small-world network (Mehta, Chen, Chen, Kusumaatmaja and Wales, 2016). In 2018,
Ridgway and Cheviakov proposed an iterative optimization method for locating the global minimum solution for
four potential functions, including the Coulombic and discrete logarithmic potentials, and reported the putative global
minimum for small instances with N ≤ 65 for these potentials (Ridgway and Cheviakov, 2018).

As demonstrated above, the minimum energy configuration problem studied in this work is an important
mathematical problem as well as a very representative global optimization problem. However, due to their high
computational complexity, most of existing computational studies focus on small instances (with N ≤ 200), and there
are few computational studies for solving large instances especially for the discrete logarithmic potential. The present
study aims to fill this gap by proposing an efficient global optimization algorithm for dealing with large instances for
both the Coulombic and the discrete logarithmic potentials and making a meaningful analysis for the putative optimal
configurations found by the algorithm.

The main contributions of this work are summarized as follows. First, we propose a global optimization algorithm
for the minimum energy configuration problems on the unit sphere with the Coulombic and the discrete logarithmic
potentials, which can be viewed a new variant of the popular population-based basin-hopping (PBH) algorithm
(Grosso, Locatelli and Schoen, 2007). The algorithm combines a two-phase local optimization using an early-stopping
technique and a specific perturbation operator and is reinforced by a distance-based population updating strategy and
a population rebuilding method. Second, we report the putative optimal configurations with up to N = 500 particles
for the discrete logarithmic potential and analyze the structural evolution and feature of these configurations as the
number of particles increases. Third, due to its general nature, the proposed algorithm can be applied to solve other
global optimization problems, including, in particular, the general Riesz s-energy. Finally, since the studied minimum
energy problems have a number of relevant applications in diverse fields, the proposed algorithm can contribute to
research in these applied fields, and the program codes of the proposed algorithm that we make publicly available will
facilitate such applications.

The rest of paper is organized as follows. Section 2 describes the proposed algorithm in detail. In Section 3,
the algorithm is evaluated based on a number of popular benchmark instances. In Section 5, we analyze two key
algorithmic components and shed light on their impacts on the performance of the algorithm. Section 4 investigates
the structural evolution and features of putative optimal configurations for the discrete logarithmic potential, makes
a comparative study between the Coulomb potential and the discrete logarithmic potential on the putative optimal
configurations, and analyzes the energy distribution of particles of the putative optimal configurations for the
logarithmic potential. Finally, we summarize the present work and provide research perspectives in the last section.
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2. Global Optimization Method
Evolutionary algorithms with gradient-based local optimization are shown to be very efficient for global

optimization problems with a differentiable objective function and a large number of local minima, such as those
in (Gudla and Ganguli, 2005; Shang, Zhang and Yang, 2021; Vitela and Castaños, 2012; Wales and Scheraga,
1999), where the most representative example is the population-based basin-hopping (PBH) algorithm (Grosso
et al., 2007) that has been applied to a number of global optimization problems in the literature, such as the circle
packing problem (Grosso, Jamali, Locatelli and Schoen, 2010), the molecular distance geometry problems (Grosso,
Locatelli and Schoen, 2009), and the structural optimization of atomic clusters (Grosso et al., 2007). In this section,
we present a global optimization algorithm called the hybrid evolutionary algorithm (HEA), which can be seen as
a strengthened variant of the PBH algorithm (Grosso et al., 2007), for the minimum energy configuration problem
on the unit sphere with the Coulombic and discrete logarithmic potentials. The algorithm combines a gradient-based
local optimization method and the population-based evolutionary search framework. We first introduce the general
approach of transforming the initial constrained problems into a unconstrained problem and then explain how the
transformed problem is solved by the proposed algorithm.

2.1. Unconstrained formulation of constrained optimization problems
Global optimization of a system with N particles is a hot research topic in physics, chemistry and biology, such as

the structural optimization of atomic and molecular clusters (Doye et al., 2004; Leary, 2000; Lyakhov, Oganov,
Stokes and Zhu, 2013). However, finding the lowest-energy configuration of N particles on the unit sphere is a
constrained optimization problem that is difficult for popular local optimization methods like the L-BFGS method
(Liu and Nocedal, 1989). To circumvent this difficulty, we follow the idea of (Mehta et al., 2015; Wales and Ulker,
2006) and convert this constrained optimization problem into a unconstrained optimization problem which can be
conveniently tackled with local optimization methods. The unconstrained optimization problem is obtained by the
following spherical coordinate transformation:

⎧

⎪

⎨

⎪

⎩

x = sin'cos�; (3)
y = sin'sin�; (4)
z = cos'; (5)

where (x, y, z) and (', �) represent respectively the cartesian coordinates and the spherical coordinates of a particle r
on the unit sphere.

Thus, using the spherical coordinates, the potential function of the Thomson problem defined by Eq. (1) can be
written as:

ETℎ(', �) =
N−1
∑

i=1

N
∑

j=i+1

1
(2 − 2sin'isin'jcos(�i − �j) − 2cos'icos'j)1∕2

(6)

and the discrete logarithmic potential defined by Eq. (2) can be written as:

ELog(', �) = −
1
2

N−1
∑

i=1

N
∑

j=i+1
log(2 − 2sin'isin'jcos(�i − �j) − 2cos'icos'j) (7)

where ' = ('1, '2,… , 'N ) ∈ RN , � = (�1, �2,… , �N ) ∈ RN .
It is easy to observe from Eqs. (6) and (7) that in the spherical coordinate system the minimization of both the

Coulomb and logarithmic potentials is a unconstrained global optimization problem with 2N variables, where N
is the number of particles. It should be noted that the converted problems Eqs. (6) and (7) are equivalent to the
original problems given by Eqs. (1) and (2), respectively, i.e., the global and local minima of the original problems
do not change under the unconstrained formulations. Thus, the proposed algorithm employs Eqs. (6) and (7) as its
evaluation functions f to measure the fitness of each candidate solution, where a candidate solution denoted by
('1, �1, '2, �2,… , '2, �2) corresponds to a configuration of N particles on the unite sphere S2.
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Algorithm 1: General procedure of the hybrid evolutionary algorithm
Input: Number of particles to be distributed (N), maximum time limit (tmax), the search depth (�), precisions

for the local search method {�1, �2}
Output: The best configuration found (S∗)

1 (POP ,Δf )← InitialP opulation() /* Algorithm 2 */

2 S∗ ← argmin{f (s) ∶ s ∈ POP }
3 while time() ≤ tmax do
4 NoImprove← 0
5 while NoImprove ≤ � ∧ time() ≤ tmax do
6 S ← RandomlySelect(POP )
7 S ← Perturbation(S) /* Algorithm 4 */

/* Two-phase local optimization */
8 S ← LocalOptimization(S, �1)
9 if f (S) < f (S∗) + 1.5 × Δf then

10 S ← LocalOptimization(S, �2)
11 end
12 PopulationUpdate(S, POP ) /* Algorithm 5 */
13 if f (S) < f (S∗) then
14 S∗ ← S /* Save the best solution found */
15 NoImprove← 0
16 else
17 NoImprove← NoImprove + 1
18 end
19 end
20 POP ← RebuidP opulation(POP ) /* Algorithm 3 */
21 end
22 return S∗

2.2. General approach
The proposed HEA algorithm consists of five components: population initialization, population rebuilding, two-

phase local optimization, perturbation, and population updating. In fact, the HEA algorithm shares the similar spirit
with the popular population-based basin-hopping (PBH) algorithm (Grosso et al., 2007), but differs from the PBH
algorithm by its early-stopping strategy, the population rebuilding strategy, and the distance function that measures the
difference between solutions. The pseudo-code of the algorithm is given in Algorithm 1, where POP is the current
population, and S and S∗ are the current solution and the best solution found so far, respectively.

The algorithm starts from the initial population (line 1) and performs two nested ’while’ loops until the time limit
tmax is reached (lines 3–21). At each iteration of the outer ’while’ loop, the algorithm first improves the population
using the inner ’while’ loop until the search stagnates and the population converges (lines 5–19), i.e., the best solution
S∗ cannot be further improved during � consecutive perturbations in the inner ’while’ loop, where � is a parameter
called the search depth. Then, to diversify the search, the algorithm rebuilds the population while keeping a part of
high-quality solutions in the new population (line 20).

At each iteration of the inner ’while’ loop, the algorithm first selects randomly an individual from the population
POP as the parent solution and then mutates it by a perturbation operator (lines 6–7). Subsequently, the perturbed
solution is improved by the two-phase local optimization (lines 8–11). Specifically, the perturbed solution S is
improved by the local optimization with a low precision �1 (line 8). This solution is further improved by the
local optimization procedures with a high precision �2 if it is identified as a very promising solution (i.e., f (S) <
f (S∗) + 1.5 × Δf ), where S∗ is the best solution found so far and Δf is the average difference between the objective
values of solutions obtained by the local optimization with precisions �1 and �2 in the initial population. With the
help of this two-phase optimization technique, non-promising candidate solutions will be ignored by the second local
optimization phase, thus largely saving the computational effort and speeding up the search. Finally, the resulting
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solution from the local optimization is used to update the population POP by a distance-based population updating
strategy (line 12).

2.3. Local optimization method
As its local optimization component, the algorithm employs a limited-memory quasi-Newton method (Liu and

Nocedal, 1989) called the L-BFGS algorithm, which is known as one of the most efficient local optimization methods
for unconstrained optimization with the first derivative. The stopping criterion of the L-BFGS method is that the
maximum norm ‖g‖∞ of the gradient g(X) of the objective function E(X) is smaller than a given precision � (i.e.,
‖g‖∞ ≤ �). Note that the current L-BFGS algorithm uses a line search method from (Hager and Zhang, 2005, 2013)
to determine the step size of each iteration.

In addition, it should be mentioned that our algorithm performs the L-BFGS algorithm in a two-phase fashion
to accelerate the search process and avoid unnecessary computational effort (i.e., performing the local optimizations
from the promising points). At the first phase, a low precision �1 is used as an early-stopping condition. Then, the
second phase is performed using a high precision �2 to further raise the solution quality if and only if the solution
returned by the first phase is identified as a promising candidate solution (see Section 2.2 for the criterion of high-
quality solutions). In Section 5.2, we experimentally verify the merit of this two-phase local optimization with the
early-stopping strategy.

It is worth noting that the two-phase optimization strategy is a very general heuristic and can be applied to a number
of global optimization problems, such as the sphere packing problem and the structural optimization of atomic clusters
(Addis, Locatelli and Schoen, 2008; Doye et al., 2004).

2.4. Population initialization and regeneration
To obtain an initial population POP composed of np individuals (solutions) at the different stages of the algorithm,

the proposed algorithm employs two methods. At the beginning, the algorithm uses the first method described in
Algorithm 2 to generate the initial population, where each solution in POP is created by distributing randomly the N
particles on the surface of unit sphere S2 and then improving it by the local optimization method. It should be noted
that an individual in the population is denoted by ('1, �1, '2, �2,… , 'N , �N ) using the spherical coordinate system in
order to facilitate the local optimization of the objective function, where ('i, �i) represents the coordinate of particle
ri. At this stage, for each solution in POP , local optimization is performed with different precisions �1 and �2 to
improve its quality, and the objective difference Δf between the resulting solutions is recorded and then applied by
the subsequent two-phase local optimization to speed up the search process.

When the population converges and the search stagnates, the algorithm employs the second initialization method to
rebuild the population, while keeping several high-quality solutions in the new population. Concretely, the individuals
in the population are first sorted according to their objective values, and the first � × np best individuals are kept in the
population, where � is a parameter which is empirically set to 0.2. Then each remaining individual is regenerated
by distributing randomly the N particles on the surface of the unit sphere and is further improved by the local
optimization. The pseudo-code of rebuilding the population is provided in Algorithm 3.

2.5. Perturbation method
To jump out of the local optimal traps, the algorithm employs a random perturbation operator to change the current

solution. The pseudo-code of the perturbation is given in Algorithm 4. Given a candidate solution indicated by the
spherical coordinate (�1, '1, �2, '2,… , �N , 'N ), the perturbation operator shifts each coordinate of the candidate
solution in the interval [−�, �] to produce a new offspring solution (lines 3–4), where � = �0 × �min is called the
perturbation strength with �0 being a parameter and �min =Mini<j{arccos(r⃗i ⋅ r⃗j)} being the minimum angle between
two particles (r⃗i and r⃗j represent respectively the cartesian coordinates of particles ri and rj).

2.6. Population updating strategy
When a local minimum solution is returned by the local optimization, the algorithm employs a distance-based

population updating (DPU) strategy to determine how the population is updated. Following (Hao, 2012; Grosso et al.,
2007), the DPU strategy aims to not only maintain high-quality solutions in the population, but also keep a suitable
population diversity. The pseudo-code of the DPU strategy is provided in Algorithm 5.

Given an offspring solution Soff and the current population POP , the DPU strategy first identifies the worst
solution Sw in POP and the closest solution Sc to Soff (lines 2–4). Then, the average distance (Davg) between
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Algorithm 2: Population initialization method

1 Function InitialP opulation()
Input: Size of population (np), the precisions of local search {�1, �2}
Output: The initial population POP , the average objective difference between the solutions obtained by two

local searches with different precisions (Δf )
2 Δf ← 0
3 for k← 1 to np do
4 for i ← 1 to N do
5 POP [k].�i ← rand(0, �) /* rand(0, �) denotes a random number in (0, �) */
6 POP [k].'i ← rand(0, 2�)
7 end
8 f1 ← LocalOptimization(POP [k], �1)
9 f2 ← LocalOptimization(POP [k], �2)

10 Δf ← Δf + (f1 − f2)∕np
11 end
12 return {POP , Δf }

Algorithm 3: Population rebuilding method

1 Function RebuidP opulation()
Input: Input population POP , size of population (np), parameter �, precision of local search (�1)
Output: New population POP

2 QuickSort(POP ) /* Sort the individuals in POP according to their objective
values in a descending order */

3 for k← 1 to (1 − �) × np do
4 for i ← 1 to N do
5 POP [k].�i ← rand(0, �)
6 POP [k].'i ← rand(0, 2�)
7 end
8 LocalSearcℎ(POP [k], �1)
9 end
/* The first � × np best individuals of input population are kept in the
new population */

10 return POP

the solutions in the population is calculated (line 5) and POP is updated as follows. If Soff is better than Sc and the
distance between Soff and Sc is smaller than dcut×Davg , where dcut is a parameter, Soff replaces the closest solution
Sc (lines 6–7). If E(Soff ) < E(Sw) and the distance between Soff and Sc is larger than dcut ×Davg , Soff replaces
the worst solution Sw in the population (lines 8–9). The population is kept unchanged in other cases.

The distance metric between solutions is a key issue for geometry optimization problems since geometrical
configurations of solutions can be rotated arbitrarily and do not change in essence. In this study, to deal with the
minimum-energy configuration problem on the sphere, we use the energies of particles to define the distance between
solutions, which differs from the popular strategies in the literature that use the information of coordinates or neighbors
of particles to define the distance between solutions. Given two solutions Sa and Sb (i.e., two configurations of N
particles on the unite sphere), the distance between them is calculated in the following three steps. First, we calculate
the energy e(i) of each particle ri for each of two solutions as follows:

e(i) =
∑

j≠i
e(i, j) (8)
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Algorithm 4: Perturbation method

1 Function Perturbation()
Input: Input solution (S), the perturbation strength (�)
Output: Perturbed solution S

2 for i ← 1 to N do
3 S.�i ← S.�i + rand(−�, �) /* rand(−�, �) denotes a random number in (−�, �) */
4 S.'i ← S.'i + rand(−�, �)
5 end
6 return S

Algorithm 5: Population updating method

1 Function PopulationUpdate()
Input: Offspring solution So, population POP , distance cutoff factor dcut
Output: Updated population POP

2 Sw ← argmax{E(S) ∶ S ∈ POP } /* Sw denotes the worst solution in POP */
3 Sc ← argmin{distance(S, Soff ) ∶ S ∈ POP } /* Sc denotes the closest solution to So

in POP */
4 dmin ← distance(Sc , Soff ) /* dmin is the distance between So and Sc */

5 Davg ←
∑

i<j distance(POP [i],POP [j])
np(np−1)∕2 /* Davg denotes the average distance between

solutions in POP */
6 if (E(Soff ) < E(Sc)) ∧ (dmin ≤ dcut ×Davg) then
7 POP ← POP ∪ {Soff} ⧵ {Sc}
8 else if E(Soff ) < E(Sw)) ∧ (dmin > dcut ×Davg) then
9 POP ← POP ∪ {Soff} ⧵ {Sw}

10 end
11 return POP

where e(i, j) represents the energy between particles ri and rj and is defined as 1
‖ri−rj‖

and log 1
‖ri−rj‖

in which

‖ri − rj‖ denotes the Euclidean distance between the particles ri and rj for the Coulomb and logarithmic potentials,
respectively. Then, the energies {e(1), e(2),… , e(N)} of the N particles are sorted in an ascending order for Sa and
Sb respectively. Finally, the distance between Sa and Sb is defined by:

distance(Sa, Sb) =
N
∑

i=1
|ea(i) − eb(i)| (9)

As indicated in Section 2.4, a candidate solutionS and a particle ri inS are represented as ('1, �1, '2, �2,… , 'N , �N )
and ('i, �i) respectively, using the spherical coordinate system. Thus, to calculate the Euclidean distance ‖ri − rj‖
between two particles ri and rj , the spherical coordinates of the particles are first transformed into their Euclidean
coordinates (xi, yi, zi) and (xj , yj , zj).

2.7. Discussions
The proposed HEA algorithm shares some similarities with the popular PBH algorithm (Grosso et al., 2007) and

can be considered as an extended variant of PBH. However, HEA differs from the PBH algorithm in the following
aspects. First, the proposed algorithm uses a two-phase local optimization method with an early-stopping strategy to
speed up the search process. Second, when the population converges and the search stagnates, the proposed algorithm
employs a population rebuilding strategy to maintain a healthy population, while retaining several elite individuals in
the new population. Third, the proposed algorithm uses an energy-based distance function to measure the difference
between solutions. As we show in the experimental study in the next section, the proposed HEA algorithm performs
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remarkably well when it is applied to solve a large number of instances of the minimum energy configuration problems
with the Coulombic potential and the discrete logarithmic potential on the unit sphere.

3. Experimental Evaluation
We evaluate the performance of the proposed HEA algorithm on a set of benchmark instances widely used in the

literature.

3.1. Parameter settings and experimental protocol
The HEA algorithm employs several parameters whose default settings were empirically determined by a

preliminary experiment and were described in Table 1. In this study, all computational experiments were executed
with the default settings of parameters.

The HEA algorithm1 was implemented in the C++ language and all computational experiments in this study
were executed on a computer with an Intel(R) Xeon (R) Platinum 9242 CPU (2.3 GHz), running a Linux operating
system. To assess the average performance of our algorithm, we employed 20 Thomson instances in the range of
300 ≤ N ≤ 500 as our test bed and ran the algorithm 5 times to solve each instance. Moreover, to locate the global
minimum configuration for the discrete logarithmic potential, we ran the HEA algorithm 5 times on each instance
with N ≤ 500 and several large instances with N > 500. The stopping condition of the algorithm is a maximum time
limit tmax whose settings depend on N and are shown in Table 2.

3.2. Computational Assessment on the Coulomb potential
In order to verify whether the proposed algorithm is able to locate global minimum solutions in general cases

for different problem instances and to preliminarily evaluate the performance of the algorithm, we conducted an
experiment based on a set of 20 selected Thomson instances with the Coulomb potential and made a comparison
between our results and the best-known solutions reported in the literature and publicly available on the Cambridge
Cluster Database (Wales, 2022). It is worth noting that the best-known solutions of these instances were obtained by
the popular basin-hopping algorithm and extensive computational experiments in previous studies (Wales and Ulker,
2006; Wales et al., 2009), under a stopping condition of up to 105 local optimization steps per run. According to
(Wales and Ulker, 2006), if these best-known solutions are not global minima, they are close enough to the global
minima for structural analysis to be relevant. These lowest energy solutions are generally difficult to find, and this is
especially true when N > 300.

The computational results of the HEA algorithm over 5 runs are summarized in Table 3. The first two columns give
the number of particles (N) and the best-known result (BKR) in the literature, and the results of our HEA algorithm
are reported in the last five columns, including the best objective value over 5 runs (Ebest), the average objective value
(Eavg), the worst objective value (Eworst), the standard deviation of objective values obtained (�), and the average
computational time (time(s)) in seconds to reach its final result. Row ‘#Better/#Equal/#Worse’ indicates the number
of instances for which our HEA algorithm obtained a better, equal or worse result compared to the best-known result
in the literature.

Table 3 shows that the proposed HEA algorithm is able to find the best-known results for all 20 instances tested
except forN = 380, 460 with small standard deviations � ≤ 0.05. These results were found under much less generous
time limits (e.g., 3 × 104 local optimization steps for HEA against 105 local optimization steps for previous studies
(Wales and Ulker, 2006; Wales et al., 2009)). To reach its best results, HEA requires no more than 3 hours on our
2.3 GHz computer. The results of this experiment ensure the validity of the structural analysis of configurations in the
following section.

Finally, we mention that we have also tested the proposed algorithm on the general Riesz s-energy function
defined in Section 1 (Eq. (1)) when s = 2. The results showed that our algorithm performs similarly to the cases
with the Coulombic potential (s = 1) and the discrete logarithmic potential (s tends to 0). That is, the algorithm can
consistently find the best-known solutions for all tested instances from the literature (Ridgway and Cheviakov, 2018).

1The the program codes of our algorithm and the best solutions found in this work will be available at https://github.com/
XiangjingLai/minimum-energy-configurations
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Table 1
Settings of parameters

Parameters Section Description Values
� 2.2 search depth 500
�1 2.4 precision of local optimization 10−2

�2 2.4 precision of local optimization 10−5

np 2.4 size of population 50
� 2.4 parameter for population rebuilding 0.2
�0 2.5 parameter to control perturbation strength 0.5
dcut 2.6 coefficient used in population updating 0.5

Table 2
Summary of the maximum time limits used

N tmax(s) N tmax(s)
N ≤ 100 200 301 ≤ N ≤ 350 200 × 25

101 ≤ N ≤ 150 200 × 2 351 ≤ N ≤ 400 200 × 26

151 ≤ N ≤ 200 200 × 22 401 ≤ N ≤ 450 200 × 27

201 ≤ N ≤ 250 200 × 23 451 ≤ N ≤ 500 200 × 28

251 ≤ N ≤ 300 200 × 24 N > 500 105

Table 3
Computational results and comparison on 20 representative Thomson instances in the range of 300 ≤ N ≤ 500. In
terms of Ebest, results equaling the best-known values (BKR) in the literature are indicated in bold.

N BKR Ebest Eavg Eworst � time(s)
310 45036.4985723 45036.4985723 45036.4985723 45036.4985723 0.000000 156
320 48039.4689302 48039.4689302 48039.4689303 48039.4689303 0.000000 1238
330 51140.0513603 51140.0513603 51140.0513603 51140.0513604 0.000000 457
340 54338.4944598 54338.4944598 54338.5013247 54338.5287839 0.013730 1606
350 57634.5963953 57634.5963953 57634.5963953 57634.5963953 0.000000 662
360 61028.5522272 61028.5522272 61028.5522272 61028.5522273 0.000000 1110
370 64520.0471868 64520.0471868 64520.0471868 64520.0471868 0.000000 646
380 68109.8414480 68109.8676249 68109.8676250 68109.8676250 0.000000 3725
390 71797.0353361 71797.0353361 71797.0522364 71797.1198380 0.033801 2400
400 75582.4485123 75582.4485123 75582.4487417 75582.4496592 0.000459 3886
410 79465.7432086 79465.7432086 79465.7432086 79465.7432086 0.000000 3092
420 83446.9975990 83446.9975990 83446.9994932 83447.0023344 0.002320 5440
430 87526.1187029 87526.1187029 87526.1187029 87526.1187029 0.000000 2893
440 91703.3295563 91703.3295563 91703.3554818 91703.3776659 0.021337 1349
450 95978.4413763 95978.4413763 95978.4563615 95978.5163022 0.029970 2936
460 100351.7631087 100351.7671579 100351.7806085 100351.7880156 0.007636 4836
470 104822.8863243 104822.8863243 104822.8863243 104822.8863244 0.000000 8516
480 109392.3186786 109392.3186786 109392.3387663 109392.4191169 0.040175 7444
490 114059.8425562 114059.8425562 114059.8582967 114059.8622319 0.007870 5683
500 118825.4625422 118825.4625422 118825.4625422 118825.4625422 0.000000 8426
#Better/#Equal/#Worse 0/18/2

4. Structural Analysis and Comparison of Two Studied Potentials
In this section, we turn to an analysis and comparison of the putative optimal configurations for the two

classic potentials, i.e., the Coulomb and discrete logarithmic potentials. Particularly, we will focus on the results
of logarithmic potential because few experimental result is available in the present literature for this potential.

4.1. Comparison between the putative optimal configurations of the two potentials
The putative optimal configurations of the Thomson problem with the Coulombic potential have been widely

investigated in the literature. In particular, all putative optimal configurations of the Thomson problem are online
available at the Cambridge energy landscape database (Wales, 2022) for N ≤ 400. However, the studies for the
putative optimal configurations of the logarithmic potential is very scarce in the literature, although the logarithmic
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(a) Log(N = 280) (b) Tℎ(N = 280) (c) Log(N = 362) (d) Tℎ(N = 362)

(e) Log(N = 383) (f) Tℎ(N = 383) (g) Log(N = 385) (h) Tℎ(N = 385)

(i) Log(N = 395) (j) Tℎ(N = 395) (k) Log(N = 398) (l) Tℎ(N = 398)

Figure 1: Comparison between the putative global minima for logarithmic and Coulombic potentials on several
representative instances.

potential is much more widely investigated in mathematics than the Coulombic potential. This section aims to make
a systematical comparison between the best-known configurations of the logarithmic and Coulombic potentials for
N ≤ 400.

By carefully comparing the best-known configuration of the Coulombic potential and the best configuration found
in this work for the logarithmic potential, we have an interesting finding that these two potentials have the same best
configuration for all but 43 instances in this range, which means that these two potentials have a high similarity in the
ground-state configurations.

For the 43 instances for which the best configurations differ for the two potentials, the comparative results are
summarized in Table 4. The first two columns give the sizeN and the best result found in this work for the logarithmic
potential, the third column shows the energy of the configuration corresponding to the result of column 2 in terms of
the Coulombic potential, and the fourth column indicates the best-known result for the Coulombic potential. One
can observe two phenomena from Table 4. First, for these 43 sizes, the best-known configuration of the logarithmic
potential also corresponds to a very low energy in the Coulombic potential after a local optimization, which is very
close to the best-known result of the Thomson problem with the Coulombic potential as its potential function. Second,
the number of instances for which the two potentials have different best-known configurations rapidly increases as N
increases.
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(a) Best-known configuration (b) Improved configuration

Figure 2: Best-known configuration (E = 61028.5522271) and the improved configuration (E = 61028.5290983) for the
Thomson problem with N = 360.

To have an intuitive impression for the best-known configurations of the two potentials and the differences between
them, we give in Fig. 1 a Voronoi representation of the best-known configurations of six selected sizes for the two
potentials, where the configurations for the logarithmic and Coulombic potentials are marked by ‘Log’ and ‘Th’,
respectively. For the current Voronoi representation with N particles, the spherical surface S2 is partitioned to N
disjoint cells C1, C2,… , CN , where each cell Ci corresponds to a particle ri and a polygon which is colored according
to its number of edges. Formally, a cell Ci on S2 is defined as follows (Saff and Kuijlaars, 1997):

Ci = {r ∈ S2 ∶ ‖r − ri‖ = min1≤k≤N‖r − rk‖} (10)

To identify the difference between spherical configurations, we focus on an important feature, i.e., the topological
defects whose nature and concentration govern a number of characteristics such as mechanical strength, electrical
conductivity, optical properties, and crystal growth rates (Wales and Ulker, 2006). In fact, an alveolate packing of
cells is very perfect, where all cells are hexagonal (i.e., all particles have six nearest neighbors). However, according to
Euler’s theorem, it is impossible that all cells of a spherical configuration are hexagonal. In other words, it is inevitable
that there exist a number of quadrilateral, pentagonal and heptagonal cells. Thus, these non-hexagonal cells and their
combinations are considered as the topological defects of configuration and are widely used to characterize spherical
configurations in the previous studies (Pérez-Garrido, Dodgson, Moore, Ortuno and Diaz-Sanchez, 1997; Wales and
Ulker, 2006; Wales et al., 2009). Concretely, a topological defect on the configuration can be defined as a building
block of one or several adjacent non-hexagonal cells.

Fig. 1 shows that the best-known configuration generally has more large defects with the Coulombic potential than
with the logarithmic potential for the same size N , which indicates the difference between the two potentials on the
ground-state configurations.

In addition, by comparing the best results of the two potentials for N ≤ 400, we find that the best configuration of
the logarithmic potential is consistent with that of the Coulombic potential for N = 360. However, the energy of this
configuration is lower than the best-known result in the literature for the Coulombic potential, which means that we
discovered an improved solution for the classic Thomson problem with N = 360. The Voronoi representations of our
improved solution and the previous best-known solution are given in Fig. 2, which shows that the improved solution
has less defects than the best-known solution.

For the Coulombic potential with N = 360, a great deal of computational effort has been used to search for
its global minimum solution in the literature, without finding the newly improved solution. According to the energy
landscape theory (Doye et al., 1999), the potential energy surface (PES) of the instance N = 360 of the Thomson
problem contains several competing funnels and the global minimum solution lies in a very narrow and deep funnel
which is separated from other main funnels. This feature makes it highly challenging to find the global minimum
solution or high-quality local minimum solutions that are better than the best-known solution. Therefore, the new
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Table 4
Energies of the instances for which the two potential functions have different best-known structures for N ≤ 400.

N Logarithmic Coulombic Coulombic (BKR)
56 -360.5458992 1337.0953483 1337.0949452
66 -491.4074700 1882.4420928 1882.4415253
74 -610.2670714 2387.0751671 2387.0729818
78 -674.4529942 2662.0472133 2662.0464745
86 -812.1513219 3258.2136631 3258.2116057
116 -1440.2584652 6038.8177466 6038.8155935
148 -2304.0197787 9958.4093391 9958.4060042
170 -3013.6050764 13226.6832018 13226.6810785
174 -3152.7500821 13871.1972776 13871.1870922
180 -3367.2916249 14867.1007295 14867.0999275
185 -3551.4181659 15723.7234640 15723.7200740
201 -4173.3330628 18627.5937862 18627.5912262
213 -4672.4221235 20968.6246256 20968.6120254
242 -5994.0776103 27203.8047199 27203.7992855
254 -6588.7453491 30023.2299430 30023.2228618
266 -7211.3610485 32982.9968124 32982.9836290
270 -7425.1185679 34000.6713597 34000.6484970
276 -7751.5583417 35556.6376953 35556.6333035
278 -7861.9297921 36083.0479253 36083.0368937
280 -7973.0836085 36613.2764627 36613.2695900
285 -8254.3317922 37956.2416239 37956.2394559
300 -9127.2018542 42131.2793896 42131.2641372
300 -9127.2018542 42131.2793896 42131.2641372
337 -11466.8895186 53368.7673341 53368.7548248
343 -11871.3240914 55317.0136221 55317.0070681
347 -12144.8182601 56635.4452758 56635.4365234
350 -12351.9680192 57634.6050414 57634.5963952
362 -13198.0331124 61719.0635127 61719.0519098
365 -13413.9201422 62762.0622093 62762.0612627
374 -14072.0147608 65944.3457085 65944.3296990
378 -14369.5358077 67384.1456614 67384.1420018
379 -14444.4041714 67746.5263921 67746.5082391
380 -14519.4685446 68109.8638631 68109.8414480
382 -14670.1670602 68839.4910273 68839.4702441
383 -14745.8127442 69205.7623724 69205.7419857
384 -14821.6521209 69573.0133653 69572.9897864
385 -14897.6858630 69941.2368800 69941.2195535
386 -14973.9129191 70310.4439019 70310.4221247
387 -15050.3346329 70680.6245253 70680.6036344
388 -15126.9473389 71051.7710529 71051.7709033
393 -15512.8973379 72922.5689915 72922.5410777
394 -15590.6697432 73299.6554482 73299.5933286
395 -15668.6380476 73677.6500641 73677.6284822
398 -15903.7118903 74817.6118481 74817.5835941

record-breaking solution for the case N = 360, which reduces the defects compared to the best-known solution, can
be considered as a remarkable result.

4.2. Structural evolution of the putative optimal configurations for the discrete logarithmic potential
Systematical studies about the putative optimal configurations of the logarithmic potential is still scarce, although a

large number of theoretical researches have been reported in the literature. In this section, we investigate the structural
distribution and evolution of the putative optimal configurations for the logarithmic potential. We also make the best
solutions found in this work available at the webpage indicated in footnote 1.

We checked the best configuration found for each instance for N ≤ 500 and found that the best configurations of
most instances exhibit an icosahedral configuration with 12 disclinations and a number of defects (≤ 12). Nevertheless,
we also found some other types of configurations which are given in Fig. 3 especially for small instances with
N ≤ 250. It should be mentioned that the best configurations in Fig. 3 are the same as the putative optimal solutions
of the Thomson problem in (Wales and Ulker, 2006) except for N = 174.

To have an intuitive impression for the structural evolution of the best configurations for medium-sized instances,
we give in Fig. 4 the Voronoi representation of the best configuration for several representative instances in the range
350 ≤ N ≤ 500. One observes from Fig. 4 that for these medium-sized instances, the best configurations exhibit an
icosahedral configuration with several disclinations and/or defects.

Moreover, to further show the best configurations for large instances, we also give in Fig.4 the Voronoi
representation of the best solution for 4 representative instances with N = 942, 1500, 1152 and 2000. We observe
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(a) N = 44 (b) N = 66 (c) N = 71

(d) N = 123 (e) N = 126 (f) N = 141

(g) N = 172 (h) N = 174 (i) N = 250

Figure 3: Best configurations found for representative instances with the logarithmic potential for N ≤ 250.

from the figure that these configurations are very similar to the best-known configurations of the Thomson problem
in (Wales et al., 2009). For example, for N = 942 and 1152, the best configuration contains two types of defects,
where the first type of defects consist of one heptagon and two pentagons and the second type of defects consist of
two heptagons and three pentagons. For the larger instances with N = 1500 and 2000, the best configuration contains
several ‘rosette’ defects and irregular boundaries composed of several small defects.

In summary, these observations indicate that the putative optimal configurations of the most tested instances for
the logarithmic potential have the same structural features as those of the Thomson problem (Wales et al., 2009)
and that the energy of icosahedral configurations can be reduced by introducing a number of disclinations or defects
especially for large instances.

4.3. Energy distribution of particles for the putative optimal solutions of logarithmic potential
To have an intuitive impression for the energy distribution of particles, we give in Fig. 5 the colored Voronoi

representation for the putative optimal configurations of several representative instances with the logarithmic potential,
where the cells are colored according to the energies e(i) of the corresponding particles calculated by Eq. (8). Thus the
colors of cells vary gradually according to the energies of particles. Particularly, a crimson cell means a high-energy
particle and a navy-blue cell means a low-energy particle.
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(a) N = 350 (b) N = 400 (c) N = 410 (d) N = 420

(e) N = 430 (f) N = 440 (g) N = 450 (h) N = 460

(i) N = 470 (j) N = 480 (k) N = 490 (l) N = 500

(m) N = 942 (n) N = 1152 (o) N = 1500 (p) N = 2000

Figure 4: Best configurations found for representative instances with the logarithmic potential.

We observe from Fig. 5 that the energies of particles are distributed according to some rules. First, the highest-
energy particles are always distributed in the topological defects of configuration. Second, in general cases, the energy
of particle declines gradually as its distance from the topological defects increases, thus the regions far away from
the topological defects are always of low energy. Third, very interestingly, the lowest-energy particles are generally
located in topological defects or its vicinity for the large instances.
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(a) N = 174 (b) N = 180 (c) N = 400

(d) N = 410 (e) N = 500 (f) N = 942

(g) N = 1382 (h) N = 1500 (i) N = 2000

Figure 5: Energy distribution of particles on the putative optimal solutions of several representative instances with the
logarithmic potential.

5. Analysis of the Key Algorithmic Components
In this section, we analyze two key components of the proposed algorithm: distance-based population updating

strategy and early-stopping technique for the local optimization.

5.1. The effect of population updating strategy
To show the effect of the distance-based population updating strategy on the performance of the algorithm, we

carried out an experiment based on 20 selected instances with the logarithmic potential. In the experiment, we first
created a variant (denoted by HEA−) of our HEA algorithm by replacing its population updating strategy with a
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Table 5

Comparison between the distance-based population updating strategy and greedy population updating strategy in

terms of Ebest, Eavg and Eworst. Better results between two strategies are indicated in bold.

Ebest Eavg Eworst
N HEA− HEA HEA− HEA HEA− HEA
310 -9733.3772816 -9733.3772816 -9733.3772816 -9733.3772816 -9733.3772816 -9733.3772816
320 -10358.9375345 -10358.9375345 -10358.9375345 -10358.9375345 -10358.9375345 -10358.9375345
330 -11003.8979247 -11003.8979247 -11003.8979247 -11003.8979247 -11003.8979247 -11003.8979247
340 -11668.2345318 -11668.2345318 -11668.2340340 -11668.2340340 -11668.2320431 -11668.2320431
350 -12351.9680192 -12351.9680192 -12351.9679728 -12351.9680192 -12351.9677872 -12351.9680192
360 -13055.0849300 -13055.0849300 -13055.0819280 -13055.0819280 -13055.0811775 -13055.0811775
370 -13777.6040398 -13777.6040398 -13777.6040398 -13777.6040398 -13777.6040398 -13777.6040398
380 -14519.4644435 -14519.4679472 -14519.4619146 -14519.4638239 -14519.4604924 -14519.4620166
390 -15280.7584968 -15280.7584968 -15280.7553387 -15280.7565904 -15280.7427063 -15280.7489648
400 -16061.3971882 -16061.3971882 -16061.3949953 -16061.3966451 -16061.3943703 -16061.3944727
410 -16861.4133871 -16861.4133871 -16861.4124148 -16861.4133871 -16861.4085257 -16861.4133871
420 -17680.8027708 -17680.8027708 -17680.8019408 -17680.8018335 -17680.8006957 -17680.7999580
430 -18519.5847726 -18519.5847726 -18519.5847340 -18519.5847726 -18519.5845795 -18519.5847726
440 -19377.7240610 -19377.7232516 -19377.7214806 -19377.7215415 -19377.7165368 -19377.7205027
450 -20255.2463493 -20255.2463493 -20255.2457388 -20255.2459861 -20255.2442049 -20255.2454415
460 -21152.1304277 -21152.1320951 -21152.1304277 -21152.1310320 -21152.1304277 -21152.1301145
470 -22068.3996282 -22068.3996282 -22068.3948214 -22068.3973131 -22068.3891343 -22068.3957697
480 -23004.0138068 -23004.0229249 -23004.0138028 -23004.0157919 -23004.0137871 -23004.0137871
490 -23959.0124384 -23959.0165449 -23959.0080392 -23959.0123613 -23959.0026262 -23959.0053762
500 -24933.3757645 -24933.3757645 -24933.3757645 -24933.3757645 -24933.3757645 -24933.3757645
#Better 4 11 10
#Equal 15 8 8
#Worse 1 1 2

popular greedy updating strategy (Zhou, Hao and Wu, 2021) in which the worst solution in the population is replaced
by the offspring if the offspring solution is different from any solution in the population and is better than the worst
solution. We ran HEA and HEA− 5 times on each instance. The computational results are summarized in Table 5,
including the best objective value over 5 runs (Ebest), the average objective value (Eavg), and the worst objective
value (Eworst). The rows ‘#Better’, ‘#Equal’, ‘#Worse’ respectively present the number of instances for which HEA
obtained a better, equal or worse result compared to HEA− in terms of Ebest, Eavg and Eworst.

Table 5 shows that the HEA algorithm performs better with the distance-based population updating strategy than
without it. Disabling the distance-based population updating strategy worsens the performance of the algorithm in
terms of all performance indicators. This experiment indicates that the distance-based population updating strategy
plays an important role for the performance of the HEA algorithm.

Moreover, to further show the effect of the distance-based population updating strategy on the diversity and
convergence of population, we carried out another experiment on two representative instances, i.e., N = 450 and
N = 500, where the distance-based population updating strategy and the greedy population updating strategy (i.e.,
the PoolW orst strategy) were respectively adopted in the algorithm and the average distance between solutions in the
population was recorded as a function of number of iterations. The experimental results are plotted in Fig. 6.

Fig. 6 shows that the employed distance-based population updating strategy is able to maintain the diversity of
solutions in the population, thus avoiding efficiently an early convergence of algorithm. In comparison, when the
greedy updating strategy is adopted, the diversity of population decreases significantly as the search progresses, and
thus making the population converges too early.

5.2. The effect of early-stopping strategy for local optimization
The local optimization method is the most time-consuming component of the HEA algorithm. To speed up the

search process, the algorithm employs a two-phase local optimization with an early-stopping strategy to discard
inferior candidate solutions that are not further improved by local optimization. To check the effectiveness of this
early-stopping strategy, we created a HEA variant (denoted by HEA∗) by disabling the early-stopping strategy, while
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Figure 6: Comparison between the distance-based population updating strategy and the greedy population updating
strategy on two representative instances with the logarithmic potential

Table 6

Comparison between the algorithms with and without the early-stopping strategy in terms of Ebest, Eavg and average

running time. Dominating results between the two strategies are indicated in bold.

Ebest Eavg time(s)
N HEA HEA∗ HEA HEA∗ HEA HEA∗

310 -9733.3772816 -9733.3772816 -9733.3772816 -9733.3772816 12634 29778
320 -10358.9375345 -10358.9375345 -10358.9375345 -10358.9375345 13484 29661
330 -11003.8979247 -11003.8979247 -11003.8979247 -11003.8979247 15015 29974
340 -11668.2345318 -11668.2345318 -11668.2345318 -11668.2345318 17565 36766
350 -12351.9680192 -12351.9680192 -12351.9680192 -12351.9680192 17782 37361
360 -13055.0811775 -13055.0849300 -13055.0811775 -13055.0826785 22020 43487
370 -13777.6040398 -13777.6040398 -13777.6040398 -13777.6040398 19285 42471
380 -14519.4679472 -14519.4679472 -14519.4645901 -14519.4678755 29728 55310
390 -15280.7584968 -15280.7584968 -15280.7561746 -15280.7580810 21556 53950
400 -16061.3971882 -16061.3971882 -16061.3966451 -16061.3961020 23855 54826
410 -16861.4133871 -16861.4133871 -16861.4133705 -16861.4133705 30027 56742
420 -17680.8027708 -17680.8027708 -17680.8017288 -17680.8013138 33216 64504
430 -18519.5847726 -18519.5847726 -18519.5847181 -18519.5847726 35066 60687
440 -19377.7240610 -19377.7232516 -19377.7229918 -19377.7221305 37553 71117
450 -20255.2463493 -20255.2463493 -20255.2463493 -20255.2461677 38970 72950
460 -21152.1320951 -21152.1304277 -21152.1306985 -21152.1303650 39578 79361
470 -22068.3996282 -22068.3996282 -22068.3968578 -22068.3982430 47527 85201
480 -23004.0145930 -23004.0229249 -23004.0141123 -23004.0173129 47047 91169
490 -23959.0165449 -23959.0165449 -23959.0143044 -23959.0128288 38993 92230
500 -24933.3757645 -24933.3757645 -24933.3757645 -24933.3757645 52075 98380
#Better 2 6 20
#Equal 18 8 0
#Worse 2 6 0

keeping other components unchanged. Based on 20 representative instances with the logarithmic potential, we ran
HEA and HEA∗ 5 times on each instance where each run was limited to 2×104 local optimizations. The experimental
results are reported in Table 6 with the same information as in Table 5.

Table 6 shows that HEA and HEA∗ are comparable in terms of solution quality, but HEA is much faster than
HEA∗ in terms of computational speed. Specifically, in terms of Ebest, HEA obtains a better, equal and worse result
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than HEA∗ respectively for 2, 18 and 2 instances. Looking at the average result Eavg , one can see that HEA gives a
better, equal and worse result than HEA∗ for 6, 8 and 6 instances, respectively. In terms of computational time, HEA
is about two times faster than HEA∗. This experiment shows that the early-stopping strategy is able to significantly
speed up the search without sacrificing the quality of solution.

6. Conclusions and Future Work
We presented in this study a population-based global optimization algorithm for the minimum energy configuration

problems with the Coulombic and logarithmic potentials on the unit sphere, which have a number of applications in
mathematics, physics, biology and chemistry. The algorithm is based on a general approach that transforms the initial
constrained minimization problem into a unconstrained problem. Based on a population of high-quality solutions,
the proposed algorithm explores new high-quality configurations by alternating a perturbation and a two-phase local
optimization with an early-stopping strategy. The algorithm is reinforced by a population regeneration technique and
a distance-based updating strategy. Computational results show that the algorithm performs remarkably well on the
classic Thomson instances. In particular, the algorithm is able to improve the best-known solution of one instance of
the classic Thomson problem (N = 360).

The configurations of N particles on a sphere are systematically optimized by the proposed algorithm for the
classic discrete logarithmic potential. The structural evolution and characteristics of putative optimal configurations
are analyzed for instances with N ≤ 500 and several selected large instances. Computational results show that the
logarithmic and Coulombic potentials have a high similarity on the ground-state configurations and that for the two
potentials the best-known solutions have the same configuration for most sizes of N ≤ 400.

The present work can be extended from several directions. First, the proposed algorithm is very general and can
be applied to other minimum energy configuration problems on the surface of a sphere and other curved surface.
Moreover, with a proper distance measure between the solutions, the proposed algorithm can be adapted to a number
of global optimization problems involving N particles, such as the equal sphere packing problem and the structural
optimization of atomic clusters. Second, it would be interesting to investigate new techniques (e.g., the block-
coordinate descent method) to speed up the local optimization for large instances, since the time complexity of local
optimization is very high and increases quadratically with the number of particles. Third, to handle large instances,
decomposition methods and dimension reduction strategies can be integrated into the proposed algorithm. Fourth,
the performance of the algorithm can be further enhanced by developing more efficient perturbation strategies and
crossover operators for the optimization problems on the sphere. Finally, it would be interesting to apply the proposed
algorithm to related applications discussed in the introduction and to evaluate the practical impact of this work.
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