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Abstract

The maximally diverse grouping problem (MDGP) is a relevant NP-hard opti-
mization problem with a number of real-world applications. However, solving large
instances of the problem is computationally challenging. This work is dedicated to
a new heuristic algorithm for the problem, which distinguishes itself by two original
features. First, it introduces the �rst neighborhood decomposition strategy to accel-
erate neighborhood examinations. Second, it integrates, in a probabilistic way, two
complementary neighborhood decomposition based local search procedures (variable
neighborhood descent and tabu search) as well as an adaptive perturbation strategy
to ensure a suitable balance between intensi�cation and diversi�cation of the search
space. Computational results on 320 benchmark instances commonly used in the
literature show that the proposed algorithm competes favorably with the state-of-
the-art MDGP algorithms, by reporting improved best-known results (new lower
bounds) of the literature for 220 large instances. Additional experiments are con-
ducted to analyze the main components of the algorithm. The proposed algorithm
can help to better solve practical problems that can be formulated by the maximally
diverse grouping model.
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1 Introduction

Given a set V of N elements, a distance matrix D = [dij]N×N between the
elements, a positive integer m, and m pairs of non-negative integers {Lg, Ug}
(1 ≤ g ≤ m) called the capacity lower and upper limits of groups, the max-
imally diverse grouping problem (MDGP) is to partition the set V into m
disjoint groups such that the size of each group g lies in [Lg, Ug] (1 ≤ g ≤ m),
while the sum of the distances between the elements in the same groups is
maximized. MDGP can also be described as a graph partition problem as fol-
lows. We consider an edge-weighted complete graph G = (V,E,D), where V is
the set of N vertices, E is the set of N×(N−1)/2 edges, and D = [dij]N×N de-
�nes the set of edge weights. Then MDGP can be considered as a special case
of the NP-hard clique partitioning problem (CPP) [13,29] with non-negative
edge weights and constraints related to the capacity lower and upper limits of
groups.

Formally, MDGP can be written as a quadratic binary programming problem
[11,23]:

Maximize
m∑
g=1

N−1∑
i=1

N∑
j=i+1

dijXigXjg (1)

Subject to
m∑
g=1

Xig = 1, i = 1, 2, . . . , N (2)

Lg ≤
N∑
i=1

Xig ≤ Ug, g = 1, 2, . . . ,m (3)

Xig ∈ {0, 1},∀i ∈ {1, 2, . . . , N}, ∀g ∈ {1, 2, . . . ,m}, (4)

where Xig is a binary variable that takes 1 if the vertex i locates in the group
g and 0 otherwise, the set of constraints (2) guarantees that each vertex is
located in exactly one group, and the set of constraints (3) ensures that the
size of group g lies in [Lg, Ug] (g = 1, 2, . . . ,m).

MDGP is a relevant model for formulating many practical problems, such as
assignment of students to groups [16,17,28], creation of peer review groups [5],
and VLSI design [26]. More applications can be found in [11,18,22,23,25].

Due to the NP-hardness of MDGP [10], a number of heuristic algorithms have
been proposed to �nd approximate solutions. Existing heuristic algorithms can
be classi�ed into two categories, i.e., trajectory-based local search algorithms
and hybrid evolutionary algorithms. As examples of trajectory-based local
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search algorithms, we mention the multistart algorithm [1], Lot�-Cerveny-
Weitz (LCW) algorithm [27], T-LCW method mixing LCW and tabu search
[11], simulated annealing algorithm [21], variable neighborhood search algo-
rithms [4,21,25], tabu search algorithms [11,22], and iterated maxima search
(IMS) algorithm [18]. Hybrid evolutionary algorithms include hybrid genetic
algorithms [9,24], hybrid grouping genetic algorithm [5], hybrid steady-state
genetic algorithm [21], arti�cial bee colony (ABC) algorithms [23], and con-
structive genetic algorithm [19]. According to the experimental results re-
ported in recent studies such as [4,18,24], the skewed general variable neigh-
borhood search algorithm (SGVNS) [4], the iterated tabu search algorithm
(ITS) [22], the iterated maxima search algorithm (IMS) [18] can be regarded
as the current state-of-the-art MDGP algorithms. Finally, the hybrid genetic
algorithm NSGGA [24] can also be considered as a state-of-the-art algorithm,
but only for the special case where all groups have an equal size.

One notices that the best performing MDGP algorithms in the literature rely,
with no exception, on a powerful neighborhood search subroutine. Meanwhile,
a careful analysis of the underlying neighborhood search procedures indicates
that they examine the whole neighborhood used at each iteration, which leads
to super�uous examinations of many non-promising neighbor solutions and
a waste of computation time. To overcome this problem, this work investi-
gates an original neighborhood decomposition method which avoids redun-
dant calculations of the neighborhood examination and thus speeds up the
neighborhood search.

The main contributions of this work are summarized as follows.

(1) We propose a novel neighborhood decomposition based heuristic algo-
rithm (NDHA) with two original features. First, NDHA relies a dynamic
neighborhood decomposition strategy that allows the algorithm to avoid
redundant examination of irrelevant neighbor solutions at each iteration
by ignoring uninteresting candidate solutions. As such, the neighborhood
decomposition strategy accelerates the neighborhood examination and
enables more promising candidate solutions to be examined for a given
time budget. Second, the neighborhood decomposition based heuristic al-
gorithm integrates two complementary neighborhood search procedures
(i.e., tabu search and variable neighborhood descent) that are applied in
a probabilistic way, leading to an enhanced robustness of the algorithm.

(2) We present computational results of the proposed algorithm on 320 bench-
mark instances commonly used in the literature and compare our results
with those of the state-of-the-art MDGP algorithms. Our comparative
studies indicate that the proposed algorithm outperforms signi�cantly
the reference algorithms especially on the large benchmark instances.
The new lower bounds for 220 benchmark instances reported by our al-
gorithm are useful for assessment of other MDGP algorithms. Moreover,
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the source code of our NDHA algorithm will be made available online,
which can be used by researchers and practitioners to better solve various
practical problems that can be formulated as MDGP.

(3) The neighborhood decomposition strategy is of general nature and can
be advantageously adopted to speed up other neighborhood search algo-
rithms for MDGP and other related clustering problems as well.

In the next section, we describe the proposed algorithm. In Section 3, we eval-
uate the proposed algorithm by reporting computational results on a large
number of benchmark instances and making comparisons with reference algo-
rithms in the literature. In Section 4, we conduct analyses to investigate two
essential components of the proposed algorithm as well as one key parameter.
In the last section, we summarize the work and provide research perspectives.

2 Neighborhood decomposition based hybrid heuristic for MDGP

The neighborhood decomposition based heuristic algorithm (NDHA) proposed
in this work follows the general iterated local search framework [20] and com-
bines two complementary neighborhood search procedures (i.e., tabu search
and variable neighborhood descent) with a perturbation operator to reach a
suitable tradeo� between intensi�cation and diversi�cation of the search space.
Compared to existing algorithms, the proposed algorithm distinguishes itself
by two key features, i.e., its neighborhood decomposition strategy aiming to
speed up the neighborhood search and a combined use of two local search
methods aiming to enhance the robustness of the algorithm. We describe the
main framework of the proposed algorithm and its components in this section.

2.1 Main Framework

The NDHA algorithm (Algorithm 1) starts with the solution initialization
procedure (Section 2.3) to obtain a high-quality initial feasible solution. It
then performs a number of iterations to improve the current solution until the
given time limit (tmax) is reached (lines 4�26).

At each iteration, the current solution s is �rst perturbed by the perturbation
operator (line 5, Section 2.5) and the perturbed solution is then improved
by the neighborhood decomposition tabu search (NDTS) procedure (Section
2.4.4) or the neighborhood decomposition variable neighborhood descent (ND-
VND) procedure (Section 2.4.3). The decision of applying NDTS or NDVND
depends on a probability: Q × m

N
for NDTS and 1 − (Q × m

N
) for NDVND,

where Q (0 ≤ Q ≤ N/m) is a parameter, N is the number of elements in the
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Algorithm 1: Neighborhood decomposition based heuristic algorithm
(NDHA) for MDGP

Input: An edge-weighted complete graph G = (V,E,D), number of
groups m, time limit tmax, and parameters δ, Q, kmin, kstep, kmax

Output: The best feasible solution found (s∗)
1 s← InitialSolution(G,m) /* Section 2.3 */
2 s∗ ← s /* s∗ records the best solution found */
3 k ← kmin /* k denotes the current perturbation strength */
4 while Time() ≤ tmax do
5 s

′ ← Perturbation(s, k) /* Algorithm 4 */
6 r ← rand(0, 1) /* rand(0, 1) denotes a random number in (0, 1)

*/
7 if r < Q× m

N
then

8 s
′′ ← NDTS(s

′
) /* Tabu search, Algorithm 3 */

9 end
10 else
11 s

′′ ← NDVND(s
′
) /* Variable neighborhood descent,

Algorithm 2 */

12 end

13 if (f(s
′′
)

f(s)
+ δ · d(s

′′
, s) > 1) ∧ (f(s

′′
)

f(s∗)
+ δ · d(s

′′
, s∗) > 1 then

14 s← s
′′

15 end

16 if f(s
′′
) > f(s∗) then

17 s∗ ← s
′′

18 k ← kmin
19 end
20 else
21 k ← k + kstep
22 end
23 if k ≥ kmax then
24 k ← kmin
25 end
26 end
27 return s∗

problem instance, and m is the number of groups. Subsequently, the improved
solution s

′′
is accepted, like [4], as the current solution based on its objective

value f(s
′′
) and its distances to the current solution s and the best solution

found so far s∗ (lines 13�15), where the distances between solutions are mea-
sured by a partition-based distance function from [4,18]. After that, the best
solution found so far (s∗) is accordingly updated if s

′′
is better than s∗ (lines

16�19).

The strength k of the perturbation operator is adaptively adjusted during
the search process following the strategies of breakout local search [2,3]. k is
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initially set to the minimum value kmin (line 3). Then, k increases by kstep if the
recorded best solution s∗ is not updated by s

′′
and is reset to kmin otherwise

(lines 16�22). When k reaches the maximum value kmax, it is reset to kmin as
well (lines 23�25). In the following subsections, we describe the components
of the NDHA algorithm.

2.2 Search Space and Solution Representation

V

11

62 3 9

7

4

10

5
1

G1 G2

G3

G3
4 5 101

L1=2, U1=5 

8

11

G1 62

L2=3, U2=5 

G2 7 83 9

L3=5, U3=6 

Fig. 1. An illustrative example for solution representation with N = 11, m = 3, and
Umax = 6. We use a 3× 6 matrix A (right �gure) to indicate a solution (left �gure).

Given an edge-weighted complete graph G = (V,E,D) andm pairs of capacity
limits of groups {Lg, Ug} (Lg ≤ Ug, g = 1, 2, . . . ,m), the search space Ω
explored by the NDHA algorithm contains all m-partitions {G1, G2, . . . , Gm}
of the vertex set V satisfying the capacity limits of groups, i.e., G1∪G2∪· · ·∪
Gm = V, Gi ∩Gj = ∅ (i 6= j), and Lg ≤ |Gg| ≤ Ug for g = 1, 2, . . . ,m.

To ensure a high computational e�ciency, we use a N -dimensional vector
x[1 : N ] to represent a candidate solution (i.e., a m-partition of V ), where x[i]
(i = 1, 2, . . . , N) takes its values in {1, 2, . . . ,m} and x[i] = g indicates that
vertex i is clustered in group g. In addition, to ease the implementation of the
neighborhood decomposition strategy, we also maintain a m×Umax matrix A,
as illustrated in Fig. 1, where Umax denotes the largest upper limit of groups,
i.e., Umax = max1≤g≤m{Ug}.

2.3 Initial Solution

Following [18], the initialization procedure of the NDHA algorithm generates
β feasible solutions (typically from ten to a few dozen) and then chooses the
best one among them as the initial solution of the algorithm. Speci�cally,
the initialization procedure generates a feasible solution as follows. First, it
constructs randomly a partial solution satisfying the lower capacity limits
of groups, i.e., |Gg| ≥ Lg (g = 1, 2, . . . ,m). Then, the remaining vertices are
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added into the partial solution one by one to obtain a complete feasible solution
such that the upper capacity limits of groups are respected, i.e., |Gg| ≤ Ug
(g = 1, 2, . . . ,m). Finally, the quality of the constructed solution is locally
improved by the local search procedure described in Algorithm 2.

2.4 Neighborhood Decomposition based Local Search Procedures

The NDHA algorithm relies on two key local search procedures which are
used to improve solutions generated by the initialization procedure or the
perturbation operator. We describe below these two local search procedures.

2.4.1 Neighborhood Structures and their Decomposition

The local search procedures of the NDHA algorithm are based the neighbor-
hood decomposition strategy introduced in this work. Below, we present the
two underlying neighborhoods used in this work (the constrained OneMove
neighborhood and swap neighborhood) and their decompositions. Though
both neighborhoods have been used in existing studies on MDGP [4,11,18,21�
23,25], the neighborhood decomposition strategy is novel, which constitutes
one of the key ingredients contributing to the success of our NDHA algorithm.

The constrained OneMove neighborhood (denoted by N1) can be described as
follows. Given a solution s = {G1, G2, . . . , Gm}, the OneMove move denoted
by (v, i, j) transfers a vertex v from its current group Gi to another group
Gj (j 6= i) such that the resulting neighbor solution (denoted by s ⊕ (v, i, j))
satis�es the capacity constraints of groups Gi and Gj. The neighborhood N1(s)
of solution s is then composed of all feasible solutions which can be obtained by
applying OneMove to s: N1(s) = {s⊕ (v, i, j) : v ∈ Gi, i, j ∈ {1, . . . ,m}, i 6=
j, |Gi| > Li, |Gj| < Uj}. Clearly N1(s) has a size bounded by O(N ×m), and
becomes empty if Lg = Ug for any group g.

We notice that N1(s) can be decomposed into m × (m − 1) disjoint subsets
that we call neighborhood blocks B1[i][j](s) (i, j ∈ {1, . . . ,m}, i 6= j), where
each neighborhood block B1[i][j](s) is given by B1[i][j](s) = {s ⊕ (v, i, j) :
v ∈ Gi, |Gi| > Li, |Gj| < Uj}. As a result, the neighborhood N1(s) can be
equivalently expressed as N1(s) = ∪1≤i 6=j≤mB1[i][j](s).

Now we can use this decomposed neighborhood to accelerate neighborhood
examination as follow. At each iteration of the neighborhood search, the cur-
rent neighborhood N1 is �rst decomposed into m× (m− 1) blocks. Then the
algorithm skips those non-promising blocks that have been identi�ed in pre-
vious iterations and marked in a state matrix (see below), and focuses only
on the remaining (promising) blocks. As a result, the neighborhood search is
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speeded up greatly.

To indicate whether a neighborhood block has been checked or not during the
neighborhood search process, we maintain a m ×m asymmetric binary state
matrix M1, where the entry M1[i][j] (1 ≤ i 6= j ≤ m) corresponds to the
neighborhood block B1[i][j](s) and the diagonal entries M1[i][i] (1 ≤ i ≤ m)
are irrelevant since the corresponding B1[i][i](s) (1 ≤ i ≤ m) are empty set.
M1[i][j] takes 0 if the block B1[i][j](s) has been examined previously without
�nding any improving solution, and takes 1 otherwise. An illustrative example
for the state matrix M1 is shown in Fig. 2(a).

The swap neighborhood (denoted by N2) is de�ned by the Swap(v, u) move
which generates a neighbor solution by exchanging the group of vertex v and
the group of vertex u. Therefore, the neighborhood N2(s) of s contains all
possible solutions that can be reached by applying the Swap move to s:
N2(s) = {s ⊕ Swap(v, u) : v ∈ Gi, u ∈ Gj, 1 ≤ i < j ≤ m}. This neigh-
borhood has a size bounded by O(N2).

Similar to N1, the neighborhood N2(s) can also be decomposed into m× (m−
1)/2 disjoint neighborhood blocks, i.e., N2(s) = ∪1≤i<j≤mB2[i][j](s), where
each neighborhood blockB2[i][j](s) is de�ned byB2[i][j](s) = {s⊕Swap(v, u) :
v ∈ Gi, u ∈ Gj}. Then, taking advantage of this decomposed neighborhood, we
can speed up neighborhood examination during the search process by ignoring
the non-promising neighborhood blocks that do not contain any improving
solution. For this purpose, we use a m × m symmetric binary state matrix
M2, where the entry M2[i][j] (= M2[j][i]) corresponds to the block B2[i][j](s)
and takes 0 if B2[i][j](s) has been examined previously without �nding an
improving solution, and takes 1 otherwise. An illustrative example of M2 is
given in Fig. 2(b).

The neighborhood decomposition method is based on the fact that the objec-
tive function of MDGP is the sum of subunit objectives de�ned on m groups
and thus most neighborhood blocks are mutually independent in terms of move
values (i.e., the change of objective values between the current solution and
a neighbor solution). With the help of the state matrix of the corresponding
neighborhood, the algorithm avoids many redundant neighborhood examina-
tions if the neighborhood is checked in a block-by-block way, as described in
Sections 2.4.3 and 2.4.4.

2.4.2 Updating of State Matrices of Neighborhoods

The state matrices M1 and M2 are initialized at the beginning of each neigh-
borhood search procedure, where their entries are set to 1 except for the diago-
nal elements which are set de�nitively to 0. Then,M1 andM2 are dynamically
updated as the search process progresses.
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(a) state matrix of N1
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1

0
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1

1
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(b) state matrix of N2

Fig. 2. State matrices of the constrained OneMove neighborhood N1 and the swap
neighborhood N2, where M1 and M2 both are a m×m (m = 9) 0�1 matrix. For the
current solution s, the entries M1[i][j] and M2[i][j] correspond respectively to the
neighborhood blocks B1[i][j](s) and B2[i][j](s), which take 0 if the corresponding
block has been checked without �nding an improving solution.

Speci�cally, for the neighborhood N1, M1[i][j] is �rst set to 0 when the block
B1[i][j](s) is being examined. For N2, both M2[i][j] and M2[j][i] are set to 0
when the block B2[i][j](s) is being examined. After that, M1[i][q] (or M2[i][q]
for N2),M1[q][i] (orM2[q][i] for N2),M1[j][q] (orM2[j][q] for N2) andM1[q][j]
(or M2[q][j] for N2) (1 ≤ q ≤ m) all are updated to 1 if a solution in the block
B1[i][j](s) (or B2[i][j](s) for N2) is chosen as the current solution, and keeps
unchanged otherwise. Two illustrative examples for the update of M1 and M2

are given in Fig. 3, where each blue entry corresponds to the neighborhood
block being examined, those entries in lilac are those that need to be updated
if a neighbor solution is chosen to replace the current solution from the block
being examined during the neighborhood search.

As we observe in Fig. 3, if a neighbor solution is chosen to replace the current
solution during the neighborhood search, only those blocks corresponding to
the lilac entries are impacted in terms of the objective value. Thus, the al-
gorithm only needs to examine those blocks with a state value of 1. In this
way, the neighborhood search process can be accelerated signi�cantly (see the
experimental study on this issue presented in Section 4.1).

2.4.3 Neighborhood Decomposition based Variable Neighborhood Descent

The neighborhood decomposition based variable neighborhood descent pro-
cedure (NDVND) (Algorithm 2) relies on the general variable neighborhood
descent (VND) method [15]. NDVND employs both neighborhoods N1 and N2

to explore candidate solutions. Stating from N1, the procedure examines N1

and N2 in a token-ring way until no improving solution exists in N1(s) and
N2(s) with respect to the current solution s.

9



Algorithm 2: Neighborhood decomposition based variable neighborhood
descent (NDVND) procedure

1 Function NDVND(s)
Input: Input solution s0
Output: The local optimum solution s

2 Initialize state matrices M1 and M2 /* Section 2.4.2 */
3 Improve← true
4 while Improve=true do
5 Improve← false
6 /* Examine neighborhood N1 block by block */
7 for i← 1 to m do
8 for j ← 1 to m do
9 if M1[i][j] = 1 then
10 M1[i][j]← 0,flag ← false
11 for each s

′ ∈ B1[i][j](s) do
12 if f(s

′
) > f(s) then

13 s← s
′

14 Improve← true, flag ← true
15 end
16 end
17 if flag = true then
18 Update M1 and M2 /* Section 2.4.2 */
19 end
20 end
21 end
22 end
23 /* Examine neighborhood N2 block by block */
24 for i← 1 to m do
25 for j ← i+ 1 to m do
26 if M2[i][j] = 1 then
27 M2[i][j]← 0, M2[j][i]← 0, flag ← false
28 for each s

′ ∈ B2[i][j](s) do
29 if f(s

′
) > f(s) then

30 s← s
′

31 Improve← true, flag ← true
32 end
33 end
34 if flag = true then
35 Update M1 and M2 /* Section 2.4.2 */
36 end
37 end
38 end
39 end
40 end
41 return s
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Fig. 3. Illustrative example for the update of the matricesM1 andM2, where an blue
entry corresponds to the neighborhood block being examined, and the lilac entries
are needed to be updated if a neighbor solution in the neighborhood block being
examined is chosen to replace the current solution during the neighborhood search.

Speci�cally, for a given neighborhood Ni (i = 1, 2), it is examined block-
by-block, and the current solution s is immediately updated each time an
improving neighbor solution is found. Then, the state matrices M1 and M2

are updated if at least one improving neighbor solution is found after the
associated neighborhood block is completely examined.

2.4.4 Neighborhood Decomposition based Tabu Search

The neighborhood decomposition based tabu search (NDTS) procedure of the
NDHA algorithm relies on the tabu search metaheuristic [12] and employs
a reduced swap neighborhood NNDTS obtained from the swap neighborhood
N2. Formally, this reduced swap neighborhood is given by NNDTS(s) = {s ∈
B2[i][j](s) : M2[i][j] = 1∨rand(0, 1) < µ, i < j}, where rand(0, 1) is a random
number in the interval (0, 1) and µ is a parameter which is set to 0.05 in this
study (see analysis of µ in Section 4.3). In other words, the reduced neighbor-
hood includes always the promising neighborhood block B2[i][j](s) (indicated
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Algorithm 3: Neighborhood decomposition based tabu search (NDTS)
procedure

1 Function NDTS(s)
Input: Input solution s0, depth of tabu search α, and parameter µ
Output: The best solution sb found

2 s← s0 /* s denotes the current solution */

3 sb ← s /* sb denotes the best solution found by the tabu
search */

4 NoImprove← 0
5 Initialize tabu list T and state matrix M2 /* Section 2.4.2 */
6 while NoImprove < α do
7 /* Examine neighborhood NNDTS(s) block by block */
8 fmax ← −∞
9 for i← 1 to m do
10 for j ← i+ 1 to m do
11 if (M2[i][j] = 1) ∨ (rand(0, 1) < µ) then
12 M2[i][j]← 0, M2[j][i]← 0

13 for each s
′ ∈ B2[i][j](s) do

14 if ((f(s
′
) > fmax)∧(s

′
is not forbidden))∨(f(s

′
) > f(sb)

then
15 fmax ← f(s

′
)

16 I ← i, J ← j

17 snb ← s
′

/* snb denotes the best solution not
forbidden by T in NNDTS(s) */

18 end
19 end
20 end
21 end
22 end
23 /* Perform the iterations */
24 s← snb
25 Update tabu list T
26 Update state matrix M2 using I and J /* Section 2.4.2 */

27 if f(s) > f(sb)) then
28 sb ← s
29 NoImprove← 0
30 end
31 else
32 NoImprove← NoImprove+ 1
33 end
34 end
35 return sb
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with M2[i][j] = 1). To avoid a too restricted (small) neighborhood at each
iteration, the neighborhood block B2[i][j](s) of N2(s) is always contained in
the neighborhood NNDTS(s) with a probability of µ independent of its state
(M2[i][j] = 1 or 0).

The NDTS procedure described in Algorithm 3 starts from the initialization
of the tabu list T (a N × m array) and the state matrix M2 (line 5), then
performs a number of iterations until the best solution sb can not be improved
during α consecutive iterations (lines 6�34), where α is a parameter called the
depth of tabu search.

At each iteration, the NDTS procedure examines the neighborhood NNDTS(s)
in a block-by-block way and chooses a best neighbor solution (denoted by
snb = s ⊕ Swap(v, u)) that is not forbidden by the tabu list T to replace the
current solution s. Then the tabu list T is accordingly updated (line 26), i.e.,
the corresponding vertices v and u are recorded into T and forbidden to move
back to their previous groups for the next tl iterations, where tl = 15+rand(5)
is the tabu tenure with rand(5) being a random integer between 0 and 4.
Moreover, the aspiration criterion is applied, i.e., a neighbor solution snb always
replaces the current solution if the quality of snb is better than the best solution
found so far (sb) (line 14). After that, the state matrix M2 is accordingly
updated (line 26).

2.5 Perturbation Operator

Algorithm 4: Perturbation Operator

1 Function Perturbation(s0, η)
Input: Input solution s0, strength of perturbation λ
Output: The perturbed solution s

2 s← s0
3 for l← 1 to λ do
4 Randomly select two vertices v and u locating at di�erent groups in s
5 s← s⊕ Swap(v, u) /* Swap the groups of vertices v and u */

6 end
7 return s

To diversify the search process and jump out of local optimum traps, the
NDHA algorithm employs a perturbation operator to modify the solutions
returned by the local search methods. Speci�cally, starting from the input
solution s0, the perturbation operator performs a number λ of random swap
moves to generate a new solution, where each swap move exchanges the groups
of two random vertices located in two distinct groups. As indicated in Section
2.1, the strength of perturbation λ is a changing value which is dynamically
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adjusted by an adaptive technique. The pseudo-code of the perturbation op-
erator is given in Algorithm 4.

2.6 Discussions on the Innovations of the Work

Compared with the existing iterative algorithms in the literature, such as
SGVNS [4], ITS [22] and IMS [18], the proposed NDHA algorithm has two
following original features. First, unlike the existing methods where only one
local search procedure is used, the proposed NDHA algorithm combines in a
probabilistic way two complementary local search procedures (i.e., tabu search
and variable neighborhood descent) to reinforce its search robustness on the
di�erent types of problem instances. Second, both our tabu search and vari-
able neighborhood descent rely on the innovative neighborhood decomposition
strategy to speed up the neighborhood evaluation process, which signi�cantly
improves the computational and search e�ciency of the algorithm (as shown
in Section 3).

Actually, the proposed neighborhood decomposition strategy is the most im-
portant innovation for this work, and it is able to increase greatly the compu-
tational e�ciency of neighborhood examination, without missing improving
candidate solutions within the given neighborhood. The neighborhood de-
composition strategy follows the general idea of the candidate list strategy to
reduce the examined neighborhood size while retaining high-quality solutions.
Importantly, it provides a practical and highly e�ective technique to organize
the neighbor solutions into neighborhood blocks and to enable the search pro-
cedure to focus on promising neighbor solutions without compromising the
quality of the search.

Finally, the idea of neighborhood decomposition is very general and can be
advantageously adopted in neighborhood search algorithms for other group-
ing or clustering problems. Thus, the contribution introduced in this work
goes beyond the problem considered here and could potentially bene�t many
heuristic algorithms for di�cult combinatorial optimization.

3 Computational Experiments and Assessments

In this section, we assess the NDHA algorithm by performing large exper-
iments on 320 benchmark instances and making comparisons with state-of-
the-art algorithms in the literature.
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3.1 Benchmark Instances

In our experiments, we test 320 benchmark instances widely used in the lit-
erature. These instances belong to �ve sets whose main characteristics are
summarized as follows 1 .

• RanReal set (20 instances): This set includes 10 instances with di�erent
group sizes (DGS) and 10 instances with equal group sizes (EGS). For these
instances, the number N of elements equals 480 or 960, the number m of
groups equals 20 or 24, Lg and Ug vary between 10 and 50, and the distances
dij (i < j) are a real number generated randomly in the interval (0, 100).
For the EGS instances, both Lg and Ug are equal to dN/me for any group
g. These instances were tested in [4,11,18,22,23].
• RanInt set (20 instances): Similar to RanReal set, this set contains 10
DGS instances and 10 EGS instances. The main characteristics of these
instances are the same as RanReal instances, while the distances dij (i < j)
between elements are an integer generated randomly between 0 and 100.
These instances were tested in [4,11,18,22,23].
• Geo set (20 instances): Similar to RanReal and RanInt sets, this set
contains 10 EGS instances and 10 DGS instances whose main characteristics
are the same as RanReal and RanInt instances, while the distances dij
(i < j) between elements are Euclidean distances between pairs of points
with random coordinates from [0, 10], and the number of coordinates of
points varies from 2 to 21. These instances were tested in [4,11,18,22,23].
• MDG-a set (220 instances): This set is composed of 11 subsets, including
6 subsets of DGS instances and 5 subsets of EGS instances, and each subset
consists of 20 instances that were generated from 20 edge-weighted complete
graphs with N = 2000, where the edge weights dij (i < j) are an integer
generated randomly between 0 and 10. The main characteristics of these 11
subsets are summarized in Table 1. These instances were tested in [4,18,23].

Table 1
Main characteristics of the instances in the set MDG-a, where '#' indicates the
number of instances in the corresponding subset.

DGS EGS

N m Lg Ug # Lg = Ug #

2000 50 32 48 20 � �

2000 10 173 227 20 200 20

2000 25 51 109 20 80 20

2000 50 26 54 20 40 20

2000 100 13 27 20 20 20

2000 200 6 14 20 10 20

• MDG-c set (40 instances): This set is composed of 20 DGS instances
and 20 EGS instances with n = 3000 and m = 50, where Lg and Ug are

1 The benchmark instances as well as the source code of our algorithm will be
available at http://www.info.univ-angers.fr/pub/hao/NDHA.html

15



respectively set to b0.8N/mc and d1.2N/me for the DGS instances, and
dN/me for the EGS instances. The distances dij (i < j) between elements
are an integer generated randomly between 0 and 1000. These instances are
the largest instances used in this study and were �rst used in [18].

3.2 Parameter Setting and Experimental Protocol

Table 2
Setting of important parameters

Parameters Section Description Values

δ 2.1 parameter used in acceptance criterion 0.01
Q 2.1 probability of applying NDTS and NDVND 0.1
kmin 2.1 minimum perturbation strength 0.2×N/m
kmax 2.1 maximum perturbation strength 2×N/m
kstep 2.1 incremental value of perturbation strength 0.2×N/m
α 2.4.4 depth of tabu search 500
µ 2.4.4 parameter used in the neighborhood NNDTS 0.05

The NDHA algorithm adopts several parameters whose descriptions and set-
tings are listed in Table 2. The value of each parameter was �xed independently
according to a preliminary experiment performed on a selection of instances of
di�erent characteristics. Typically, we tested a number of possible values from
a given range to retain the value leading to the best average result. We observe
that among the parameters, Q which controls the probability of applying the
NDVND or NDTS optimization procedure is one key parameter, for which we
provide a detailed analysis in Section 4.2. Notice that the parameter values
shown in Table 2 can be considered to be the default parameter setting of the
NDHA algorithm, which were used consistently to perform all the experiments
reported in this work unless stated otherwise.

According to the computational results reported in [4,18,22,24], the algo-
rithms ITS [22], SGVNS [4], IMS [18], and NSGGA [24] (only for instances
with equal group sizes) outperform signi�cantly other algorithms in the lit-
erature and can be regarded as the state-of-the-art algorithms for MDGP.
Hence, in this work, we use these algorithms as the reference algorithms.
Among these reference algorithms, the source code of ITS is available at
http://www.proin.ktu.lt/~gintaras/mdgp.html, the source code of IMS
is available at http://www.info.univ-angers.fr/pub/hao/mdgp.html, and
the executable code of SGVNS was kindly provided by the authors of [4]. The
proposed NDHA algorithm as well as IMS and ITS were written in C++ and
compiled using the g++ compiler with the -O3 option.

In addition, all the computational experiments were carried out on the same
computing platform with an Intel E5-2670 processor (2.5 GHz and 2G RAM),
running the Linux operating system. Following [18], the stopping condition
of all the algorithms is a cuto� time limit tmax set to 120, 600, 1200, and
3000 seconds for instances n = 480, n = 960, n = 2000 and n = 3000,

16



respectively. Finally, to assess the average performance of the algorithms, the
NDHA algorithm and the reference algorithms (i.e., ITS, SGVNS, IMS) were
performed 20 times with di�erent random seeds for each run.

3.3 Computational Results and Comparison on the Small Instances

The �rst experiment is devoted to an assessment of the NDHA algorithm on
the 60 small instances with N ≤ 960, from RanInt, RanReal and Geo sets.
The experimental results of the reference algorithms (ITS, SGVNS, IMS) as
well as our NDHA algorithm are summarized in Table 3 (with di�erent group
sizes) and Table 4 (with equal group sizes). Columns 2�5 of each table give
the best objective value (fbest) over 20 runs respectively for the compared al-
gorithms, and columns 6�9 show the average objective value (favg). The row
'Avg.' indicates the average result for each column, and the row '#best' indi-
cates the number of instances for which the corresponding algorithm obtained
the best result among the compared algorithms in terms of fbest and favg. The
best fbest and favg values among the compared algorithms are indicated in
bold for each instance. In addition, to check the statistical di�erence between
NDHA and each reference algorithm in terms of fbest or favg, the p-values from
the Wilcoxon signed-rank tests are reported in the last row of the tables, and
a p-value smaller than 0.05 means that there exists a signi�cant di�erence
between the NDHA algorithm and the corresponding reference algorithm.

Table 3 shows that for the instances with N ≤ 960 and di�erent group sizes,
the NDHA algorithm is very competitive compared to the reference algo-
rithms. In terms of fbest, the ITS, SGVNS, IMS and NDHA algorithms ob-
tained respectively the best result for 3, 0, 15 and 12 out of 30 instances. In
terms of favg, these four algorithms obtained the best result for 1, 0, 15 and
14 instances. Moreover, the small p-values (≤ 0.05) mean that the NDHA
algorithm outperforms signi�cantly the ITS and SGVNS algorithms both in
terms of fbest and favg. When comparing with IMS and NDHA, we observe
that they perform similarly (p-values ≥ 0.05) in terms of fbest and favg.

Table 4 indicates that for the instances with N ≤ 960 and equal group sizes,
the NDHA algorithm performs well compared to the reference algorithms. In
terms of fbest, the ITS, SGVNS, IMS and NDHA algorithms obtained respec-
tively the best result for 11, 0, 8 and 11 out of 30 instances. The large p-values
(7.19E-2 and 4.53E-1) imply that there does not exist a signi�cant di�erence
between NDHA and ITS (or IMS). However, the small p-value (2.76E-3) means
that NDHA performs signi�cantly better than the SGVNS algorithm. In terms
of favg, the p-values show that the NDHA algorithm outperforms signi�cantly
the ITS and SGVNS algorithms and performs similarly compared to the IMS
algorithm.
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Table 3
Comparison of the proposed NDHA algorithm with three state-of-the-art algorithms
in the literature on the small instances with di�erent group sizes. The best results
between the compared algorithms in terms of fbest and favg are indicated in bold.

fbest favg

Instance ITS SGVNS IMS NDHA ITS SGVNS IMS NDHA

Geo_n480_ds_01 580908.19 579594.38 582379.10 582587.38 580637.81 577253.71 580531.36 582339.19

Geo_n480_ds_02 1089063.79 1088385.58 1089873.95 1090135.64 1088309.08 1082940.35 1088725.10 1089903.18

Geo_n480_ds_03 662675.55 661554.64 664243.52 664483.97 662014.57 658540.72 662886.91 664164.89

Geo_n480_ds_04 836700.53 835426.31 836324.69 836547.59 836561.41 831787.05 835091.09 836410.06

Geo_n480_ds_05 988491.52 987106.70 988261.34 988444.21 986781.87 979093.78 985494.57 988173.67

RanInt_n480_ds_01 389548.00 390260.00 390326.00 390103.00 387744.10 389015.10 389517.40 389549.00

RanInt_n480_ds_02 387757.00 388404.00 389019.00 388644.00 386570.25 387487.00 388228.00 387832.30

RanInt_n480_ds_03 387751.00 387615.00 388756.00 388182.00 386103.15 386771.10 387615.45 387222.35

RanInt_n480_ds_04 391337.00 391219.00 392124.00 392091.00 389776.20 390362.45 391382.75 391323.80

RanInt_n480_ds_05 388331.00 389330.00 389448.00 389300.00 387119.25 387972.75 388655.05 388334.10

RanReal_n480_ds_01 387803.44 387929.42 388597.02 388841.84 385976.58 386955.60 387786.73 387900.09

RanReal_n480_ds_02 386295.34 386497.74 387003.53 386751.97 384832.11 385730.85 386147.90 385562.71

RanReal_n480_ds_03 387474.69 387900.83 389154.79 387746.68 386066.36 386911.54 387760.16 387098.28

RanReal_n480_ds_04 390225.82 390244.43 390547.26 390587.80 388485.81 389185.26 390155.96 390052.19

RanReal_n480_ds_05 387831.00 387688.36 388256.59 388233.84 385946.71 386532.01 387557.27 387062.41

Geo_n960_ds_01 3361972.63 3352319.16 3364802.56 3365362.95 3348637.43 3342837.38 3356273.08 3363776.03

Geo_n960_ds_02 1719892.54 1720029.46 1722401.13 1723727.15 1718034.17 1713409.47 1719324.79 1722784.10

Geo_n960_ds_03 3347803.20 3346546.58 3350871.47 3351599.56 3347081.90 3337399.48 3345799.89 3350888.19

Geo_n960_ds_04 3615110.26 3622509.71 3622341.03 3623707.59 3603672.09 3608470.86 3617908.67 3622936.94

Geo_n960_ds_05 2342675.152337386.27 2342091.85 2342515.47 2342347.12 2329478.25 2337198.18 2341996.35

RanInt_n960_ds_01 1240283.00 1239528.00 1243072.00 1243208.00 1233592.20 1237318.10 1242268.051241229.25

RanInt_n960_ds_02 1237216.00 1237063.00 1241131.001240486.00 1231173.05 1235400.05 1239855.701238684.85

RanInt_n960_ds_03 1236892.00 1237683.00 1241296.00 1241878.00 1231942.40 1235185.25 1239497.15 1239675.50

RanInt_n960_ds_04 1237828.00 1238868.00 1241649.001241411.00 1233270.40 1236203.80 1240409.451239776.55

RanInt_n960_ds_05 1237852.00 1237764.00 1241342.001241024.00 1232948.10 1236090.90 1239319.35 1239658.85

RanReal_n960_ds_01 1235611.95 1235871.43 1240525.131240269.22 1231084.73 1234109.07 1239157.731238140.86

RanReal_n960_ds_02 1234529.41 1236135.97 1240159.331239398.55 1230281.42 1234199.50 1238546.221237526.20

RanReal_n960_ds_03 1234256.69 1234244.88 1238956.751238053.93 1229824.54 1233000.51 1237019.781236872.79

RanReal_n960_ds_04 1235440.27 1236451.51 1239641.151239497.50 1229716.17 1234727.43 1238624.951238095.56

RanReal_n960_ds_05 1232976.13 1233629.07 1236955.98 1238382.45 1229769.51 1231419.21 1235698.07 1236018.17

Avg. 1159751.10 1159506.21 1162051.71 1162106.74 1156543.35 1156192.95 1160147.89 1161032.95

#best 3 0 15 12 1 0 15 14

p-value 3.18E-6 3.18E-6 8.45E-1 2.35E-6 1.92E-6 3.09E-1

3.4 Computational Results and Comparison on the Large Scale Instances

The second experiment aims to assess the NDHA algorithm on the 260 large
scale instances belonging to 11 subsets of the set MDG-a and 2 subsets of
the set MDG-c, where each subset has 20 instances with N = 2000 or N =
3000. For the experiment, the NDHA algorithm and the reference algorithms
(ITS, SDVNS, and IMS) were respectively run 20 times on each instance, and
the detailed results for each subset are reported in Tables A.1�A.13 of the
appendix, where the same information as in Tables 3 and 4 is provided.

A summary of these detailed experimental results is provided in Table 5,
where each row represents one subset. Columns 1�5 of the table give the
main characteristics of the instances in the corresponding subset, columns 6�9
indicate the average results (i.e., the Avg. value in Tables A.1�A.13) in terms
of fbest respectively for each subset and each algorithm, and columns 10�13
shows the average results in terms of favg for each subset and each algorithm.
The last row of the table indicates the number of instances for which the
associated algorithm obtained the best result in terms of fbest and favg among
the compared algorithms.
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Table 4
Comparison of the proposed NDHA algorithm with three state-of-the-art algorithms
in the literature on the small instances with equal group sizes. The best results
between the compared algorithms in terms of fbest and favg are indicated in bold.

fbest favg

Instance ITS SGVNS IMS NDHA ITS SGVNS IMS NDHA

Geo_n480_ss_01 552206.89 552040.71 552073.45 552194.91 552165.47 552020.33 552045.83 552167.92

Geo_n480_ss_02 1047462.35 1047245.92 1047228.47 1047433.23 1047405.08 1047155.51 1047182.54 1047322.44

Geo_n480_ss_03 633855.88 633574.99 633626.24 633740.92 633746.62 633544.22 633590.50 633713.2514

Geo_n480_ss_04 789891.16 789621.27 789657.63 789767.10 789791.95 789544.51 789610.72 789731.7703

Geo_n480_ss_05 945974.03 945667.90 945782.66 945865.98 945898.63 945643.47 945697.53 945819.7054

RanInt_n480_ss_01 379408.00 379532.00 380127.00 377481.62 378288.25 378944.75 378874.75 376897.68

RanInt_n480_ss_02 379682.00 379465.00 379978.00 376915.63 377891.60 378806.60 379193.70 376396.93

RanInt_n480_ss_03 378616.00 378677.00 378691.00 378170.99 377267.90 378021.70 377954.45 377516.86

RanInt_n480_ss_04 378416.00 378582.00 378761.00 377288.47 377041.30 378082.75 378117.80 376712.10

RanInt_n480_ss_05 379627.00 379533.00 379420.00 378693.73 377627.10 378697.00 378697.55 377348.96

RanReal_n480_ss_01 377744.50 377553.91 377737.96 379167.00 376224.21 376996.03 377233.60 378564.90

RanReal_n480_ss_02 377306.86 377342.67 377203.56 379708.00 375845.53 376843.49 376598.81 379053.90

RanReal_n480_ss_03 378407.16 378516.70 379278.21 378323.00 376942.00 377990.35 377908.31 377751.95

RanReal_n480_ss_04 377512.67 377483.34 377447.86 378915.00 376176.89 376817.41 377041.65 377989.75

RanReal_n480_ss_05 377708.04 378113.82 378227.50 378845.00 376305.51 377363.53 377559.44 378352.70

Geo_n960_ss_01 3254625.15 3253979.37 3254027.55 3254394.48 3254341.67 3253886.64 3253941.37 3254256.201

Geo_n960_ss_02 1663654.73 1663474.52 1663486.06 1663618.41 1663602.47 1663443.67 1663432.13 1663584.936

Geo_n960_ss_03 3251862.13 3251193.24 3251319.45 3251595.05 3251574.46 3251122.52 3251201.99 3251496.215

Geo_n960_ss_04 3514547.37 3513915.12 3513974.50 3514238.95 3514260.32 3513828.00 3513830.30 3514168.624

Geo_n960_ss_05 2264972.55 2264438.39 2264501.25 2264774.65 2264721.05 2264405.61 2264462.56 2264725.134

RanInt_n960_ss_01 1218147.00 1217689.00 1220591.00 1220052.00 1213208.80 1216154.50 1219093.15 1218752.50

RanInt_n960_ss_02 1215854.00 1216546.00 1219844.00 1221550.00 1211598.85 1215158.85 1218455.75 1218307.50

RanInt_n960_ss_03 1217134.00 1217434.00 1220172.00 1220874.00 1212712.85 1216107.65 1219097.80 1219068.20

RanInt_n960_ss_04 1216532.00 1217806.00 1220605.00 1221490.00 1212683.70 1215891.40 1219315.80 1218413.20

RanInt_n960_ss_05 1215621.00 1216975.00 1220574.00 1220771.00 1212488.15 1215436.75 1218694.05 1218718.75

RanReal_n960_ss_01 1214107.46 1214382.40 1218358.90 1216886.68 1210716.76 1212547.12 1216271.17 1215373.16

RanReal_n960_ss_02 1214784.09 1215430.98 1218858.40 1218587.92 1211066.99 1213585.65 1217280.82 1216566.55

RanReal_n960_ss_03 1214095.83 1215095.58 1218106.72 1218341.93 1209634.07 1213582.73 1216601.52 1215722.71

RanReal_n960_ss_04 1214677.73 1215275.81 1219153.05 1219556.92 1211544.50 1214126.05 1217344.30 1217283.14

RanReal_n960_ss_05 1212727.73 1213650.67 1216750.56 1216923.18 1208607.96 1211717.26 1215229.52 1215287.53

Avg. 1128572.04 1128674.54 1129852.10 1129872.19 1126712.69 1127915.53 1129051.98 1128902.17

#best 11 0 8 11 8 3 11 8

p-value 7.19E-2 2.76E-3 4.53E-1 1.04E-2 3.16E-3 5.86E-1

Table 5
Summary comparison of the NDHA algorithm with three state-of-the-art algorithms
on 260 large instances with n = 2000 (220 instances) and n = 3000 (40 instances).
The best results between the compared algorithms in terms of fbest and favg are
indicated in bold.

Instance sets fbest favg

Set m Lg Ug Type ITS SGVNS IMS NDHA ITS SGVNS IMS NDHA

MDG-a 10 173 227 DGS 1134281.45 1132567.10 1135887.90 1135492.75 1132625.40 1131706.31 1135362.83 1134854.76

MDG-a 10 200 200 EGS 1115486.45 1113931.55 1117171.70 1116895.05 1114055.35 1113142.01 1116717.32 1116269.40

MDG-a 25 51 109 DGS 539452.05 539586.85 541217.2 541406.85 538228.13 539098.47 540803.28 540936.41

MDG-a 25 80 80 EGS 486000.1 486159.75 487575.4 487923.55 484766.67 485663.39 487242.80 487538.23

MDG-a 50 26 54 DGS 291005.4 291821.7 292609.15 293188.65 289955.77 291441.89 292308.39 292847.22

MDG-a 50 32 48 DGS 272851.65 273522.70 274397.30 274898.50 271787.65 273221.62 274039.12 274506.32

MDG-a 50 40 40 EGS 263719.45 264561.50 265437.95 265943.15 262679.20 264262.92 265119.75 265560.06

MDG-a 100 13 27 DGS 158745.10 159297.10 159811.60 160813.85 157897.57 159015.00 159557.94 160549.57

MDG-a 100 20 20 EGS 143917.30 144602.45 144834.50 145476.90 143088.89 144331.32 144586.34 145161.32

MDG-a 200 6 14 DGS 88303.85 88512.20 88829.60 89598.45 87733.85 88326.22 88599.92 89419.56

MDG-a 200 10 10 EGS 76972.90 76841.70 77221.95 78276.90 76467.98 76689.70 77050.59 78116.26

MDG-c 50 48 72 DGS 57907172.80 58047799.55 58233404.15 58324705.90 57732451.10 57999123.67 58186201.46 58274147.92

MDG-c 50 60 60 EGS 55914269.20 56016286.80 56269513.80 56366981.20 55762202.26 55970537.94 56228021.37 56320965.85

#best 0 0 38 222 0 0 40 220

Table 5 shows that the NDHA algorithm performs very well and outperforms
signi�cantly the reference algorithms. The NDHA algorithm obtained the best
results for 222 and 220 out of 260 instances in terms of fbest and favg, respec-
tively. Compared to the ITS and SGVNS algorithms, our algorithm obtained
a better result for each instance both in terms of fbest and favg. When com-
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Table 6
Comparison of the NDHA algorithm with the NSGGA algorithm on 20 EGS in-
stances with N = 2000 and m = 200. The best results between the compared
algorithms in terms of fbest and favg are indicated in bold.

Instances fbest favg

Graph m Lg Ug NSGGA NDHA NSGGA NDHA
MDG-a_21 200 10 10 77610 78193 77299.80 78101.00

MDG-a_22 200 10 10 77671 78423 77290.50 78098.35

MDG-a_23 200 10 10 77567 78253 77271.30 78111.00

MDG-a_24 200 10 10 77401 78300 77213.35 78075.35

MDG-a_25 200 10 10 77536 78266 77317.30 78143.55

MDG-a_26 200 10 10 77442 78324 77263.25 78107.90

MDG-a_27 200 10 10 77510 78220 77241.30 78085.00

MDG-a_28 200 10 10 77670 78208 77290.85 78107.75

MDG-a_29 200 10 10 77442 78271 77242.60 78104.90

MDG-a_30 200 10 10 77575 78187 77272.60 78092.05

MDG-a_31 200 10 10 77557 78380 77323.55 78255.45

MDG-a_32 200 10 10 77470 78252 77245.05 78117.95

MDG-a_33 200 10 10 77480 78234 77271.85 78085.05

MDG-a_34 200 10 10 77538 78193 77327.65 78082.05

MDG-a_35 200 10 10 77684 78332 77334.60 78094.25

MDG-a_36 200 10 10 77519 78348 77273.10 78158.55

MDG-a_37 200 10 10 77630 78335 77373.85 78126.90

MDG-a_38 200 10 10 77493 78189 77269.00 78100.00

MDG-a_39 200 10 10 77461 78290 77228.35 78122.50

MDG-a_40 200 10 10 77544 78340 77321.50 78155.55

Avg. 77540.00 78276.90 77283.57 78116.26

#Better 0 20 0 20

p-value 8.86E-5 8.86E-5

paring with the IMS algorithm, the NDHA algorithm yielded a better result
both in terms of fbest and favg on most instances except the instances with
m = 10, which means that the neighborhood decomposition strategy used in
the NDHA algorithm plays an important role in enhancing the performance
of the algorithm for the instances with a large number of groups. This ex-
periment indicates that the proposed NDHA algorithm is highly competitive
compared to the three reference algorithms especially for the large instances
with a large number of elements and groups.

In addition, to make a comparison between the NDHA algorithm and the re-
cent hybrid genetic algorithm NSGGA which is designed for MDGP with equal
group sizes [24], we provide the results of the NSGGA and NDHA algorithms
in Table 6 for 20 large EGS instances with N = 2000 and m = 200, where
the same statistical information is given as in the previous tables. Since the
code of the NSGGA algorithm is not available to us, this comparison is based
on the results reported in [24], based 20 runs per instance on an Intel Core
i5 computer with 4G RAM under the same stopping condition as that used
by our NDHA algorithm (speci�ed in Section 3.2). One observes from Table
6 that the NDHA algorithm signi�cantly dominates the NSGGA algorithm in
terms of fbest and favg, which is con�rmed by small p-values.

In summary, the experimental results shown in this section indicate that the
NDHA algorithm is very competitive compared with the state-of-the-art algo-
rithms in the literature and performs especially well on the large instances.
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4 Analysis and Discussions

In this section, we analyze two essential components of the proposed algorithm,
i.e., the neighborhood decomposition strategy employed by the local search
methods and the strategy of jointly using two local search methods.

4.1 Importance of the Neighborhood Decomposition Strategy

In order to show the e�ectiveness of the neighborhood decomposition strategy
introduced in this study, we carried out an experiment based on 20 large EGS
instances with n = 2000, m = 200 and Lg = Ug = 10. For this study, we
created a variant (denoted by NDHA-D) of the NDHA algorithm by disabling
the neighborhood decomposition strategy (i.e., setting all entries of state ma-
trices M1 and M2 to the value of 1 during the neighborhood search process),
while keeping other components unchanged. We ran NDHA-D and NDHA 20
times for each instance according to the experimental protocol of Section 3.2.
The experimental results are summarized in Table 7, where columns 1�4 give
the name and main characteristics of the instances, columns 5�6 show respec-
tively the best objective value (fbest) over 20 runs for the two compared al-
gorithms, columns 7�8 indicate the average objective value favg, and columns
9�10 present the worst objective value (fworst). In addition, the row 'Avg.'
shows the average result for each column, the row '#better' shows the num-
ber of instances for which the associated algorithm obtained a better result
than the competing algorithm in terms of fbest, favg, and fworst, respectively,
and the last row gives the p-values from the Wilcoxon signed-rank tests for
the compared algorithms. The better results between the compared algorithms
are indicated in bold.

One observes from Table 7 that the NDHA algorithm dominates the NDHA-D
algorithm for each considered performance indicator. Speci�cally, the NDHA
algorithm obtained a better result than the NDHA-D algorithm for all tested
instances in terms of fbest, favg, and fworst. Moreover, the small p-values imply
the di�erence between the two compared algorithms is statistically signi�-
cant. This experiment shows the neighborhood decomposition strategy used
in this study plays an important role for the high performance of the NDHA
algorithm.

To further show the e�ect of the neighborhood decomposition strategy on the
tabu search procedure that is one main component of the NDHA algorithm,
we carried out another experiment to compare the tabu search procedure with
neighborhood decomposition (i.e., NDTS) and a tabu search procedure with-
out neighborhood decomposition (denoted by TS). To ease the presentation,
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Table 7
Comparison between the NDHA algorithm and its variant NDHA-D on 20 EGS
instances with N = 2000 and m = 200.

fbest favg fworst

Graph m Lg Ug NDHA-D NDHA NDHA-D NDHA NDHA-D NDHA

MDG-a_21 200 10 10 77801 78193 77508.40 78101.00 77275 77990

MDG-a_22 200 10 10 77715 78423 77527.95 78098.35 77331 77983

MDG-a_23 200 10 10 77681 78253 77448.80 78111.00 77189 77940

MDG-a_24 200 10 10 77897 78300 77489.70 78075.35 77183 77755

MDG-a_25 200 10 10 77870 78266 77503.15 78143.55 77245 77937

MDG-a_26 200 10 10 77765 78324 77569.30 78107.90 77235 77928

MDG-a_27 200 10 10 77661 78220 77431.70 78085.00 77303 77914

MDG-a_28 200 10 10 77700 78208 77457.70 78107.75 77210 77996

MDG-a_29 200 10 10 77734 78271 77510.00 78104.90 77238 77947

MDG-a_30 200 10 10 77766 78187 77528.15 78092.05 77329 77967

MDG-a_31 200 10 10 77765 78380 77517.25 78255.45 77316 78144

MDG-a_32 200 10 10 77702 78252 77540.80 78117.95 77303 77960

MDG-a_33 200 10 10 77789 78234 77485.55 78085.05 77249 77905

MDG-a_34 200 10 10 77725 78193 77534.80 78082.05 77359 77956

MDG-a_35 200 10 10 77638 78332 77465.95 78094.25 77238 77978

MDG-a_36 200 10 10 77685 78348 77543.00 78158.55 77389 77890

MDG-a_37 200 10 10 77805 78335 77533.65 78126.90 77274 77964

MDG-a_38 200 10 10 77698 78189 77521.10 78100.00 77238 77947

MDG-a_39 200 10 10 77785 78290 77457.75 78122.50 77220 77969

MDG-a_40 200 10 10 77766 78340 77490.45 78155.55 77365 78019

Avg. 77747.40 78276.90 77503.26 78116.26 77274.45 77954.45

#Better 0 20 0 20 0 20

p-value 8.86E-5 8.86E-5 8.86E-5

we illustrate this experiment with the results obtained by NDTS and TS on
two large instances (i.e., MDG-a_21 with N=2000,m = 200 and Lg = Ug = 10
for any g, and MDG-a_24 with N = 2000, m = 50, Lg = 26, and Ug = 54
for any g). For the experiment, NDTS and TS were performed one time per
instance, starting from the same initial solution. The experimental results are
shown in Fig. 4, where the sub�gures (a) and (c) show the running times of
NDTS and TS as a function of the number of iterations, and the sub�gures (b)
and (d) show their best objective values f(s) found as a function of running
time.

The sub�gures (a) and (c) of Fig. 4 indicate that NDTS (with neighborhood
decomposition) requires much less time than TS (without neighborhood de-
composition) to perform the same number of iterations, which means that the
neighborhood decomposition technique is able to speed up the neighborhood
search process notably. On the other hand, one observes from the sub�gures
(b) and (d) that NDTS yielded much better results in the objective value f(s)
than TS within the same computation time, implying the neighborhood de-
composition technique is able to enhance signi�cantly the performance of the
tabu search procedure.

4.2 Impact of Hybridizing Two Local Search Methods

To enhance its robustness for solving instances with very di�erent charac-
teristics, the NDHA algorithm hybridizes two local search procedures (i.e.,
NDVND and DNTS) in a probabilistic way, where the probability is con-
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Fig. 4. Comparison between NDTS and TS in terms of the objective function value
f(s) and the running time.

trolled by the parameter Q. To show the rationality of this hybridization
and choose an appropriate value for Q, we carried out an additional experi-
ment based on �ve representative EGS instances with very di�erent numbers
(m) of groups. For each considered instance and each Q value in the range
{0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, N/m}, the NDHA algorithm
was performed 20 times using the experimental protocol in Section 3.2. The
experimental results are summarized in Fig. 5 using the box and whisker plots,
where the X-axis indicates the values of Q and the Y-axis gives the objective
values.

Fig. 5 shows that the performance of the algorithm is sensitive to the setting
of Q. Speci�cally, when the neighborhood decomposition based tabu search
(NDTS) procedure was always applied and the neighborhood decomposition
based variable neighborhood descent (NDVND) procedure was disabled (with
Q = N/m), the NDHA algorithm yielded the worst results among the con-
sidered Q values for the instances with a small number (m ≤ 50) of groups.
On the other hand, when only the NDVND procedure was applied and the
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(e) MDG-a_21 with m = 200

Fig. 5. Sensitivity analysis for the parameter Q used to control the probability that
the NDTS procedure is applied. The X-axis indicates the settings of Q and the
Y-axis indicates the objective value.

NDTS procedure was disabled (with Q = 0), the NDHA algorithm produced
the worst results among the considered Q values for the instances with a large
number (m ≥ 100) of groups. The experiment shows that the NDTS proce-
dure is more suitable for the instances with a large number of groups, while the
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NDVND procedure is more suitable for the instances with a small number of
groups. This provides the main motivation of combining NDVND and DNTS
in a probabilistic way to be able to deal with instances with small and large
number of groups. One notices that the setting of Q = 0.1 led globally to a
good performance for the considered instances, which was used as the default
value of Q in this work.

4.3 Sensitivity Analysis of Parameter µ Used in Neighborhood Decomposition
based Tabu Search
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Fig. 6. Sensitivity analysis of parameter µ based on the 20 EGS instances with
N = 2000 and m = 200, where the X-axis indicates the parameter values and the
Y-axis shows the average objective values (favg) obtained over 20 independent runs.

The neighborhood decomposition based tabu search procedure described in
Section 2.4.4 employs a key parameter µ to control the size of neighbor-
hood NNDTS(s). In general, a larger µ value leads to a larger neighborhood,
and vice verse. To analyze the in�uence of this parameter on the perfor-
mance of the algorithm, we conducted an experiment based on the 20 EGS
instances with N = 2000 and m = 200. In this experiment, we ran the
NDHA algorithm 20 times for each instance and each µ value in the range
of {0.01, 0.02, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.4, 0.45, 0.5}, and recorded
the average objective values (favg). Fig. 6 shows the results with the popular
box and whisker plots, where the X-axis indicates the value of parameter µ
and the Y-axis shows the average objective values favg for the 20 instances.

Fig. 6 indicates that the setting of parameter µ signi�cantly impacts the be-
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havior of the NDHA algorithm. Speci�cally, For µ < 0.05, the performance
of the algorithm gradually increases with the increase of µ, while the perfor-
mance decreases as the value of µ increases for µ ≥ 0.15. Thus, [0.05, 0.10] is
a suitable range for µ and 0.05 was adopted as the default value in this work.

5 Conclusions and Future Work

We presented a new heuristic algorithm (NDHA) for solving the maximally
diverse grouping problem (MDGP). The proposed algorithm distinguishes it-
self from existing algorithms by its speeding-up neighborhood decomposition
technique and the joint use of two complementary local search procedures
(both are based on neighborhood decomposition). An adaptive perturbation
strategy is additionally used to escape local optimum traps. The algorithm
was assessed on 320 benchmark instances commonly used in the literature.
Our computational results show that the algorithm outperforms signi�cantly
the state-of-the-art algorithms by reporting improved lower bounds for 220
large benchmark instances (i.e., for more than 68% of the tested instances).
Given that MDGP is a general model able to formulate a number of real-
world applications, the proposed algorithm provides a valuable tool to better
solve the related practical problems. The availability of the source code of our
algorithm further facilitates such applications.

Additional analyses indicate that the e�ectiveness of the algorithm is mainly
attributed to two essential ideas, i.e., the neighborhood decomposition strategy
which speeds up the neighborhood search process and the stochastic combi-
nation strategy of two local search procedures which enhances the robustness
of the algorithm for di�erent types of problem instances.

The ideas of neighborhood decomposition and combination of di�erent local
search procedures are rather general. It is interesting to verify their usefulness
for solving other related grouping or clustering problems, such as the capac-
itated p-median problem [7], the normalized cut clustering problem [8], and
the balanced k-means clustering problem [6]. Moreover, the proposed algo-
rithm can be further reinforced by following two directions. First, the current
algorithm does not explicitly deal with the issue of solution symmetry for the
case where some or all groups have an equal group size. It is meaningful to in-
vestigate dedicated search strategies and techniques exploiting the symmetry
property. Second, population-based methods such as memetic computing are
known to be general frameworks with the potential of surpassing local search
algorithms [14]. Then it is worth designing such hybrid algorithms where the
proposed algorithm plays the key role of local optimization for intensi�cation.
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A Appendix

Detailed results of the proposed NDHA algorithm and three main reference
algorithms (ITS [22], SGVNS [4], and IMS [18]) on 260 large scale instances
with N = 2000 or 3000 are summarized in Tables A.1�A.13, where each table
corresponds to a subset of benchmarks and the statistical information is the
same as in the tables of Section 3. The dominating values are indicated in
bold.

One observes from the tables that the NDHA algorithm outperforms signif-
icantly the reference algorithms for most instances. Speci�cally, for the 40
instances with m = 10, NDHA outperforms signi�cantly ITS and SGVNS,
but performs worse than IMS. For the remaining 220 instances with m ≥ 25,
NDHA outperforms consistently the reference algorithms on all the instances
both in terms of fbest and favg.

These outcomes show that the proposed algorithm is particularly suitable
to solve large scale instances with a high number of groups, which can be
attributed to the neighborhood decomposition strategy.
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Table A.1
Comparison of the proposed NDHA algorithm with three best performing algorithms
in the literature on the 20 DGS instances with N = 2000 and m = 10.

Instance fbest favg
Graph m Lg Ug ITS SGVNS IMS NDHA ITS SGVNS IMS NDHA

MDG-a_21 10 173 227 1134497 1132526 1136103 1135481 1132532.50 1131823.10 1135473.10 1134983.70
MDG-a_22 10 173 227 1134114 1132295 1136012 1135804 1132404.25 1131546.70 1135372.65 1134850.60
MDG-a_23 10 173 227 1133844 1132177 1135619 1134911 1131891.95 1131196.85 1134929.15 1134280.15
MDG-a_24 10 173 227 1134032 1132845 1135755 1135656 1132565.55 1131800.95 1135180.05 1134789.45
MDG-a_25 10 173 227 1134484 1133374 1136116 1135796 1133109.80 1131986.55 1135711.15 1135100.55
MDG-a_26 10 173 227 1134022 1132629 1135639 1135322 1132493.10 1131545.60 1135210.90 1134695.65
MDG-a_27 10 173 227 1134059 1131812 1135442 1134788 1132238.85 1131179.85 1134887.40 1134297.25
MDG-a_28 10 173 227 1134124 1132340 1135850 1135321 1132573.20 1131694.80 1135243.55 1134804.40
MDG-a_29 10 173 227 1134559 1132379 1136028 1135795 1132763.35 1131679.00 1135465.20 1135145.20
MDG-a_30 10 173 227 1133787 1132089 1135581 1135698 1132350.70 1131414.10 1135191.25 1134732.95
MDG-a_31 10 173 227 1134796 1133201 1136262 1136009 1133220.00 1132288.45 1135852.45 1135284.50
MDG-a_32 10 173 227 1134134 1132426 1136130 1135294 1132853.80 1131803.05 1135334.00 1134854.95
MDG-a_33 10 173 227 1134379 1132133 1135697 1135252 1132528.40 1131482.25 1135195.15 1134750.05
MDG-a_34 10 173 227 1134612 1132683 1136216 1135611 1132670.45 1131854.10 1135482.25 1135022.75
MDG-a_35 10 173 227 1134428 1132418 1135600 1135199 1132470.80 1131415.65 1135184.80 1134624.95
MDG-a_36 10 173 227 1134185 1132439 1135590 1135228 1132637.85 1131573.65 1135172.10 1134718.30
MDG-a_37 10 173 227 1134409 1132887 1136081 1135900 1132852.95 1132014.60 1135761.55 1135168.50
MDG-a_38 10 173 227 1134872 1132731 1135877 1135483 1132950.45 1131962.60 1135579.00 1134810.20
MDG-a_39 10 173 227 1133887 1132362 1135753 1135054 1132222.75 1131478.25 1135090.60 1134556.85
MDG-a_40 10 173 227 1134405 1133596 1136407 1136253 1133177.25 1132386.00 1135940.20 1135624.25
Avg. 1134281.45 1132567.1 1135887.9 1135492.75 1132625.40 1131706.31 1135362.83 1134854.76
#Best 0 0 19 1 0 0 20 0
p-value 8.86E-5 8.86E-5 1.20E-4 8.86E-5 8.86E-5 8.86E-5

Table A.2
Comparison of the proposed NDHA algorithm with three best performing algorithms
in the literature on the 20 DGS instances with N = 2000 and m = 25.

Instance fbest favg
Graph m Lg Ug ITS SGVNS IMS NDHA ITS SGVNS IMS NDHA

MDG-a_21 25 51 109 539434 539367 541212 541440 537963.35 539000.30 540796.65 540969.30

MDG-a_22 25 51 109 539663 539468 541228 541528 538041.20 538928.40 540743.35 540934.40

MDG-a_23 25 51 109 539029 539587 540912 540926 538021.45 539144.85 540582.10 540679.00

MDG-a_24 25 51 109 539255 539469 541109 541327 538229.35 539177.80 540727.90 540901.10

MDG-a_25 25 51 109 539655 539599 541393 541558 538479.70 539176.60 540816.70 540997.05

MDG-a_26 25 51 109 539802 539669 541037 541330 538169.10 539097.30 540676.75 540870.75

MDG-a_27 25 51 109 539369 539853 541003 541159 538022.30 539179.35 540571.55 540593.35

MDG-a_28 25 51 109 539281 539352 541245 541319 538174.10 539064.00 540832.05 540953.25

MDG-a_29 25 51 109 539280 539772 541121 541937 538038.70 539187.10 540849.65 541031.65

MDG-a_30 25 51 109 539446 539709 540945 541355 538276.55 539238.40 540708.60 540900.20

MDG-a_31 25 51 109 539592 539383 541500 541590 538547.15 538950.80 541052.65 541200.00

MDG-a_32 25 51 109 539245 539575 541319 541403 538148.05 538950.40 540848.20 540911.00

MDG-a_33 25 51 109 539300 540021 541281 541390 538163.65 539453.30 540785.25 540838.80

MDG-a_34 25 51 109 539614 539633 541267 541445 538279.75 539105.90 540910.80 540971.20

MDG-a_35 25 51 109 539028 539533 541365 541113 538195.45 539071.55 540651.85 540766.10

MDG-a_36 25 51 109 539404 539829 541259 541448 538129.85 539196.80 540816.40 540917.90

MDG-a_37 25 51 109 539705 539402 541203 541477 538489.40 538913.80 540942.55 541078.80

MDG-a_38 25 51 109 539646 539454 541210 541390 538295.95 539002.80 540872.65 541109.40

MDG-a_39 25 51 109 539376 539794 541237 541397 538245.60 539169.05 540769.70 540857.30

MDG-a_40 25 51 109 539917 539268 541498 541605 538651.95 538960.80 541110.25 541247.60

Avg. 539452.05 539586.85 541217.2 541406.85 538228.13 539098.47 540803.28 540936.41

#Best 0 0 1 19 0 0 0 20

p-value 8.86E-5 8.86E-5 7.79E-4 8.86E-5 8.86E-5 8.86E-5

Table A.3
Comparison of the proposed NDHA algorithm with three best performing algorithms
in the literature on the 20 DGS instances with N = 2000, m = 50, Lg = 26, and
Ug = 54.

Instance fbest favg
Graph m Lg Ug ITS SGVNS IMS NDHA ITS SGVNS IMS NDHA

MDG-a_21 50 26 54 291135 291797 292570 293232 289892.35 291521.00 292266.60 292879.60

MDG-a_22 50 26 54 290930 292077 292639 293145 289950.60 291360.55 292342.05 292839.15

MDG-a_23 50 26 54 290880 291761 292656 293163 289878.55 291388.90 292249.15 292825.15

MDG-a_24 50 26 54 290833 291772 292610 293228 290023.55 291465.85 292348.40 292790.30

MDG-a_25 50 26 54 290863 291799 292669 293106 290009.20 291488.55 292360.55 292822.90

MDG-a_26 50 26 54 290941 291830 292582 293199 289984.45 291420.80 292383.55 292883.90

MDG-a_27 50 26 54 290800 291728 292500 293047 289963.85 291248.55 292135.70 292710.00

MDG-a_28 50 26 54 291185 291779 292608 293065 289985.20 291464.50 292334.35 292855.60

MDG-a_29 50 26 54 290879 291684 292625 293149 289818.45 291468.05 292336.65 292841.30

MDG-a_30 50 26 54 291069 291825 292572 293212 289877.05 291488.90 292299.15 292838.55

MDG-a_31 50 26 54 290912 291874 292658 293294 289873.00 291527.85 292380.95 292900.30

MDG-a_32 50 26 54 291030 291873 292621 293192 289939.35 291433.70 292276.30 292887.95

MDG-a_33 50 26 54 291093 291873 292575 293251 289962.40 291474.50 292274.70 292868.15

MDG-a_34 50 26 54 290916 291792 292588 293237 290048.25 291472.70 292306.25 292892.85

MDG-a_35 50 26 54 290975 291777 292549 293042 289846.70 291360.15 292278.35 292745.15

MDG-a_36 50 26 54 290934 291824 292786 293069 289829.40 291445.05 292321.40 292765.30

MDG-a_37 50 26 54 290865 291923 292682 293266 289720.10 291445.45 292416.60 292881.35

MDG-a_38 50 26 54 291224 291793 292558 293279 290074.35 291448.25 292260.35 292889.90

MDG-a_39 50 26 54 291199 291675 292445 293149 289973.25 291371.40 292198.10 292824.15

MDG-a_40 50 26 54 291445 291978 292690 293448 290465.35 291543.10 292398.70 293002.90

Avg. 291005.4 291821.7 292609.15 293188.65 289955.77 291441.89 292308.39 292847.22

#Best 0 0 0 20 0 0 0 20

p-value 8.86E-5 8.86E-5 8.86E-5 8.86E-5 8.86E-5 8.86E-5
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Table A.4
Comparison of the proposed NDHA algorithm with three best performing algorithms
in the literature on the 20 DGS instances with N = 2000, m = 50, Lg = 32, and
Ug = 48.

Instance fbest favg
Graph m Lg Ug ITS SGVNS IMS NDHA ITS SGVNS IMS NDHA

MDG-a_21 50 32 48 273075 273549 274369 275062 271766.95 273231.80 274077.45 274521.55

MDG-a_22 50 32 48 272771 273301 274424 274726 271802.65 273077.60 274016.55 274455.60

MDG-a_23 50 32 48 272642 273542 274178 274692 271655.35 273060.55 273960.50 274382.85

MDG-a_24 50 32 48 272816 273494 274356 275046 271739.15 273151.55 274053.35 274524.35

MDG-a_25 50 32 48 272648 273636 274308 274867 271714.55 273242.20 274057.75 274515.20

MDG-a_26 50 32 48 272616 273493 274359 274757 271688.85 273215.15 274086.05 274449.50

MDG-a_27 50 32 48 272859 273470 274379 274932 271686.80 273232.30 273851.35 274387.60

MDG-a_28 50 32 48 272958 273608 274326 274850 271763.90 273262.75 274040.20 274469.70

MDG-a_29 50 32 48 272811 273648 274548 274865 271917.35 273270.60 273995.85 274482.25

MDG-a_30 50 32 48 272880 273458 274394 274886 271720.85 273218.20 274011.90 274440.35

MDG-a_31 50 32 48 272900 273650 274381 274955 271954.25 273267.30 274154.75 274599.30

MDG-a_32 50 32 48 273085 273447 274307 275001 271987.25 273252.00 274044.60 274533.15

MDG-a_33 50 32 48 272988 273427 274337 275028 271703.55 273172.95 274049.40 274434.35

MDG-a_34 50 32 48 273152 273512 274263 274819 272066.65 273240.30 274012.60 274450.85

MDG-a_35 50 32 48 273030 273358 274257 274751 271968.15 273156.15 273959.90 274371.15

MDG-a_36 50 32 48 272844 273606 274605 274797 271678.40 273250.20 274024.95 274493.65

MDG-a_37 50 32 48 272854 273465 274684 274983 271607.20 273265.70 274123.35 274596.25

MDG-a_38 50 32 48 272654 273629 274476 274902 271875.50 273344.05 274038.35 274569.85

MDG-a_39 50 32 48 272582 273439 274320 274909 271555.15 273135.55 274024.25 274543.10

MDG-a_40 50 32 48 272868 273722 274675 275142 271900.55 273385.55 274199.20 274905.75

Avg. 272851.65 273522.70 274397.30 274898.50 271787.65 273221.62 274039.12 274506.32

#Best 0 0 0 20 0 0 0 20

p-value 8.86E-5 8.86E-5 8.86E-5 8.86E-5 8.86E-5 8.86E-5

Table A.5
Comparison of the proposed NDHA algorithm with three best performing algorithms
in the literature on the 20 DGS instances with N = 2000 and m = 100.

Instance fbest favg
Graph m Lg Ug ITS SGVNS IMS NDHA ITS SGVNS IMS NDHA

MDG-a_21 100 13 27 159026 159253 159769 160823 158096.95 158992.15 159519.45 160567.00

MDG-a_22 100 13 27 158616 159218 159690 160869 157851.50 158985.20 159526.55 160535.65

MDG-a_23 100 13 27 158736 159265 159777 160676 157860.40 159022.55 159550.35 160484.10

MDG-a_24 100 13 27 158592 159362 159791 160812 157715.20 159043.40 159605.40 160522.40

MDG-a_25 100 13 27 158750 159293 159799 160673 157913.45 159090.75 159519.00 160525.65

MDG-a_26 100 13 27 158653 159326 159933 160887 157806.25 159075.35 159669.05 160575.35

MDG-a_27 100 13 27 158697 159191 159717 160726 157841.85 158967.00 159494.30 160522.10

MDG-a_28 100 13 27 158674 159356 159756 160737 157837.75 159058.85 159552.60 160544.20

MDG-a_29 100 13 27 158809 159324 159823 160792 157808.85 159002.85 159498.25 160574.85

MDG-a_30 100 13 27 158650 159468 159883 160801 157912.95 159073.45 159705.40 160596.75

MDG-a_31 100 13 27 158778 159289 159709 160861 157998.75 159037.70 159569.15 160587.30

MDG-a_32 100 13 27 158697 159309 159751 160810 157853.35 158977.75 159574.90 160519.70

MDG-a_33 100 13 27 158529 159225 159822 160835 157793.35 158969.25 159531.75 160578.40

MDG-a_34 100 13 27 158800 159300 159747 160830 158047.25 159024.25 159547.50 160565.20

MDG-a_35 100 13 27 158822 159400 160003 160715 157707.45 158999.35 159537.25 160443.85

MDG-a_36 100 13 27 158604 159266 159833 160902 158026.75 159059.45 159511.70 160511.85

MDG-a_37 100 13 27 158731 159257 159889 160883 157920.80 159047.10 159605.55 160609.60

MDG-a_38 100 13 27 158670 159282 159804 160899 157882.70 158985.55 159456.50 160563.75

MDG-a_39 100 13 27 158821 159275 159821 160909 157915.40 158905.95 159547.45 160534.95

MDG-a_40 100 13 27 159247 159283 159915 160837 158160.50 158982.10 159636.60 160628.80

Avg. 158745.1 159297.1 159811.6 160813.85 157897.57 159015.00 159557.94 160549.57

#Best 0 0 0 20 0 0 0 20

p-value 8.86E-5 8.86E-5 8.86E-5 8.86E-5 8.86E-5 8.86E-5

Table A.6
Comparison of the proposed NDHA algorithm with three best performing algorithms
in the literature on the 20 DGS instances with N = 2000 and m = 200.

Instance fbest favg
Graph m Lg Ug ITS SGVNS IMS NDHA ITS SGVNS IMS NDHA

MDG-a_21 200 6 14 88227 88435 89009 89673 87785.55 88295.80 88771.15 89453.65

MDG-a_22 200 6 14 88161 88479 89217 89632 87609.05 88276.80 88873.15 89391.70

MDG-a_23 200 6 14 88228 88400 88656 89582 87766.40 88288.55 88485.60 89406.30

MDG-a_24 200 6 14 88282 88388 88739 89575 87707.25 88276.00 88487.15 89380.30

MDG-a_25 200 6 14 88351 88627 88717 89561 87906.80 88392.70 88526.30 89416.20

MDG-a_26 200 6 14 88472 88686 88851 89630 87722.55 88465.95 88548.65 89438.55

MDG-a_27 200 6 14 88282 88515 88735 89482 87776.85 88392.50 88570.65 89380.60

MDG-a_28 200 6 14 88301 88495 88703 89609 87655.00 88324.35 88383.40 89388.75

MDG-a_29 200 6 14 88242 88623 88716 89552 87726.45 88347.70 88494.75 89416.05

MDG-a_30 200 6 14 88477 88414 88741 89644 87824.95 88298.25 88470.25 89447.45

MDG-a_31 200 6 14 88243 88532 88771 89580 87673.80 88337.70 88571.65 89456.40

MDG-a_32 200 6 14 88243 88458 88692 89520 87674.85 88284.35 88514.60 89410.45

MDG-a_33 200 6 14 88319 88544 88620 89539 87705.60 88329.45 88462.60 89424.20

MDG-a_34 200 6 14 88272 88543 88897 89704 87658.15 88317.65 88706.85 89435.05

MDG-a_35 200 6 14 88333 88514 88816 89589 87742.30 88271.35 88591.20 89419.70

MDG-a_36 200 6 14 88329 88531 88898 89588 87743.50 88337.80 88690.15 89425.75

MDG-a_37 200 6 14 88282 88453 88917 89611 87843.50 88292.25 88708.75 89388.40

MDG-a_38 200 6 14 88325 88520 88830 89676 87678.55 88313.90 88717.60 89465.00

MDG-a_39 200 6 14 88344 88530 88887 89578 87742.95 88342.25 88642.95 89401.25

MDG-a_40 200 6 14 88364 88557 89180 89644 87733.00 88339.10 88781.05 89445.40

Avg. 88303.85 88512.20 88829.60 89598.45 87733.85 88326.22 88599.92 89419.56

#Best 0 0 0 20 0 0 0 20

p-value 8.86E-5 8.86E-5 8.86E-5 8.86E-5 8.86E-5 8.86E-5
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Table A.7
Comparison of the proposed NDHA algorithm with three best performing algorithms
in the literature on the 20 EGS instances with N = 2000 and m = 10.

Instance fbest favg
Graph m Lg Ug ITS SGVNS IMS NDHA ITS SGVNS IMS NDHA

MDG-a_21 10 200 200 1115670 1114042 1117329 1116899 1113959.45 1113305.90 1116979.60 1116262.35
MDG-a_22 10 200 200 1115321 1113721 1117023 1117135 1113665.70 1113035.30 1116590.15 1116258.00
MDG-a_23 10 200 200 1114892 1113478 1116532 1116772 1113272.70 1112722.85 1116179.45 1115769.35
MDG-a_24 10 200 200 1115371 1113662 1117108 1116750 1114181.95 1113007.90 1116631.90 1116139.75
MDG-a_25 10 200 200 1115958 1114335 1117273 1117265 1114653.20 1113459.75 1116971.70 1116676.25
MDG-a_26 10 200 200 1115590 1113747 1116968 1116706 1114141.50 1112874.85 1116482.35 1116062.35
MDG-a_27 10 200 200 1114931 1113363 1116630 1116189 1113642.65 1112788.20 1116158.30 1115640.35
MDG-a_28 10 200 200 1115613 1113878 1117185 1116643 1113922.30 1112992.90 1116613.20 1116161.85
MDG-a_29 10 200 200 1116073 1113935 1117251 1117083 1114258.00 1113218.95 1116856.55 1116448.40
MDG-a_30 10 200 200 1115358 1113918 1117019 1116680 1113618.85 1112977.00 1116586.80 1116015.40
MDG-a_31 10 200 200 1115889 1114290 1117450 1117354 1114371.55 1113477.65 1117122.05 1116780.00
MDG-a_32 10 200 200 1115098 1113951 1117229 1117154 1113961.90 1113096.55 1116816.80 1116506.95
MDG-a_33 10 200 200 1115074 1113867 1117055 1116663 1113714.90 1112992.65 1116508.75 1116155.00
MDG-a_34 10 200 200 1115691 1114120 1117447 1116856 1114448.65 1113533.95 1116961.50 1116390.50
MDG-a_35 10 200 200 1115086 1114196 1116854 1116674 1113983.25 1112705.70 1116383.20 1116028.95
MDG-a_36 10 200 200 1115427 1113669 1117048 1117042 1113749.60 1113041.15 1116601.60 1116181.85
MDG-a_37 10 200 200 1115800 1114510 1117581 1117109 1114503.25 1113459.35 1117121.45 1116566.40
MDG-a_38 10 200 200 1115525 1114085 1117678 1116862 1114260.05 1113419.40 1116953.85 1116478.20
MDG-a_39 10 200 200 1114913 1113545 1116910 1116677 1113737.60 1112885.10 1116443.75 1116072.50
MDG-a_40 10 200 200 1116449 1114319 1117864 1117388 1115060.00 1113845.05 1117383.45 1116793.60
Avg. 1115486.45 1113931.55 1117171.701116895.05 1114055.35 1113142.01 1116717.32 1116269.40
#Best 0 0 18 2 0 0 20 0
p-value 8.86E-5 8.86E-5 6.81E-4 8.86E-5 8.86E-5 8.86E-5

Table A.8
Comparison of the proposed NDHA algorithm with three best performing algorithms
in the literature on the 20 EGS instances with N = 2000 and m = 25.

Instance fbest favg
Graph m Lg Ug ITS SGVNS IMS NDHA ITS SGVNS IMS NDHA

MDG-a_21 25 80 80 486111 486385 487689 488046 484925.90 485743.55 487282.20 487697.75

MDG-a_22 25 80 80 485737 486122 487629 487882 484514.45 485580.50 487195.05 487503.65

MDG-a_23 25 80 80 485651 485893 487264 487752 484595.35 485455.50 487102.30 487335.90

MDG-a_24 25 80 80 485919 486155 487396 488040 484593.65 485735.30 487171.20 487511.40

MDG-a_25 25 80 80 485830 486233 487615 487828 484923.30 485735.05 487331.60 487540.75

MDG-a_26 25 80 80 485830 486091 487544 488012 484753.95 485611.05 487196.35 487477.65

MDG-a_27 25 80 80 485604 486080 487376 487599 484393.25 485506.55 487055.50 487307.15

MDG-a_28 25 80 80 486129 486185 487553 487899 484725.15 485574.80 487207.60 487492.10

MDG-a_29 25 80 80 486329 486033 487548 487971 484994.10 485656.95 487291.10 487595.40

MDG-a_30 25 80 80 486017 485896 487361 487785 484673.45 485599.15 487183.90 487491.15

MDG-a_31 25 80 80 486137 486545 487885 488002 484986.05 485894.60 487513.05 487662.40

MDG-a_32 25 80 80 486174 486130 487588 487911 484626.85 485589.55 487264.25 487581.95

MDG-a_33 25 80 80 485821 485975 487582 488113 484673.75 485611.85 487231.65 487547.90

MDG-a_34 25 80 80 486631 486286 487781 488012 484974.30 485640.30 487284.50 487624.45

MDG-a_35 25 80 80 485749 485912 487442 487954 484481.75 485520.30 487183.75 487484.70

MDG-a_36 25 80 80 486013 486102 487510 487950 484752.70 485601.05 487105.30 487555.20

MDG-a_37 25 80 80 485925 486265 487705 487925 484918.05 485906.80 487370.60 487684.10

MDG-a_38 25 80 80 485897 486129 487657 487887 484894.45 485762.45 487276.05 487529.15

MDG-a_39 25 80 80 485947 486033 487465 487848 484797.10 485607.90 487146.40 487438.85

MDG-a_40 25 80 80 486551 486745 487918 488055 485135.80 485934.65 487463.60 487702.90

Avg. 486000.1 486159.75 487575.4 487923.55 484766.67 485663.39 487242.80 487538.23

#Best 0 0 0 20 0 0 0 20

p-value 8.86E-5 8.86E-5 8.86E-5 8.86E-5 8.86E-5 8.86E-5

Table A.9
Comparison of the proposed NDHA algorithm with three best performing algorithms
in the literature on the 20 EGS instances with N = 2000 and m = 50.

Instance fbest favg
Graph m Lg Ug ITS SGVNS IMS NDHA ITS SGVNS IMS NDHA

MDG-a_21 50 40 40 263512 264642 265571 265951 262625.40 264329.35 265192.95 265634.50

MDG-a_22 50 40 40 263876 264580 265437 265832 262750.50 264281.15 265046.65 265438.90

MDG-a_23 50 40 40 263731 264493 265316 265884 262651.15 264156.50 265065.25 265504.10

MDG-a_24 50 40 40 263736 264575 265422 265956 262500.25 264290.55 265093.25 265573.55

MDG-a_25 50 40 40 263688 264556 265354 265866 262863.60 264287.50 265134.10 265519.90

MDG-a_26 50 40 40 263837 264462 265482 265933 262679.60 264225.70 265124.95 265609.55

MDG-a_27 50 40 40 263603 264517 265474 265928 262602.80 264116.65 265034.55 265415.35

MDG-a_28 50 40 40 263628 264548 265316 265995 262730.25 264199.10 265081.20 265573.35

MDG-a_29 50 40 40 264015 264709 265554 265858 262833.90 264272.75 265169.55 265589.55

MDG-a_30 50 40 40 263732 264509 265467 266144 262672.25 264240.95 265173.15 265558.55

MDG-a_31 50 40 40 263744 264532 265542 266022 262728.60 264349.25 265219.85 265616.70

MDG-a_32 50 40 40 263822 264579 265557 265866 262668.55 264277.00 265132.95 265571.40

MDG-a_33 50 40 40 263688 264426 265462 265948 262664.90 264224.65 265100.90 265601.60

MDG-a_34 50 40 40 263561 264832 265387 265927 262645.30 264365.55 265108.75 265592.85

MDG-a_35 50 40 40 263555 264518 265334 266087 262578.05 264219.60 265069.20 265465.35

MDG-a_36 50 40 40 263895 264451 265316 265782 262646.85 264228.90 265074.20 265514.10

MDG-a_37 50 40 40 263714 264499 265308 265911 262717.20 264251.10 265079.35 265642.75

MDG-a_38 50 40 40 263554 264623 265600 265839 262592.60 264342.35 265209.95 265506.30

MDG-a_39 50 40 40 263657 264603 265314 265810 262655.90 264236.85 265055.75 265503.35

MDG-a_40 50 40 40 263841 264576 265546 266324 262776.30 264363.00 265228.50 265769.55

Avg. 263719.45 264561.5 265437.95 265943.15 262679.20 264262.92 265119.75 265560.06

#Best 0 0 0 20 0 0 0 20

p-value 8.86E-5 8.86E-5 8.86E-5 8.86E-5 8.86E-5 8.86E-5
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Table A.10
Comparison of the proposed NDHA algorithm with three best performing algorithms
in the literature on the 20 EGS instances with N = 2000 and m = 100.

Instance fbest favg
Graph m Lg Ug ITS SGVNS IMS NDHA ITS SGVNS IMS NDHA

MDG-a_21 100 20 20 143675 144813 144748 145401 143083.65 144359.10 144563.20 145170.35

MDG-a_22 100 20 20 143933 144525 144847 145432 143077.45 144316.00 144613.45 145177.90

MDG-a_23 100 20 20 143738 144554 144753 145261 142909.50 144314.15 144531.45 145057.25

MDG-a_24 100 20 20 144003 144536 144740 145593 143076.35 144293.60 144526.75 145155.65

MDG-a_25 100 20 20 144161 144473 144965 145460 143044.80 144324.10 144599.40 145155.40

MDG-a_26 100 20 20 143913 144555 144854 145441 143093.70 144373.30 144609.65 145211.55

MDG-a_27 100 20 20 143910 144558 144762 145435 143150.65 144286.60 144535.40 145076.95

MDG-a_28 100 20 20 144043 144580 144882 145444 143087.50 144338.95 144591.10 145154.00

MDG-a_29 100 20 20 143836 144699 144795 145468 143146.15 144364.65 144606.20 145164.40

MDG-a_30 100 20 20 143978 144613 144830 145873 143048.50 144364.55 144580.50 145171.35

MDG-a_31 100 20 20 143876 144684 144930 145548 143088.35 144369.70 144637.50 145186.65

MDG-a_32 100 20 20 143878 144576 144810 145477 143030.35 144357.60 144562.30 145137.75

MDG-a_33 100 20 20 143957 144873 144886 145319 143070.75 144414.75 144628.60 145123.95

MDG-a_34 100 20 20 143917 144570 144905 145476 143145.65 144310.85 144647.30 145191.00

MDG-a_35 100 20 20 143901 144501 144768 145314 143147.05 144276.10 144512.55 145134.10

MDG-a_36 100 20 20 143853 144560 144898 145458 143097.65 144290.55 144603.10 145150.85

MDG-a_37 100 20 20 144108 144534 144840 145394 143171.00 144311.95 144654.55 145166.30

MDG-a_38 100 20 20 143725 144706 144867 145487 143170.05 144334.90 144567.00 145178.35

MDG-a_39 100 20 20 143803 144534 144760 145609 143081.45 144244.95 144553.90 145210.40

MDG-a_40 100 20 20 144138 144605 144850 145648 143057.20 144380.00 144602.95 145252.25

Avg. 143917.3 144602.45 144834.5 145476.9 143088.89 144331.32 144586.34 145161.32

#Best 0 0 0 20 0 0 0 20

p-value 8.86E-5 8.86E-5 8.86E-5 8.86E-5 8.86E-5 8.86E-5

Table A.11
Comparison of the proposed NDHA algorithm with three best performing algorithms
in the literature on the 20 EGS instances with N = 2000 and m = 200.

Instance fbest favg
Graph m Lg Ug ITS SGVNS IMS NDHA ITS SGVNS IMS NDHA

MDG-a_21 200 10 10 77065 76803 77127 78193 76530.95 76652.45 77030.05 78101.00

MDG-a_22 200 10 10 76971 76850 77176 78423 76469.25 76690.10 77039.00 78098.35

MDG-a_23 200 10 10 77002 76847 77231 78253 76372.40 76684.90 77071.70 78111.00

MDG-a_24 200 10 10 76933 76833 77211 78300 76515.95 76686.15 77055.40 78075.35

MDG-a_25 200 10 10 77198 76835 77245 78266 76561.05 76681.10 77039.70 78143.55

MDG-a_26 200 10 10 76859 76804 77313 78324 76497.85 76706.05 77078.90 78107.90

MDG-a_27 200 10 10 76875 76841 77269 78220 76412.85 76642.40 77024.35 78085.00

MDG-a_28 200 10 10 76853 76809 77353 78208 76438.00 76693.25 77064.80 78107.75

MDG-a_29 200 10 10 76942 76879 77212 78271 76489.25 76706.70 77058.25 78104.90

MDG-a_30 200 10 10 77011 76890 77165 78187 76513.90 76720.40 77068.60 78092.05

MDG-a_31 200 10 10 76967 76839 77222 78380 76480.75 76687.70 77052.85 78255.45

MDG-a_32 200 10 10 77005 76796 77225 78252 76399.50 76669.85 77020.20 78117.95

MDG-a_33 200 10 10 76981 76862 77182 78234 76474.45 76722.15 77072.60 78085.05

MDG-a_34 200 10 10 77116 76927 77166 78193 76521.45 76710.90 77041.80 78082.05

MDG-a_35 200 10 10 77018 76853 77195 78332 76454.05 76681.45 77040.15 78094.25

MDG-a_36 200 10 10 76880 76801 77240 78348 76404.25 76702.35 77052.80 78158.55

MDG-a_37 200 10 10 76913 76840 77211 78335 76484.70 76693.20 77051.05 78126.90

MDG-a_38 200 10 10 76995 76840 77234 78189 76413.50 76681.05 77038.40 78100.00

MDG-a_39 200 10 10 77009 76803 77232 78290 76437.25 76667.80 77025.15 78122.50

MDG-a_40 200 10 10 76865 76882 77230 78340 76488.25 76713.95 77086.05 78155.55

Avg. 76972.90 76841.70 77221.95 78276.90 76467.98 76689.70 77050.59 78116.26

#Best 0 0 0 20 0 0 0 20

p-value 8.86E-5 8.86E-5 8.86E-5 8.86E-5 8.86E-5 8.86E-5

Table A.12
Comparison of the proposed NDHA algorithm with three best performing algorithms
in the literature on the 20 DGS instances with N = 3000 and m = 50.

Instance fbest favg
Graph m Lg Ug ITS SGVNS IMS NDHA ITS SGVNS IMS NDHA

MDG-c_1 50 48 72 57921457 58093235 58265192 58340690 57737678.30 58035513.50 58209687.40 58297673.25

MDG-c_2 50 48 72 57902133 58099262 58257908 58337196 57731383.75 58026098.05 58209556.50 58299371.40

MDG-c_3 50 48 72 57934848 58055836 58241554 58311192 57762546.30 58014337.00 58191269.80 58270396.10

MDG-c_4 50 48 72 57927582 58037524 58233772 58329732 57764219.85 57998056.85 58194485.50 58276632.95

MDG-c_5 50 48 72 57923652 58055692 58214064 58328164 57759631.00 57994387.20 58170320.15 58274835.70

MDG-c_6 50 48 72 57864117 58016049 58224119 58309892 57721643.20 57986567.55 58168981.80 58256842.00

MDG-c_7 50 48 72 57863533 58034097 58234312 58313700 57698298.50 57980907.15 58186693.90 58280775.25

MDG-c_8 50 48 72 57934738 58045305 58209856 58288736 57730173.20 58005747.75 58174878.90 58257575.90

MDG-c_9 50 48 72 57910127 58017357 58218441 58319076 57735321.20 57983943.75 58163082.30 58264473.95

MDG-c_10 50 48 72 57930587 57997933 58201426 58294490 57736078.60 57965143.80 58174383.15 58264257.90

MDG-c_11 50 48 72 57903371 58057105 58269895 58336603 57719528.20 58007027.90 58227824.85 58286386.60

MDG-c_12 50 48 72 57900418 58081540 58230643 58330830 57707521.30 58025359.15 58184171.95 58281631.20

MDG-c_13 50 48 72 57858714 58083409 58269976 58348524 57716409.80 58031488.85 58202546.90 58279226.65

MDG-c_14 50 48 72 57882617 58038649 58289363 58300407 57721202.00 57984240.60 58202482.10 58255428.60

MDG-c_15 50 48 72 57931495 58048003 58243022 58329292 57746547.60 57985029.30 58197244.85 58265913.85

MDG-c_16 50 48 72 57960453 58059638 58223406 58336695 57760872.90 58010567.10 58187356.65 58294369.60

MDG-c_17 50 48 72 57918754 58029359 58213613 58320502 57741845.75 57983441.85 58163916.65 58269475.80

MDG-c_18 50 48 72 57884836 58003403 58190902 58311686 57700437.65 57963090.00 58153413.50 58253890.75

MDG-c_19 50 48 72 57886748 58031546 58224417 58371723 57709285.60 57998606.85 58189788.00 58281675.95

MDG-c_20 50 48 72 57903276 58071049 58212202 58334988 57748397.25 58002919.25 58171944.40 58272124.90

Avg. 57907172.80 58047799.55 58233404.15 58324705.90 57732451.10 57999123.67 58186201.46 58274147.92

#Best 0 0 0 20 0 0 0 20

p-value 8.86E-5 8.86E-5 8.86E-5 8.86E-5 8.86E-5 8.86E-5
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Table A.13
Comparison of the proposed NDHA algorithm with three best performing algorithms
in the literature on the 20 EGS instances with N = 3000 and m = 50.

Instance fbest favg
Graph m Lg Ug ITS SGVNS IMS NDHA ITS SGVNS IMS NDHA

MDG-c_1 50 60 60 55935354 56066732 56300952 56367170 55773172.85 56026456.90 56261757.35 56333433.90

MDG-c_2 50 60 60 55935048 56052085 56304407 56391411 55751718.00 56012225.35 56264734.25 56345921.00

MDG-c_3 50 60 60 55876810 55928266 56271740 56368135 55757466.30 55886719.80 56233584.00 56330534.85

MDG-c_4 50 60 60 55892522 56045917 56274086 56355625 55753144.20 56001442.40 56233863.20 56321400.10

MDG-c_5 50 60 60 55966544 56025930 56291632 56346700 55764810.85 55983690.45 56228552.10 56313011.30

MDG-c_6 50 60 60 55872193 56050890 56240478 56346004 55757932.70 56008253.65 56210354.00 56302313.75

MDG-c_7 50 60 60 55898725 56004130 56284630 56372432 55741551.65 55960750.75 56224220.50 56319651.95

MDG-c_8 50 60 60 55911548 56031405 56249087 56362161 55745946.30 55988150.90 56215130.00 56320663.10

MDG-c_9 50 60 60 55871860 55916383 56265244 56345352 55762150.35 55870335.40 56211872.45 56292812.70

MDG-c_10 50 60 60 55920804 55975884 56271841 56341222 55889867.25 55920627.00 56220974.15 56292495.60

MDG-c_11 50 60 60 55916984 56079876 56245962 56382456 55739899.00 56008914.10 56214501.30 56326674.85

MDG-c_12 50 60 60 55895697 56016471 56246744 56330408 55752006.35 55942412.60 56215907.70 56293618.05

MDG-c_13 50 60 60 55954309 56031145 56275819 56351898 55769196.40 55985360.10 56241430.35 56301577.00

MDG-c_14 50 60 60 55942413 55986823 56279869 56355641 55765380.20 55948686.80 56233195.60 56299851.20

MDG-c_15 50 60 60 55917971 55993491 56277686 56393376 55753017.35 55945782.20 56229065.85 56349326.05

MDG-c_16 50 60 60 55930835 56032237 56281453 56403871 55761254.95 55987905.60 56242444.65 56360680.45

MDG-c_17 50 60 60 55914349 56015346 56273992 56393589 55755871.50 55973726.35 56227222.95 56337958.45

MDG-c_18 50 60 60 55882209 56002250 56223804 56369757 55730098.30 55970535.10 56193093.10 56315879.40

MDG-c_19 50 60 60 55917957 56040091 56269179 56392641 55774459.50 56000374.75 56229431.65 56347320.95

MDG-c_20 50 60 60 55931252 56030384 56261671 56369775 55745101.20 55988408.65 56229092.20 56314192.25

Avg. 55914269.20 56016286.80 56269513.80 56366981.20 55762202.26 55970537.94 56228021.37 56320965.85

#Best 0 0 0 20 0 0 0 20

p-value 8.86E-5 8.86E-5 8.86E-5 8.86E-5 8.86E-5 8.86E-5
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