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Abstract

This paper proposes a learning-based path relinking algorithm (LPR) for solving
the bandwidth coloring problem and the bandwidth multicoloring problem. Based
on the population path-relinking framework, the proposed algorithm integrates a
learning-driven tabu optimization procedure and a path-relinking operator. LPR
is assessed on two sets of 66 common benchmark instances, and achieves highly
competitive results in terms of both solution quality and computational efficiency
compared to the state-of-the-art algorithms in the literature. Specifically, the algo-
rithm establishes 7 new upper bounds while matching the best known results for 56
cases. The impacts of the learning mechanism and the path relinking operators are
investigated, confirming their critical role to the success of the proposed algorithm.

Keywords: Path relinking and tabu search; Learning mechanism; Bandwidth and
graph coloring problems; Population-based computing.

1 Introduction

Given an undirected graph G = (V,E) with a vertex set V = {v1, v2, . . . , vn}
and an edge set E ⊂ V ×V , a bandwidth k-coloring is an assignment of a color
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c(vi) (1 ≤ c(vi) ≤ k) to each vertex vi (1 ≤ i ≤ |V | ) such that for each edge
e(vi, vj) ∈ E the difference between the colors of vertices vi and vj must be
larger than or equal to the associated edge weight d(i, j), i.e., |c(vi)− c(vj)| ≥
d(i, j). The bandwidth coloring problem (BCP) is to find the smallest number
k of colors such that a bandwidth k-coloring exists. It is obvious that BCP is
a generalization of the classical vertex coloring problem when d(i, j) = 1 for
all the edges of the graph. On the other hand, the bandwidth multicoloring
problem (BMCP) is a generalization of BCP, where each vertex vi is assigned
y(i) ≥ 1 colors. In addition to the distance constraint between two colors
assigned to two adjacent vertices (i.e., |c(vi)−c(vj)| ≥ d(i, j)), two colors c(vi)
and c′(vi) assigned to the same vertex vi must be at least distanced by d(i, i),
i.e., |c(vi)− c′(vi)| ≥ d(i, i). Like BCP, the objective of BMCP is to minimize
the number k of the colors. BCP and BMCP correspond to special cases of the
T-coloring and set T-coloring problems [5,11] that are particularly relevant to
model frequency assignment problems in telecommunications networks.

BMCP can be converted into BCP by splitting each vertex vi into a clique
with y(i) vertices, where each edge of the clique has an edge weight d(i, i) of
the original graph (see [5] for an example) [19,23]. The resulting new graph
has

∑n
i=1 y(i) vertices. Thus, any approach for BCP can be applied to BMCP.

For this reason, we focus on solving BCP in this paper. Notice that gener-
alized graph coloring problems are attracting increasing attention in the last
decades, as exemplified by the series of COLOR02/03/04 Challenges ded-
icated to Graph Coloring and its Generalizations (http://mat.gsia.cmu.
edu/COLOR03/).

A large number of solution approaches exist in the literature for these gen-
eralized coloring problems. In 1993, Costa applied simulated anneaning and
tabu search to the T-coloring problem [3] while in 1998, Dorne and Hao intro-
duced a general tabu search algorithm for both T-coloring and set T-coloring
[5]. In 2002, Phan and Skiena proposed a general heuristic called Discropt for
BCP [27]. In 2002, Prestwich presented a hybrid approach combining local
search and constraint programming for BCP and BMCP which was extended
in [29]. In 2005, Lim et al. introduced a hybrid algorithm for BCP and BMCP
[19]. In 2007, Chiarandini et al. investigated several stochastic local search
algorithms for the set T-coloring problem [2]. In 2008, Malaguti and Toth re-
ported an effective evolutionary approach for BCP and BMCP [23]. In 2010,
Mart́ı et al. developed several heuristics for BCP using memory structures in
both constructive and improvement methods [24]. In 2013, Lai and Lü de-
veloped a multistart iterated tabu search algorithm for BCP [15]. In 2015,
Jin and Hao proposed an effective learning-based hybrid search approach for
BCP, and reported improved results for a number of benchmarks [13]. Very
recently, Matić et al. developed a variable neighborhood search (VNS) method
for BCP, and reported improved results for two instances [25]. Finally, various
heuristic algorithms were also proposed in the literature to solve the tightly
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related frequency assignment problem [12,18,26,31].

The general path relinking (PR) framework [9,10] has recently shown out-
standing performances in solving a number of difficult combinatorial opti-
mization problems, such as capacitated clustering [4], the far from most string
problem [8], vehicle routing problem with route balancing [14], multi-depot
periodic vehicle routing [30], and unconstrained binary quadratic optimiza-
tion [34]. In this paper, we introduce an effective path relinking algorithm for
solving BCP which relies on both a solution relinking procedure and a local
search procedure.

The following identifies the main contributions of the present work:

• This paper presents a path relinking approach for the BCP and BMCP
problems. The proposed LPR approach introduces a new learning-based
penalty function to provide an informative guidance to the search procedure.
LPR explores two path relinking operators for new solution generation and
uses a two-phase Tabu Search procedure for local improvement which relies
among other things on the learning-based function as well as a fine technique
for tabu list management.
• When it is assessed on two sets of 66 common benchmark instances in the
literature, the proposed algorithm discovers improved best known results
(new upper bounds) for 7 instances and matches the best known results
for 56 additional cases. Compared to the state-of-the-art algorithms in the
literature, such a performance remains highly competitive both in terms of
solution quality and computational efficiency.
• The basic principle of the proposed LPR algorithm, i.e., embedding a learning-
based two-phase local optimization procedure into an evolutionary frame-
work, is quite general. It could be used to design effective algorithms for
other constrained search problems.

The rest of this paper is organized as follows. In Section 2 , we describe in detail
the proposed LPR algorithm. In Section 3, we show our computational results
and comparisons with the current best performing algorithms in the literature.
In Section 4, we investigate the contributions of some key ingredients of the
LPR algorithm, before concluding the paper in Section 5.

2 Learning-based Path Relinking Algorithm

The learning-based PR (LPR) algorithm presented in this paper is based on
the general path relinking method [9,10] and extends our first algorithm in-
troduced in [16] (unpublished paper). From the point of view of algorithmic
design, the proposed algorithm is also inspired by the work presented in [18]
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on the fixed spectrum frequency assignment problem (FS-FAP). Given that
both algorithms employ the PR framework, they naturally share some simi-
larities in their algorithmic outlines and the way of generating initial solutions
and relinking paths. On the other hand, given that BCP and FS-FAP have
different objectives (FS-FAP aims to minimize a given penalty function [18]),
dedicated techniques need to be developed for each case in order to attain sat-
isfactory solutions. The proposed LPR algorithm for BCP incorporates several
distinguishing features. First, LPR employs a new learning-based evaluation
function to provide an informative guidance to the search procedure. Second,
LPR uses a two-phase Tabu Search procedure for local improvement which
relies among other things on the learning-based evaluation function as well as
a fine technique for tabu list management. Third, LPR implements two path
relinking methods which are tailored to the BCP problem. As we show in our
computational experiments, the proposed LPR algorithm achieves remarkable
results when it is tested on the BCP benchmark instances. We describe in
detail the proposed LPR algorithm in the following subsections.

2.1 Search Space and Evaluation Function

BCP can be considered from the point of view of constraint satisfaction by
solving a series of k-BCP problems, each k-BCP aiming to find a k-coloring
(k being fixed) that satisfies all the edge constraints. Starting from a large
enough initial k, our algorithm seeks to solve the k-BCP problem, i.e., to find
a legal k-coloring such that all edge constraints of BCP are satisfied. Once
such a k-coloring is found with the current k, we set k to k−1 and solve again
the new k-BCP problem. The process is repeated until no legal k-coloring can
be found. The last k for which a legal k-coloring was found is returned as the
output of the algorithm.

For the k-BCP problem, the search space Ω explored by our LPR algorithm
is composed of all possible k-colorings, including both legal and illegal k-
colorings. The size of the search space Ω is bounded by O(kn), where n is the
number of the vertices in the graph.

To evaluate the quality of a candidate k-coloring s ∈ Ω, we adopt an evaluation
function which is defined as the summation f(s) of all constraint violations
induced by s.

f(s) =
∑

e(vi,vj)∈E

max{0, d(i, j)− |c(vi)− c(vj)|} (1)

where d(i, j) is the weight of edge e(vi, vj), and c(vi) and c(vj) respectively
represent the color of vertices vi and vj in s.
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Given two solutions s
′

and s
′′

, s
′

is better than s
′′

if f(s
′

) < f(s
′′

). In other
words, a better solution has fewer constraint violations. The purpose of the
LPR algorithm is to minimize the function f to find a solution s with f(s) = 0,
which corresponds to a legal k-coloring.

2.2 Main Framework

Algorithm 1 Pseudo-code of our LPR algorithm for BCP
1: Input: Problem instance I, the number of colors (k), the size of population (p)
2: Output: the best k-coloring s∗ found
3: Initialize the penalty function g(s), i.e., w(i, j)← 0, (i ≤ j) /∗ Section 2.4.2∗/
4: repeat

5: P = {s1, . . . , sp} ← Population Initialization(I, k) /∗ Section 2.3 ∗/
6: if it is not in the first loop then

7: sw ← arg max{f(si) : i = 1, . . . , p}
8: P ← P ∪ {s∗} \ {sw}
9: end if

10: s∗ ← arg min{f(si) : i = 1, . . . , p}
11: PairSet← {(si, sj) : 1 ≤ i < j ≤ p}
12: while PairSet 6= ∅ do

13: Randomly pick a solution pair (si, sj) ∈ PairSet

14: PairSet← PairSet \ {(si, sj)}
15: sa ← PathRelinking(si, sj), sb ← PathRelinking(sj , si)/∗ Section 2.5 ∗/
16: Improvement and Updating (sa, P, PairSet, s∗, g(s)) /∗ Algorithm 2 ∗/
17: Improvement and Updating (sb, P, PairSet, s∗, g(s)) /∗ Algorithm 2 ∗/
18: end while

19: until a stopping criterion is met

Let P denote a population of p candidate solutions (k-colorings). Let s∗ and
sw respectively represent the best solution among all solutions visited so far
and the worst solution among the solutions in P (in terms of the evaluation
function of Eq. (1)). Let PairSet be a set of solution pairs (si, sj) initially
composed of all possible pairs in P . Then the proposed LPR algorithm can be
described as follows (See Algorithm 1).

LPR starts with an initial population P = {s1, . . . , sp} (line 5), where each
solution si is randomly generated and improved by the basic tabu search
procedure described in Section 2.4.1. The search enters then into a while loop
which forms the main body of the LPR algorithm (lines 12 to 18). At each
iteration, the following operations are realized. First, from a solution pair
(si, sj) taken at random from PairSet (the pair is removed from PairSet

after selection), LPR creates, with a relinking operator (line 15, Section 2.5),
two solution paths, one from si to sj and one from sj to si. Then one particular
solution is selected from each path for further improvement by the two-phase
tabu search procedure (see Section 2.4.2 and Algorithm 3) and the improved
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Algorithm 2 Local improvement and information updating
1: Function: Improvement and Updating (s, P, PairSet, s∗, g(s))
2: Input: Solution generated by relinking operator (s), the population P , the best

solution s∗ found so far, the set of solution pairs available (PairSet), and the
learning-based penalty function (g(s))

3: Output: P , Pairset, s∗, g(s)
4: s ← Two-Phase Tabu Search (f(s), g(s), s) /∗Section 2.4.2∗/
5: Update learning-based penalty function g(s) according to s /∗Section 2.4.2∗/
6: if f(s) < f(s∗) then
7: s∗ ← s

8: end if

9: sw ← arg max{f(si) : si ∈ P}
/∗ Distance(s, P ) represents the Hamming distance between s and the closest
solution from it in P ∗/

10: if (f(s) < f(sw)) ∧ (Distance(s, P ) > 0.1n) then
11: P ← P ∪ {s} \ {sw}
12: PairSet← PairSet \ {(sw, sk) : sk ∈ P}
13: PairSet← PairSet ∪ {(s, sk) : sk ∈ P}
14: end if /∗ Section 2.6 ∗/
15: return {P, PairSet, s∗, g(s)}

solution is finally used to update the population P (see Section 2.6), the best
solution found s∗, PairSet and the penalty function g(s) (Eq. (3) of Section
2.4.2). The procedure of local optimization and update operations (lines 16 to
17, Algorithm 1) is described in Algorithm 2. The while loop continues until
PairSet becomes empty. Then the population P is recreated (lines 5 to 9) and
the above while loop is repeated until a legal solution (k-coloring) is found or
a maximum allowed number of path relinking (PR) rounds (denoted by Npr)
is reached, where one ”while” loop (i.e., lines 12 to 18) of Algorithm 1 is a PR
round.

2.3 Population Initialization

From scratch, an initial population is constructed as follows. We first gen-
erate 3p random solutions, where each variable (or vertex) of each solution
is randomly assigned a color from 1 to k. Then, for each generated solution,
the basic tabu search method with the evaluation function f(s) (see Section
2.4.1) is used to optimize it to a local optimum. Finally, we choose the p best
solutions to form the initial population.
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2.4 Local Refinement Methods

In our LPR algorithm, we employ two tabu search procedures for local op-
timization: a basic tabu search (TS) procedure and an advanced two-phase
tabu search (TP-TS) procedure.

2.4.1 Basic Tabu Search

The basic tabu search (TS) procedure operates in the search space Ω defined
in Section 2.1. From a given solution (i.e., an illegal k-coloring), it iteratively
improves the current solution by following the “critical one-move” neighbor-
hood [5], in which a neighboring solution of the current k-coloring is obtained
by changing the color of a conflicting vertex u from its original color ci to
another color cj (ci 6= cj) (denoted by the move < u, ci, cj >). Here, a vertex
is considered to be conflicting if at least one of the distance constraints as-
sociated with this vertex is violated. Thus, for a k-coloring s, the size of this
neighborhood is bounded by O(f(s)× k).

At each iteration of TS, the best solution among the eligible neighboring
solutions is first chosen to replace the current solution. If there are more than
one best neighboring solutions, one of them is taken at random. Then the
corresponding move < u, ci, cj > of the chosen solution is recorded in the
tabu list to prevent the reverse move from being selected during the next tt

iterations, where tt is the tabu tenure. The TS method stops when the best
solution found so far has not been improved during α consecutive iterations,
where α is called the depth of TS [22]. Moreover, a simple aspiration criterion
is applied to accept a forbidden neighboring solution as long as it is better
than the best solution found so far. A neighboring solution is said eligible if
it is not forbidden by the tabu list or satisfies the aspiration criterion.

In the TS method, we use a specific function to dynamically tune the tabu
tenure tt, according to a technique proposed in [7] where the tabu tenure is
defined by a periodic step function. If the current iteration is x, then the tabu
tenure of a move is denoted by tt(x). Specifically, our tabu tenure function
is defined, for each period, by a sequence of values (a1, a2, · · · , ap+1) and a
sequence of interval margins (x1, x2, · · · , xp+1) such that for each x in [xi, xi+1−
1], tt(x) = ai+rand(2), where rand(2) denotes a random integer in [0,2]. In our
case, p is fixed to 15, and (a)i=1,···,15 =

Tmax

8
(1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1),

where Tmax is a parameter which represents the maximum tabu tenure. Finally,
the interval margins are defined by x1 = 1, xi+1 = xi + 4ai,(i ≤ 15). Thus,
this function varies periodically and for each period, 15 tabu tenures are used
dynamically, each being kept for a number of consecutive iterations.

This basic tabu search procedure is employed to generate an initial population
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and also served as a key component of the two-phase tabu search procedure
explained in the next section.

2.4.2 Two-Phase Tabu Search with an Augmented Evaluation Function

Algorithm 3 Pseudo-code of updating penalty function used in TP-TS
1: Input: Penalty matrix [w(i, j)]n×n, distance matrix [d(i, j)]n×n, weight updating

parameters θ and ρ, local minimum solution s = (c(v1), c(v2), . . . , c(vn)).
2: Output: Updated penalty matrix [w(i, j)]n×n.
3: for each e(vi, vj) ∈ E do

4: if |c(vi)− c(vj)| < d(i, j) then
5: w(i, j)← w(i, j) + 1
6: end if

7: end for

8: wmax ← maxi<jw(i, j)
9: if wmax > θ then

10: for each e(vi, vj) ∈ E do

11: w(i, j) ← ⌊ρ · w(i, j)⌋
12: end for

13: end if

In order to make local optimization well-informed, we devise a two-phase tabu
search (TP-TS) method. TP-TS is composed of two applications of the basic
TS procedure described in Section 2.4.1. The first phase applies the TS pro-
cedure with an augmented evaluation function F (instead of f) to guide the
search to explore promising regions of the search space, while the second phase
switches to the TS procedure with the original evaluation function f to seek
better solutions around the solution returned by the first phase. To distinguish
these two TS applications, we will call them TSF and TSf respectively. Hence,
the key component of the TP-TS concerns the augmented evaluation function
F which takes the following form:

F (s) = f(s) + g(s) (2)

where f(s) is the original function defined in Section 2.1, and g(s) is an aug-
mented penalty function which is given by:

g(s) =
∑

e(vi,vj)∈E;|c(vi)−c(vj)|<d(i,j)

w(i, j) (3)

The penalty function g(s) and its updating mechanism are essential parts of
our LPR algorithm, where the terms w(i, j) are the additional weights of the
edge e(vi, vj), (e(vi, vj) ∈ E), which are initialized to 0 at the beginning of the
LPR algorithm and updated dynamically during the search process.
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More specifically, during the search of LPR, each time TP-TS returns a local
optimum s′, the edge weights w(i, j), (e(vi, vj) ∈ E) are updated according to
the returned s′ as follows. First, for any edge e(vi, vj), w(i, j) is increased by
one if the distance constraint (|c(vi)−c(vj)| ≥ d(i, j)) is violated in s′. Then, if
the maximum edge weight (maxe∈Ew(e)) exceeds a predetermined parameter
value θ, all the edge weights w(e) (e ∈ E) are decreased by multiplying a
constant factor ρ, i.e., w(e) = ⌊ρ × w(e)⌋,(e ∈ E, ρ ∈ (0, 1)). Algorithm 3
describes this weight updating mechanism.

2.4.3 Discussions on the learning based penalty function

In the TP-TS procedure, an important element is the definition of edge weight
w(i, j) employed in the penalty function g(s). This weight approximately
represents the number of the recently encountered local optima where the
distance constraint for the edge e(vi, vj) is not satisfied. w(i, j) is thus an
indicator to know whether the distance constraint associated to e(vi, vj) is
easy or difficult to satisfy (i.e., a large w(i, j) value indicates the constraint
|c(vi)− c(vj)| ≥ d(i, j) is difficult to satisfy and vice versa).

With the introduced penalty function g(s), if the constraint |c(vi) − c(vj)| ≥
d(i, j) is repetitively violated in (high quality) local optima, the associated
weight w(i, j) will increase gradually. Since the first phase of TP-TS aims to
minimize F , the conflicting vertices involved in edges with a heavy weight
w(i, j) will be selected with preference for color changes to satisfy constraint
violation. Consequently, this will favor the satisfaction of those constraints
that are identified as difficult to satisfy.

Notice that the weight updating mechanism of g(s) uses a simple forgetting
technique. When the maximum weight (i.e.,max0<i<j≤nw(i, j)) in g(s) exceeds
a predetermined value θ, all the weights w(i, j) (i < j) are decreased by a
constant factor ρ, with the goal of periodically decreasing the edge weights in
order to forget too old information. A similar technique is used in a heuristic
algorithm for the vertex cover problem [1]. Finally, we can relate the learning
mechanism used in TP-TS to learning methods developed in other contexts
like local search methods for continuous optimization [17,21], guided local
search [33], and learning-based hybrid search [13]. Nevertheless, our TP-TS
procedure is different from these approaches in the way of utilizing information
gathered during the search process.

2.5 Path Relinking Operators

A path relinking operator aims to generate a path of intermediate solutions
connecting two high-quality (parent) solutions. In this work, we adopt two
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general path relinking operators: the greedy path relinking (GPR) and the
mixed path relinking (MPR) [18] which are tailored to the BCP problem. The
general procedures of these two path relinking operators are respectively given
in Algorithms 4 and 5.

Algorithm 4 Pseudo-code of constructing a path for the greedy PR operator

1: Input: A pair of solutions (s
′
, s

′′
)

2: Output: Path solutions s(0), s(1), . . . , s(r) from s
′
to s

′′

3: NC ← {l : s
′

l 6= s
′′

l , l = 1, 2, . . . , n} /∗ s
′

l denotes the value of lth variable of s
′
∗/

4: s(0)← s
′

, s← s
′

, m← 1, r ← |NC|
5: while |NC| > 0 do

6: l∗ ← argmin{f(s⊗ l) : l ∈ NC}
/∗ s⊗ l means that the value of lth variable of s is changed to the value of lth
variable of the guiding solution s

′′

∗/
7: NC ← NC \ {l∗}
8: s← s⊗ l∗

9: s(m)← s , m← m+ 1
10: end while

Algorithm 5 Pseudo-code of the mixed PR operator

1: Input: A pair of solutions (s
′
, s

′′
)

2: Output: Reference solution s(r)
3: NC ← {l : s

′

l 6= s
′′

l , l = 1, 2, . . . , n} /∗ s
′

l denotes the value of lth variable of s
′
∗/

/∗ generate alternately two sub-paths whose guiding solutions are respectively s
′

and s
′′
∗/

4: s(0)← s
′
, s(1)← s

′′
, m← 2, r ← |NC|

5: while |NC| > 0 do

6: s← s(m− 2)
7: if m is odd then

8: sg ← s
′

/∗ sg represents the current guiding solution ∗/
9: else

10: sg ← s
′′

11: end if

12: l∗ ← argmin{f(s⊗ l) : l ∈ NC}
/∗ s⊗ l means that the value of lth variable of s is changed to the value of lth
variable of the current guiding solution sg ∗/

13: NC ← NC \ {l∗}
14: s← s⊗ l∗

15: s(m)← s

16: m← m+ 1
17: end while

18: return s(r)

• Greedy path relinking : As shown in Algorithm 4, GPR generates a solution
sequence (i.e., a path of length HD+1) < s(0), s(1), s(2) . . . s(HD) > in a
step by step way by starting from s(0), where the first and last solutions are
respectively called ’initiating solution’ (denoted by s

′

) and ’guiding solution’
(denoted by s

′′

), and HD is the Hamming distance between s
′

and s
′′

.
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Moreover, a path exhibits the following property: two consecutive solutions
in the path differ only by the value of one single variable. To build the path,
GPR changes, at each relinking step, the value of one variable. To make the
decision, GPR uses the following greedy criterion. Let NC denote the set of
variables (vertices) whose values (colors) are different between the current
solution s(i) (i = 1, ..., HD − 1) and the guiding solution s

′′

, then GPR
examines the vertices of NC and seeks a new variable l ∈ NC such that
changing the value of the variable l of the current solution s to the value
of the variable l of guiding solution s

′′

leads to the greatest improvement of
the function f defined by Eq. (1). We use s⊗ l to denote the new solution
generated by changing the value of variable l of solution s to the value
of variable l of guiding solution s

′′

. The above process repeats until NC

becomes empty.
From a solution path, one particular solution (called the reference so-

lution) is picked for further improvement. Following [18,34], we select as
reference solution a high-quality solution that is distanced from both the
initiating and guiding solutions. For this purpose, we first construct a can-
didate solution list (CSL) composed of the intermediate solutions having
a distance of at least ξ ·HD (where ξ is a predetermined parameter value
between 0 and 0.5, which is empirically set) from the initiating and guiding
solutions. Then, the solution having the best value in terms of function f

defined by Eq. (1) in CSL is elected as the reference solution and sent to the
two-phase tabu search procedure (Section 2.4.2) for further improvement.
• Mixed path relinking : Given a pair of solutions s

′

and s
′′

, this relinking op-
erator (described in Algorithm 5) generates alternately a solution sequence
(i.e., a path connecting s

′

and s
′′

). Indeed, the generated path is composed
of two sub-paths which can be denoted by < s(0), s(2), s(4), . . . , s(r) > and
< s(1), s(3), s(5), . . . , s(r) >, respectively. Specifically, these two sub-paths
have the following features. First, their directions are inverse: the direction
of the first one is from s

′

(=s(0)) to s
′′

and that of another one is from s
′′

(=s(1)) to s
′

. For the sub-path < s(0), s(2), s(4), . . . , s(r) >, the initiating
solution is s

′

(= s(0)) and the guiding solution is s
′′

. As for the sub-path
< s(1), s(3), s(5), . . . , s(r) >, the initiating solution and the guiding solu-
tion are respectively s

′′

(= s(1)) and s
′

. Second, these two sub-paths are
alternately generated starting from s(0) (i.e., s

′

) (lines 4 to 16). Third, these
two sub-paths intersect at the middle (i,e., s(r)) of the path connecting s

′

and s
′′

.
In addition, like the GPR operator, at each relinking step the MPR oper-

ator always performs a best move which leads to the greatest improvement
of the function f defined by Eq. (1). Finally, the last generated intermediate
solution (i.e., s(r)) is chosen as the reference solution for further improve-
ment with the two-phase tabu search procedure.

These PR operators share the general procedures of two relinking operators
presented in [18] designed for the fixed spectrum frequency assignment prob-
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lem. Yet, given the difference between the two problems, our relinking opera-
tors for the BCP problem are based on different implementations. Specifically,
our relinking operators maintain one (or two) n×k matrix M to speed up the
relinking procedure, where n is the number of vertices in the graph, k is the
number of colors used, and the item M [i][q] (1 ≤ i ≤ n, 1 ≤ q ≤ k) is defined
as:

M [i][q] =
∑

e(vi,vj)∈E

max{0, d(i, j)− |q − c(vj)|} (4)

where d(i, j) is the weight of edge e(vi, vj), and c(vj) represents the color of
vertex vj in the current intermediate solution. Clearly, M [i][q] measures the
constraint violation degree of vertex i if it receives color q for the current
solution. With the help of this memory structure, at each path relinking step,
if the value of a variable i is changed from its current value ci to a different
value cj, the ∆ value (i.e, the change of evaluation function value) of the move
can be determined rapidly as ∆f = M [i][cj] −M [i][ci], and then the matrix
M can accordingly updated in O(n).

However, for the FS-FAP problem defined on a double weight undirected
graph, the implementation of the path relinking operators described above
must maintain different information according to the different nature of its
objective function. In summary, the procedures in Algorithms 4 and 5 are
general, but their implementation depends largely on the problem to be opti-
mized.

Finally, our LPR algorithm employs the MPR operator as its path relinking
operator, and the GPR operator is designed just for the purpose of comparison
and analysis (see Section 4.2 for a comparison between the GPR and MPR
operators)

2.6 Updating population and PairSet

As illustrated in Algorithm 2, the population P and the PairSet structure
are updated with each offspring solution generated by the path relinking op-
erator and improved by the TP-TS procedure. First, for each improved off-
spring solution s, if it is better than the worst solution sw in P and the dis-
tance between s and the population P (denoted by Distance(s, P )) is larger
than 0.1n, the offspring solution replaces the worst solution sw in P . Here,
n is the number of vertices in the graph, and Distance(s, P ) is defined as
Distance(s, P ) = min{distance(s, si) : si ∈ P} in which distance(s, si) rep-
resents the Hamming distance between solutions s and si. Otherwise, the
offspring solution is discarded. If the population is updated, then PairSet is
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updated accordingly: all solution pairs containing sw are removed from PairSet

and all the solution pairs that can be generated by combining s with other
solutions in P are added into PairSet.

3 Experimental Results and Comparisons

3.1 Benchmark Instances

Our LPR algorithm was assessed on two sets of benchmark instances, where
the first set (denoted by BCP) is composed of 33 instances and is available in
[32], and the other set (denoted by BMCP) is composed of 33 larger instances
transformed from the BMCP instances. These instances were created for the
COLOR02/03/04 Competitions on graph coloring and its generalizations, and
were widely used to evaluate the performance of BCP and BMCP algorithms
like [2,13,15,19,20,23,25,27,29].

3.2 Parameter Setting and Experimental Protocol

Table 1
Settings of important parameters

Parameters Section Description Values

p 2.2 population size for LPR 20

α 2.4.1 depth of TS {2× 103, 104}

ξ 2.5 distance parameter used in the GPR operator 0.4

Tmax 2.4.1 maximum tabu tennure in TS {50, 100}

Npr 2.2 maximum path relinking rounds 5000

ρ 2.4.2 scaling factor for the weighting mechanism 0.4

θ 2.4.2 the maximum penalty value for the weighting
mechanism

{30, 50}

Our LPR algorithm was programmed in C++ and compiled by g++ with
“-O2” option 1 , and all computational experiments were carried out on a com-
puter with an Intel Xeon E5440 processor (2.83GHz CPU and 2Gb RAM).
Following the DIMACS machine benchmark procedure 2 , our machine requires
0.44, 2.63 and 9.85 seconds for graphs r300.5, r400.5, and r500.5, respectively.

Table 1 gives the descriptions and settings of the parameters adopted in our
LPR algorithm. For parameter α (the depth of TS), 2×103 and 104 were used

1 The source code of our LPR algorithm and the best solutions found in this work
will be available online at http://www.info.univ-angers.fr/pub/hao/bcp.html
upon publication of the paper
2 dfmax: ftp://dimacs.rutgers.edu/pub/dsj/clique/, benchmark procedure
was compiled by gcc compiler with default option.

13



for the first phase and the second phase of the TP-TS procedure. For Tmax

which represents the maximum tabu tenure of TS, 50 was used for instances
with n ≤ 150, and 100 otherwise. For θ, 30 was used for instances with n < 150
and 50 otherwise. These values were determined via a preliminary experiment
and all the experiments were carried out without additional parameter tunings.

As explained in Section 2.1, our LPR algorithm is designed for k-BCP. There-
fore, given the stochastic nature of our LPR algorithm, each k-BCP instance
considered was independently solved 20 times. For each instance, the value of
k was set to the one close to the best known result in the literature.

3.3 Computational Results on the BCP Instances

Our first experiment aims to evaluate our LPR algorithm on the set of 33
BCP instances with up to 120 vertices. Table 2 summarizes the computational
statistics and lists the results of 6 reference algorithms from the literature. Col-
umn 2 gives the previous best known results (k∗). Columns 3 to 11 respectively
show the results of the 6 reference algorithms, namely the Discropt heuristic
[27], a hybrid algorithm [20], the FCNS algorithm [29], an evolutionary algo-
rithm (EA) [23], the MITS algorithm [15], and a variable neighborhood search
(VNS) algorithm [25]. These results are directly extracted from the literature.
The computational results of our LPR algorithm are reported in columns 12 to
14, including the best results achieved (kbest), the success rate (SR) of finding
a legal kbest-coloring, the average computing time per successful run in seconds
(t(s)), where the improved results are indicated in bold, the symbol ‘–’ means
that the corresponding algorithm fails to find a legal k-coloring, and the sym-
bol ‘≤’ in the second column means that an improved result is found. Note
that for the k-BCP which is a constraint satisfaction problem, the success rate
is usually reported together with the corresponding averaged time [15,23,25].

Table 2 discloses that our LPR algorithm matches the previous best-known
results for 29 out of 33 instances. Moreover, LPR is able to improve the best
known result for one instance (i.e., GEOM110a) with an average computing
time of 319.5 seconds and a success rate of 12/20. One can also observe that
the success rate of our LPR algorithm is higher than or equal to 12/20 except
for 4 instances, demonstrating the robustness of our algorithm.

When comparing with the best results of the first four reference algorithms,
one finds that the LPR algorithm is able to obtain better results on at least 6
instances. In comparison with the MITS algorithm, our LPR algorithm is able
to find better results in 4 instances. In addition, compared with the recent
VNS algorithm, our LPR algorithm finds the better results in 6 instances.
These outcomes show that the LPR algorithm has a strong search capability
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Table 2
Comparison of the LPR algorithm with other algorithms on BCP instances

[27] [20] [29] EA [23] MITS [15] VNS [25] LPR

Instance k∗ k k k k t(s) k t(s) k t(s) kbest SR t(s)

GEOM20 20 20 21 21 21 0.0 21 0.0 21 0.0 21 20/20 0.0

GEOM20a 20 20 22 20 20 0.0 20 0.0 20 0.0 20 20/20 0.0

GEOM20b 13 13 14 13 13 0.0 13 0.0 13 0.0 13 20/20 0.0

GEOM30 27 27 29 28 28 0.0 28 0.0 28 0.0 28 20/20 0.0

GEOM30a 27 27 32 27 27 0.0 27 0.0 27 0.0 27 20/20 0.0

GEOM30b 26 26 26 26 26 0.0 26 0.0 26 0.0 26 20/20 0.0

GEOM40 27 27 28 28 28 0.0 28 0.0 28 0.0 28 20/20 0.0

GEOM40a 37 38 38 37 37 0.0 37 0.0 37 1.2 37 20/20 0.0

GEOM40b 33 36 34 33 33 0.0 33 0.0 33 2.9 33 20/20 0.0

GEOM50 28 29 28 28 28 0.0 28 0.0 28 0.0 28 20/20 0.0

GEOM50a 50 54 52 50 50 0 50 0 50 4.3 50 20/20 0.0

GEOM50b 35 40 38 35 35 0.0 35 3.0 35 716.4 35 20/20 0.4

GEOM60 33 34 34 33 33 0.0 33 0.0 33 0.2 33 20/20 0.0

GEOM60a 50 54 53 50 50 0.0 50 1.0 50 23.6 50 20/20 0.0

GEOM60b 41 47 46 43 41 29 41 277 61 6430.7 41 20/20 12.1

GEOM70 38 40 38 38 38 0.0 38 0.0 38 0.3 38 20/20 0.0

GEOM70a 61 64 63 62 61 12 61 45 61 1513.1 61 20/20 7.2

GEOM70b 47 54 54 48 48 52.0 47 8685.0 48 7702.6 47 20/20 104.0

GEOM80 41 44 42 41 41 0.0 41 0.0 41 2.6 41 20/20 0.0

GEOM80a 63 69 66 63 63 150.0 63 21.0 63 3487.4 63 20/20 5.7

GEOM80b 60 70 65 61 60 145.0 60 322.0 60 7851.8 60 20/20 13.4

GEOM90 46 48 46 46 46 0.0 46 0.0 46 1.6 46 20/20 0.0

GEOM90a 63 74 69 64 63 150.0 63 230.0 63 8082.1 63 20/20 20.8

GEOM90b 69 83 77 72 70 1031.0 69 20144.0 71 7627.3 69 5/20 605.1

GEOM100 50 55 51 50 50 2.0 50 2.0 50 320.9 50 20/20 0.4

GEOM100a 67 84 76 68 68 273.0 67 11407.0 68 8227.3 67 19/20 292.9

GEOM100b 71 87 83 73 73 597.0 72 24561.0 73 7945.9 71 8/20 301.6

GEOM110 50 59 53 50 50 3.0 50 2.0 50 943.8 50 20/20 0.3

GEOM110a ≤71 88 82 73 72 171.0 72 1529.0 71 9152.9 70 12/20 319.5

GEOM110b 77 87 88 79 78 676.0 78 24416.0 79 8829.1 77 2/20 733.5

GEOM120 59 67 62 60 59 0.0 59 1.0 59 615.2 59 20/20 0.3

GEOM120a 82 101 92 84 84 614.0 82 34176.0 82 9112.6 82 16/20 596.3

GEOM120b 84 103 98 86 84 857.0 84 – 86 9159.9 84 8/20 344.1

compared to these reference algorithms.

Note that in Table 2 we focus on the computational results rather than the
computational times, since it is difficult to make a fair comparison between
the above algorithms in terms of computational time due to the differences
among programming languages, compilers, computers and stopping criteria
used by these algorithms. For example, for the hybrid algorithm of [20], the
time limits were set to 1 minute and 3 hours respectively for the BCP and
BMCP instances, whereas for MITS [15] the time limits were set to 1 and 2
hours for the BCP and BMCP instances. The EA algorithm of [23] used 500
and 3000 seconds to solve the BCP and BMCP instances respectively, and the
recent VNS [25] was run till 2 and 4 hours respectively. The computational
times are thus listed only for indicative purposes.

In addition to the algorithms mentioned above, the learning-based hybrid
search (LHS) algorithm published very recently (in 2015) is shown to be the
best performing algorithm for BCP [13]. Fortunately, the LHS algorithm and
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Table 3
Comparison of LPR algorithm with the best performing algorithm (i.e., LHS) in the
literature on the BCP instances based on the same experimental platform. Better
results between two algorithms are indicated in bold.

Graph LHS [13] LPR
Name k∗ k SR t(s) k SR t(s)

GEOM20 20 21 20/20 0.0 21 20/20 0.0
GEOM20a 20 20 20/20 0.0 20 20/20 0.0
GEOM20b 13 13 20/20 0.0 13 20/20 0.0
GEOM30 27 28 20/20 0.0 28 20/20 0.0
GEOM30a 27 27 20/20 0.0 27 20/20 0.0
GEOM30b 26 26 20/20 0.0 26 20/20 0.0
GEOM40 27 28 20/20 0.0 28 20/20 0.0
GEOM40a 37 37 20/20 0.0 37 20/20 0.0
GEOM40b 33 33 20/20 0.0 33 20/20 0.0
GEOM50 28 28 20/20 0.0 28 20/20 0.0
GEOM50a 50 50 20/20 0.1 50 20/20 0.0
GEOM50b 35 35 20/20 1.2 35 20/20 0.4
GEOM60 33 33 20/20 0.0 33 20/20 0.0
GEOM60a 50 50 20/20 0.1 50 20/20 0.0
GEOM60b 41 41 20/20 214.7 41 20/20 12.1
GEOM70 38 38 20/20 0.0 38 20/20 0.0
GEOM70a 61 61 20/20 23.7 61 20/20 7.2
GEOM70b 47 47 20/20 665.4 47 20/20 104.0
GEOM80 41 41 20/20 0.1 41 20/20 0.0
GEOM80a 63 63 20/20 6.6 63 20/20 5.7
GEOM80b 60 60 20/20 19.9 60 20/20 13.4
GEOM90 46 46 20/20 0.0 46 20/20 0.0
GEOM90a 63 63 20/20 23.8 63 20/20 20.8
GEOM90b 69 69 20/20 779.2 69 5/20 605.1
GEOM100 50 50 20/20 1.0 50 20/20 0.4
GEOM100a 67 67 8/20 1557.4 67 19/20 292.9

68 20/20 189.8 68 20/20 52.8
GEOM100b 71 71 12/20 2038.6 71 8/20 301.6

72 20/20 759.6 72 12/20 374.9
GEOM110 50 50 20/20 1.3 50 20/20 0.3
GEOM110a 71 70 0/20 - 70 12/20 319.5

71 19/20 2218.7 71 20/20 129.4
72 20/20 324.2 72 20/20 44.0

GEOM110b 77 77 10/20 2598.7 77 2/20 733.54
78 20/20 94.3 78 16/20 267.0

GEOM120 59 59 20/20 0.5 59 20/20 0.3
GEOM120a 82 82 20/20 171.1 82 16/20 596.3
GEOM120b 84 84 2/20 3568.1 84 8/20 344.1

85 20/20 1829.7 85 15/20 472.6

#Better 7 2 4 24
#Equal 28 13 28 13
#Worse 4 24 7 2
#Total 39 39 39 39

our LPR algorithm were run on the same computing environment, including
programming language, compiler and computer, which allows us to make a
fair comparison between these two algorithms. We conducted the experiment
based on 39 k-BCP instances, where the LPR algorithm was performed 20
times for each tested k-BCP instance, as the LHS algorithm did in [13]. Com-
putational results are summarized in Table 3, together with the results of the
LHS algorithm. The rows Better, Equal, andWorse at the bottom respectively
show the number of k-BCP instances for which the associated algorithm ob-
tains better, equal, and worse results compared to another one, and the row
Total shows the total number of k-BCP instances.
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Table 4

Comparison of the LPR algorithm with the reference algorithms on BMCP instances
[20] [19] [29] OF-SW [2] EA [23] MITS [15] VNS [25] LPR

Instance k∗ k k k k tmax k t(s) k t(s) k t(s) kbest SR t(s)

GEOM20 149 149 149 149 – – 149 18.0 149 2.0 149 54.3 149 20/20 0.0

GEOM20a 169 169 169 170 – – 169 9.0 169 15.0 169 3289.4 169 20/20 0.1

GEOM20b 44 44 44 44 44 30.0 44 5.0 44 0.0 44 0.0 44 20/20 0.0

GEOM30 160 160 160 160 – – 160 1.0 160 0.0 160 5.7 160 20/20 0.0

GEOM30a 209 211 209 214 209 380.0 210 954.0 209 10.0 209 4123.7 209 20/20 1.4

GEOM30b 77 77 77 77 77 80.0 77 0.0 77 0.0 77 1.3 77 20/20 0.0

GEOM40 167 167 167 167 – – 167 20.0 167 0.0 167 2107.1 167 20/20 0.0

GEOM40a 213 214 213 217 214 500.0 214 393.0 213 328.0 213 13192.2 213 20/20 6.2

GEOM40b 74 76 74 74 74 140.0 74 1.0 74 2.0 74 1821.9 74 20/20 0.1

GEOM50 224 224 224 224 – – 224 1197.0 224 8.0 224 1671.3 224 20/20 0.1

GEOM50a 311 326 318 323 315 1080.0 316 4675.0 314 40373.0 311 21685.9 311 16/20 3560.0

GEOM50b 83 87 87 86 84 200.0 83 197.0 83 1200.0 83 14260.7 83 20/20 16.8

GEOM60 258 258 258 258 258 710.0 258 139.0 258 19.0 258 5780.5 258 20/20 0.1

GEOM60a 353 368 358 373 356 1420.0 357 8706.0 356 38570.0 353 23989.3 353 13/20 3818.6

GEOM60b 113 119 116 116 117 300.0 115 460.0 113 104711.0 114 16381.0 113 9/20 710.3

GEOM70 266 279 273 277 267 1060.0 272 1413.0 270 7602.0 267 12384.3 266 20/20 1569.1

GEOM70a 463 478 469 482 478 1470.0 473 988.0 467 38759.0 463 20686.4 465 2/20 9789.7

GEOM70b 115 124 121 119 120 380.0 117 897.0 116 213545.0 116 16783.2 115 11/20 764.6

GEOM80 379 394 383 398 382 1490.0 388 132.0 381 212213.0 379 16538.8 379 20/20 1983.3

GEOM80a ≤ 355 379 379 380 360 1510.0 363 8583.0 361 41235.0 355 29208.9 352 2/20 7879.5

GEOM80b 138 145 141 141 139 490.0 141 1856.0 139 255.0 138 13704.1 138 20/20 51.8

GEOM90 328 335 332 339 334 1810.0 332 4160.0 330 4022.0 329 18760.9 328 20/20 2168.3

GEOM90a 372 382 377 382 377 1910.0 382 5334.0 375 10427.0 373 24087.2 372 5/20 3911.9

GEOM90b ≤ 142 157 157 147 147 590.0 144 1750.0 144 211366.0 142 19996.9 140 5/20 2142.4

GEOM100 404 413 404 424 404 2170.0 410 3283.0 404 40121.0 404 14816.9 404 20/20 64.8

GEOM100a ≤ 429 462 459 461 437 2500.0 444 12526.0 442 381.0 429 35663.4 426 8/20 13059.5

GEOM100b ≤ 153 172 170 159 159 690.0 156 3699.0 156 213949.0 156 24776.4 151 1/20 3178.9

GEOM110 375 389 383 392 378 2510.0 383 2344.0 381 183.0 375 22997.4 375 20/20 3510.2

GEOM110a 478 501 494 500 490 3120.0 490 2318.0 488 926.0 480 46955.0 478 13/20 10979.0

GEOM110b 201 210 206 208 208 790.0 206 480.0 204 944.0 202 22076.9 201 7/20 1920.0

GEOM120 396 409 402 417 397 2730.0 396 2867.0 396 inf 396 17919.3 396 20/20 999.2

GEOM120a ≤ 536 564 556 565 549 3690.0 559 3873.0 554 1018.0 539 59717.4 531 1/20 24880.4

GEOM120b 187 201 199 196 191 910.0 191 3292.0 189 213989.0 190 22835.9 187 3/20 1837.4

Table 3 discloses that our LPR algorithm has a better and worse success rate
(the number of times the best solution is found) than the LHS algorithm on 4
and 7 instances respectively. For the remaining 28 cases, the results of our LPR
algorithm match those of the LHS algorithm. Regarding the average comput-
ing time, our LPR algorithm is superior to or equals the LHS algorithm for all
instances with only two exceptions. Moreover, our LPR algorithm improves
the best known result (k∗) for one instance (GEOM110a), whereas the LHS
algorithm fails to find the current best result. Thus, these outcomes indicate
that our LPR algorithm is highly competitive compared to the LHS algorithm
on the tested instances.
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3.4 Computational results on the BMCP Instances

In this Section, we evaluate our LPR algorithm by comparing it with the top
performing algorithms in the literature for the BMCP instances. We carried
out experiments on the set of 33 large BCP instances transformed from the
BMCP instances. The results of the experiment are summarized in Table 4,
together with the results of 7 reference algorithms, including two hybrid al-
gorithms [19,20], the FCNS algorithm [29], a stochastic local search method
named OF-SW [2], an evolutionary algorithm (EA) [23], the MITS algorithm
[15], and the very recent VNS algorithm [25]. The results of the reference al-
gorithms are directly extracted from the associated references. To report our
results, we show the same statistics as in Table 2, where the improved results
are indicated in bold, ‘–’ means that the corresponding result is not available,
and the symbol ‘≤’ in the second column means that an improved result is
found. The stopping conditions used by the main reference algorithms were
given in Section 3.3.

Table 4 shows that our LPR algorithm is able to improve the best known
results for 5 out of 33 instances, and match the best known results for the
remaining instances, with only one exception (i.e., GEOM70a). Our LPR al-
gorithm attains a success rate greater than or equal to 11/20 except for 10
instances. Moreover, compared to the best results yielded by these 7 reference
algorithms, our LPR algorithm is able to find better results for 12 out of 33
instances, which indicates clearly that our LPR algorithm dominates these
7 reference algorithms on the BMCP instances. Finally, we do not insist on
computing times since it is meaningless to make a comparison with different
k for a given graph (k∗-BCP is generally much more difficult to solve than
(k∗ + 1)-BCP).

To make a fair comparison between our LPR algorithm and the best perform-
ing LHS algorithm [13], we ran our LPR algorithm 20 times for each of the
58 k-BCP instances shown in Table 5 based on the platform employed by the
LHS algorithm, and the computational results are summarized together with
the results of the LHS algorithm in Table 5, where the symbols have the same
meanings as in Table 3.

First, our LPR algorithm is able to find a better result than the LHS algo-
rithm for 5 instances and to match the best results of the LHS algorithm for
the remaining instances, indicating that our LPR algorithm is superior to the
LHS algorithm in terms of search capability. Second, in terms of the average
computing time, our LPR algorithm is better and worse than the LHS algo-
rithm for 43 and 13 instances, respectively. Specifically, our LPR algorithm
is about 20 times faster than the LHS algorithm for some instances, such as
the instance GEOM90b with k = 143. Third, our LPR algorithm achieves a
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Table 5
Comparison of LPR algorithm with the best performing algorithm (i.e., LHS) in
the literature on the BMCP instances based on the same experimental platform.
Better results between two algorithms are indicated in bold.

Graph LHS [13] LPR
Name k∗ k SR t(s) k SR t(s)

GEOM20 149 149 20/20 1.8 149 20/20 0.0
GEOM20a 169 169 20/20 0.5 169 20/20 0.1
GEOM20b 44 44 20/20 0.0 44 20/20 0.0
GEOM30 160 160 20/20 0.1 160 20/20 0.0
GEOM30a 209 209 20/20 16.2 209 20/20 1.4
GEOM30b 77 77 20/20 0.0 77 20/20 0.0
GEOM40 167 167 20/20 0.2 167 20/20 0.0
GEOM40a 213 213 20/20 9.0 213 20/20 6.2
GEOM40b 74 74 20/20 1.5 74 20/20 0.1
GEOM50 224 224 20/20 0.3 224 20/20 0.1
GEOM50a 311 311 20/20 1452.6 311 16/20 3560.0

312 20/20 307.5 312 20/20 1623.2
GEOM50b 83 83 20/20 72.1 83 20/20 16.8
GEOM60 258 258 20/20 1.3 258 20/20 0.1
GEOM60a 353 353 2/20 9007.1 353 13/20 3818.6

354 20/20 4996.0 354 20/20 1844.1
GEOM60b 113 113 20/20 910.7 113 9/20 710.3
GEOM70 266 266 20/20 2534.0 266 20/20 1569.1
GEOM70a 463 465 6/20 36604.9 465 2/20 9789.7

466 20/20 12622.1 466 3/20 1172.1
GEOM70b 115 115 3/20 3640.7 115 11/20 764.6

116 20/20 1844.7 116 20/20 213.2
GEOM80 379 379 20/20 357.8 379 20/20 1983.3

380 20/20 164.0 380 20/20 573.0
GEOM80a 355 352 0/20 – 352 2/20 7879.5

357 2/20 43403.0 357 20/20 2583.8
358 7/20 25852.0 358 20/20 2493.2
360 20/20 13302.9 360 20/20 1560.1

GEOM80b 138 138 20/20 46.5 138 20/20 58.1
GEOM90 328 328 20/20 162.2 328 20/20 2168.3
GEOM90a 372 372 3/20 16782.1 372 5/20 3911.9

373 20/20 3164.5 373 20/20 3218.8
GEOM90b 142 140 0/20 – 140 5/20 2142.4

142 7/20 7680.8 142 19/20 437.7
143 20/20 4858.5 143 20/20 196.5
144 20/20 1331.8 144 20/20 161.0

GEOM100 404 404 20/20 64.9 404 20/20 64.8
GEOM100a 429 426 0/20 – 426 8/20 13059.5

429 1/20 78363.1 429 20/20 5843.9
434 20/20 10767.1 434 20/20 2629.6
436 20/20 3147.6 436 20/20 2035.6

GEOM100b 153 151 0/20 – 151 1/20 3178.9
153 1/20 10840.1 153 13/20 1892.3
155 20/20 3147.6 155 20/20 557.4
156 20/20 726.3 156 20/20 337.1

GEOM110 375 375 20/20 1598.8 375 20/20 3510.2
GEOM110a 478 478 1/20 49457.1 478 13/20 10979.0

480 20/20 2921.5 480 20/20 4160.9
482 20/20 375.3 482 20/20 2045.4

GEOM110b 201 201 3/20 5388.4 201 7/20 1920.0
203 20/20 303.1 203 20/20 392.0

GEOM120 396 396 20/20 626.1 396 20/20 999.2
GEOM120a 536 531 0/20 – 531 1/20 24880.4

536 2/20 69518.6 536 19/20 12372.8
539 20/20 20286.1 539 20/20 7720.9

GEOM120b 187 187 8/20 8025.8 187 3/20 1837.4
188 20/20 1642.0 188 12/20 1455.3
189 20/20 315.2 189 16/20 834.8

#Better 7 13 16 43
#Equal 35 2 35 2
#Worse 16 43 7 13
#Total 58 58 58 58
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higher and lower success rate than the LHS algorithm for 16 and 7 instances,
respectively. These outcomes indicate that our LPR algorithm performs glob-
ally better than the LHS algorithm on these large instances.

4 Analysis and Discussions

We now turn our attention to analyze two important elements of the proposed
LPR algorithm, i.e., the learning based penalty function and the path relinking
operator. To show the effect of each of these elements on the performance of
the LPR algorithm, we carried out several experiments on a selection of some
hard instances (8 BCP instances and 23 BMCP instances). The remaining
instances were not investigated in this Section, because they are very easy to
be solved by means of our LPR algorithm according to the results in Tables
2 and 4.

4.1 Importance of the Learning Mechanism

To highlight that the learning mechanism is a key ingredient of our LPR
algorithm, we carried out the following two experiments. In the first experi-
ment, we used the GPR operator as our path relinking operator, and denote
the associated PR algorithms with and without the learning based function
g respectively by LPR-GPR and PR-GPR. In other words, within PR-GPR,
the two-phase tabu search procedure was simply replaced by the basic tabu
search and the other ingredients were kept unchanged. Then, we independently
solved each instance 20 times by using LPR-GPR and PR-GPR. The compu-
tational results are summarized in Table 6, including the current best known
results (kbest), the number of colors used (k), the success rate of finding a legal
k-coloring (SR), and the average computing time (t(s)) per successful run,
where better results between two algorithms are indicated in bold, and the
improved results are indicated in italic. The rows Better, Equal, and Worse at
the bottom of the Table respectively show the number of instances for which
the associated algorithm obtains better, equal, and worse results compared to
another one, and the row Total shows the total number of instances.

In the second experiment, we simply replaced the GPR operator by the MPR
operator for both PR algorithms with and without the learning based function
g, and the resulting algorithms are respectively denoted by LPR-MPR and PR-
MPR. Then, the above experiment was performed by means of LPR-MPR and
PR-MPR. Computational results are summarized in Table 7.

Table 6 shows that when the GPR operator is used in our PR algorithms,
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Table 6
Comparison of the PR algorithms with and without learning mechanism, where the
GPR operator is used in the PR algorithms. Better results between two algorithms
are indicated in bold, and the improved results are indicated in italic.

PR-GPR LPR-GPR
Graph Type kbest k SR t(s) SR t(s)

GEOM70b BCP 47 47 17/20 137.8 19/20 127.0
GEOM90b BCP 69 69 4/20 165.6 11/20 233.4
GEOM100a BCP 67 67 8/20 278.9 13/20 370.2
GEOM100b BCP 71 71 3/20 502.5 4/20 339.8
GEOM110a BCP 70 70 6/20 509.1 13/20 437.5
GEOM110b BCP 77 77 0/20 – 0/20 -
GEOM120a BCP 82 82 8/20 558.5 14/20 606.1
GEOM120b BCP 84 84 0/20 – 4/20 338.7
GEOM50a BMCP 311 311 1/20 2130.2 11/20 2185.8
GEOM50b BMCP 83 83 20/20 19.7 20/20 17.8
GEOM60 BMCP 258 258 20/20 0.1 20/20 0.1
GEOM60a BMCP 353 353 13/20 2088.5 15/20 3101.4
GEOM60b BMCP 113 113 1/20 148.6 5/20 444.7
GEOM70 BMCP 266 266 16/20 1619.2 20/20 1029.6
GEOM70a BMCP 462 462 0/20 – 1/20 2707.0
GEOM70b BMCP 115 115 0/20 – 3/20 848.4
GEOM80 BMCP 379 379 18/20 1310.4 20/20 1062.8
GEOM80a BMCP 352 357 4/20 2222.1 11/20 3387.9
GEOM80b BMCP 138 138 20/20 44.8 20/20 50.0
GEOM90 BMCP 328 328 15/20 1639.1 19/20 2398.3
GEOM90a BMCP 372 372 2/20 2498.4 3/20 4746.2
GEOM90b BMCP 140 140 0/20 – 1/20 626.8
GEOM100 BMCP 404 404 20/20 49.3 20/20 33.7
GEOM100a BMCP 426 427 0/20 – 4/20 4137.5
GEOM100b BMCP 151 153 0/20 – 1/20 1475.7
GEOM110 BMCP 375 375 15/20 1946.4 17/20 2517.3
GEOM110a BMCP 478 478 4/20 10123.7 14/20 13244.7
GEOM110b BMCP 201 201 3/20 1712.9 7/20 1132.8
GEOM120 BMCP 396 396 20/20 681.9 20/20 672.9
GEOM120a BMCP 531 533 0/20 – 4/20 23530.6
GEOM120b BMCP 187 187 0/20 – 3/20 1144.0

#Better 0 12 25 17
#Equal 6 2 6 2
#Worse 25 17 0 12
#Total 31 31 31 31

the PR algorithm with the learning mechanism (i.e., LPR-GPR) outperforms
the one without the learning mechanism (i.e., PR-GPR) in terms of both the
success rate and the average computing time. Specifically, in terms of the suc-
cess rate, LPR-GPR is superior to PR-GPR for 25 out of 31 instances, while
matching the results of PR-GPR for the 6 remaining instances. As to the aver-
age computing time, LPR-GPR obtains better and worse results respectively
for 17 and 12 instances compared to PR-GPR. Moreover, it can be observed
that in terms of the number of colors LPR-GPR yields better results compared
to the PR-GPR in 8 cases.

From Table 7, one also finds that when the MPR operator is employed, the
PR algorithm with the learning mechanism (i.e., LPR-MPR) outperforms the
variant without the learning mechanism (i.e., PR-MPR) on the overall perfor-
mance. At first, in terms of the success rate LPR-MPR obtains better or equal
results for all tested instances with only two exceptions. Second, as for the av-
erage computing time, LPR-MPR is comparable with PR-MPR. Specifically,
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Table 7
Comparison of the PR algorithms with and without learning mechanism, where the
MPR operator is used in the PR algorithms. Better results between two algorithms
are indicated in bold, and the improved results are indicated in italic.

PR-MPR LPR-MPR
Graph Type kbest k SR t(s) SR t(s)

GEOM70b BCP 47 47 19/20 80.8 20/20 104.0
GEOM90b BCP 69 69 8/20 409.0 5/20 605.1
GEOM100a BCP 67 67 9/20 362.0 19/20 292.9
GEOM100b BCP 71 71 3/20 399.9 8/20 301.6
GEOM110a BCP 70 70 7/20 755.7 12/20 319.5
GEOM110b BCP 77 77 0/20 – 2/20 733.54
GEOM120a BCP 82 82 7/20 473.9 16/20 596.3
GEOM120b BCP 84 84 1/20 746.9 8/20 344.1
GEOM50a BMCP 311 311 6/20 3411.9 16/20 3560.0
GEOM50b BMCP 83 83 20/20 26.8 20/20 16.8
GEOM60 BMCP 258 258 20/20 0.1 20/20 0.1
GEOM60a BMCP 353 353 10/20 2608.9 13/20 3818.6
GEOM60b BMCP 113 113 3/20 286.0 9/20 710.3
GEOM70 BMCP 266 266 17/20 1531.9 20/20 1569.1
GEOM70a BMCP 462 465 7/20 7279.4 2/20 9789.7
GEOM70b BMCP 115 115 2/20 964.9 11/20 764.6
GEOM80 BMCP 379 379 20/20 1020.1 20/20 1983.3
GEOM80a BMCP 352 352 0/20 – 2/20 7879.5
GEOM80b BMCP 138 138 20/20 52.1 20/20 58.1
GEOM90 BMCP 328 328 19/20 2145.9 19/20 2168.3
GEOM90a BMCP 372 372 1/20 3045 5/20 3911.9
GEOM90b BMCP 140 140 0/20 – 5/20 2142.4
GEOM100 BMCP 404 404 20/20 42.4 20/20 64.8
GEOM100a BMCP 426 426 0/20 – 8/20 13059.5
GEOM100b BMCP 151 153 0/20 – 13/20 1892.3
GEOM110 BMCP 375 375 19/20 4074.2 20/20 3510.2
GEOM110a BMCP 478 478 6/20 16487.9 13/20 10979.0
GEOM110b BMCP 201 201 3/20 1123.4 7/20 1920.0
GEOM120 BMCP 396 396 20/20 1052.0 20/20 999.2
GEOM120a BMCP 531 533 0/20 – 7/20 23214.7
GEOM120b BMCP 187 187 0/20 – 3/20 1837.4

#Better 2 14 22 16
#Equal 7 1 7 1
#Worse 22 16 2 14
#Total 31 31 31 31

LPR-MPR takes respectively a shorter and longer average time to reach a legal
k-coloring on 16 and 14 instances compared to PR-MPR. Third, LPR-MPR
yields better results for 7 cases in terms of the number of colors compared to
PR-MPR, and matches the results of PR-MPR for the remaining instances,
which indicates that LPR-MPR has a stronger search capability compared to
PR-MPR.

In sum, the above results indicate that the learning mechanism proposed in
this work plays an essential role within the learning-based PR algorithms.

4.2 Comparison between the Path Relinking Operators

The relinking operator is another fundamental ingredient of our LPR algo-
rithm. In order to analyze the influence of the relinking operator on the per-
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Table 8
Comparison between the path relinking operators within the LPR algorithm. Better
results between two path relinking operators are indicated in bold, and the improved
results are indicated in italic.

LPR-GPR LPR-MPR
Graph Type kbest k SR t(s) SR t(s)

GEOM70b BCP 47 47 19/20 127.0 20/20 104.0
GEOM90b BCP 69 69 11/20 223.4 5/20 605.1
GEOM100a BCP 67 67 13/20 370.2 19/20 292.9
GEOM100b BCP 71 71 4/20 339.8 8/20 301.6
GEOM110a BCP 70 70 13/20 437.5 12/20 319.5
GEOM110b BCP 77 77 0/20 – 2/20 733.54
GEOM120a BCP 82 82 14/20 606.1 16/20 596.3
GEOM120b BCP 84 84 4/20 338.7 8/20 344.1
GEOM50a BMCP 311 311 11/20 2185.8 16/20 3560.0
GEOM50b BMCP 83 83 20/20 17.8 20/20 16.8
GEOM60 BMCP 258 258 20/20 0.1 20/20 0.1
GEOM60a BMCP 353 353 15/20 3101.4 13/20 3818.6
GEOM60b BMCP 113 113 5/20 444.7 9/20 710.3
GEOM70 BMCP 266 266 20/20 1029.6 20/20 1569.1
GEOM70a BMCP 462 463 7/20 3381.9 0/20 –
GEOM70b BMCP 115 115 3/20 848.4 11/20 764.6
GEOM80 BMCP 379 379 20/20 1026.7 20/20 1983.3
GEOM80a BMCP 352 352 0/20 – 2/20 7879.5
GEOM80b BMCP 138 138 20/20 50.0 20/20 58.1
GEOM90 BMCP 328 328 19/20 2398.3 19/20 2168.3
GEOM90a BMCP 372 372 3/20 4746.2 5/20 3911.9
GEOM90b BMCP 140 140 1/20 626.8 5/20 2142.4
GEOM100 BMCP 404 404 20/20 33.7 20/20 64.8
GEOM100a BMCP 426 426 0/20 – 8/20 13059.5
GEOM100b BMCP 151 151 0/20 – 1/20 3178.9
GEOM110 BMCP 375 375 17/20 2517.2 20/20 3510.2
GEOM110a BMCP 478 478 14/20 13244.7 13/20 10979.0
GEOM110b BMCP 201 201 7/20 1132.8 7/20 1920.0
GEOM120 BMCP 396 396 20/20 672.9 20/20 999.2
GEOM120a BMCP 531 533 4/20 23530.6 7/20 23214.7
GEOM120b BMCP 187 187 3/20 1144.0 3/20 1837.4

#Better 5 14 16 16
#Equal 10 1 10 1
#Worse 16 16 5 14
#Total 31 31 31 31

formance of the LPR algorithm, we compared our GPR and MPR relinking
operators, and the corresponding LPR algorithms are respectively denoted by
LPR-GPR and LPR-MPR. The experiment was carried out on the same set
of benchmarks as used in Section 4.1, where each instance with the given k

was solved 20 times by both algorithms. The computational results are sum-
marized in Table 8. The first two columns give the name of the graph and the
type of instance, columns 3 and 4 give the current best known results kbest
and the value of k used. The computational results of LPR-GPR are listed in
columns 5 and 6, including the success rate (SR) and the average computing
time per successful run (t(s) in seconds), and the results of LPR-MPR are
listed in the last two columns.

Compared to LPR-GPR, LPR-MPR obtains respectively better and worse
results on 16 and 5 instances in terms of the success rate, which implies that
the MPR operator is more robust than the GPR operator. On the other hand,
the average computing time of LPR-MPR is comparable to that of LPR-GPR,
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since LPR-GPR and LPR-MPR require a shorter computing time for 14 and
16 instances, respectively. As for the search capability, no algorithm dominates
the other one. For example, for instance GEOM70a of BMCP, LPR-GPR is
able to find a legal k-coloring (k = 463) with a success rate of 7/20, while
LPR-MPR fails to find a legal k-coloring (k = 463) over 20 runs. On the
contrary, for instance GEOM100a of BMCP, LPR-GPR fails to find a legal k-
coloring (k = 426), while LPR-MPR obtains this result with a success rate of
8/20. Therefore, it can be concluded that the search capability of the relinking
operators depends strongly on the structure of the given instances.

5 Conclusions

The proposed learning-based path relinking (LPR) algorithm for solving the
bandwidth coloring problem and the bandwidth multicoloring problem incor-
porates a learning-based two-phase tabu search method with a path relinking
operator. We tested the proposed LPR algorithm on 66 benchmark instances
commonly used in the literature. Computational results showed that our al-
gorithm was highly effective compared to the state-of-the-art algorithms in
the literature. Specifically, the proposed algorithm improves the best known
results (new upper bounds) for 7 out of 66 instances, while matching the best
known results in 56 cases. Compared to the best performing algorithms in the
literature, our LPR algorithm shows a highly competitive performance.

We studied some essential ingredients of the proposed algorithm which allowed
to shed light on the following points. First, the learning mechanism introduced
in this work plays a crucial role in the high performance of the LPR algorithm.
Second, the mixed path relinking (MPR) operator is generally better than
the greedy path relinking (GPR) operator for BCP. However, the efficacy of
the path relinking operator is closely related to the structure of the problem
instances, and no path relinking operator fully dominates another one for all
instances.

One notices that the basic principle of embedding a learning-based two-phase
local tabu search method into an evolutionary framework, is independent of
the BCP problem. It would be interesting to investigate such an application
in other settings. Also, the idea of the penalty based learning function could
be applied to solve other constraint problems.
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