Neighborhood decomposition based variable neighborhood search and tabu search for maximally diverse grouping

Xiangjing Lai^a, Jin-Kao Hao^{b,c,*}, Zhang-Hua Fu^d, Dong Yue^a

^aInstitute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

^bLERIA, Université d'Angers, 2 Boulevard Lavoisier, 49045 Angers, France

^cInstitut Universitaire de France, 1 Rue Descartes, 75231 Paris, France

^dShenzhen Institute of Artificial Intelligence and Robotics for Society, and The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China

Accepted to European Journal of Operational Research, July 2020

Abstract

The maximally diverse grouping problem (MDGP) is a relevant NP-hard optimization problem with a number of real-world applications. However, solving large instances of the problem is computationally challenging. This work is dedicated to a new heuristic algorithm for the problem, which distinguishes itself by two original features. First, it introduces the first neighborhood decomposition strategy to accelerate neighborhood examinations. Second, it integrates, in a probabilistic way, two complementary neighborhood decomposition based local search procedures (variable neighborhood descent and tabu search) as well as an adaptive perturbation strategy to ensure a suitable balance between intensification and diversification of the search space. Computational results on 320 benchmark instances commonly used in the literature show that the proposed algorithm competes favorably with the state-ofthe-art MDGP algorithms, by reporting improved best-known results (new lower bounds) of the literature for 220 large instances. Additional experiments are conducted to analyze the main components of the algorithm. The proposed algorithm can help to better solve practical problems that can be formulated by the maximally diverse grouping model.

Keywords: Heuristics; grouping and clustering; neighborhood decomposition; local search.

* Corresponding author. Email addresses: laixiangjing@gmail.com (Xiangjing Lai), jin-kao.hao@univ-angers.fr (Jin-Kao Hao), fuzhanghua@cuhk.edu.cn

1 Introduction

Given a set V of N elements, a distance matrix $D = [d_{ij}]_{N \times N}$ between the elements, a positive integer m, and m pairs of non-negative integers $\{L_g, U_g\}$ $(1 \leq g \leq m)$ called the capacity lower and upper limits of groups, the maximally diverse grouping problem (MDGP) is to partition the set V into m disjoint groups such that the size of each group g lies in $[L_g, U_g]$ $(1 \leq g \leq m)$, while the sum of the distances between the elements in the same groups is maximized. MDGP can also be described as a graph partition problem as follows. We consider an edge-weighted complete graph G = (V, E, D), where V is the set of N vertices, E is the set of $N \times (N-1)/2$ edges, and $D = [d_{ij}]_{N \times N}$ defines the set of edge weights. Then MDGP can be considered as a special case of the NP-hard clique partitioning problem (CPP) [13,29] with non-negative edge weights and constraints related to the capacity lower and upper limits of groups.

Formally, MDGP can be written as a quadratic binary programming problem [11,23]:

Maximize
$$\sum_{g=1}^{m} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} d_{ij} X_{ig} X_{jg}$$
 (1)

Subject to
$$\sum_{g=1}^{m} X_{ig} = 1, i = 1, 2, \dots, N$$
 (2)

$$L_g \le \sum_{i=1}^N X_{ig} \le U_g, g = 1, 2, \dots, m$$
 (3)

$$X_{ig} \in \{0, 1\}, \forall i \in \{1, 2, \dots, N\}, \forall g \in \{1, 2, \dots, m\},$$
(4)

where X_{ig} is a binary variable that takes 1 if the vertex *i* locates in the group g and 0 otherwise, the set of constraints (2) guarantees that each vertex is located in exactly one group, and the set of constraints (3) ensures that the size of group g lies in $[L_q, U_q]$ (g = 1, 2, ..., m).

MDGP is a relevant model for formulating many practical problems, such as assignment of students to groups [16,17,28], creation of peer review groups [5], and VLSI design [26]. More applications can be found in [11,18,22,23,25].

Due to the NP-hardness of MDGP [10], a number of heuristic algorithms have been proposed to find approximate solutions. Existing heuristic algorithms can be classified into two categories, i.e., trajectory-based local search algorithms and hybrid evolutionary algorithms. As examples of trajectory-based local

⁽Zhang-Hua Fu), medongy@vip.163.com (Dong Yue).

search algorithms, we mention the multistart algorithm [1], Lotfi-Cerveny-Weitz (LCW) algorithm [27], T-LCW method mixing LCW and tabu search [11], simulated annealing algorithm [21], variable neighborhood search algorithms [4,21,25], tabu search algorithms [11,22], and iterated maxima search (IMS) algorithm [18]. Hybrid evolutionary algorithms include hybrid genetic algorithms [9,24], hybrid grouping genetic algorithm [5], hybrid steady-state genetic algorithm [21], artificial bee colony (ABC) algorithms [23], and constructive genetic algorithm [19]. According to the experimental results reported in recent studies such as [4,18,24], the skewed general variable neighborhood search algorithm (SGVNS) [4], the iterated tabu search algorithm (ITS) [22], the iterated maxima search algorithm (IMS) [18] can be regarded as the current state-of-the-art MDGP algorithms. Finally, the hybrid genetic algorithm NSGGA [24] can also be considered as a state-of-the-art algorithm, but only for the special case where all groups have an equal size.

One notices that the best performing MDGP algorithms in the literature rely, with no exception, on a powerful neighborhood search subroutine. Meanwhile, a careful analysis of the underlying neighborhood search procedures indicates that they examine the whole neighborhood used at each iteration, which leads to superfluous examinations of many non-promising neighbor solutions and a waste of computation time. To overcome this problem, this work investigates an original neighborhood decomposition method which avoids redundant calculations of the neighborhood examination and thus speeds up the neighborhood search.

The main contributions of this work are summarized as follows.

- (1) We propose a novel neighborhood decomposition based heuristic algorithm (NDHA) with two original features. First, NDHA relies a dynamic neighborhood decomposition strategy that allows the algorithm to avoid redundant examination of irrelevant neighbor solutions at each iteration by ignoring uninteresting candidate solutions. As such, the neighborhood decomposition strategy accelerates the neighborhood examination and enables more promising candidate solutions to be examined for a given time budget. Second, the neighborhood decomposition based heuristic algorithm integrates two complementary neighborhood search procedures (i.e., tabu search and variable neighborhood descent) that are applied in a probabilistic way, leading to an enhanced robustness of the algorithm.
- (2) We present computational results of the proposed algorithm on 320 benchmark instances commonly used in the literature and compare our results with those of the state-of-the-art MDGP algorithms. Our comparative studies indicate that the proposed algorithm outperforms significantly the reference algorithms especially on the large benchmark instances. The new lower bounds for 220 benchmark instances reported by our algorithm are useful for assessment of other MDGP algorithms. Moreover,

the source code of our NDHA algorithm will be made available online, which can be used by researchers and practitioners to better solve various practical problems that can be formulated as MDGP.

(3) The neighborhood decomposition strategy is of general nature and can be advantageously adopted to speed up other neighborhood search algorithms for MDGP and other related clustering problems as well.

In the next section, we describe the proposed algorithm. In Section 3, we evaluate the proposed algorithm by reporting computational results on a large number of benchmark instances and making comparisons with reference algorithms in the literature. In Section 4, we conduct analyses to investigate two essential components of the proposed algorithm as well as one key parameter. In the last section, we summarize the work and provide research perspectives.

2 Neighborhood decomposition based hybrid heuristic for MDGP

The neighborhood decomposition based heuristic algorithm (NDHA) proposed in this work follows the general iterated local search framework [20] and combines two complementary neighborhood search procedures (i.e., tabu search and variable neighborhood descent) with a perturbation operator to reach a suitable tradeoff between intensification and diversification of the search space. Compared to existing algorithms, the proposed algorithm distinguishes itself by two key features, i.e., its neighborhood decomposition strategy aiming to speed up the neighborhood search and a combined use of two local search methods aiming to enhance the robustness of the algorithm. We describe the main framework of the proposed algorithm and its components in this section.

2.1 Main Framework

The NDHA algorithm (Algorithm 1) starts with the solution initialization procedure (Section 2.3) to obtain a high-quality initial feasible solution. It then performs a number of iterations to improve the current solution until the given time limit (t_{max}) is reached (lines 4–26).

At each iteration, the current solution s is first perturbed by the perturbation operator (line 5, Section 2.5) and the perturbed solution is then improved by the neighborhood decomposition tabu search (NDTS) procedure (Section 2.4.4) or the neighborhood decomposition variable neighborhood descent (ND-VND) procedure (Section 2.4.3). The decision of applying NDTS or NDVND depends on a probability: $Q \times \frac{m}{N}$ for NDTS and $1 - (Q \times \frac{m}{N})$ for NDVND, where Q ($0 \le Q \le N/m$) is a parameter, N is the number of elements in the

Algorithm 1: Neighborhood decomposition based heuristic algorithm (NDHA) for MDGP

Input: An edge-weighted complete graph G = (V, E, D), number of groups m, time limit t_{max} , and parameters δ , Q, k_{min} , k_{step} , k_{max} **Output:** The best feasible solution found (s^*) /* Section 2.3 */ 1 $s \leftarrow InitialSolution(G, m)$ $\mathbf{2}$ $s^* \leftarrow s$ /* s^* records the best solution found */ /* k denotes the current perturbation strength */3 $k \leftarrow k_{min}$ 4 while $Time() \leq t_{max}$ do $s' \leftarrow Perturbation(s, k)$ /* Algorithm 4 */ $\mathbf{5}$ $r \leftarrow rand(0,1)$ /* rand(0,1) denotes a random number in (0,1)6 */ if $r < Q \times \frac{m}{N}$ then $| s'' \leftarrow NDTS(s')$ $\mathbf{7}$ /* Tabu search, Algorithm 3 */ 8 9 end else 10 $s'' \leftarrow NDVND(s')$ /* Variable neighborhood descent, 11 Algorithm 2 */ end 12 $if \ (\frac{f(s'')}{f(s)} + \delta \cdot d(s'', s) > 1) \land (\frac{f(s'')}{f(s^*)} + \delta \cdot d(s'', s^*) > 1 \ then$ 13 $| s \leftarrow s''$ $\mathbf{14}$ end 15if $f(s'') > f(s^*)$ then $| s^* \leftarrow s''$ 16 $\mathbf{17}$ $k \leftarrow k_{min}$ $\mathbf{18}$ end 19 else $\mathbf{20}$ $k \leftarrow k + k_{step}$ $\mathbf{21}$ end 22 if $k \geq k_{max}$ then $\mathbf{23}$ $k \leftarrow k_{min}$ 24 $\mathbf{25}$ end 26 end 27 return s^*

problem instance, and m is the number of groups. Subsequently, the improved solution s'' is accepted, like [4], as the current solution based on its objective value f(s'') and its distances to the current solution s and the best solution found so far s^* (lines 13–15), where the distances between solutions are measured by a partition-based distance function from [4,18]. After that, the best solution found so far (s^*) is accordingly updated if s'' is better than s^* (lines 16–19).

The strength k of the perturbation operator is adaptively adjusted during the search process following the strategies of breakout local search [2,3]. k is

initially set to the minimum value k_{min} (line 3). Then, k increases by k_{step} if the recorded best solution s^* is not updated by s'' and is reset to k_{min} otherwise (lines 16–22). When k reaches the maximum value k_{max} , it is reset to k_{min} as well (lines 23–25). In the following subsections, we describe the components of the NDHA algorithm.

2.2 Search Space and Solution Representation

Fig. 1. An illustrative example for solution representation with N = 11, m = 3, and $U_{max} = 6$. We use a 3×6 matrix A (right figure) to indicate a solution (left figure).

Given an edge-weighted complete graph G = (V, E, D) and m pairs of capacity limits of groups $\{L_g, U_g\}$ $(L_g \leq U_g, g = 1, 2, ..., m)$, the search space Ω explored by the NDHA algorithm contains all m-partitions $\{G_1, G_2, ..., G_m\}$ of the vertex set V satisfying the capacity limits of groups, i.e., $G_1 \cup G_2 \cup \cdots \cup$ $G_m = V, G_i \cap G_j = \emptyset$ $(i \neq j)$, and $L_g \leq |G_g| \leq U_g$ for g = 1, 2, ..., m.

To ensure a high computational efficiency, we use a N-dimensional vector x[1:N] to represent a candidate solution (i.e., a *m*-partition of V), where x[i] (i = 1, 2, ..., N) takes its values in $\{1, 2, ..., m\}$ and x[i] = g indicates that vertex *i* is clustered in group *g*. In addition, to ease the implementation of the neighborhood decomposition strategy, we also maintain a $m \times U_{max}$ matrix *A*, as illustrated in Fig. 1, where U_{max} denotes the largest upper limit of groups, i.e., $U_{max} = max_{1 \le g \le m} \{U_g\}$.

2.3 Initial Solution

Following [18], the initialization procedure of the NDHA algorithm generates β feasible solutions (typically from ten to a few dozen) and then chooses the best one among them as the initial solution of the algorithm. Specifically, the initialization procedure generates a feasible solution as follows. First, it constructs randomly a partial solution satisfying the lower capacity limits of groups, i.e., $|G_g| \geq L_g$ (g = 1, 2, ..., m). Then, the remaining vertices are

added into the partial solution one by one to obtain a complete feasible solution such that the upper capacity limits of groups are respected, i.e., $|G_g| \leq U_g$ (g = 1, 2, ..., m). Finally, the quality of the constructed solution is locally improved by the local search procedure described in Algorithm 2.

2.4 Neighborhood Decomposition based Local Search Procedures

The NDHA algorithm relies on two key local search procedures which are used to improve solutions generated by the initialization procedure or the perturbation operator. We describe below these two local search procedures.

2.4.1 Neighborhood Structures and their Decomposition

The local search procedures of the NDHA algorithm are based the neighborhood decomposition strategy introduced in this work. Below, we present the two underlying neighborhoods used in this work (the constrained *OneMove* neighborhood and swap neighborhood) and their decompositions. Though both neighborhoods have been used in existing studies on MDGP [4,11,18,21–23,25], the neighborhood decomposition strategy is novel, which constitutes one of the key ingredients contributing to the success of our NDHA algorithm.

The constrained *OneMove* neighborhood (denoted by N_1) can be described as follows. Given a solution $s = \{G_1, G_2, \ldots, G_m\}$, the *OneMove* move denoted by (v, i, j) transfers a vertex v from its current group G_i to another group G_j $(j \neq i)$ such that the resulting neighbor solution (denoted by $s \oplus (v, i, j)$) satisfies the capacity constraints of groups G_i and G_j . The neighborhood $N_1(s)$ of solution s is then composed of all feasible solutions which can be obtained by applying *OneMove* to $s: N_1(s) = \{s \oplus (v, i, j) : v \in G_i, i, j \in \{1, \ldots, m\}, i \neq j, |G_i| > L_i, |G_j| < U_j\}$. Clearly $N_1(s)$ has a size bounded by $O(N \times m)$, and becomes empty if $L_q = U_q$ for any group g.

We notice that $N_1(s)$ can be decomposed into $m \times (m-1)$ disjoint subsets that we call *neighborhood blocks* $B_1[i][j](s)$ $(i, j \in \{1, ..., m\}, i \neq j)$, where each neighborhood block $B_1[i][j](s)$ is given by $B_1[i][j](s) = \{s \oplus (v, i, j) :$ $v \in G_i, |G_i| > L_i, |G_j| < U_j\}$. As a result, the neighborhood $N_1(s)$ can be equivalently expressed as $N_1(s) = \bigcup_{1 \leq i \neq j \leq m} B_1[i][j](s)$.

Now we can use this decomposed neighborhood to accelerate neighborhood examination as follow. At each iteration of the neighborhood search, the current neighborhood N_1 is first decomposed into $m \times (m-1)$ blocks. Then the algorithm skips those non-promising blocks that have been identified in previous iterations and marked in a state matrix (see below), and focuses only on the remaining (promising) blocks. As a result, the neighborhood search is speeded up greatly.

To indicate whether a neighborhood block has been checked or not during the neighborhood search process, we maintain a $m \times m$ asymmetric binary state matrix M_1 , where the entry $M_1[i][j]$ $(1 \leq i \neq j \leq m)$ corresponds to the neighborhood block $B_1[i][j](s)$ and the diagonal entries $M_1[i][i]$ $(1 \leq i \leq m)$ are irrelevant since the corresponding $B_1[i][i](s)$ $(1 \leq i \leq m)$ are empty set. $M_1[i][j]$ takes 0 if the block $B_1[i][j](s)$ has been examined previously without finding any improving solution, and takes 1 otherwise. An illustrative example for the state matrix M_1 is shown in Fig. 2(a).

The swap neighborhood (denoted by N_2) is defined by the Swap(v, u) move which generates a neighbor solution by exchanging the group of vertex v and the group of vertex u. Therefore, the neighborhood $N_2(s)$ of s contains all possible solutions that can be reached by applying the Swap move to s: $N_2(s) = \{s \oplus Swap(v, u) : v \in G_i, u \in G_j, 1 \le i < j \le m\}$. This neighborhood has a size bounded by $O(N^2)$.

Similar to N_1 , the neighborhood $N_2(s)$ can also be decomposed into $m \times (m-1)/2$ disjoint neighborhood blocks, i.e., $N_2(s) = \bigcup_{1 \le i < j \le m} B_2[i][j](s)$, where each neighborhood block $B_2[i][j](s)$ is defined by $B_2[i][j](s) = \{s \oplus Swap(v, u) : v \in G_i, u \in G_j\}$. Then, taking advantage of this decomposed neighborhood, we can speed up neighborhood examination during the search process by ignoring the non-promising neighborhood blocks that do not contain any improving solution. For this purpose, we use a $m \times m$ symmetric binary state matrix M_2 , where the entry $M_2[i][j] (= M_2[j][i])$ corresponds to the block $B_2[i][j](s)$ and takes 0 if $B_2[i][j](s)$ has been examined previously without finding an improving solution, and takes 1 otherwise. An illustrative example of M_2 is given in Fig. 2(b).

The neighborhood decomposition method is based on the fact that the objective function of MDGP is the sum of subunit objectives defined on m groups and thus most neighborhood blocks are mutually independent in terms of move values (i.e., the change of objective values between the current solution and a neighbor solution). With the help of the state matrix of the corresponding neighborhood, the algorithm avoids many redundant neighborhood examinations if the neighborhood is checked in a block-by-block way, as described in Sections 2.4.3 and 2.4.4.

2.4.2 Updating of State Matrices of Neighborhoods

The state matrices M_1 and M_2 are initialized at the beginning of each neighborhood search procedure, where their entries are set to 1 except for the diagonal elements which are set definitively to 0. Then, M_1 and M_2 are dynamically updated as the search process progresses.

(a) state matrix of N_1 (b) state matrix of N_2

Fig. 2. State matrices of the constrained *OneMove* neighborhood N_1 and the swap neighborhood N_2 , where M_1 and M_2 both are a $m \times m$ (m = 9) 0–1 matrix. For the current solution s, the entries $M_1[i][j]$ and $M_2[i][j]$ correspond respectively to the neighborhood blocks $B_1[i][j](s)$ and $B_2[i][j](s)$, which take 0 if the corresponding block has been checked without finding an improving solution.

Specifically, for the neighborhood N_1 , $M_1[i][j]$ is first set to 0 when the block $B_1[i][j](s)$ is being examined. For N_2 , both $M_2[i][j]$ and $M_2[j][i]$ are set to 0 when the block $B_2[i][j](s)$ is being examined. After that, $M_1[i][q]$ (or $M_2[i][q]$ for N_2), $M_1[q][i]$ (or $M_2[q][i]$ for N_2), $M_1[j][q]$ (or $M_2[j][q]$ for N_2) and $M_1[q][j]$ (or $M_2[q][j]$ for N_2) ($1 \le q \le m$) all are updated to 1 if a solution in the block $B_1[i][j](s)$ (or $B_2[i][j](s)$ for N_2) is chosen as the current solution, and keeps unchanged otherwise. Two illustrative examples for the update of M_1 and M_2 are given in Fig. 3, where each blue entry corresponds to the neighborhood block being examined, those entries in lilac are those that need to be updated if a neighbor solution is chosen to replace the current solution from the block being examined during the neighborhood search.

As we observe in Fig. 3, if a neighbor solution is chosen to replace the current solution during the neighborhood search, only those blocks corresponding to the lilac entries are impacted in terms of the objective value. Thus, the algorithm only needs to examine those blocks with a state value of 1. In this way, the neighborhood search process can be accelerated significantly (see the experimental study on this issue presented in Section 4.1).

2.4.3 Neighborhood Decomposition based Variable Neighborhood Descent

The neighborhood decomposition based variable neighborhood descent procedure (NDVND) (Algorithm 2) relies on the general variable neighborhood descent (VND) method [15]. NDVND employs both neighborhoods N_1 and N_2 to explore candidate solutions. Stating from N_1 , the procedure examines N_1 and N_2 in a token-ring way until no improving solution exists in $N_1(s)$ and $N_2(s)$ with respect to the current solution s.

```
Algorithm 2: Neighborhood decomposition based variable neighborhood
    descent (NDVND) procedure
 1 Function NDVND(s)
    Input: Input solution s_0
    Output: The local optimum solution s
                                                                            /* Section 2.4.2 */
 2 Initialize state matrices M_1 and M_2
 3 Improve \leftarrow true
 4 while Improve=true do
         Improve \leftarrow false
 \mathbf{5}
          /* Examine neighborhood N_1 block by block
                                                                                                         */
 6
         for i \leftarrow 1 to m do
 7
               \begin{array}{c|c} \mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ m \ \mathbf{do} \\ | \ \mathbf{if} \ M_1[i][j] = 1 \ \mathbf{then} \\ | \ M_1[i][j] \leftarrow 0, flag \leftarrow \mathbf{false} \end{array} 
 8
 9
10
                        for each s' \in B_1[i][j](s) do
11
                             if f(s') > f(s) then
12
                                  s \leftarrow s'
 13
                                  Improve \leftarrow true, flag \leftarrow true
\mathbf{14}
                             end
15
                        end
16
                        if flag = true then
\mathbf{17}
                            Update M_1 and M_2
                                                                           /* Section 2.4.2 */
18
                        end
19
                   end
\mathbf{20}
              end
\mathbf{21}
         end
\mathbf{22}
          /* Examine neighborhood N_2 block by block
                                                                                                         */
\mathbf{23}
         for i \leftarrow 1 to m do
\mathbf{24}
              for j \leftarrow i + 1 to m do
\mathbf{25}
                   if M_2[i][j] = 1 then
\mathbf{26}
                        M_2[i][j] \leftarrow 0, M_2[j][i] \leftarrow 0, flag \leftarrow false
27
                        for each s' \in B_2[i][j](s) do
\mathbf{28}
                             if f(s') > f(s) then
\mathbf{29}
                                  s \leftarrow s'
30
                                  Improve \leftarrow \mathbf{true}, flag \leftarrow \mathbf{true}
\mathbf{31}
                             end
\mathbf{32}
                        end
33
                        if flag = true then
\mathbf{34}
                             Update M_1 and M_2
                                                                           /* Section 2.4.2 */
\mathbf{35}
                        end
36
                   end
\mathbf{37}
              end
38
         end
39
40 end
41 return s
```


Fig. 3. Illustrative example for the update of the matrices M_1 and M_2 , where an blue entry corresponds to the neighborhood block being examined, and the lilac entries are needed to be updated if a neighbor solution in the neighborhood block being examined is chosen to replace the current solution during the neighborhood search.

Specifically, for a given neighborhood N_i (i = 1, 2), it is examined blockby-block, and the current solution s is immediately updated each time an improving neighbor solution is found. Then, the state matrices M_1 and M_2 are updated if at least one improving neighbor solution is found after the associated neighborhood block is completely examined.

2.4.4 Neighborhood Decomposition based Tabu Search

The neighborhood decomposition based tabu search (NDTS) procedure of the NDHA algorithm relies on the tabu search metaheuristic [12] and employs a reduced swap neighborhood N_{NDTS} obtained from the swap neighborhood N_2 . Formally, this reduced swap neighborhood is given by $N_{NDTS}(s) = \{s \in B_2[i][j](s) : M_2[i][j] = 1 \lor rand(0,1) < \mu, i < j\}$, where rand(0,1) is a random number in the interval (0,1) and μ is a parameter which is set to 0.05 in this study (see analysis of μ in Section 4.3). In other words, the reduced neighborhood includes always the promising neighborhood block $B_2[i][j](s)$ (indicated

Algorithm 3: Neighborhood decomposition based tabu search (NDTS) procedure

1 Function NDTS(s)**Input:** Input solution s_0 , depth of tabu search α , and parameter μ **Output:** The best solution s^b found /* s denotes the current solution */ $s \leftarrow s_0$ **3** $s^b \leftarrow s$ $/* s^b$ denotes the best solution found by the tabu search */ 4 NoImprove $\leftarrow 0$ **5** Initialize tabu list T and state matrix M_2 /* Section 2.4.2 */ while $NoImprove < \alpha$ do 6 /* Examine neighborhood $N_{NDTS}(s)$ block by block */ 7 8 $f_{max} \leftarrow -\infty$ for $i \leftarrow 1$ to m do 9 for $j \leftarrow i+1$ to m do 10if $(M_2[i][j] = 1) \lor (rand(0, 1) < \mu)$ then $\mathbf{11}$ $M_2[i][j] \leftarrow 0, \ M_2[j][i] \leftarrow 0$ 12 for each $s' \in B_2[i][j](s)$ do 13if $((f(s') > f_{max}) \land (s' \text{ is not forbidden})) \lor (f(s') > f(s^b)$ 14 then $f_{max} \leftarrow f(s')$ 15 $I \leftarrow i, J \leftarrow j$ 16 $s_{nb} \leftarrow s^{'}$ /* s_{nb} denotes the best solution not 17forbidden by T in $N_{NDTS}(s) * /$ 18 end end 19 end $\mathbf{20}$ end 21 end $\mathbf{22}$ /* Perform the iterations */ $\mathbf{23}$ $s \leftarrow s_{nb}$ $\mathbf{24}$ Update tabu list T $\mathbf{25}$ Update state matrix M_2 using I and J/* Section 2.4.2 */ $\mathbf{26}$ if $f(s) > f(s^b)$ then $\mathbf{27}$ $s^b \leftarrow s$ 28 $NoImprove \leftarrow 0$ $\mathbf{29}$ end 30 else 31 $NoImprove \leftarrow NoImprove + 1$ $\mathbf{32}$ end 33 34 end 35 return s^b

with $M_2[i][j] = 1$). To avoid a too restricted (small) neighborhood at each iteration, the neighborhood block $B_2[i][j](s)$ of $N_2(s)$ is always contained in the neighborhood $N_{NDTS}(s)$ with a probability of μ independent of its state $(M_2[i][j] = 1 \text{ or } 0)$.

The NDTS procedure described in Algorithm 3 starts from the initialization of the tabu list T (a $N \times m$ array) and the state matrix M_2 (line 5), then performs a number of iterations until the best solution s^b can not be improved during α consecutive iterations (lines 6–34), where α is a parameter called the depth of tabu search.

At each iteration, the NDTS procedure examines the neighborhood $N_{NDTS}(s)$ in a block-by-block way and chooses a best neighbor solution (denoted by $s_{nb} = s \oplus Swap(v, u)$) that is not forbidden by the tabu list T to replace the current solution s. Then the tabu list T is accordingly updated (line 26), i.e., the corresponding vertices v and u are recorded into T and forbidden to move back to their previous groups for the next tl iterations, where tl = 15 + rand(5)is the tabu tenure with rand(5) being a random integer between 0 and 4. Moreover, the aspiration criterion is applied, i.e., a neighbor solution s_{nb} always replaces the current solution if the quality of s_{nb} is better than the best solution found so far (s^b) (line 14). After that, the state matrix M_2 is accordingly updated (line 26).

2.5 Perturbation Operator

	Algorithm 4: Perturbation Operator
1	Function $Perturbation(s_0, \eta)$
	Input: Input solution s_0 , strength of perturbation λ
	Output: The perturbed solution s
2	$s \leftarrow s_0$
3	for $l \leftarrow 1$ to λ do
4	Randomly select two vertices v and u locating at different groups in s
5	$s \leftarrow s \oplus Swap(v,u)$ /* Swap the groups of vertices v and u */
6	end
7	return s

To diversify the search process and jump out of local optimum traps, the NDHA algorithm employs a perturbation operator to modify the solutions returned by the local search methods. Specifically, starting from the input solution s_0 , the perturbation operator performs a number λ of random swap moves to generate a new solution, where each swap move exchanges the groups of two random vertices located in two distinct groups. As indicated in Section 2.1, the strength of perturbation λ is a changing value which is dynamically

adjusted by an adaptive technique. The pseudo-code of the perturbation operator is given in Algorithm 4.

2.6 Discussions on the Innovations of the Work

Compared with the existing iterative algorithms in the literature, such as SGVNS [4], ITS [22] and IMS [18], the proposed NDHA algorithm has two following original features. First, unlike the existing methods where only one local search procedure is used, the proposed NDHA algorithm combines in a probabilistic way two complementary local search procedures (i.e., tabu search and variable neighborhood descent) to reinforce its search robustness on the different types of problem instances. Second, both our tabu search and variable neighborhood descent rely on the innovative neighborhood decomposition strategy to speed up the neighborhood evaluation process, which significantly improves the computational and search efficiency of the algorithm (as shown in Section 3).

Actually, the proposed neighborhood decomposition strategy is the most important innovation for this work, and it is able to increase greatly the computational efficiency of neighborhood examination, without missing improving candidate solutions within the given neighborhood. The neighborhood decomposition strategy follows the general idea of the candidate list strategy to reduce the examined neighborhood size while retaining high-quality solutions. Importantly, it provides a practical and highly effective technique to organize the neighbor solutions into neighborhood blocks and to enable the search procedure to focus on promising neighbor solutions without compromising the quality of the search.

Finally, the idea of neighborhood decomposition is very general and can be advantageously adopted in neighborhood search algorithms for other grouping or clustering problems. Thus, the contribution introduced in this work goes beyond the problem considered here and could potentially benefit many heuristic algorithms for difficult combinatorial optimization.

3 Computational Experiments and Assessments

In this section, we assess the NDHA algorithm by performing large experiments on 320 benchmark instances and making comparisons with state-ofthe-art algorithms in the literature.

3.1 Benchmark Instances

In our experiments, we test 320 benchmark instances widely used in the literature. These instances belong to five sets whose main characteristics are summarized as follows¹.

- RanReal set (20 instances): This set includes 10 instances with different group sizes (DGS) and 10 instances with equal group sizes (EGS). For these instances, the number N of elements equals 480 or 960, the number m of groups equals 20 or 24, L_g and U_g vary between 10 and 50, and the distances d_{ij} (i < j) are a real number generated randomly in the interval (0, 100). For the EGS instances, both L_g and U_g are equal to [N/m] for any group g. These instances were tested in [4,11,18,22,23].
- RanInt set (20 instances): Similar to RanReal set, this set contains 10 DGS instances and 10 EGS instances. The main characteristics of these instances are the same as RanReal instances, while the distances d_{ij} (i < j) between elements are an integer generated randomly between 0 and 100. These instances were tested in [4,11,18,22,23].
- Geo set (20 instances): Similar to RanReal and RanInt sets, this set contains 10 EGS instances and 10 DGS instances whose main characteristics are the same as RanReal and RanInt instances, while the distances d_{ij} (i < j) between elements are Euclidean distances between pairs of points with random coordinates from [0, 10], and the number of coordinates of points varies from 2 to 21. These instances were tested in [4,11,18,22,23].
- MDG-a set (220 instances): This set is composed of 11 subsets, including 6 subsets of DGS instances and 5 subsets of EGS instances, and each subset consists of 20 instances that were generated from 20 edge-weighted complete graphs with N = 2000, where the edge weights d_{ij} (i < j) are an integer generated randomly between 0 and 10. The main characteristics of these 11 subsets are summarized in Table 1. These instances were tested in [4,18,23].

Table 1

Main characteristics of the instances in the set MDG-a, where '#' indicates the number of instances in the corresponding subset.

		D	\mathbf{GS}		EGS	
N	m	L_g	U_g	#	$L_g = U_g$	#
2000	50	32	48	20	-	-
2000	10	173	227	20	200	20
2000	25	51	109	20	80	20
2000	50	26	54	20	40	20
2000	100	13	27	20	20	20
2000	200	6	14	20	10	20

• MDG-c set (40 instances): This set is composed of 20 DGS instances and 20 EGS instances with n = 3000 and m = 50, where L_q and U_q are

¹ The benchmark instances as well as the source code of our algorithm will be available at http://www.info.univ-angers.fr/pub/hao/NDHA.html

respectively set to $\lfloor 0.8N/m \rfloor$ and $\lceil 1.2N/m \rceil$ for the DGS instances, and $\lceil N/m \rceil$ for the EGS instances. The distances d_{ij} (i < j) between elements are an integer generated randomly between 0 and 1000. These instances are the largest instances used in this study and were first used in [18].

3.2 Parameter Setting and Experimental Protocol

Ta	ble	2

Sett	ing of imp	ortant par	ameters	
-	Parameters	Description	Values	
-	δ	2.1	parameter used in acceptance criterion	0.01
	Q	2.1	probability of applying NDTS and NDVND	0.1
	k_{min}	2.1	minimum perturbation strength	0.2 imes N/m
	k_{max}	2.1	maximum perturbation strength	$2 \times N/m$
	k_{step}	2.1	incremental value of perturbation strength	0.2 imes N/m
	α	2.4.4	depth of tabu search	500
	μ	2.4.4	parameter used in the neighborhood N_{NDTS}	0.05

The NDHA algorithm adopts several parameters whose descriptions and settings are listed in Table 2. The value of each parameter was fixed independently according to a preliminary experiment performed on a selection of instances of different characteristics. Typically, we tested a number of possible values from a given range to retain the value leading to the best average result. We observe that among the parameters, Q which controls the probability of applying the NDVND or NDTS optimization procedure is one key parameter, for which we provide a detailed analysis in Section 4.2. Notice that the parameter values shown in Table 2 can be considered to be the default parameter setting of the NDHA algorithm, which were used consistently to perform all the experiments reported in this work unless stated otherwise.

According to the computational results reported in [4,18,22,24], the algorithms ITS [22], SGVNS [4], IMS [18], and NSGGA [24] (only for instances with equal group sizes) outperform significantly other algorithms in the literature and can be regarded as the state-of-the-art algorithms for MDGP. Hence, in this work, we use these algorithms as the reference algorithms. Among these reference algorithms, the source code of ITS is available at http://www.proin.ktu.lt/~gintaras/mdgp.html, the source code of IMS is available at http://www.info.univ-angers.fr/pub/hao/mdgp.html, and the executable code of SGVNS was kindly provided by the authors of [4]. The proposed NDHA algorithm as well as IMS and ITS were written in C++ and compiled using the g++ compiler with the -O3 option.

In addition, all the computational experiments were carried out on the same computing platform with an Intel E5-2670 processor (2.5 GHz and 2G RAM), running the Linux operating system. Following [18], the stopping condition of all the algorithms is a cutoff time limit t_{max} set to 120, 600, 1200, and 3000 seconds for instances n = 480, n = 960, n = 2000 and n = 3000,

respectively. Finally, to assess the average performance of the algorithms, the NDHA algorithm and the reference algorithms (i.e., ITS, SGVNS, IMS) were performed 20 times with different random seeds for each run.

3.3 Computational Results and Comparison on the Small Instances

The first experiment is devoted to an assessment of the NDHA algorithm on the 60 small instances with $N \leq 960$, from RanInt, RanReal and Geo sets. The experimental results of the reference algorithms (ITS, SGVNS, IMS) as well as our NDHA algorithm are summarized in Table 3 (with different group sizes) and Table 4 (with equal group sizes). Columns 2–5 of each table give the best objective value (f_{best}) over 20 runs respectively for the compared algorithms, and columns 6–9 show the average objective value (f_{avg}) . The row 'Avg.' indicates the average result for each column, and the row '#best' indicates the number of instances for which the corresponding algorithm obtained the best result among the compared algorithms in terms of f_{best} and f_{avg} . The best f_{best} and f_{avg} values among the compared algorithms are indicated in bold for each instance. In addition, to check the statistical difference between NDHA and each reference algorithm in terms of f_{best} or f_{avg} , the *p*-values from the Wilcoxon signed-rank tests are reported in the last row of the tables, and a p-value smaller than 0.05 means that there exists a significant difference between the NDHA algorithm and the corresponding reference algorithm.

Table 3 shows that for the instances with $N \leq 960$ and different group sizes, the NDHA algorithm is very competitive compared to the reference algorithms. In terms of f_{best} , the ITS, SGVNS, IMS and NDHA algorithms obtained respectively the best result for 3, 0, 15 and 12 out of 30 instances. In terms of f_{avg} , these four algorithms obtained the best result for 1, 0, 15 and 14 instances. Moreover, the small *p*-values (≤ 0.05) mean that the NDHA algorithm outperforms significantly the ITS and SGVNS algorithms both in terms of f_{best} and f_{avg} . When comparing with IMS and NDHA, we observe that they perform similarly (*p*-values ≥ 0.05) in terms of f_{best} and f_{avg} .

Table 4 indicates that for the instances with $N \leq 960$ and equal group sizes, the NDHA algorithm performs well compared to the reference algorithms. In terms of f_{best} , the ITS, SGVNS, IMS and NDHA algorithms obtained respectively the best result for 11, 0, 8 and 11 out of 30 instances. The large *p*-values (7.19E-2 and 4.53E-1) imply that there does not exist a significant difference between NDHA and ITS (or IMS). However, the small *p*-value (2.76E-3) means that NDHA performs significantly better than the SGVNS algorithm. In terms of f_{avg} , the *p*-values show that the NDHA algorithm outperforms significantly the ITS and SGVNS algorithms and performs similarly compared to the IMS algorithm.

Table 3

Comparison of the proposed NDHA algorithm with three state-of-the-art algorithms in the literature on the small instances with different group sizes. The best results between the compared algorithms in terms of f_{best} and f_{avg} are indicated in bold.

		f_{be}	st		favg			
Instance	ITS	SGVNS	IMS	NDHA	ITS	SGVNS	IMS	NDHA
$Geo_{n480}ds_{01}$	580908.19	579594.38	582379.10	582587.38	580637.81	577253.71	580531.36	582339.19
$Geo_n480_ds_02$	1089063.79	1088385.58	1089873.95	1090135.64	1088309.08	1082940.35	1088725.10	1089903.18
Geo_n480_ds_03	662675.55	661554.64	664243.52	664483.97	662014.57	658540.72	662886.91	664164.89
Geo_n480_ds_04	836700.53	835426.31	836324.69	836547.59	836561.41	831787.05	835091.09	836410.06
Geo_n480_ds_05	988491.52	987106.70	988261.34	988444.21	986781.87	979093.78	985494.57	988173.67
RanInt_n480_ds_01	389548.00	390260.00	390326.00	390103.00	387744.10	389015.10	389517.40	389549.00
$RanInt_n480_ds_02$	387757.00	388404.00	389019.00	388644.00	386570.25	387487.00	388228.00	387832.30
RanInt_n480_ds_03	387751.00	387615.00	388756.00	388182.00	386103.15	386771.10	387615.45	387222.35
RanInt_n480_ds_04	391337.00	391219.00	392124.00	392091.00	389776.20	390362.45	391382.75	391323.80
RanInt_n480_ds_05	388331.00	389330.00	389448.00	389300.00	387119.25	387972.75	388655.05	388334.10
RanReal n480 ds 01	387803.44	387929.42	388597.02	388841.84	385976.58	386955.60	387786.73	387900.09
RanReal n480 ds 02	386295.34	386497.74	387003.53	386751.97	384832.11	385730.85	386147.90	385562.71
RanReal n480 ds 03	387474.69	387900.83	389154.79	387746.68	386066.36	386911.54	387760.16	387098.28
RanReal n480 ds 04	390225.82	390244.43	390547.26	390587.80	388485.81	389185.26	390155.96	390052.19
RanReal n480 ds 05	387831.00	387688.36	388256.59	388233.84	385946.71	386532.01	387557.27	387062.41
Geo n960 ds 01	3361972.63	3352319.16	3364802.56	3365362.95	3348637.43	3342837.38	3356273.08	3363776.03
Geo n960 ds 02	1719892.54	1720029.46	1722401.13	1723727.15	1718034.17	1713409.47	1719324.79	1722784.10
Geo_n960_ds_03	3347803.20	3346546.58	3350871.47	3351599.56	3347081.90	3337399.48	3345799.89	3350888.19
Geo n960 ds 04	3615110.26	3622509.71	3622341.03	3623707.59	3603672.09	3608470.86	3617908.67	3622936.94
Geo n960 ds 05	2342675.1	5 2337386.27	2342091.85	2342515.47	2342347.12	2329478.25	2337198.18	2341996.35
RanInt n960 ds 01	1240283.00	1239528.00	1243072.00	1243208.00	1233592.20	1237318.10	1242268.08	51241229.25
RanInt_n960_ds_02	1237216.00	1237063.00	1241131.0	01240486.00	1231173.05	1235400.05	1239855.70	01238684.85
RanInt n960 ds 03	1236892.00	1237683.00	1241296.00	1241878.00	1231942.40	1235185.25	1239497.15	1239675.50
RanInt n960 ds 04	1237828.00	1238868.00	1241649.0	01241411.00	1233270.40	1236203.80	1240409.43	51239776.55
RanInt_n960_ds_05	1237852.00	1237764.00	1241342.0	01241024.00	1232948.10	1236090.90	1239319.35	1239658.85
RanReal n960 ds 01	1235611.95	1235871.43	1240525.13	3 1240269.22	1231084.73	1234109.07	1239157.73	3 1238140.86
RanReal n960 ds 02	1234529.41	1236135.97	1240159.3	3 1239398.55	1230281.42	1234199.50	1238546.22	21237526.20
RanReal n960 ds 03	1234256.69	1234244.88	1238956.7	5 1238053.93	1229824.54	1233000.51	1237019.78	3 1236872.79
RanReal n960 ds 04	1235440.27	1236451.51	1239641.1	5 1239497.50	1229716.17	1234727.43	1238624.93	51238095.56
RanReal_n960_ds_05	1232976.13	1233629.07	1236955.98	1238382.45	1229769.51	1231419.21	1235698.07	1236018.17
Avg.	1159751.10	1159506.21	1162051.71	1162106.74	1156543.35	1156192.95	1160147.89	1161032.95
#best	3	0	15	12	1	0	15	14
p-value	3.18E-6	3.18E-6	8.45E-1		2.35E-6	1.92E-6	3.09E-1	

3.4 Computational Results and Comparison on the Large Scale Instances

The second experiment aims to assess the NDHA algorithm on the 260 large scale instances belonging to 11 subsets of the set MDG-a and 2 subsets of the set MDG-c, where each subset has 20 instances with N = 2000 or N = 3000. For the experiment, the NDHA algorithm and the reference algorithms (ITS, SDVNS, and IMS) were respectively run 20 times on each instance, and the detailed results for each subset are reported in Tables A.1–A.13 of the appendix, where the same information as in Tables 3 and 4 is provided.

A summary of these detailed experimental results is provided in Table 5, where each row represents one subset. Columns 1–5 of the table give the main characteristics of the instances in the corresponding subset, columns 6–9 indicate the average results (i.e., the Avg. value in Tables A.1–A.13) in terms of f_{best} respectively for each subset and each algorithm, and columns 10–13 shows the average results in terms of f_{avg} for each subset and each algorithm. The last row of the table indicates the number of instances for which the associated algorithm obtained the best result in terms of f_{best} and f_{avg} among the compared algorithms.

Table 4

Comparison of the proposed NDHA algorithm with three state-of-the-art algorithms in the literature on the small instances with equal group sizes. The best results between the compared algorithms in terms of f_{best} and f_{avg} are indicated in bold.

		f_{be}	st		f_{avg}				
Instance	ITS	SGVNS	IMS	NDHA	ITS	SGVNS	IMS	NDHA	
Geo_n480_ss_01	552206.89	552040.71	552073.45	552194.91	552165.47	552020.33	552045.83	552167.92	
Geo_n480_ss_02	1047462.35	1047245.92	1047228.47	1047433.23	1047405.08	1047155.51	1047182.54	1047322.44	
Geo_n480_ss_03	633855.88	633574.99	633626.24	633740.92	633746.62	633544.22	633590.50	633713.2514	
Geo_n480_ss_04	789891.16	789621.27	789657.63	789767.10	789791.95	789544.51	789610.72	789731.7703	
Geo_n480_ss_05	945974.03	945667.90	945782.66	945865.98	945898.63	945643.47	945697.53	945819.7054	
RanInt_n480_ss_01	379408.00	379532.00	380127.00	377481.62	378288.25	378944.75	378874.75	376897.68	
RanInt_n480_ss_02	379682.00	379465.00	379978.00	376915.63	377891.60	378806.60	379193.70	376396.93	
RanInt_n480_ss_03	378616.00	378677.00	378691.00	378170.99	377267.90	378021.70	377954.45	377516.86	
RanInt_n480_ss_04	378416.00	378582.00	378761.00	377288.47	377041.30	378082.75	378117.80	376712.10	
RanInt_n480_ss_05	379627.00	379533.00	379420.00	378693.73	377627.10	378697.00	378697.55	377348.96	
RanReal n480 ss 01	377744.50	377553.91	377737.96	379167.00	376224.21	376996.03	377233.60	378564.90	
RanReal_n480_ss_02	377306.86	377342.67	377203.56	379708.00	375845.53	376843.49	376598.81	379053.90	
RanReal_n480_ss_03	378407.16	378516.70	379278.21	378323.00	376942.00	377990.35	377908.31	377751.95	
RanReal n480 ss 04	377512.67	377483.34	377447.86	378915.00	376176.89	376817.41	377041.65	377989.75	
RanReal n480 ss 05	377708.04	378113.82	378227.50	378845.00	376305.51	377363.53	377559.44	378352.70	
Geo_n960_ss_01	3254625.15	3253979.37	3254027.55	3254394.48	3254341.67	3253886.64	3253941.37	3254256.201	
Geo n 960 ss 02	1663654.73	1663474.52	1663486.06	1663618.41	1663602.47	1663443.67	1663432.13	1663584.936	
Geo_n960_ss_03	3251862.13	3251193.24	3251319.45	3251595.05	3251574.46	3251122.52	3251201.99	3251496.215	
Geo_n960_ss_04	3514547.37	3513915.12	3513974.50	3514238.95	3514260.32	3513828.00	3513830.30	3514168.624	
Geo_n960_ss_05	2264972.55	2264438.39	2264501.25	2264774.65	2264721.05	2264405.61	2264462.56	2264725.134	
RanInt_n960_ss_01	1218147.00	1217689.00	1220591.00	1220052.00	1213208.80	1216154.50	1219093.15	1218752.50	
$RanInt_n960_{ss}_02$	1215854.00	1216546.00	1219844.00	1221550.00	1211598.85	1215158.85	1218455.75	1218307.50	
RanInt_n960_ss_03	1217134.00	1217434.00	1220172.00	1220874.00	1212712.85	1216107.65	1219097.80	1219068.20	
RanInt_n960_ss_04	1216532.00	1217806.00	1220605.00	1221490.00	1212683.70	1215891.40	1219315.80	1218413.20	
RanInt_n960_ss_05	1215621.00	1216975.00	1220574.00	1220771.00	1212488.15	1215436.75	1218694.05	1218718.75	
RanReal_n960_ss_01	1214107.46	1214382.40	1218358.90	1216886.68	1210716.76	1212547.12	1216271.17	1215373.16	
RanReal_n960_ss_02	1214784.09	1215430.98	1218858.40	1218587.92	1211066.99	1213585.65	1217280.82	1216566.55	
RanReal_n960_ss_03	1214095.83	1215095.58	1218106.72	1218341.93	1209634.07	1213582.73	1216601.52	1215722.71	
RanReal n960 ss 04	1214677.73	1215275.81	1219153.05	1219556.92	1211544.50	1214126.05	1217344.30	1217283.14	
RanReal_n960_ss_05	1212727.73	1213650.67	1216750.56	1216923.18	1208607.96	1211717.26	1215229.52	1215287.53	
Avg.	1128572.04	1128674.54	1129852.10	1129872.19	1126712.69	1127915.53	1129051.98	1128902.17	
#best	11	0	8	11	8	3	11	8	
p-value	7.19 E - 2	$2.76 \mathrm{E}{\text{-}}3$	4.53 E - 1		1.04 E - 2	$3.16 \mathrm{E}$ - 3	$5.86 \mathrm{E}$ -1		

Table 5

Summary comparison of the NDHA algorithm with three state-of-the-art algorithms on 260 large instances with n = 2000 (220 instances) and n = 3000 (40 instances). The best results between the compared algorithms in terms of f_{best} and f_{avg} are indicated in bold.

Inst	tance	e set	s			f_{be}	st		favg			
Set	m	L_g	U_g	Type	ITS	SGVNS	IMS	NDHA	ITS	SGVNS	IMS	NDHA
MDG-a	10	173	227	DGS	1134281.45	1132567.10	1135887.90	1135492.75	1132625.40	1131706.31	1135362.83	1134854.76
MDG-a	10	200	200	EGS	1115486.45	1113931.55	1117171.70	1116895.05	1114055.35	1113142.01	1116717.32	1116269.40
MDG-a	25	51	109	DGS	539452.05	539586.85	541217.2	541406.85	538228.13	539098.47	540803.28	540936.41
MDG-a	25	80	80	EGS	486000.1	486159.75	487575.4	487923.55	484766.67	485663.39	487242.80	487538.23
MDG-a	50	26	54	DGS	291005.4	291821.7	292609.15	293188.65	289955.77	291441.89	292308.39	292847.22
MDG-a	50	32	48	DGS	272851.65	273522.70	274397.30	274898.50	271787.65	273221.62	274039.12	274506.32
MDG-a	50	40	40	EGS	263719.45	264561.50	265437.95	265943.15	262679.20	264262.92	265119.75	265560.06
MDG-a	100	13	27	DGS	158745.10	159297.10	159811.60	160813.85	157897.57	159015.00	159557.94	160549.57
MDG-a	100	20	20	EGS	143917.30	144602.45	144834.50	145476.90	143088.89	144331.32	144586.34	145161.32
MDG-a	200	6	14	DGS	88303.85	88512.20	88829.60	89598.45	87733.85	88326.22	88599.92	89419.56
MDG-a	200	10	10	EGS	76972.90	76841.70	77221.95	78276.90	76467.98	76689.70	77050.59	78116.26
MDG-c	50	48	72	DGS	57907172.80	58047799.55	58233404.15	58324705.90	57732451.10	57999123.67	58186201.46	58274147.92
MDG-c	50	60	60	EGS	55914269.20	56016286.80	56269513.80	56366981.20	55762202.26	55970537.94	56228021.37	56320965.85
#best					0	0	38	222	0	0	40	220

Table 5 shows that the NDHA algorithm performs very well and outperforms significantly the reference algorithms. The NDHA algorithm obtained the best results for 222 and 220 out of 260 instances in terms of f_{best} and f_{avg} , respectively. Compared to the ITS and SGVNS algorithms, our algorithm obtained a better result for each instance both in terms of f_{best} and f_{avg} . When com-

Table 6 Comparison of the NDHA algorithm with the NSGGA algorithm on 20 EGS instances with N = 2000 and m = 200. The best results between the compared algorithms in terms of f_{best} and f_{avg} are indicated in bold.

I	nstance	s		f_b	est	f	ava
Graph	m	L_g	U_g	NSGGA	NDHA	NSGGA	NDHA
MDG-a 21	200	10	10	77610	78193	77299.80	78101.00
MDG-a 22	200	10	10	77671	78423	77290.50	78098.35
MDG-a 23	200	10	10	77567	78253	77271.30	78111.00
MDG-a 24	200	10	10	77401	78300	77213.35	78075.35
MDG-a 25	200	10	10	77536	78266	77317.30	78143.55
MDG-a 26	200	10	10	77442	78324	77263.25	78107.90
MDG-a 27	200	10	10	77510	78220	77241.30	78085.00
MDG-a 28	200	10	10	77670	78208	77290.85	78107.75
MDG-a 29	200	10	10	77442	78271	77242.60	78104.90
MDG-a 30	200	10	10	77575	78187	77272.60	78092.05
MDG-a 31	200	10	10	77557	78380	77323.55	78255.45
MDG-a 32	200	10	10	77470	78252	77245.05	78117.95
MDG-a 33	200	10	10	77480	78234	77271.85	78085.05
MDG-a 34	200	10	10	77538	78193	77327.65	78082.05
MDG-a 35	200	10	10	77684	78332	77334.60	78094.25
MDG-a 36	200	10	10	77519	78348	77273.10	78158.55
MDG-a 37	200	10	10	77630	78335	77373.85	78126.90
MDG-a 38	200	10	10	77493	78189	77269.00	78100.00
MDG-a 39	200	10	10	77461	78290	77228.35	78122.50
MDG-a 40	200	10	10	77544	78340	77321.50	78155.55
Avg.				77540.00	78276.90	77283.57	78116.26
#Better				0	20	0	20
p-value				$8.86 E_{-5}$		$8.86 E_{-5}$	

paring with the IMS algorithm, the NDHA algorithm yielded a better result both in terms of f_{best} and f_{avg} on most instances except the instances with m = 10, which means that the neighborhood decomposition strategy used in the NDHA algorithm plays an important role in enhancing the performance of the algorithm for the instances with a large number of groups. This experiment indicates that the proposed NDHA algorithm is highly competitive compared to the three reference algorithms especially for the large instances with a large number of elements and groups.

In addition, to make a comparison between the NDHA algorithm and the recent hybrid genetic algorithm NSGGA which is designed for MDGP with equal group sizes [24], we provide the results of the NSGGA and NDHA algorithms in Table 6 for 20 large EGS instances with N = 2000 and m = 200, where the same statistical information is given as in the previous tables. Since the code of the NSGGA algorithm is not available to us, this comparison is based on the results reported in [24], based 20 runs per instance on an Intel Core i5 computer with 4G RAM under the same stopping condition as that used by our NDHA algorithm (specified in Section 3.2). One observes from Table 6 that the NDHA algorithm significantly dominates the NSGGA algorithm in terms of f_{best} and f_{avg} , which is confirmed by small *p*-values.

In summary, the experimental results shown in this section indicate that the NDHA algorithm is very competitive compared with the state-of-the-art algorithms in the literature and performs especially well on the large instances.

4 Analysis and Discussions

In this section, we analyze two essential components of the proposed algorithm, i.e., the neighborhood decomposition strategy employed by the local search methods and the strategy of jointly using two local search methods.

4.1 Importance of the Neighborhood Decomposition Strategy

In order to show the effectiveness of the neighborhood decomposition strategy introduced in this study, we carried out an experiment based on 20 large EGS instances with n = 2000, m = 200 and $L_g = U_g = 10$. For this study, we created a variant (denoted by NDHA-D) of the NDHA algorithm by disabling the neighborhood decomposition strategy (i.e., setting all entries of state matrices M_1 and M_2 to the value of 1 during the neighborhood search process), while keeping other components unchanged. We ran NDHA-D and NDHA 20 times for each instance according to the experimental protocol of Section 3.2. The experimental results are summarized in Table 7, where columns 1–4 give the name and main characteristics of the instances, columns 5–6 show respectively the best objective value (f_{best}) over 20 runs for the two compared algorithms, columns 7–8 indicate the average objective value f_{avg} , and columns 9–10 present the worst objective value (f_{worst}) . In addition, the row 'Avg.' shows the average result for each column, the row '#better' shows the number of instances for which the associated algorithm obtained a better result than the competing algorithm in terms of f_{best} , f_{avg} , and f_{worst} , respectively, and the last row gives the p-values from the Wilcoxon signed-rank tests for the compared algorithms. The better results between the compared algorithms are indicated in bold.

One observes from Table 7 that the NDHA algorithm dominates the NDHA-D algorithm for each considered performance indicator. Specifically, the NDHA algorithm obtained a better result than the NDHA-D algorithm for all tested instances in terms of f_{best} , f_{avg} , and f_{worst} . Moreover, the small *p*-values imply the difference between the two compared algorithms is statistically significant. This experiment shows the neighborhood decomposition strategy used in this study plays an important role for the high performance of the NDHA algorithm.

To further show the effect of the neighborhood decomposition strategy on the tabu search procedure that is one main component of the NDHA algorithm, we carried out another experiment to compare the tabu search procedure with neighborhood decomposition (i.e., NDTS) and a tabu search procedure without neighborhood decomposition (denoted by TS). To ease the presentation,

Table 7 Comparison between the NDHA algorithm and its variant NDHA-D on 20 EGS instances with N = 2000 and m = 200.

				f_{best}		f_{i}	avg	f_{worst}	
Graph	m	L_g	U_g	NDHA-D	N DH A	NDHA-D	NDHA	NDHA-D	NDHA
MDG-a_21	200	10	10	77801	78193	77508.40	78101.00	77275	77990
$MDG-a_22$	200	10	10	77715	78423	77527.95	78098.35	77331	77983
$MDG-a_{23}$	200	10	10	77681	78253	77448.80	78111.00	77189	77940
$MDG-a_24$	200	10	10	77897	78300	77489.70	78075.35	77183	77755
$MDG-a_{25}$	200	10	10	77870	78266	77503.15	78143.55	77245	77937
$MDG-a_{26}$	200	10	10	77765	78324	77569.30	78107.90	77235	77928
$MDG-a_27$	200	10	10	77661	78220	77431.70	78085.00	77303	77914
$MDG-a_28$	200	10	10	77700	78208	77457.70	78107.75	77210	77996
$MDG-a_29$	200	10	10	77734	78271	77510.00	78104.90	77238	77947
$MDG-a_30$	200	10	10	77766	78187	77528.15	78092.05	77329	77967
$MDG-a_{31}$	200	10	10	77765	78380	77517.25	78255.45	77316	78144
$MDG-a_{32}$	200	10	10	77702	78252	77540.80	78117.95	77303	77960
$MDG-a_{33}$	200	10	10	77789	78234	77485.55	78085.05	77249	77905
$MDG-a_34$	200	10	10	77725	78193	77534.80	78082.05	77359	77956
$MDG-a_{35}$	200	10	10	77638	78332	77465.95	78094.25	77238	77978
$MDG-a_{36}$	200	10	10	77685	78348	77543.00	78158.55	77389	77890
$MDG-a_37$	200	10	10	77805	78335	77533.65	78126.90	77274	77964
$MDG-a_{38}$	200	10	10	77698	78189	77521.10	78100.00	77238	77947
$MDG-a_39$	200	10	10	77785	78290	77457.75	78122.50	77220	77969
$MDG-a_{40}$	200	10	10	77766	78340	77490.45	78155.55	77365	78019
Avg.				77747.40	78276.90	77503.26	78116.26	77274.45	77954.45
#Better				0	20	0	20	0	20
p- $value$				$8.86 E_{-5}$		8.86E-5		8.86E-5	

we illustrate this experiment with the results obtained by NDTS and TS on two large instances (i.e., MDG-a_21 with N=2000, m = 200 and $L_g = U_g = 10$ for any g, and MDG-a_24 with N = 2000, m = 50, $L_g = 26$, and $U_g = 54$ for any g). For the experiment, NDTS and TS were performed one time per instance, starting from the same initial solution. The experimental results are shown in Fig. 4, where the subfigures (a) and (c) show the running times of NDTS and TS as a function of the number of iterations, and the subfigures (b) and (d) show their best objective values f(s) found as a function of running time.

The subfigures (a) and (c) of Fig. 4 indicate that NDTS (with neighborhood decomposition) requires much less time than TS (without neighborhood decomposition) to perform the same number of iterations, which means that the neighborhood decomposition technique is able to speed up the neighborhood search process notably. On the other hand, one observes from the subfigures (b) and (d) that NDTS yielded much better results in the objective value f(s) than TS within the same computation time, implying the neighborhood decomposition technique is able to enhance significantly the performance of the tabu search procedure.

4.2 Impact of Hybridizing Two Local Search Methods

To enhance its robustness for solving instances with very different characteristics, the NDHA algorithm hybridizes two local search procedures (i.e., NDVND and DNTS) in a probabilistic way, where the probability is con-

Fig. 4. Comparison between NDTS and TS in terms of the objective function value f(s) and the running time.

trolled by the parameter Q. To show the rationality of this hybridization and choose an appropriate value for Q, we carried out an additional experiment based on five representative EGS instances with very different numbers (m) of groups. For each considered instance and each Q value in the range $\{0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, N/m\}$, the NDHA algorithm was performed 20 times using the experimental protocol in Section 3.2. The experimental results are summarized in Fig. 5 using the box and whisker plots, where the X-axis indicates the values of Q and the Y-axis gives the objective values.

Fig. 5 shows that the performance of the algorithm is sensitive to the setting of Q. Specifically, when the neighborhood decomposition based tabu search (NDTS) procedure was always applied and the neighborhood decomposition based variable neighborhood descent (NDVND) procedure was disabled (with Q = N/m), the NDHA algorithm yielded the worst results among the considered Q values for the instances with a small number ($m \leq 50$) of groups. On the other hand, when only the NDVND procedure was applied and the

Fig. 5. Sensitivity analysis for the parameter Q used to control the probability that the NDTS procedure is applied. The X-axis indicates the settings of Q and the Y-axis indicates the objective value.

NDTS procedure was disabled (with Q = 0), the NDHA algorithm produced the worst results among the considered Q values for the instances with a large number ($m \ge 100$) of groups. The experiment shows that the NDTS procedure is more suitable for the instances with a large number of groups, while the NDVND procedure is more suitable for the instances with a small number of groups. This provides the main motivation of combining NDVND and DNTS in a probabilistic way to be able to deal with instances with small and large number of groups. One notices that the setting of Q = 0.1 led globally to a good performance for the considered instances, which was used as the default value of Q in this work.

4.3 Sensitivity Analysis of Parameter μ Used in Neighborhood Decomposition based Tabu Search

Fig. 6. Sensitivity analysis of parameter μ based on the 20 EGS instances with N = 2000 and m = 200, where the X-axis indicates the parameter values and the Y-axis shows the average objective values (f_{avg}) obtained over 20 independent runs.

The neighborhood decomposition based tabu search procedure described in Section 2.4.4 employs a key parameter μ to control the size of neighborhood $N_{NDTS}(s)$. In general, a larger μ value leads to a larger neighborhood, and vice verse. To analyze the influence of this parameter on the performance of the algorithm, we conducted an experiment based on the 20 EGS instances with N = 2000 and m = 200. In this experiment, we ran the NDHA algorithm 20 times for each instance and each μ value in the range of {0.01, 0.02, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.4, 0.45, 0.5}, and recorded the average objective values (f_{avg}) . Fig. 6 shows the results with the popular box and whisker plots, where the X-axis indicates the value of parameter μ and the Y-axis shows the average objective values f_{avg} for the 20 instances.

Fig. 6 indicates that the setting of parameter μ significantly impacts the be-

havior of the NDHA algorithm. Specifically, For $\mu < 0.05$, the performance of the algorithm gradually increases with the increase of μ , while the performance decreases as the value of μ increases for $\mu \ge 0.15$. Thus, [0.05, 0.10] is a suitable range for μ and 0.05 was adopted as the default value in this work.

5 Conclusions and Future Work

We presented a new heuristic algorithm (NDHA) for solving the maximally diverse grouping problem (MDGP). The proposed algorithm distinguishes itself from existing algorithms by its speeding-up neighborhood decomposition technique and the joint use of two complementary local search procedures (both are based on neighborhood decomposition). An adaptive perturbation strategy is additionally used to escape local optimum traps. The algorithm was assessed on 320 benchmark instances commonly used in the literature. Our computational results show that the algorithm outperforms significantly the state-of-the-art algorithms by reporting improved lower bounds for 220 large benchmark instances (i.e., for more than 68% of the tested instances). Given that MDGP is a general model able to formulate a number of realworld applications, the proposed algorithm provides a valuable tool to better solve the related practical problems. The availability of the source code of our algorithm further facilitates such applications.

Additional analyses indicate that the effectiveness of the algorithm is mainly attributed to two essential ideas, i.e., the neighborhood decomposition strategy which speeds up the neighborhood search process and the stochastic combination strategy of two local search procedures which enhances the robustness of the algorithm for different types of problem instances.

The ideas of neighborhood decomposition and combination of different local search procedures are rather general. It is interesting to verify their usefulness for solving other related grouping or clustering problems, such as the capacitated p-median problem [7], the normalized cut clustering problem [8], and the balanced k-means clustering problem [6]. Moreover, the proposed algorithm can be further reinforced by following two directions. First, the current algorithm does not explicitly deal with the issue of solution symmetry for the case where some or all groups have an equal group size. It is meaningful to investigate dedicated search strategies and techniques exploiting the symmetry property. Second, population-based methods such as memetic computing are known to be general frameworks with the potential of surpassing local search algorithms [14]. Then it is worth designing such hybrid algorithms where the proposed algorithm plays the key role of local optimization for intensification.

Acknowledgments

We are grateful to the reviewers for their valuable comments and suggestions which helped us to improve the paper. This work was partially supported by the National Natural Science Foundation of China (Grant 61703213), the Natural Science Foundation of Jiangsu Province of China (Grant BK20170904), six talent peaks project in Jiangsu Province (Grant RJFW-011), and the Shenzhen Science and Technology Innovation Council (Grant JCYJ20180508162601910) and Shenzhen Institute of Artificial Intelligence and Robotics for Society (2019-INT003).

References

- Arani T., Lofti V., 1989, A three phased approach to final exam scheduling. IIE Transactions, 21(1), 86–96.
- Benlic U., Hao J.K., 2013, Breakout local search for the vertex separator problem. In F. Rossi (Ed.): Proc. of the 23th Intl. Joint Conference on Artificial Intelligence (IJCAI-13), IJCAI/AAAI Press, pages 461-467, Beijing, China
- [3] Benlic U., Hao J.K., 2013, Breakout local search for the max-cut problem. Engineering Applications of Artificial Intelligence, 26(3), 1162-1173.
- [4] Brimberg J., Mladenović N., Urošević D., 2015, Solving the maximally diverse grouping problem by skewed general variable neighborhodd search. *Information Sciences*, 295, 650–675.
- [5] Chen Y., Fan Z.P., Ma J., Zeng S., 2011, A hybrid grouping genetic algorithm for reviewier group construction problem. *Expert Systems with Applications*, 38(3), 2401–2411.
- [6] Costa L.R., Aloise D., Mladenović N., 2017, Less is more: basic variable neighborhood search heuristic for balanced minimum sum-of-squares clustering. *Information Sciences*, 415–416, 247–253.
- [7] Díaz J.A., Fernández E., Hybrid scatter search and path relinking for the capacitated p-median problem, *European Journal of Operational Research*, 169(2):570-585.
- [8] Dhillon I., Guan Y., Kulis B., 2007, Weighted graph cuts without eigenvectors: a multilevel approach. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 29(11):1944–1957.
- [9] Fan Z.P., Chen Y., Ma J., Zeng S., 2010, A hybrid genetic algorithmic approach to the maximally diverse grouping problem. *Journal of the Operational Research Society*, 62, 92–99.

- [10] Feo T.A., Khellaf M., 1990, A class of bounded approximation algorithms for graph partitioning. *Networks*, 20, 181–195.
- [11] Gallego M., Laguna M., Martí R., Duarte A., 2013, Tabu search with strategic oscillation for the maximally diverse grouping problem. *Journal of the Operational Research Society*, 64, 724–734.
- [12] Glover F., Laguna M., 1997, Tabu search. Springer Science+Business Media New York.
- [13] Grötschel M., Wakabayashi Y., 1989, A cutting plane algorithm for a clustering problem. *Mathematical Programming*, 45(1-3), 59-96.
- [14] Hao, J.K., 2012, Memetic algorithms in discrete optimization. In: Neri, F., Cotta, C., & Moscato, P. (Eds.), Handbook of Memetic Algorithms, Studies in Computational Intelligence, Vol 379, pp. 73–94, Berlin: Springer.
- [15] Hansen P., Mladenović N., 2001, Variable neighborhood search: Principles and applications. European Journal of Operational Research, 130(3), 449–467.
- [16] Johnes J., 2015, Operational Research in education. European Journal of Operational Research, 243(3), 683-696.
- [17] Krass D., Ovchinnikov A., 2010, Constrained group balancing: Why does it work. European Journal of Operational Research, 206(1), 144–154.
- [18] Lai X.J., Hao J.K., 2016, Iterated maxima search for the maximally diverse grouping problem. European Journal of Operational Research, 254, 780–800.
- [19] Lorena N., Antonio L., 2001, Constructive genetic algorithm for clustering problems. Evolutionary Computation, 9(3), 309–327.
- [20] Lourenco, H.R., Martin, O., & Stützle, T., 2003, Iterated local search. In Glover F., Kochenberger G. (Eds.), Handbook of Metaheuristics, Kluwer.
- [21] Palubeckis G., Karčiauskas E., Riškus A., 2011, Comparative performance of three metaheuristic approaches for the maximally diverse grouping problem. *Information Technology and Control*, 40(4), 277–285.
- [22] Palubeckis G., Ostreika A., Rubliauskas D., 2015, Maximally diverse grouping: an iterated tabu search approach. *Journal of the Operational Research Society*, 66(4), 579–592.
- [23] Rodriguez F.J., Lozano M., García-Martínez C., González-Barrera J.D., 2013, An artificial bee colony algorithm for the maximally diverse grouping problem. *Information Sciences*, 230(1), 183–196.
- [24] Singh K., Sundar S., 2019, A new hybrid genetic algorithm for the maximally diverse grouping problem. International Journal of Machine Learning and Cybernetics, 10(10), 2921–2940.
- [25] Urošević D., 2014, Variable neighborhood search for maximum diverse grouping problem. Yugoslav Journal of Operations Research, 24(1), 21–33.

- [26] Weitz R., Lakshminarayan S., 1997, An empirical comparison of heuristic and graph theoretic methods for creating maximally diverse groups, VLSI design, and exam scheduling. Omega, 25(4), 473–482.
- [27] Weitz R., Lakshminarayan S., 1998, An empirical comparison of heuristic methods for creating maximally diverse groups. *Journal of the Operational Research Society*, 49, 635–646.
- [28] Yeoh H.K., Nor M.I.M, 2011, An algorithm to form balanced and diverse groups of students. Computer Applications in Engineering Education, 19(3), 582–590.
- [29] Zhou Y., Hao J.K., Goëffon A., 2016, A three-phased local search approach for the Clique Partitioning problem. *Journal of Combinatorial Optimization*, 32(2), 469–491.

A Appendix

Detailed results of the proposed NDHA algorithm and three main reference algorithms (ITS [22], SGVNS [4], and IMS [18]) on 260 large scale instances with N = 2000 or 3000 are summarized in Tables A.1–A.13, where each table corresponds to a subset of benchmarks and the statistical information is the same as in the tables of Section 3. The dominating values are indicated in bold.

One observes from the tables that the NDHA algorithm outperforms significantly the reference algorithms for most instances. Specifically, for the 40 instances with m = 10, NDHA outperforms significantly ITS and SGVNS, but performs worse than IMS. For the remaining 220 instances with $m \ge 25$, NDHA outperforms consistently the reference algorithms on all the instances both in terms of f_{best} and f_{avg} .

These outcomes show that the proposed algorithm is particularly suitable to solve large scale instances with a high number of groups, which can be attributed to the neighborhood decomposition strategy.

Table A.1 Comparison of the proposed NDHA algorithm with three best performing algorithms in the literature on the 20 DGS instances with N = 2000 and m = 10.

Inst	ance				fbes	st.			f_a	va	
Graph	m	L_g	U_g	ITS	SGVNS	IMS	NDHA	ITS	SGVNS	IMS	NDHA
MDG-a 21	10	173	227	1134497	1132526	1136103	1135481	1132532.50	1131823.10	1135473.10	1134983.70
MDG-a 22	10	173	227	1134114	1132295	1136012	1135804	1132404.25	1131546.70	1135372.65	1134850.60
MDG-a 23	10	173	227	1133844	1132177	1135619	1134911	1131891.95	1131196.85	1134929.15	1134280.15
MDG-a 24	10	173	227	1134032	1132845	1135755	1135656	1132565.55	1131800.95	1135180.05	1134789.45
MDG-a 25	10	173	227	1134484	1133374	1136116	1135796	1133109.80	1131986.55	1135711.15	1135100.55
MDG-a 26	10	173	227	1134022	1132629	1135639	1135322	1132493.10	1131545.60	1135210.90	1134695.65
MDG-a 27	10	173	227	1134059	1131812	1135442	1134788	1132238.85	1131179.85	1134887.40	1134297.25
MDG-a 28	10	173	227	1134124	1132340	1135850	1135321	1132573.20	1131694.80	1135243.55	1134804.40
MDG-a 29	10	173	227	1134559	1132379	1136028	1135795	1132763.35	1131679.00	1135465.20	1135145.20
MDG-a 30	10	173	227	1133787	1132089	1135581	1135698	1132350.70	1131414.10	1135191.25	1134732.95
MDG-a 31	10	173	227	1134796	1133201	1136262	1136009	1133220.00	1132288.45	1135852.45	1135284.50
MDG-a 32	10	173	227	1134134	1132426	1136130	1135294	1132853.80	1131803.05	1135334.00	1134854.95
MDG-a 33	10	173	227	1134379	1132133	1135697	1135252	1132528.40	1131482.25	1135195.15	1134750.05
MDG-a 34	10	173	227	1134612	1132683	1136216	1135611	1132670.45	1131854.10	1135482.25	1135022.75
MDG-a 35	10	173	227	1134428	1132418	1135600	1135199	1132470.80	1131415.65	1135184.80	1134624.95
$MDG-a_{36}$	10	173	227	1134185	1132439	1135590	1135228	1132637.85	1131573.65	1135172.10	1134718.30
MDG-a 37	10	173	227	1134409	1132887	1136081	1135900	1132852.95	1132014.60	1135761.55	1135168.50
MDG-a 38	10	173	227	1134872	1132731	1135877	1135483	1132950.45	1131962.60	1135579.00	1134810.20
MDG-a 39	10	173	227	1133887	1132362	1135753	1135054	1132222.75	1131478.25	1135090.60	1134556.85
MDG-a 40	10	173	227	1134405	1133596	1136407	1136253	1133177.25	1132386.00	1135940.20	1135624.25
Avg.				1134281.45	1132567.1	1135887.9	9 1135492.75	1132625.40	1131706.31	1135362.83	1134854.76
#Best				0	0	19	1	0	0	20	0
p- $value$				$8.86 E_{-5}$	$8.86 E_{-5}$	1.20E-4		8.86 E - 5	$8.86 E_{-5}$	$8.86 E_{-5}$	

Table A.2 Comparison of the proposed NDHA algorithm with three best performing algorithms in the literature on the 20 DGS instances with N = 2000 and m = 25.

Inst	ance				f_{best}				f_{avg}			
Graph	m	L_g	U_g	ITS	SGVNS	IMS	NDHA	ITS	SGVNS	IMS	NDHA	
MDG-a 21	25	51	109	539434	539367	541212	541440	537963.35	539000.30	540796.65	540969.30	
MDG-a 22	25	51	109	539663	539468	541228	541528	538041.20	538928.40	540743.35	540934.40	
MDG-a 23	25	51	109	539029	539587	540912	540926	538021.45	539144.85	540582.10	540679.00	
MDG-a 24	25	51	109	539255	539469	541109	541327	538229.35	539177.80	540727.90	540901.10	
MDG-a 25	25	51	109	539655	539599	541393	541558	538479.70	539176.60	540816.70	540997.05	
MDG-a 26	25	51	109	539802	539669	541037	541330	538169.10	539097.30	540676.75	540870.75	
MDG-a 27	25	51	109	539369	539853	541003	541159	538022.30	539179.35	540571.55	540593.35	
MDG-a 28	25	51	109	539281	539352	541245	541319	538174.10	539064.00	540832.05	540953.25	
MDG-a 29	25	51	109	539280	539772	541121	541937	538038.70	539187.10	540849.65	541031.65	
MDG-a 30	25	51	109	539446	539709	540945	541355	538276.55	539238.40	540708.60	540900.20	
MDG-a 31	25	51	109	539592	539383	541500	541590	538547.15	538950.80	541052.65	541200.00	
MDG-a 32	25	51	109	539245	539575	541319	541403	538148.05	538950.40	540848.20	540911.00	
MDG-a 33	25	51	109	539300	540021	541281	541390	538163.65	539453.30	540785.25	540838.80	
MDG-a 34	25	51	109	539614	539633	541267	541445	538279.75	539105.90	540910.80	540971.20	
MDG-a 35	25	51	109	539028	539533	541365	541113	538195.45	539071.55	540651.85	540766.10	
MDG-a 36	25	51	109	539404	539829	541259	541448	538129.85	539196.80	540816.40	540917.90	
MDG-a 37	25	51	109	539705	539402	541203	541477	538489.40	538913.80	540942.55	541078.80	
MDG-a 38	25	51	109	539646	539454	541210	541390	538295.95	539002.80	540872.65	541109.40	
MDG-a 39	25	51	109	539376	539794	541237	541397	538245.60	539169.05	540769.70	540857.30	
MDG-a 40	25	51	109	539917	539268	541498	541605	538651.95	538960.80	541110.25	541247.60	
Av g.				539452.05	539586.85	541217.2	541406.85	538228.13	539098.47	540803.28	540936.41	
#Best				0	0	1	19	0	0	0	20	
p-value				$8.86 E_{-5}$	$8.86 E_{-5}$	7.79E-4		8.86E-5	$8.86 E_{-5}$	$8.86 E_{-5}$		

Table A.3 Comparison of the proposed NDHA algorithm with three best performing algorithms in the literature on the 20 DGS instances with N = 2000, m = 50, $L_g = 26$, and $U_g = 54.$

Inst	an ce				f_{be}	st		f_{avg}			
Graph	m	L_g	U_g	ITS	SGVNS	IMS	NDHA	ITS	SGVNS	IMS	NDHA
MDG-a 21	50	26	54	291135	291797	292570	293232	289892.35	291521.00	292266.60	292879.60
MDG-a 22	50	26	54	290930	292077	292639	293145	289950.60	291360.55	292342.05	292839.15
MDG-a 23	50	26	54	290880	291761	292656	293163	289878.55	291388.90	292249.15	292825.15
MDG-a 24	50	26	54	290833	291772	292610	293228	290023.55	291465.85	292348.40	292790.30
MDG-a 25	50	26	54	290863	291799	292669	293106	290009.20	291488.55	292360.55	292822.90
MDG-a 26	50	26	54	290941	291830	292582	293199	289984.45	291420.80	292383.55	292883.90
MDG-a 27	50	26	54	290800	291728	292500	293047	289963.85	291248.55	292135.70	292710.00
MDG-a 28	50	26	54	291185	291779	292608	293065	289985.20	291464.50	292334.35	292855.60
MDG-a 29	50	26	54	290879	291684	292625	293149	289818.45	291468.05	292336.65	292841.30
MDG-a 30	50	26	54	291069	291825	292572	293212	289877.05	291488.90	292299.15	292838.55
MDG-a 31	50	26	54	290912	291874	292658	293294	289873.00	291527.85	292380.95	292900.30
MDG-a 32	50	26	54	291030	291873	292621	293192	289939.35	291433.70	292276.30	292887.95
MDG-a 33	50	26	54	291093	291873	292575	293251	289962.40	291474.50	292274.70	292868.15
MDG-a 34	50	26	54	290916	291792	292588	293237	290048.25	291472.70	292306.25	292892.85
MDG-a 35	50	26	54	290975	291777	292549	293042	289846.70	291360.15	292278.35	292745.15
MDG-a 36	50	26	54	290934	291824	292786	293069	289829.40	291445.05	292321.40	292765.30
MDG-a 37	50	26	54	290865	291923	292682	293266	289720.10	291445.45	292416.60	292881.35
MDG-a 38	50	26	54	291224	291793	292558	293279	290074.35	291448.25	292260.35	292889.90
MDG-a 39	50	26	54	291199	291675	292445	293149	289973.25	291371.40	292198.10	292824.15
MDG-a 40	50	26	54	291445	291978	292690	293448	290465.35	291543.10	292398.70	293002.90
Avg.				291005.4	291821.7	292609.15	293188.65	289955.77	291441.89	292308.39	292847.22
#Best				0	0	0	20	0	0	0	20
p- $value$				$8.86 E_{-5}$	$8.86 E_{-5}$	8.86E-5		8.86E-5	$8.86 E_{-5}$	$8.86 E_{-5}$	

Table A.4 Comparison of the proposed NDHA algorithm with three best performing algorithms in the literature on the 20 DGS instances with N = 2000, m = 50, $L_g = 32$, and $U_g = 48.$

Inst	an ce				f_{bes}	st		f_{avg}			
Graph	m	L_q	U_q	ITS	SGVNS	IMS	NDHA	ITS	SGVNS	IMS	NDHA
MDG-a 21	50	32	48	273075	273549	274369	275062	271766.95	273231.80	274077.45	274521.55
MDG-a 22	50	32	48	272771	273301	274424	274726	271802.65	273077.60	274016.55	274455.60
MDG-a 23	50	32	48	272642	273542	274178	274692	271655.35	273060.55	273960.50	274382.85
MDG-a 24	50	32	48	272816	273494	274356	275046	271739.15	273151.55	274053.35	274524.35
MDG-a 25	50	32	48	272648	273636	274308	274867	271714.55	273242.20	274057.75	274515.20
MDG-a 26	50	32	48	272616	273493	274359	274757	271688.85	273215.15	274086.05	274449.50
MDG-a 27	50	32	48	272859	273470	274379	274932	271686.80	273232.30	273851.35	274387.60
MDG-a 28	50	32	48	272958	273608	274326	274850	271763.90	273262.75	274040.20	274469.70
MDG-a 29	50	32	48	272811	273648	274548	274865	271917.35	273270.60	273995.85	274482.25
MDG-a 30	50	32	48	272880	273458	274394	274886	271720.85	273218.20	274011.90	274440.35
MDG-a 31	50	32	48	272900	273650	274381	274955	271954.25	273267.30	274154.75	274599.30
MDG-a 32	50	32	48	273085	273447	274307	275001	271987.25	273252.00	274044.60	274533.15
MDG-a 33	50	32	48	272988	273427	274337	275028	271703.55	273172.95	274049.40	274434.35
MDG-a 34	50	32	48	273152	273512	274263	274819	272066.65	273240.30	274012.60	274450.85
MDG-a 35	50	32	48	273030	273358	274257	274751	271968.15	273156.15	273959.90	274371.15
MDG-a 36	50	32	48	272844	273606	274605	274797	271678.40	273250.20	274024.95	274493.65
MDG-a 37	50	32	48	272854	273465	274684	274983	271607.20	273265.70	274123.35	274596.25
MDG-a 38	50	32	48	272654	273629	274476	274902	271875.50	273344.05	274038.35	274569.85
MDG-a 39	50	32	48	272582	273439	274320	274909	271555.15	273135.55	274024.25	274543.10
MDG-a 40	50	32	48	272868	273722	274675	275142	271900.55	273385.55	274199.20	274905.75
Avg.				272851.65	273522.70	274397.30	274898.50	271787.65	273221.62	274039.12	274506.32
#Best				0	0	0	20	0	0	0	20
p-value				$8.86 E_{-5}$	$8.86 E_{-5}$	8.86 E - 5		$8.86 E_{-5}$	8.86 E - 5	$8.86 E_{-5}$	

Table A.5 Comparison of the proposed NDHA algorithm with three best performing algorithms in the literature on the 20 DGS instances with N = 2000 and m = 100.

Inst	an ce				f_{be}	st		f_{avg}			
Graph	m l	L_q	U_q	ITS	SGVNS	IMS	NDHA	ITS	SGVNS	IMS	NDHA
MDG-a 21	100 1	13	27	159026	159253	159769	160823	158096.95	158992.15	159519.45	160567.00
MDG-a 22	100 1	13	27	158616	159218	159690	160869	157851.50	158985.20	159526.55	160535.65
MDG-a 23	100 1	13	27	158736	159265	159777	160676	157860.40	159022.55	159550.35	160484.10
MDG-a 24	100 1	13	27	158592	159362	159791	160812	157715.20	159043.40	159605.40	160522.40
MDG-a 25	100 1	13	27	158750	159293	159799	160673	157913.45	159090.75	159519.00	160525.65
MDG-a 26	100 1	13	27	158653	159326	159933	160887	157806.25	159075.35	159669.05	160575.35
MDG-a 27	100 1	13	27	158697	159191	159717	160726	157841.85	158967.00	159494.30	160522.10
MDG-a 28	100 1	13	27	158674	159356	159756	160737	157837.75	159058.85	159552.60	160544.20
MDG-a 29	100 1	13	27	158809	159324	159823	160792	157808.85	159002.85	159498.25	160574.85
MDG-a 30	100 1	13	27	158650	159468	159883	160801	157912.95	159073.45	159705.40	160596.75
MDG-a 31	100 1	13	27	158778	159289	159709	160861	157998.75	159037.70	159569.15	160587.30
MDG-a 32	100 1	13	27	158697	159309	159751	160810	157853.35	158977.75	159574.90	160519.70
MDG-a 33	100 1	13	27	158529	159225	159822	160835	157793.35	158969.25	159531.75	160578.40
MDG-a 34	100 1	13	27	158800	159300	159747	160830	158047.25	159024.25	159547.50	160565.20
MDG-a 35	100 1	13	27	158822	159400	160003	160715	157707.45	158999.35	159537.25	160443.85
MDG-a 36	100 1	13	27	158604	159266	159833	160902	158026.75	159059.45	159511.70	160511.85
MDG-a 37	100 1	13	27	158731	159257	159889	160883	157920.80	159047.10	159605.55	160609.60
MDG-a 38	100 1	13	27	158670	159282	159804	160899	157882.70	158985.55	159456.50	160563.75
MDG-a 39	100 1	13	27	158821	159275	159821	160909	157915.40	158905.95	159547.45	160534.95
MDG-a 40	100 1	13	27	159247	159283	159915	160837	158160.50	158982.10	159636.60	160628.80
Avg.				158745.1	159297.1	159811.6	160813.85	157897.57	159015.00	159557.94	160549.57
#Best				0	0	0	20	0	0	0	20
p- $value$				$8.86 E_{-5}$	$8.86 E_{-5}$	$8.86 E_{-5}$		$8.86 E_{-5}$	$8.86 E_{-5}$	$8.86 E_{-5}$	

Table A.6 Comparison of the proposed NDHA algorithm with three best performing algorithms in the literature on the 20 DGS instances with N = 2000 and m = 200.

Inst	ance			t _{be}	st		favg				
Graph	m L_g	U_g	ITS	SGVNS	IMS	NDHA	ITS	SGVNS	IMS	NDHA	
MDG-a 21	200 6	14	88227	88435	89009	89673	87785.55	88295.80	88771.15	89453.65	
MDG-a 22	200 - 6	14	88161	88479	89217	89632	87609.05	88276.80	88873.15	89391.70	
MDG-a 23	200 - 6	14	88228	88400	88656	89582	87766.40	88288.55	88485.60	89406.30	
MDG-a 24	200 - 6	14	88282	88388	88739	89575	87707.25	88276.00	88487.15	89380.30	
MDG-a 25	200 - 6	14	88351	88627	88717	89561	87906.80	88392.70	88526.30	89416.20	
MDG-a 26	200 - 6	14	88472	88686	88851	89630	87722.55	88465.95	88548.65	89438.55	
MDG-a 27	200 - 6	14	88282	88515	88735	89482	87776.85	88392.50	88570.65	89380.60	
MDG-a 28	200 - 6	14	88301	88495	88703	89609	87655.00	88324.35	88383.40	89388.75	
MDG-a 29	200 - 6	14	88242	88623	88716	89552	87726.45	88347.70	88494.75	89416.05	
MDG-a 30	200 - 6	14	88477	88414	88741	89644	87824.95	88298.25	88470.25	89447.45	
MDG-a 31	200 - 6	14	88243	88532	88771	89580	87673.80	88337.70	88571.65	89456.40	
MDG-a 32	200 - 6	14	88243	88458	88692	89520	87674.85	88284.35	88514.60	89410.45	
MDG-a 33	200 - 6	14	88319	88544	88620	89539	87705.60	88329.45	88462.60	89424.20	
MDG-a 34	200 - 6	14	88272	88543	88897	89704	87658.15	88317.65	88706.85	89435.05	
MDG-a 35	200 - 6	14	88333	88514	88816	89589	87742.30	88271.35	88591.20	89419.70	
MDG-a_36	200 - 6	14	88329	88531	88898	89588	87743.50	88337.80	88690.15	89425.75	
MDG-a 37	200 - 6	14	88282	88453	88917	89611	87843.50	88292.25	88708.75	89388.40	
MDG-a 38	200 - 6	14	88325	88520	88830	89676	87678.55	88313.90	88717.60	89465.00	
MDG-a 39	200 - 6	14	88344	88530	88887	89578	87742.95	88342.25	88642.95	89401.25	
MDG-a 40	200 - 6	14	88364	88557	89180	89644	87733.00	88339.10	88781.05	89445.40	
Avg.			88303.85	88512.20	88829.60	89598.45	87733.85	88326.22	88599.92	89419.56	
#Best			0	0	0	20	0	0	0	20	
p-value			8.86 ± 5	$8.86 E_{-5}$	8.86E-5		8.86E-5	$8.86 E_{-5}$	$8.86 E_{-5}$		

Table A.7 Comparison of the proposed NDHA algorithm with three best performing algorithms in the literature on the 20 EGS instances with N = 2000 and m = 10.

III THE HTEL	If the interature on the 20 EGS instances with $N = 2000$ and $m = 10$.										
Inst	an ce				f_{be}	st			f_a	vg	
Graph	m	L_q	U_q	ITS	SGVNS	IMS	NDHA	ITS	SGVNS	IMS	NDHA
MDG-a 21	10	200	200	1115670	1114042	1117329	1116899	1113959.45	1113305.90	1116979.60	1116262.35
MDG-a 22	10	200	200	1115321	1113721	1117023	1117135	1113665.70	1113035.30	1116590.15	1116258.00
MDG-a 23	10	200	200	1114892	1113478	1116532	1116772	1113272.70	1112722.85	1116179.45	1115769.35
MDG-a 24	10	200	200	1115371	1113662	1117108	1116750	1114181.95	1113007.90	1116631.90	1116139.75
MDG-a 25	10	200	200	1115958	1114335	1117273	1117265	1114653.20	1113459.75	1116971.70	1116676.25
MDG-a 26	10	200	200	1115590	1113747	1116968	1116706	1114141.50	1112874.85	1116482.35	1116062.35
MDG-a 27	10	200	200	1114931	1113363	1116630	1116189	1113642.65	1112788.20	1116158.30	1115640.35
MDG-a 28	10	200	200	1115613	1113878	1117185	1116643	1113922.30	1112992.90	1116613.20	1116161.85
MDG-a 29	10	200	200	1116073	1113935	1117251	1117083	1114258.00	1113218.95	1116856.55	1116448.40
MDG-a 30	10	200	200	1115358	1113918	1117019	1116680	1113618.85	1112977.00	1116586.80	1116015.40
MDG-a 31	10	200	200	1115889	1114290	1117450	1117354	1114371.55	1113477.65	1117122.05	1116780.00
MDG-a 32	10	200	200	1115098	1113951	1117229	1117154	1113961.90	1113096.55	1116816.80	1116506.95
MDG-a 33	10	200	200	1115074	1113867	1117055	1116663	1113714.90	1112992.65	1116508.75	1116155.00
MDG-a 34	10	200	200	1115691	1114120	1117447	1116856	1114448.65	1113533.95	1116961.50	1116390.50
MDG-a 35	10	200	200	1115086	1114196	1116854	1116674	1113983.25	1112705.70	1116383.20	1116028.95
MDG-a_36	10	200	200	1115427	1113669	1117048	1117042	1113749.60	1113041.15	1116601.60	1116181.85
MDG-a 37	10	200	200	1115800	1114510	1117581	1117109	1114503.25	1113459.35	1117121.45	1116566.40
MDG-a 38	10	200	200	1115525	1114085	1117678	1116862	1114260.05	1113419.40	1116953.85	1116478.20
MDG-a 39	10	200	200	1114913	1113545	1116910	1116677	1113737.60	1112885.10	1116443.75	1116072.50
MDG-a 40	10	200	200	1116449	1114319	1117864	1117388	1115060.00	1113845.05	1117383.45	1116793.60
Avg.				1115486.45	5.1113931.55	5 1117171.7	0 1116895.05	1114055.35	1113142.01	1116717.32	1116269.40
#Best				0	0	18	2	0	0	20	0
p-value				$8.86 E_{-5}$	$8.86 E_{-5}$	6.81E-4		8.86 E - 5	8.86E-5	$8.86 E_{-5}$	

Table A.8 Comparison of the proposed NDHA algorithm with three best performing algorithms in the literature on the 20 EGS instances with N = 2000 and m = 25.

Inst	ance	10 0	/11 011		fhere	*	11 2000	fava				
Graph	m	L_q	U_q	ITS	SGVNS	IMS	NDHA	ITS	SGVNS	IMS	NDHA	
MDG-a 21	25	80	80	486111	486385	487689	488046	484925.90	485743.55	487282.20	487697.75	
MDG-a 22	25	80	80	485737	486122	487629	487882	484514.45	485580.50	487195.05	487503.65	
MDG-a 23	25	80	80	485651	485893	487264	487752	484595.35	485455.50	487102.30	487335.90	
MDG-a 24	25	80	80	485919	486155	487396	488040	484593.65	485735.30	487171.20	487511.40	
MDG-a 25	25	80	80	485830	486233	487615	487828	484923.30	485735.05	487331.60	487540.75	
MDG-a 26	25	80	80	485830	486091	487544	488012	484753.95	485611.05	487196.35	487477.65	
MDG-a 27	25	80	80	485604	486080	487376	487599	484393.25	485506.55	487055.50	487307.15	
MDG-a 28	25	80	80	486129	486185	487553	487899	484725.15	485574.80	487207.60	487492.10	
MDG-a 29	25	80	80	486329	486033	487548	487971	484994.10	485656.95	487291.10	487595.40	
MDG-a 30	25	80	80	486017	485896	487361	487785	484673.45	485599.15	487183.90	487491.15	
MDG-a_31	25	80	80	486137	486545	487885	488002	484986.05	485894.60	487513.05	487662.40	
MDG-a 32	25	80	80	486174	486130	487588	487911	484626.85	485589.55	487264.25	487581.95	
MDG-a_33	25	80	80	485821	485975	487582	488113	484673.75	485611.85	487231.65	487547.90	
MDG-a 34	25	80	80	486631	486286	487781	488012	484974.30	485640.30	487284.50	487624.45	
MDG-a 35	25	80	80	485749	485912	487442	487954	484481.75	485520.30	487183.75	487484.70	
MDG-a_36	25	80	80	486013	486102	487510	487950	484752.70	485601.05	487105.30	487555.20	
MDG-a 37	25	80	80	485925	486265	487705	487925	484918.05	485906.80	487370.60	487684.10	
MDG-a 38	25	80	80	485897	486129	487657	487887	484894.45	485762.45	487276.05	487529.15	
MDG-a 39	25	80	80	485947	486033	487465	487848	484797.10	485607.90	487146.40	487438.85	
MDG-a 40	25	80	80	486551	486745	487918	488055	485135.80	485934.65	487463.60	487702.90	
Avg.				486000.1	486159.75	487575.4	487923.55	484766.67	485663.39	487242.80	487538.23	
#Best				0	0	0	20	0	0	0	20	
p-value				8.86 ± 5	$8.86 E_{-5}$	$8.86 E_{-5}$		$8.86 E_{-5}$	8.86 E - 5	$8.86 E_{-5}$		

Table A.9 Comparison of the proposed NDHA algorithm with three best performing algorithms in the literature on the 20 EGS instances with N = 2000 and m = 50.

Inst	an ce				Jbe.	st		Javg				
Graph	m	L_g	U_g	ITS	SGVNS	IMS	NDHA	ITS	SGVNS	IMS	NDHA	
MDG-a 21	50	40	40	263512	264642	265571	265951	262625.40	264329.35	265192.95	265634.50	
MDG-a 22	50	40	40	263876	264580	265437	265832	262750.50	264281.15	265046.65	265438.90	
MDG-a 23	50	40	40	263731	264493	265316	265884	262651.15	264156.50	265065.25	265504.10	
MDG-a 24	50	40	40	263736	264575	265422	265956	262500.25	264290.55	265093.25	265573.55	
MDG-a 25	50	40	40	263688	264556	265354	265866	262863.60	264287.50	265134.10	265519.90	
MDG-a 26	50	40	40	263837	264462	265482	265933	262679.60	264225.70	265124.95	265609.55	
MDG-a 27	50	40	40	263603	264517	265474	265928	262602.80	264116.65	265034.55	265415.35	
MDG-a 28	50	40	40	263628	264548	265316	265995	262730.25	264199.10	265081.20	265573.35	
MDG-a 29	50	40	40	264015	264709	265554	265858	262833.90	264272.75	265169.55	265589.55	
MDG-a 30	50	40	40	263732	264509	265467	266144	262672.25	264240.95	265173.15	265558.55	
MDG-a 31	50	40	40	263744	264532	265542	266022	262728.60	264349.25	265219.85	265616.70	
MDG-a 32	50	40	40	263822	264579	265557	265866	262668.55	264277.00	265132.95	265571.40	
MDG-a 33	50	40	40	263688	264426	265462	265948	262664.90	264224.65	265100.90	265601.60	
MDG-a 34	50	40	40	263561	264832	265387	265927	262645.30	264365.55	265108.75	265592.85	
MDG-a 35	50	40	40	263555	264518	265334	266087	262578.05	264219.60	265069.20	265465.35	
MDG-a 36	50	40	40	263895	264451	265316	265782	262646.85	264228.90	265074.20	265514.10	
MDG-a 37	50	40	40	263714	264499	265308	265911	262717.20	264251.10	265079.35	265642.75	
MDG-a 38	50	40	40	263554	264623	265600	265839	262592.60	264342.35	265209.95	265506.30	
MDG-a 39	50	40	40	263657	264603	265314	265810	262655.90	264236.85	265055.75	265503.35	
MDG-a 40	50	40	40	263841	264576	265546	266324	262776.30	264363.00	265228.50	265769.55	
Avg.				263719.45	264561.5	265437.95	265943.15	262679.20	264262.92	265119.75	265560.06	
#Best				0	0	0	20	0	0	0	20	
p-value				$8.86 E_{-5}$	$8.86 E_{-5}$	8.86E-5		8.86E-5	$8.86 E_{-5}$	$8.86 E_{-5}$		

Table A.10 Comparison of the proposed NDHA algorithm with three best performing algorithms in the literature on the 20 EGS instances with N = 2000 and m = 100.

Inst	ance			f_{bes}	st.		f_{avq}				
Graph	m L_g	U_g	ITS	SGVNS	IMS	NDHA	ITS	SGVNS	IMS	NDHA	
MDG-a 21	$100 \ 20$	20	143675	144813	144748	145401	143083.65	144359.10	144563.20	145170.35	
MDG-a 22	100 20	20	143933	144525	144847	145432	143077.45	144316.00	144613.45	145177.90	
MDG-a 23	100 20	20	143738	144554	144753	145261	142909.50	144314.15	144531.45	145057.25	
MDG-a 24	100 20	20	144003	144536	144740	145593	143076.35	144293.60	144526.75	145155.65	
MDG-a 25	100 20	20	144161	144473	144965	145460	143044.80	144324.10	144599.40	145155.40	
MDG-a 26	100 20	20	143913	144555	144854	145441	143093.70	144373.30	144609.65	145211.55	
MDG-a 27	100 20	20	143910	144558	144762	145435	143150.65	144286.60	144535.40	145076.95	
MDG-a 28	100 20	20	144043	144580	144882	145444	143087.50	144338.95	144591.10	145154.00	
MDG-a 29	100 20	20	143836	144699	144795	145468	143146.15	144364.65	144606.20	145164.40	
MDG-a 30	100 20	20	143978	144613	144830	145873	143048.50	144364.55	144580.50	145171.35	
MDG-a 31	100 20	20	143876	144684	144930	145548	143088.35	144369.70	144637.50	145186.65	
MDG-a 32	100 20	20	143878	144576	144810	145477	143030.35	144357.60	144562.30	145137.75	
MDG-a 33	100 20	20	143957	144873	144886	145319	143070.75	144414.75	144628.60	145123.95	
MDG-a 34	100 20	20	143917	144570	144905	145476	143145.65	144310.85	144647.30	145191.00	
MDG-a 35	100 20	20	143901	144501	144768	145314	143147.05	144276.10	144512.55	145134.10	
MDG-a 36	100 20	20	143853	144560	144898	145458	143097.65	144290.55	144603.10	145150.85	
MDG-a 37	100 20	20	144108	144534	144840	145394	143171.00	144311.95	144654.55	145166.30	
MDG-a 38	100 20	20	143725	144706	144867	145487	143170.05	144334.90	144567.00	145178.35	
MDG-a 39	100 20	20	143803	144534	144760	145609	143081.45	144244.95	144553.90	145210.40	
$MDG-a_40$	100 20	20	144138	144605	144850	145648	143057.20	144380.00	144602.95	145252.25	
Av g.			143917.3	144602.45	144834.5	145476.9	143088.89	144331.32	144586.34	145161.32	
#Best			0	0	0	20	0	0	0	20	
p-value			$8.86 E_{-5}$	$8.86 E_{-5}$	8.86 E - 5		8.86E-5	8.86E-5	$8.86 E_{-5}$		

Table A.11 Comparison of the proposed NDHA algorithm with three best performing algorithms in the literature on the 20 EGS instances with N = 2000 and m = 200.

Inst	ance			f_{be}	st			fa	va	
Graph	m L_q	U_q	ITS	SGVNS	IMS	NDHA	ITS	SGVNS	IMS	NDHA
MDG-a 21	200 10	10	77065	76803	77127	78193	76530.95	76652.45	77030.05	78101.00
MDG-a 22	200 10	10	76971	76850	77176	78423	76469.25	76690.10	77039.00	78098.35
MDG-a 23	200 10	10	77002	76847	77231	78253	76372.40	76684.90	77071.70	78111.00
MDG-a 24	200 10	10	76933	76833	77211	78300	76515.95	76686.15	77055.40	78075.35
MDG-a 25	200 10	10	77198	76835	77245	78266	76561.05	76681.10	77039.70	78143.55
MDG-a 26	200 10	10	76859	76804	77313	78324	76497.85	76706.05	77078.90	78107.90
MDG-a 27	200 10	10	76875	76841	77269	78220	76412.85	76642.40	77024.35	78085.00
MDG-a 28	200 10	10	76853	76809	77353	78208	76438.00	76693.25	77064.80	78107.75
MDG-a 29	$200 \ 10$	10	76942	76879	77212	78271	76489.25	76706.70	77058.25	78104.90
MDG-a 30	200 10	10	77011	76890	77165	78187	76513.90	76720.40	77068.60	78092.05
MDG-a 31	200 10	10	76967	76839	77222	78380	76480.75	76687.70	77052.85	78255.45
MDG-a 32	200 10	10	77005	76796	77225	78252	76399.50	76669.85	77020.20	78117.95
MDG-a 33	200 10	10	76981	76862	77182	78234	76474.45	76722.15	77072.60	78085.05
MDG-a 34	200 10	10	77116	76927	77166	78193	76521.45	76710.90	77041.80	78082.05
MDG-a 35	200 10	10	77018	76853	77195	78332	76454.05	76681.45	77040.15	78094.25
MDG-a 36	200 10	10	76880	76801	77240	78348	76404.25	76702.35	77052.80	78158.55
MDG-a 37	200 10	10	76913	76840	77211	78335	76484.70	76693.20	77051.05	78126.90
MDG-a 38	200 10	10	76995	76840	77234	78189	76413.50	76681.05	77038.40	78100.00
MDG-a 39	200 10	10	77009	76803	77232	78290	76437.25	76667.80	77025.15	78122.50
MDG-a 40	$200 \ 10$	10	76865	76882	77230	78340	76488.25	76713.95	77086.05	78155.55
Avg.			76972.90	76841.70	77221.95	78276.90	76467.98	76689.70	77050.59	78116.26
#Best			0	0	0	20	0	0	0	20
p- $value$			$8.86 E_{-5}$	$8.86 E_{-5}$	8.86E-5		8.86E-5	8.86 E - 5	$8.86 E_{-5}$	

Table A.12 Comparison of the proposed NDHA algorithm with three best performing algorithms in the literature on the 20 DGS instances with N = 3000 and m = 50.

Instance	е				f_{be}	est		f_{avq}			
Graph m	1	L_g	U_g	ITS	SGVNS	IMS	NDHA	ITS	SGVNS	IMS	NDHA
MDG-c 1 5	0 4	18	72^{-1}	57921457	58093235	58265192	58340690	57737678.30	58035513.50	58209687.40	58297673.25
MDG-c 2 5	0 4	18	72	57902133	58099262	58257908	58337196	57731383.75	58026098.05	58209556.50	58299371.40
MDG-c 3 5	0 4	18	72	57934848	58055836	58241554	58311192	57762546.30	58014337.00	58191269.80	58270396.10
MDG-c 4 5	0 4	18	72	57927582	58037524	58233772	58329732	57764219.85	57998056.85	58194485.50	58276632.95
MDG-c 5 5	0 4	18	72	57923652	58055692	58214064	58328164	57759631.00	57994387.20	58170320.15	58274835.70
MDG-c 6 5	0 4	18	72	57864117	58016049	58224119	58309892	57721643.20	57986567.55	58168981.80	58256842.00
MDG-c 7 5	0 4	18	72	57863533	58034097	58234312	58313700	57698298.50	57980907.15	58186693.90	58280775.25
MDG-c 8 5	0 4	18	72	57934738	58045305	58209856	58288736	57730173.20	58005747.75	58174878.90	58257575.90
MDG-c 9 5	0 4	18	72	57910127	58017357	58218441	58319076	57735321.20	57983943.75	58163082.30	58264473.95
MDG-c 10 5	0 4	18	72	57930587	57997933	58201426	58294490	57736078.60	57965143.80	58174383.15	58264257.90
MDG-c 11 5	0 4	18	72	57903371	58057105	58269895	58336603	57719528.20	58007027.90	58227824.85	58286386.60
MDG-c 12 5	0 4	18	72	57900418	58081540	58230643	58330830	57707521.30	58025359.15	58184171.95	58281631.20
MDG-c 13 5	0 4	18	72	57858714	58083409	58269976	58348524	57716409.80	58031488.85	58202546.90	58279226.65
MDG-c 14 5	0 4	18	72	57882617	58038649	58289363	58300407	57721202.00	57984240.60	58202482.10	58255428.60
MDG-c 15 5	0 4	18	72	57931495	58048003	58243022	58329292	57746547.60	57985029.30	58197244.85	58265913.85
MDG-c 16 5	0 4	18	72	57960453	58059638	58223406	58336695	57760872.90	58010567.10	58187356.65	58294369.60
MDG-c 17 5	0 4	18	72	57918754	58029359	58213613	58320502	57741845.75	57983441.85	58163916.65	58269475.80
MDG-c 18 5	0 4	18	72	57884836	58003403	58190902	58311686	57700437.65	57963090.00	58153413.50	58253890.75
MDG-c 19 5	0 4	18	72	57886748	58031546	58224417	58371723	57709285.60	57998606.85	58189788.00	58281675.95
MDG-c 20 5	0 4	18	72	57903276	58071049	58212202	58334988	57748397.25	58002919.25	58171944.40	58272124.90
Avg.				57907172.8	0.58047799.5	$5\ 58233404.1$	5 58324705.90	57732451.10	57999123.67	58186201.46	58274147.92
#Best				0	0	0	20	0	0	0	20
p-value				8.86 E - 5	$8.86 E_{-5}$	8.86E-5		$8.86 E_{-5}$	8.86E-5	$8.86 E_{-5}$	

<u>in the lite</u> :	ratu	.re (on th	<u>e zu egs</u>	<u>s instanc</u>	es with <i>i</i>	N = 3000 a	na $m = 5$	0.		
Insta	ance				f_{b}	est			f_{av}	q	
Graph	m	L_q	U_q	ITS	SGVNS	IMS	NDHA	ITS	SGVNS	IMS	NDHA
MDG-c 1	50	60	60	55935354	56066732	56300952	56367170	55773172.85	56026456.90	56261757.35	56333433.90
MDG-c ²	50	60	60	55935048	56052085	56304407	56391411	55751718.00	56012225.35	56264734.25	56345921.00
MDG-c_3	50	60	60	55876810	55928266	56271740	56368135	55757466.30	55886719.80	56233584.00	56330534.85
MDG-c 4	50	60	60	55892522	56045917	56274086	56355625	55753144.20	56001442.40	56233863.20	56321400.10
MDG-c_5	50	60	60	55966544	56025930	56291632	56346700	55764810.85	55983690.45	56228552.10	56313011.30
MDG-c_6	50	60	60	55872193	56050890	56240478	56346004	55757932.70	56008253.65	56210354.00	56302313.75
MDG-c 7	50	60	60	55898725	56004130	56284630	56372432	55741551.65	55960750.75	56224220.50	56319651.95
MDG-c 8	50	60	60	55911548	56031405	56249087	56362161	55745946.30	55988150.90	56215130.00	56320663.10
MDG-c 9	50	60	60	55871860	55916383	56265244	56345352	55762150.35	55870335.40	56211872.45	56292812.70
MDG-c 10	50	60	60	55920804	55975884	56271841	56341222	55889867.25	55920627.00	56220974.15	56292495.60
MDG-c 11	50	60	60	55916984	56079876	56245962	56382456	55739899.00	56008914.10	56214501.30	56326674.85
MDG-c 12	50	60	60	55895697	56016471	56246744	56330408	55752006.35	55942412.60	56215907.70	56293618.05
MDG-c 13	50	60	60	55954309	56031145	56275819	56351898	55769196.40	55985360.10	56241430.35	56301577.00
MDG-c 14	50	60	60	55942413	55986823	56279869	56355641	55765380.20	55948686.80	56233195.60	56299851.20
MDG-c 15	50	60	60	55917971	55993491	56277686	56393376	55753017.35	55945782.20	56229065.85	56349326.05
MDG-c 16	50	60	60	55930835	56032237	56281453	56403871	55761254.95	55987905.60	56242444.65	56360680.45
MDG-c 17	50	60	60	55914349	56015346	56273992	56393589	55755871.50	55973726.35	56227222.95	56337958.45
MDG-c 18	50	60	60	55882209	56002250	56223804	56369757	55730098.30	55970535.10	56193093.10	56315879.40
MDG-c 19	50	60	60	55917957	56040091	56269179	56392641	55774459.50	56000374.75	56229431.65	56347320.95
MDG-c 20	50	60	60	55931252	56030384	56261671	56369775	55745101.20	55988408.65	56229092.20	56314192.25
Avg.				55914269.2	0 56016286.8	0 56269513.8	0 56366981.20	55762202.26	55970537.94	56228021.37	56320965.85
#Best				0	0	0	20	0	0	0	20
p-value				8.86E-5	8.86E-5	8.86E-5		8.86E-5	8.86E-5	8.86E-5	

Table A.13 Comparison of the proposed NDHA algorithm with three best performing algorithms in the literature on the 20 EGS instances with N = 3000 and m = 50.