Iterated dynamic thresholding search for packing equal circles into a circular container

Xiangjing Lai^a, Jin-Kao Hao
 $^{\rm b,*},$ Dong Yue^a, Zhipeng Lü^c, Zhang-Hua Fu
 $^{\rm d,e}$

^aInstitute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

^bLERIA, Université d'Angers, 2 Boulevard Lavoisier, 49045 Angers, France ^cSMART, School of Computer Science and Technology,

Huazhong University of Science and Technology, 430074 Wuhan, P.R.China

^dInstitute of Robotics and Intelligent Manufacturing, The Chinese University of Hong Kong, Shenzhen 518172, China

^eShenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen 518172, China

European Journal of Operational Research, August 2021 https://doi.org/10.1016/j.ejor.2021.08.044

Abstract

Packing equal circles in a circle is a classic global optimization problem that has a rich research history and a number of relevant applications. The problem is computationally challenging due to the fact that the number of possible packing configurations grows exponentially with the number of circles. In this work, we propose a highly effective iterated dynamic thresholding search algorithm for solving this difficult problem. The algorithm integrates several features including a two-phase local optimization method, a dynamic thresholding search and a container adjustment procedure. Computational experiments on popular benchmark instances with up to N = 320 circles show that the algorithm outperforms significantly the state-of-the-art algorithms. In particular, it improves the best-known results for 136 instances, while matching the best-known results for other 175 instances.

Keywords: Packing, thresholding search, global optimization, heuristics.

* Corresponding author.

Email addresses: laixiangjing@gmail.com (Xiangjing Lai),

jin-kao.hao@univ-angers.fr (Jin-Kao Hao), medongy@vip.163.com (Dong Yue), zhipeng.lui@gmail.com (Zhipeng Lü), fuzhanghua@cuhk.edu.cn (Zhang-Hua Fu).

1 Introduction

Given N unitary circles $\{c_1, c_2, \ldots, c_N\}$ with (x_i, y_i) being the center of circle c_i , the Packing Equal Circles in a Circle (PECC) problem involves packing the N circles into a circular container c_0 such that no two circles overlap and no circle exceeds the container, while the radius R of the container is minimized. Formally, the PECC problem can be modeled as a nonlinear constrained optimization problem as follows:

Minimize
$$R$$
 (1)

Subject to
$$\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} \ge 2, 1 \le i \ne j \le N$$
 (2)

$$\sqrt{x_i^2 + y_i^2 + 1} \le R, i = 1, 2, \dots, N$$
 (3)

where R is the radius of the container with a center at the origin of the two-dimensional Cartesian coordinate system, (x_i, y_i) and (x_j, y_j) represent respectively the centers of circles c_i and c_j , the constraints (2) guarantee that any two circles do not overlap, and the constraints (3) ensure that none of the N circles exceeds the container.

The PECC problem has a number of industrial applications, such as circular cutting, fiber optic cable manufacturing, container loading, cylinder packing and facility and dashboard layout [7]. On the other hand, the problem is known to be NP-hard [11,23] and thus solving the problem is computationally challenging.

In addition, the PECC problem is a natural and remarkable test system for evaluating various general-purpose global optimization techniques due to the following features [27]. First, in spite of its simplicity in form, the number of its local optimum solutions is huge even for medium-sized instances, which increases exponentially as N increases [21]. Second, a solution of the problem has a visual and intuitive graphical representation on a 2-dimensional plane, which facilitates the interpretation of the solution. Third, the absence of particular structural features of the problem makes it very suitable to act as a benchmark for testing general global optimization algorithms.

Since 1967 [28], a large number of studies and algorithms have been reported in the literature for solving the PECC problem. In the early stage of research history, many efforts were devoted to finding the optimum solution for small instances. For example, in 1968 and 1969, Graham and Pirl proved the optimality of solutions for $N \leq 7$ and $N \leq 10$, respectively [18,45]. In 1994, Melissen proved the optimal solution for N = 11 [42], while the optimality for N = 19 was provided by Fodor in 1999 [15]. Nevertheless, for large instances, no method is known to be able to solve the problem optimally. Thus, most of later studies were devoted to designing effective heuristic algorithms that are based on the non-convex continuous optimization model and can be summarized as follows. In 1998, Graham et al. proposed a billiards simulation method to solve the PECC problem and published for the first time the putative global optimum solutions for up to N = 65 [19]. In 2002, Akiyama et al. investigated a greedy heuristic algorithm and improved the best-known results for a number of instances with $N \leq 100$ [3]. In 2005, Mladenović et al. presented a reformulation descent algorithm, where two different formulations of the PECC problem are alternately used to avoid search stagnations [43]. In 2009, Grosso et al. developed two basin-hopping algorithms and improved the best-known results for 20 instances with $N \leq 100$ [21]. In the same year, Liu et al. proposed an energy landscape paving algorithm and reported competitive results for some instances with N < 100 [31]. In 2010, Birgin and Gentil investigated the resolution of non-linear equations systems through the Newton-Raphson method and improved the accuracy of previous results attained by continuous optimization approaches [5]. In 2011, Huang and Ye designed a highly efficient quasi-physical global optimization algorithm and further improved the best-known results for 63 instances with N < 200 [27]. In the same year, López and Beasley developed a heuristic algorithm based on the formulation space search method for the problem of packing equal circles into a variety of containers [36], including the circular container. They showed that their algorithm outperforms the earlier formulation space search method [43]. In 2018, Chen et al. designed a greedy heuristic by means of a greedy corner-occupying placement strategy, and presented competitive results for small instances with $N \leq 100$ [8]. In the same year, He et al. developed a quasi-physical quasi-human algorithm, and improved 66 best-known results for instances with N < 320 [23]. Recently, Stoyan et al. studied several optimization strategies for a number of circle and sphere packing problems, including PECC, and their computational results show that the adopted optimization strategies are very efficient [49]. In particular, they reported improved results for several large-scale PECC instances with up to 5000 circles.

Additionally, from the well-known Packomania website maintained by Specht [47], we observe that researchers launched an interesting competition on the PECC problem. In this contest, people are invited to solve the PECC problem by their own algorithms and then provide the improved solutions with respect to the best-known result, regardless of the computational resource used. From the continually updated history of the website for the best-known results, we observe that in the range of $101 \leq N \leq 200$, Huang et al [27] and Cantrell report the best-known results for most instances. For a majority of instances of N > 201, the best-known results are hold by Specht and Cantrell [47]. For N > 1000, the best results are provided by the IIPP-random/lattice-IPOPT algorithm [49] that uses lattice packings as the initial solution of the algorithm for 17 large scale instances with up to 5000 circles. In view of the updating history of the Packomania website and the newest results reported

in [23], the quasi-physical quasi-human algorithm in [23], the quasi-physical global optimization in [27], the IIPP-random/lattice-IPOPT algorithm [49], and Cantrell's unpublished algorithm [47] can be regarded to represent the current state-of-the-art for solving the PECC problem.

In addition to the previous review, there are a large number of studies dedicated to several variants of the PECC problem, including mainly the problem of packing equal circles into a variety of containers, the problem of packing unequal circles into a regular container, and the sphere packing problems in the 3-dimensional space. For these variants, numerous algorithms have been proposed in the literature, which can be mainly divided into the following categories. The first category of algorithms are heuristics based on the non-convex continuous optimization model, such as the quasi-physical quasi-human algorithm [54], monotonic basin-hopping algorithm [2], population basin-hopping algorithm [1], simulated annealing algorithms [56,44], tabu search algorithm [16], greedy vacancy search algorithm [26], local search-based methods [24,25], formulation space search methods [37,38], hybrid heuristic algorithms [6,55], jump algorithm [51,52], and popular Packmol approach which is a package for building initial configurations for molecular dynamics simulations [41]. The second category of algorithms are based on the ideas of discrete optimization [53]. For instance, Lü and Huang proposed a stochastic growth algorithm called PERM in which the circles are packed one by one into the container [39]. Based on the constructed grids, Galiev et al. investigated several integer linear programming models for the approximate solution of the problem of packing equal circles into a given domain [17], where the centers of circles can locate only at the grid points. Using valid inequalities and different grids, Litvinchev et al. studied some integer linear programming-based heuristics [32,33]. The third category of algorithms include a deterministic global optimization approach [34] and deterministic method for high density packing of equal circles in rectangles with variable aspect ratio [46]. In addition, there exist several other optimization algorithms for circle packing problems, such as an interval analysis-based optimization algorithm [40] and heuristic algorithms based on the phi-function technique [20,49,50].

Our literature review indicates that the PECC problem remains a hot research topic due to its computational challenge and relevant applications. According to the update history of the Packomania website [47], the best-known results were continually improved by new algorithms, which implies that there is still room for improvement. In this work, we aim to further advance the state-of-the-art of solving the PECC problem. Specifically, we design a new heuristic algorithm for effectively solving large PECC instances with N > 100. The algorithm combines a fast two-phase local optimization method to find high quality local optimum solutions, an original dynamic thresholding search method to explore the search space and a dedicated penalty-based container adjustment procedure to reinforce the search intensification. Computational experiments on popular benchmark instances with up to N = 320 circles show that the algorithm outperforms significantly the state-of-the-art algorithms. In particular, it improves the best-known results (new upper bounds) for 136 instances with N > 100, while matching the best-known results for other 175 instances. In addition to these results, the underlying ideas behind the two-phase local optimization and the dynamic thresholding search are of general interest and could be used in other search algorithms for solving more optimization problems.

The rest of paper is organized as follows. In Section 2, the general idea of the proposed algorithm is provided. In Section 3, the proposed algorithm is described in detail. In Section 4, computational results on benchmark instances and comparisons are provided. In Section 5, the impacts of several important ingredients of the algorithm are analyzed. Conclusions are drawn in the last section with discussion of research perspectives.

2 General Approach for Solving the PECC Problem

The PECC problem is a nonlinear constrained optimization problem that is difficult to solve directly. To cope with this difficulty, we convert the problem into a series of constraint satisfaction problems which are solved by means of the penalty function approach.

2.1 Reformulation of the PECC Problem with Fixed-radius Containers

The adopted approach reformulates the PECC problem as a series of constraint satisfaction problems where each problem has a fixed-radius container whose goal is to pack the circles in the given container.

Definition 1: Given N unitary circles $\{c_1, \ldots, c_N\}$ with (x_i, y_i) being the center of circle c_i , and a circular container c_0 of radius R $(R > \sqrt{N})$, the Packing Equal Circles in a Circle problem with a Fixed-Radius container (PECC-FR) is to find a packing configuration that satisfies the constraints that 1) no two circles c_i and c_j overlap (i.e., $\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} \ge 2, 1 \le i \ne j \le N)$, and 2) none of the N circles exceeds the container (i.e., $\sqrt{x_i^2 + y_i^2} + 1 \le R$ for any circle c_i).

For a given container of radius R, we use PECC-FR[R] to denote the particular PECC-FR problem.

To deal with PECC-FR[R], we convert it to an unconstrained nonlinear opti-

mization problem defined on the 2N-dimensional Euclidean space \Re^{2N} , where a candidate solution is represented by the coordinate vector $X = (x_1, y_1, \ldots, x_N, y_N)$ indicating the centers of N circles $c_i = (x_i, y_i)$ $(i = 1, 2, \ldots, N)$.

To assess the quality of a candidate solution X (i.e., a packing configuration) of PECC-FR[R], we follow the general penalty function approach (see examples in [26,27,41,48]) and define the penalty-based objective function $E_R(X)$ as follows.

$$E_R(X) = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} O_{ij}^2 + \sum_{i=1}^{N} O_{0i}^2$$
(4)

where

$$O_{ij} = max\{0, 2 - \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}\}$$
(5)

$$O_{0i} = max\{0, \sqrt{x_i^2 + y_i^2 + 1 - R}\}$$
(6)

In other words, O_{ij} quantifies the overlap between two circles and O_{0i} quantifies the overlap between any circle and the container. As the result, $E_R(X)$ measures the degree of constraint violation of the candidate packing configuration X. $E_R(X) = 0$ (true if $E_R(X) < 10^{-25}$ in this work) indicates that X is a feasible solution to PECC-FR[R]; otherwise, X violates non-overlapping constraints and is thus an infeasible or conflicting solution. Given two packing configurations A and B, A is better than B if and only if $E_R(A) < E_R(B)$.

Fig. 1 shows a conflicting packing configuration with the two types of overlaps.

Fig. 1. An illustrative example for a conflicting packing configuration with overlaps.

2.2 Solving the PECC Problem based on Constraint Satisfaction

With the above formulation, we approximate the PECC problem by solving a series of PECC-FR problems with the following procedure.

- (1) Set the container radius R to an initial value;
- (2) Solve the associated PECC-FR[R] problem by minimizing the penaltybased objective function $E_R(X)$ with an unconstrained nonlinear optimization method;
- (3) Adjust the solution X and radius R of container from step (2) by a container adjustment method to obtain a feasible packing configuration (X, R) such that R is locally minimized;
- (4) Update R_{min} by the adjusted R (i.e., $R_{min} \leftarrow R$) if $R < R_{min}$, where R_{min} is the smallest container radius found so far permitting a feasible solution;
- (5) Go to step (2) with $R = R_{min} \Delta_R$, where Δ_R is a reduction factor.
- (6) Repeat steps (2)-(5) until a stopping condition is met and then returns the last feasible solution found.

The last obtained R_{min} , for which a feasible solution for the PECC-FR[R_{min}] problem is found, defines an upper bound of the optimal solution of the given PECC problem.

3 The Proposed Algorithm

The proposed Iterated Dynamic Thresholding Search (IDTS) algorithm for the PECC problem follows the general procedure outlined in Section 2.2. Its main framework and components are presented in this section.

3.1 Framework of Iterated Dynamic Thresholding Search

The IDTS algorithm employs an initialization procedure to obtain a starting container radius as small as possible, a dynamic thresholding search (DTS) procedure to solve the PECC-FR problem described in Section 2.1, and a container adjustment procedure to further optimize locally the container radius.

As shown in Algorithm 1, IDTS can be viewed as a two-stage search algorithm. At the first stage (lines 2–3), an initialization procedure is used to obtain a feasible packing configuration X with a small container radius R, and X and R are recorded as the current best solution (X^*, R_{min}) . The initialization procedure is based on the popular monotonic basin-hopping (MBH) algorithm and is described in Section 3.3.

At the second stage (lines 6–14), the search iterates an improvement process to find new feasible packing configurations with reduced container radiuses. At each iteration, the current container radius R is set to $R_{min} - \Delta_R$, where **Input:** Number of circles to be packed (N), maximum time limit (t_{max}) , shrinkage factor $(\theta < 1)$

Output: The best packing found (X^*) and its container radius (R_{min}) 1 /* First Stage of the Search */

- 2 $(X, R) \leftarrow Initialization(N)$ /* Algorithm 2, generate a feasible packing X and obtain an initial sufficiently small radius R */
- 3 $X^* \leftarrow X, R_{min} \leftarrow R$ /* (X^*, R_{min}) records the best packing found */
- 4 /* Second Stage of the Search */
- 5 $\Delta_R \leftarrow 0.1$
- 6 while $time() \leq t_{max}$ do
- 7 $\Delta_R \leftarrow max\{\theta * \Delta_R, 10^{-4}\}$ /* Reduce gradually Δ_R ensuring that $\Delta_R \ge 10^{-4}$ */
- 8 $R \leftarrow R_{min} \Delta_R$ /* Reduce the radius of container by Δ_R , Step(5) of Section 2.2 */

9 $X \leftarrow DynamicThresholdSearch(R)$ /* Algorithm 3, find the best packing configuration for the fixed radius container R, Step(2) of Section 2.2 */

10
$$(X, R) \leftarrow AdjustContainerRadius(X, R) /* Algorithm 4, Step(3) of Section 2.2 */$$

11 if $R < R_{min}$ then

12 $| R_{min} \leftarrow R, X^* \leftarrow X$ /* Step(4) of Section 2.2 */ 13 end

```
13en14end
```

```
15 return (X^*, R_{min})
```

 Δ_R is a parameter whose value is adaptively tuned by multiplying a factor $\theta \in (0, 1)$. Then, the dynamic thresholding search method (see Section 3.4) is used to solve the corresponding PECC-FR[R] problem, i.e, to seek a minimumoverlapping packing configuration with the container radius R by minimizing the objective function E_R defined in Section 2.1. Subsequently, the obtained packing configuration and the container radius are slightly adjusted by the container adjustment procedure (line 10) to obtain a feasible packing configuration in which the container radius is locally minimized. The current best solution (X^*, R_{min}) is updated each time a feasible packing with a smaller R is discovered (lines 11–13). The second stage of the algorithm stops when a time limit (t_{max}) is reached.

Both search stages above rely on a lower level local optimization procedure which is presented in the next subsection. The other search components are described in the rest of this section.

3.2 Local optimization

Given an input solution X, the purpose of the local optimization procedure is to reach its nearest local optimum solution with respect to the objective function $E_R(X)$ defined in Section 2.1. Specifically, the local optimization procedure is based on the popular LBFGS algorithm [30] (a limited memory quasi-newton method) that adopts an efficient line search approach proposed in [22]. To ensure a high computational efficiency, the search of local optimization is divided into two phases.

The first phase runs LBFGS to optimize $E_R(X)$ with a relaxed stopping condition of $||g||_{\infty} < 10^{-2}$ with $||g||_{\infty} = max\{|g_1|, |g_2|, \dots, |g_{2N}|\}$ being the maximum norm of the gradient g of $E_R(X)$. Due to the relaxed stopping condition, the first phase is typically very fast and terminates with an approximate local optimum solution where the neighbors of circles generally don't change any more. To further improve the solution, the second phase runs LBFGS with a high precision stopping condition of $||g||_{\infty} < 10^{-13}$ and only considers the pairwise overlaps between the neighboring circles and the overlaps between the circles and the container. Here, two circles c_i and c_j are considered to be neighboring if the distance between their centers $D(c_i, c_j)$ is less than d_{cut} , which is a parameter and can be set according to the demand. In fact, it is generally adequate to set d_{cut} to be slightly larger than 2.0 (i.e., the diameter of unit circles). Nevertheless, for the sake of conservation, d_{cut} is by default set to 4.0 in this work. Fig. 2 gives an illustrative example for the overlaps between the circle c_i and other circles that should be considered in the second phase. As such, the evaluations of $E_R(X)$ and its gradient g of the second phase are much faster than the first phase. This enables the local optimization procedure to perform a high number of iterations with the given time limit. Our experiment indicates this two-phase approach significantly speeds up the local optimization process especially for large-scale instances.

The basic idea of the two-phase strategy is to speed up the search process via the use of the adjacency relationship between circles. The first phase aims to construct the adjacency relationship between circles by a short local optimization with a small number of iterations. Based on the generated adjacency relationship, the second phase aims to reach a local minimum solution with a high precision as fast as possible. It is worth noting that other techniques (e.g., the popular and general Voronoi diagram) can be used to construct the adjacency relationship between circles. In our case, we used the distances between the circles to construct the adjacency relationship, which ensures the simplicity and efficiency of the approach.

Fig. 2. For the circle c_i , the overlaps needed to be considered in the second phase of local optimization are indicated by the red line segments, where O_{ij} indicates the overlap between c_i and c_j , and d_{cut} is set to 4. Two circles c_i and c_j are mutually considered as neighbors if the distance between their centers $D(c_i, c_j)$ is less than d_{cut} .

3.3 Initialization Procedure

The initialization procedure of the IDTS algorithm aims to obtain rapidly a starting solution with a container radius as small as possible, which is used to seed the second stage of dynamic thresholding search.

As shown in Algorithm 2, a random packing with the container radius $R_0 = \sqrt{\frac{N}{0.85}}$ is first generated by distributing uniformly and randomly the centers (x_i, y_i) of the N circles in the container (line 3) and then the corresponding PECC-FR[R_0] is solved by the popular MBH algorithm [21,29] (line 4), where 0.85 is an estimated packing density for the initial solution generated and is inspired by the best-known results from the Packomania website [47]. Subsequently, the container radius R is adjusted by the container adjustment procedure (Section 3.5) to reach a feasible packing configuration, while R is locally minimized (line 5).

The employed MBH method works as follows. Starting from an input solution X_0 , it performs a number of iterations to improve the current solution X with respect to the objective function $E_R(\cdot)$. At each iteration, the best solution X_b found so far is slightly modified by a *Perturbation* operator and then improved by the two-phase local optimization procedure described in Section 3.2. The

Algorithm 2: Initialization

1	Function Initialization()
	Input: The number of circles to be packed (N)
	Output: A feasible packing X with its radius R
2	$R_0 \leftarrow \sqrt{rac{N}{0.85}}$ /* The first estimated container radius */
3	$X \leftarrow RandomPacking(R_0)$ /* Generate a random packing by
	distributing uniformly randomly the centers of circles in
	the container with radius R_0 */
4	$X \leftarrow MBH(X, R_0)$ /* Solving the PECC-FR[R_0] problem by
	minimizing the objective function E_R */
E	$(X, R) \leftarrow Adjust Container Radjus(X, R)$ /* Algorithm A adjust

5 (X, R) ← AdjustContainerRadius(X, R₀) /* Algorithm 4, adjust the container radius to obtain a feasible packing */
 6 return (X, R)

improved solution is accepted as the current solution if it is better than X_b ; otherwise it is discarded. The MBH algorithm stops and returns the best solution found X_b if it has not been updated after α consecutive iterations, where α is a parameter whose default value is set to 100 in this work. To perturb a solution, we shift randomly each coordinate x_i (or y_i) of X in a given interval to generate a new solution X', i.e., $x_i \leftarrow x_i + r$ $(1 \le i \le 2N)$, where r is a random number in [-0.8, 0.8].

3.4 Dynamic Thresholding Search

The main search component of the proposed IDTS algorithm concerns the dynamic thresholding search procedure, which seeks a high-quality packing configuration for the PECC-FR problem with a given container radius R. This DTS procedure follows the general Threshold Accepting heuristic [13] and is described in Algorithm 3.

Starting from a conflicting solution X (lines 2–4), DTS performs a number of iterations to find improved solutions in terms of the objective function $E_R(\cdot)$ (lines 6–25). At each iteration, the current solution X is first perturbed by the perturbation operator (i.e., the random perturbation, Section 3.3) and then improved by the two-phase local optimization procedure of Section 3.2 (*TPLocalOptimization*(), lines 7–8). Subsequently, an accepting criterion is applied to determine whether the newly obtained solution X_{new} is accepted as the current solution (lines 10–15). Specifically, X_{new} is accepted if the objective variation between X_{new} and X (i.e., $\Delta_E = E_R(X_{new}) - E_R(X)$) is smaller than a threshold (Th_E) ; otherwise, X_{new} is discarded. Moreover, the threshold Th_E is adaptively adjusted to maintain an acceptance rate of $\frac{1}{2}$ for the new solutions (lines 16–20). Specifically, Th_E is decreased by multiplying a factor $\mu \in (0, 1)$

Algorithm 3: Dynamic-thresholding search for the PECC problem with a fixed radius R of container

1 Function DynamicThresholdSearch **Input:** Maximum of iterations MaxIter, fixed container radius R, and shrinkage factor μ ($\mu < 1.0$) **Output:** The best solution found (X^*, R) **2** $X \leftarrow RandomPacking(R)$ /* Generate a random packing in the container with radius R */ $X \leftarrow TPLocalOptimization(X) /*$ Minimize function $E_R(\cdot)$ from X */ 4 $X^* \leftarrow X$ 5 $Iter \leftarrow 0, Th_E \leftarrow 10^{-4}, N_{accept} \leftarrow 0, N_{reject} \leftarrow 0 /*$ Initialization */ 6 while $(Iter \le MaxIter) \land (E_R(X^*) > 10^{-25})$ do $X_{new} \leftarrow Perturbation(X)$ 7 $X_{new} \leftarrow TPLocalOptimization(X_{new})$ /* Minimize function $E_R(\cdot)$ 8 from X_{new} using two-phase local optimization method */ $\Delta_E \leftarrow E_R(X_{new}) - E_R(X)$ 9 if $(\Delta_E < Th_E) \land (\Delta_E \neq 0)$ then 10 $X \leftarrow X_{new}$ 11 $N_{accept} \leftarrow N_{accept} + 1$ 12 else 13 $N_{reject} \leftarrow N_{reject} + 1$ 14 end 15if $N_{accept} > N_{reject}$ then 16 $Th_E \leftarrow \mu * Th_E$ /* Decrease the threshold value Th_E */ $\mathbf{17}$ else $\mathbf{18}$ $| Th_E \leftarrow rac{1}{\mu} * Th_E$ /* Increase the threshold value Th_E */ 19 end $\mathbf{20}$ if $E_R(X) < E_R(X^*)$ then $\mathbf{21}$ $X^* \leftarrow X$ /* Save the best solution found */ $\mathbf{22}$ end $\mathbf{23}$ $Iter \leftarrow Iter + 1$ $\mathbf{24}$ 25 end 26 return (X^*, R)

if the number of acceptances (N_{accept}) becomes larger than the number of rejections (N_{reject}) , and is increased by dividing μ otherwise. Finally, the DTS procedure stops when the maximum number of iterations (MaxIter) has been reached or a feasible solution X (i.e., $E_R(X) < 10^{-25}$) is found, and the best solution found (X^*, R) is returned as the result of the DTS procedure.

It is worth noting that the DTS procedure is of general-purpose and does not require any problem-specific knowledge except the objective function. As such, it can be applied to other unconstrained optimization problems. Moreover, it provides an original way of adjusting adaptively its threshold based on the current acceptance rate, instead of the objective function which was commonly used in the literature.

3.5 Container Adjustment Procedure

Algorithm 4: Container adjustment proceed	dure
---	------

1 Function AdjustContainerRadius Input: Input solution $s_0 = (X_0, R_0)$, maximum of iterations Q (= 10)Output: The local optimum packing s = (X, R)2 $X \leftarrow X_0, R \leftarrow R_0, \rho \leftarrow 10^6$ 3 for $i \leftarrow 1$ to Q do 4 $| (X, R) \leftarrow LocalOptimization(X, R) /*$ Using the LBFGS method to minimize $U_{\rho}(X, R) */$ 5 $| \rho \leftarrow 10 * \rho$ 6 end 7 return (X, R)

Given a feasible or infeasible packing configuration (X, R), the container adjustment procedure aims to adjust the container radius R and the coordinate vector X of the N circles such that the resulting packing configuration is feasible while the radius R is locally minimized. To do this, starting from the given packing configuration (X, R), we solve locally the initial constrained PECC problem defined by Eqs. (1)–(3) in Section 1.

Due to the computational difficulty of solving directly the constrained optimization problem by means of a local optimization method, we employ in this study the popular sequential unconstrained minimization technique (SUMT) [14] to handle this constrained problem. First, the PECC problem is converted into a series of unconstrained minimization problems that can be described as

$$Minimize \quad U_{\rho}(X,R) = R^2 + \rho * E(X,R) \tag{7}$$

where ρ is a penalty factor and each value of ρ defines an unconstrained minimization problem, R is a variable representing the container radius. The penalty term E(X, R) with 2N + 1 variables is defined as follows:

$$E(X,R) = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} O_{ij}^2 + \sum_{i=1}^{N} O_{0i}^2$$
(8)

where O_{ij} and O_{0i} represent respectively the overlap between two circles c_i and c_j and the overlap between a circle c_i and the exterior of the container c_0 . Then, we solve consecutively a series of unconstrained optimization problems (defined by Eq. (7)) with the increasing ρ values by an unconstrained optimization method, starting from an input solution and an initial ρ value.

The pseudo-code of the container adjustment procedure is given in Algorithm 4. Starting from the input packing configuration (X_0, R_0) and initial ρ value (empirically set to 10^6 in this work), the procedure performs Q iterations (Q =10 in this work) to reach a feasible packing configuration. At each iteration, the powerful LBFGS method [30] is used to optimize the function $U_{\rho}(X, R)$ with 2N + 1 variables, and then the value of ρ is increased as $\rho \leftarrow 10 * \rho$ and the resulting packing configuration (X, R) is used as the input solution of next iteration. According to Eq. (7), the term E(X, R) is penalized more with a large ρ value than with a small ρ value. As such, as the value of ρ increases to a very large number, the search is forced to converge to a feasible solution (X, R) (i.e., E(X, R) = 0) with its container radius R locally minimized.

It is worth noting that we employ R^2 in equation (7) instead of R for the following reasons. First, $f(R) = R^2$ is a monotone increasing function with respect to the variable R in the range of $R \ge 0$, thus the minimization of function $f(R) = R^2$ is equivalent to that of f(R) = R. Second, $f(R) = R^2$ is more smooth than the function f(R) = R, which is beneficial to the optimization with the LBFGS method.

3.6 Discussion on the Innovations of the Proposed Algorithm

Compared with the existing circle packing algorithms in the literature, the proposed IDTS algorithm includes mainly two original features concerning its two-phase local optimization and dynamic thresholding search.

First, IDTS is the first PECC algorithm adopting a two-phase local optimization approach. In fact, unlike other acceleration techniques such as those proposed in [4,23], the proposed local optimization method is composed of two LBFGS procedures, where the first aims to generate a local minimum solution with a low precision and obtain the adjacency relation between the circles, and the second aims to obtain a local minimum solution with a high precision based on the adjacency relation generated by the first LBFGS application. This two-phase optimization approach has the main advantage of accelerating the search without sacrificing solution quality. Second, the dynamic thresholding search is applied for the first time to the PECC problem. This key search component utilizes an original technique to dynamically adjust the thresholding value at each iteration based on the current acceptance rate of the new solutions.

As we show in the next section, the IDTS algorithm integrating these features

performs very well on the tested PECC instances. Moreover, given that the ideas of the two-phase local optimization and the dynamic thresholding search are very general, they can be adapted to a number of other geometry optimization problems, such as unequal circles packing and structural optimization of atomic clusters [12,29,35].

4 Computational Experiments and Assessments

In this section, we evaluate the performance of the IDTS algorithm on a large number of benchmark instances commonly used in the literature and make comparisons with state-of-the-art results in the literature.

4.1 Parameter Settings and Experimental Protocol

MaxIter

3.4

Table 1 Settings of	paramete	rs
Parameters	Section	Description
θ	3.1	coefficient used to adjust the radius of container
11	3.4	coefficient used to tune the threshold value Th_{r}

The proposed IDTS algorithm employs three main parameters whose descriptions and default values are given in Table 1, which were empirically determined via a preliminary experiment. This setting can be considered as the default setting of the algorithm and was consistently used to conduct all computational experiments in Section 4. A sensibility analysis of these parameters is presented in Section 5.1.

maximum number of iterations of DTS procedure

Values 0.7 0.75

 10^{3}

The IDTS algorithm was implemented in the C++ language and complied using the g++ compiler with the -O3 option. The computational experiments with IDTS were executed on a computer with an Intel E5-2670 processor (2.5 GHz and 2G RAM), running the Linux operating system. To assess the performance of the algorithm, we employed 320 popular instances with $N \leq$ 320. Due to its stochastic feature, the IDTS algorithm was independently performed 20 times with different random seeds (CPU time stamps) to solve each instance. The stopping condition for each run is a maximum time limit t_{max} : 2 hours for the instances with $N \leq 100$, 8 hours for $101 \leq N \leq 200$, and 12 hours for $201 \leq N \leq 320$. These cutoff limits are comparable with those used by the state-of-the-art algorithms in the literature. For example, in [27], t_{max} was set to 4 hours for the instances with $N \leq 100$, and 8 hours for $101 \leq N \leq 200$. In [23], t_{max} was set to 4 hours for $N \leq 100$, and 3 days for $N \geq 101$.

Fig. 3. Best configurations found by IDTS with a high symmetry for 4 representative instances in the range of $1 \leq N \leq 100$. The circles are colored by several colors according to the numbers of their neighbors, where two circles c_i and c_j are mutually considered as neighbors if and only if the distance $D(c_i, c_j)$ between their centers satisfies $D(c_i, c_j) < 2.0 + 10^{-10}$.

The first experiment focuses on the most studied (small) instances with $N \leq 100$ and shows a comparison with two best performing reference algorithms: the quasi-physical global optimization (QPGO) algorithm [27] and the quasi-physical quasi-human (QPQH) algorithm [23]. The results of the proposed IDTS algorithm on the 35 instances with $66 \leq N \leq 100$ are summarized in Table 2, together with the results of the reference algorithms. The instances with $N \leq 65$ are ignored, since they are very easy for the compared algorithms.

Columns 1 and 2 of Table 2 give respectively the number N of circles and the best-known result R^* (i.e., the known smallest container radius) reported

Table 2 Comparison between the IDTS algorithm and two state-of-the-art algorithms in the literature on 35 representative instances with 66 < N < 100.

	ł	QPG	O [27]	QPQ	H [23]	IDTS (t	his work)
N	R^{*} [23,47]	SR	time(s)	SR	time(s)	SR	time(s)
66	9.096279427	10/10	720	10/10	2404	20/20	20
67	9.168971882	10/10	1500	10/10	7492	20/20	51
68	9.229773747	10/10	720	10/10	3252	20/20	24
69	9.269761267	10/10	$<\!60$	10/10	713	20/20	19
70	9.345653194	10/10	1500	10/10	1752	20/20	180
71	9.415796897	10/10	660	10/10	916	20/20	254
72	9.473890857	10/10	120	10/10	113	20/20	11
73	9.540346152	10/10	2520	2/20	5571	20/20	226
74	9.589232764	10/10	$<\!60$	6/20	5343	20/20	292
75	9.672029632	10/10	2220	8/20	6671	20/20	112
76	9.729596802	10/10	180	10/10	464	20/20	22
77	9.798911925	10/10	840	10/10	147	20/20	18
78	9.857709900	10/10	1320	3/10	4276	20/20	63
79	9.905063468	10/10	240	10/10	5464	20/20	100
80	9.968151813	10/10	3900	5/10	5145	20/20	165
81	10.010864241	10/10	120	7/10	5446	20/20	53
82	10.050824224	10/10	600	0/10	-	20/20	78
83	10.116857875	10/10	960	7/10	4821	20/20	316
84	10.149530867	10/10	420	8/10	5364	20/20	87
85	10.163111466	10/10	1140	10/10	377	20/20	41
86	10.298701053	10/10	$<\!60$	2/10	5867	20/20	318
87	10.363208505	10/10	$<\!60$	10/10	1148	20/20	445
88	10.432337693	10/10	1560	10/10	4866	20/20	43
89	10.500491815	6/10	3600	5/10	7751	20/20	449
90	10.546069178	10/10	600	10/10	588	20/20	45
91	10.566772234	10/10	$<\!60$	10/10	40	20/20	11
92	10.684645848	5/10	6720	4/10	4992	20/20	409
93	10.733352600	5/10	5880	3/10	6092	20/20	175
94	10.778032160	10/10	180	8/10	5552	20/20	135
95	10.840205022	7/10	7020	5/10	6056	20/20	110
96	10.883202760	2/10	7860	4/10	5824	20/20	2349
97	10.938590110	1/10	10680	1/10	11540	20/20	350
98	10.979383128	10/10	1800	9/10	2593	20/20	79
99	11.033141151	5/10	2640	9/10	3445	20/20	124
100	11.082149724	1/10	4560	0/10	-	20/20	172
#Bette	er	0	4	0	0		
#Equa	1	27	0	14	0		
#Wors	e	8	31	21	35		

in the literature or shown on the Packomania website [47]. The remaining columns present the results of the three compared algorithms, respectively, including the success rate (SR) (i.e., the number of runs reaching the best-known result over the total number of runs) and the average computation time in seconds (time(s)) needed to reach the best-known result¹. Note that QPGO was performed on a computer with an Intel Xeon processor and 32 Gb RAM and QPQH was performed on the Ali cloud platform (http://www.aliyun.com) with 8 Gb RAM. Since the compared algorithms were run on different computing platforms, timing information is shown only for indicative purposes. The symbol '-' means that the corresponding algorithm failed to reach the best-known result. The last rows '#Better', '#Equal', '#Worse' show the numbers

¹ The best packing configurations found in this work is available at http://www. info.univ-angers.fr/pub/hao/circlepacking.html and https://github.com/ XiangjingLai/circle-packing.

of instances for which the corresponding reference algorithm obtained a better, equal, worse result compared to the proposed IDTS algorithm for each performance indicator. Finally, it is worth noting that the two reference algorithms used the best-known result R^* prior to their work to seed their search, while the proposed IDTS algorithm started its search from scratch.

Table 2 shows that the proposed algorithm performs very well for these small instances with $N \leq 100$. Specifically, IDTS has a success rate of 100% for each tested instance with much shorter computation times. This is in sharp contrast with the reference algorithms whose success rates typically decrease with the increase of the problem size while requiring considerably more computation times to attain the best-known results.

For an intuitive presentation of the computational results, Fig. 3 shows the best packing configurations found by IDTS for four representative instances, disclosing some clear regular patterns (e.g., symmetry) for these instances.

4.3 Computational Results for the Larger Instances

The second experiment aims to assess the proposed IDTS algorithm on large instances with $N \ge 101$ and up to N = 320 by making a comparison with the best-known results (R^* , the known smallest container radius) reported in the literature or shown on the Packomania website [47]. The results of the IDTS algorithm are summarized in Tables 3–6, respectively for $101 \le N \le 150$, $150 \le N \le 200$, $201 \le N \le 260$ and $261 \le N \le 320$.

The first column of each table gives the value of N of the instance, and the second column shows the current best-known result R^* , which is compiled from the best results on the Packomania website [47] and the improved results in a recent paper [23]. The third and fourth columns give respectively the results of the Packomania website (R_1) and the improved results by QPQH [23] (R_2) , while '-' means the corresponding result is not available. The results of the IDTS algorithm are reported in the last five columns, including the best result obtained over 20 independent runs (R_{best}) , the average result (R_{avq}) , the difference between R_{best} and R^* (i.e., $R_{best} - R^*$, so a negative value indicates an improved new best result), the success rate (SR) of hitting the best result R_{best} , and the average computation time for the algorithm to hit its best solution (time(s)). The rows '#Improve', '#Equal', '#Worse' at the bottom of tables show the numbers of instances for which the IDTS algorithm obtained an improved, equal, and worse result compared to the best-known result. In addition, to verify whether there exists a significant difference between our results and the best-known results R^* both in terms of R_{best} and R_{avg} , the last row of tables indicates the p-values from the Wilcoxon signed-rank tests,

Table 3

Computational results and comparison on the 50 instances with $101 \le N \le 150$. The improved results are indicated in bold compared to the best-known results R^* both in terms of R_{best} and R_{avg} , and the worse results are indicated in italic.

					IDTS	(this work)		
Ν	R^{*} [23,47]	R_1 [47]	R_2 [23]	R_{best}	R_{avg}	$R_{best} - R^*$	\mathbf{SR}	time(s)
101	11.146933575	11.146933575	-	11.146933575	11.146933575	0.0	20/20	410
102	11.196863473	11.196863473	-	11.196863473	11.196863473	0.0	20/20	108
103	11.265143566	11.265143566	-	11.265143566	11.265143566	0.0	20/20	170
104	11.317658566	11.317658566	-	11.317658566	11.317658566	0.0	20/20	1698
105	11.362659613	11.362659613	-	11.362659613	11.362659613	0.0	20/20	100
106	11.421834366	11.421834366	-	11.421834366	11.421834366	0.0	20/20	466
107	11.472051837	11.472051837	-	11.472051837	11.472051837	0.0	20/20	770
108	11.524016134	11.524016134	-	11.524016134	11.524016134	0.0	20/20	411
109	11.562119071	11.562119071	-	11.562119071	11.562119071	0.0	20/20	2458
110	11.616861550	11.616861550	-	11.616861550	11.616861550	0.0	20/20	831
111	11.662811184	11.662811184	-	11.662811185	11.662811185	0.0	20/20	371
112	11.705274526	11.705274526	-	11.705274526	11.705274526	0.0	20/20	715
113	11.747528122	11.747528122	-	11.747528123	11.747528123	0.0	20/20	157
114	11.795173364	11.795173364	-	11.795173364	11.795173364	0.0	20/20	678
115	11.839474009	11.839474009	-	11.839474009	11.839474009	0.0	20/20	70
116	11.896704500	11.896704500	-	11.896704500	11.896704500	0.0	20/20	557
117	11.943475536	11.943475536	-	11.943475536	11.943475536	0.0	20/20	490
118	11.985551046	11.985551046	-	11.985551046	11.985551046	0.0	20/20	357
119	12.042334444	12.042334444	-	12.042334444	12.042334444	0.0	20/20	512
120	12.085212460	12.085212460	-	12.085212460	12.085212460	0.0	20/20	832
121	12.124803082	12.124803082	-	12.124803082	12.124803082	0.0	20/20	11
122	12.204374812	12.204374812	-	12.204374812	12.204374812	0.0	20/20	65
123	12.276399909	12.276399909	_	12.276399909	12.276399909	0.0	20/20	61
124	12.321708315	12.321708315	_	12.321708315	12.321708315	0.0	20/20	9244
125	12.368225321	12.368225321	-	12.368225321	12.368225321	0.0	20/20	98
126	12.417144417	12.417463956	12.417144417	12.417144392	12.417144392	-2.52E-08	20/20	1609
127	12.461549515	12.461549515	-	12.461549515	12.461549515	0.0	20/20	2772
128	12.502222199	12.502310071	12.502222199	12.502222199	12.502222199	0.0	20/20	1830
129	12.553717819	12.553717819	_	12.553717819	12.553717819	0.0	20/20	2432
130	12.601774612	12.602318937	12.601774612	12.600339970	12.600339970	-1.43E-03	20/20	3870
131	12.649620461	12.649620461	_	12.649620462	12.649620462	0.0	20/20	980
132	12.687436791	12.687436791	_	12.687436791	12.687436791	0.0	20/20	132
133	12.735273089	12.735273089	_	12.735273089	12.735273089	0.0	20/20	1152
134	12.771446240	12.771446240	_	12.771446240	12.771446240	0.0	20/20	413
135	12.814254771	12.814254771	_	12.814254772	12.814254772	0.0	$\frac{20}{20}$	1076
136	12.865759551	12.865759551	_	12.865759551	12.865759551	0.0	$\frac{20}{20}$	2874
137	12.914711247	12.914725417	12.914711247	12.914469900	12.914469900	-2.41E-04	20/20	4888
138	12.961304417	12.962702608	12.961304417	12.961304311	12.961304311	-1.06E-07	20/20	1360
139	13.008987241	13.008987241	_	13.008987241	13.008987241	0.0	20/20	1941
140	13.060696617	13.061097215	13.060696617	13.059777506	13.059841914	-9.19E-04	$\frac{1}{4/20}$	15842
141	13.107255295	13.107255295	_	13.107255295	13.107255295	0.0	$\frac{20}{20}$	1328
142	13.146411626	13.146411626	_	13.146411626	13.146411626	0.0	$\frac{20}{20}$	314
143	13 197400825	13 197400825	_	13 197400825	13 197400825	0.0	$\frac{20}{20}$	288
144	13 247789225	13 247789225	_	13 247789225	13 247789225	0.0	20/20	3478
145	13 276668630	13 276668630	_	13 276668630	13 277790851	0.0	6/20	20834
146	13 331233768	13 331233768	_	13 331233768	13 33196/395	0.0	3/20	7548
147	13.357112495	13.357112495	_	13.357112495	13.357112495	0.0	20/20	914
148	13 386939355	13 386939355	_	13 386939355	13 386939355	0.0	20/20	608
149	13 435548518	13 435548518	_	13 435548518	13 435548518	0.0	20/20	650
150	13 460806371	13 460806371	_	13 460806371	13 460806371	0.0	20/20	1289
#Imp.so	10.100000011	10.100000011		5	5	0.0	20/20	1200
#Improve				45	43			
# Worse								
# worse				1 35 F 1	2 6 55E 1			
p-varae				1-001-1	0.0012-1			

Table 4

Computational results and comparison on the 50 instances with $151 \leq N \leq 200$. The improved results are indicated in bold compared to the best-known results R^* both in terms of R_{best} and R_{avg} , and the worse results are indicated in italic.

					IDTS	(this work)		
Ν	R^{*} [23,47]	R_1 [47]	R_2 [23]	R_{best}	R_{avg}	$R_{best} - R^*$	\mathbf{SR}	time(s)
151	13.476191508	13.476191508	-	13.476191508	13.476191508	0.0	20/20	527
152	13.531758483	13.531758483	-	13.531748487	13.531748487	-1.00 E - 05	20/20	7563
153	13.591536687	13.591536687	-	13.591536687	13.591536687	0.0	20/20	5774
154	13.637418860	13.637418860	-	13.636897671	13.636897671	$-5.21 \mathrm{E}$ - 04	20/20	1208
155	13.673708640	13.673708640	-	13.673708640	13.673710758	0.0	7/20	10609
156	13.718404613	13.719600040	13.718404613	13.7163630490	3.716830585	$-2.04 \mathrm{E} - 0.3$	1/20	16652
157	13.772991900	13.772991900	-	13.772991900	13.772991900	0.0	20/20	7172
158	13.823225917	13.823225917	-	13.823225917	13.823225917	0.0	20/20	6504
159	13.864193589	13.864193589	-	13.864193368	13.864193368	$-2.21 \mathrm{E}$ - 07	20/20	574
160	13.920451761	13.920538614	13.920451761	13.919646942	13.919810338	-8.05 ± -04	6/20	14582
161	13.969400270	13.969400270	-	13.969400270	13.969400270	0.0	20/20	884
162	14.011328518	14.011328518	-	14.010172332	14.010217255	-1.16 ± -03	3/20	14160
163	14.067635971	14.069620216	14.067635971	14.065203711	14.065216603	-2.43 ± 0.03	5/20	12722
164	14.110700047	14.110700047	-	14.109601373	14.109601373	-1.10 ± -03	20/20	6189
165	14.144339292	14.144339292	-	14.144339292	14.144406918	0.0	19/20	11525
166	14.185678420	14.185678420	-	14.185678420	14.185678420	0.0	20/20	3739
167	14.220394493	14.220394493	-	14.219046588	14.219046588	-1.35 E - 03	20/20	4820
168	14.259535536	14.259535536	-	14.257706915	14.257710173	-1.83E-03	17/20	11126
169	14.295358228	14.295358228	-	14.295358228	14.295358228	0.0	20/20	2837
170	14.331549723	14.331549723	-	14.331150274	14.331150274	-3.99E-04	20/20	1187
171	14.367661448	14.367661448	-	14.367661448	14.367661448	0.0	20/20	2223
172	14.416776084	14.416776084	-	14.416776084	14.416776084	0.0	20/20	9646
173	14.451341436	14.451341436	-	14.451341436	14.451341436	0.0	20/20	1798
174	14.492848839	14.492848839	-	14.492848839	14.492848839	0.0	20/20	2137
175	14.536540602	14.536540602	-	14.536426508	14.536426508	-1.14E-04	20/20	1176
176	14.574135655	14.574135655	-	14.574135655	14.574135655	0.0	20/20	189
177	14.614803186	14.617194155	14.614803186	14.614518392	14.614521438	-2.85E-04	10/20	13471
178	14.655927628	14.658814224	14.655927628	14.655927628	14.655927628	0.0	20/20	2053
179	14.699982808	14.702293364	14.699982808	14.699851252	14.699851252	-1.32E-04	20/20	2901
180	14.739035484	14.742878035	14.739035484	14.739034879	14.739034879	-6.05E-07	20/20	3806
181	14.780829657	14.780829657	-	14.780829657	14.780829657	0.0	20/20	6091
182	14.818930631	14.818930631	-	14.818930631	14.823505353	0.0	8/20	9953
183	14.865788757	14.869399060	14.865788757	14.865670837	14.865670837	-1.18E-04	20/20	2051
184	14.905472585	14.905472585	-	14.905418305	14.907479359	-5.43E-05	1/20	9094
185	14.938144835	14.938144835	-	14.938144835	14.939607732	0.0	$\frac{2}{20}$	18103
186	14.961185685	14.961185685	-	14.961185685	14.961419453	0.0	18/20	15077
187	14.989269701	14.989269701	-	14.989106751	14.990022721	-1.63E-04	9/20	20789
188	15.028750763	15.028782735	15.028750763	15.028750689	, 15.028752282	-7.41E-08	$\frac{19}{20}$	9983
189	15.069680565	15.069680565	-	15.069099372	15.069404626	-5.81E-04	10/20	12266
190	15.103601504	15.103601504	-	15.103601504	415.103601504	0.0	$\frac{20}{20}$	7537
191	15.142357530	15.142357530	-	15.142357503	15.142357505	-2.65E-08	3/20	4865
192	15.169435212	15.169435212	-	15.169435212	15.169435212	0.0	$\frac{20}{20}$	634
193	15 199374495	15 199374495	_	15 199374495	15 199379498	0.0	4/20	13820
194	15 241428667	15 249753585	15 241428667	15.241428657	15.241428657	-1 00E-08	20/20	2541
195	15 287172168	15 287172168	-	15 287172168	15 28768/736	0.0	1/20	13215
196	15 323079829	15 323079829	_	15 322999997	15 323021340	-7 98E-05	17/20	12829
197	15 368518430	15 368975295	15 368518430	15.367497382	15.367599851	-1 02E-03	1/20	5607
198	15 390410683	15 391207855	15 390410683	15.389903201	15.389903201	-5 07E-04	18/20	10319
199	15 402260415	15 402260415	-	15 402260415	15 402260415	0.0	20/20	224
200	15 463274879	15 463274879	_	15 463274879	15 463274879	0.0	20/20	1632
#Improv-	10,100211010	10.100211013		25	99	5.0	20/20	1002
#Equal				25	22 18			
# W/				20 0	10			
# worse				0.2417.6	1.6612 1			
p-value				9.34E-0	1.005-1			

where a p-value less than 0.05 means that there exists a statistically significant difference between the compared results.

Fig. 4. Packing configurations with a high symmetry for some selected instances in the range of $101 \le N \le 320$.

Table 5 $\,$

Computational results and comparison on the 60 instances with $201 \le N \le 260$. The improved results are indicated in bold compared to the best-known results R^* both in terms of R_{best} and R_{avg} , and the worse results are indicated in italic.

					IDTS	(this work)		
N	R^* [23,47]	R_1 [47]	R_2 [23]	R _{best}	Rava	$R_{best} - R^*$	\mathbf{SR}	time(s)
201	15 520419047	15 520419047		15.520225293	15.520225293	-1.94E-04	20/20	8240
202	15 569845914	15 569845914		15 568028837	15 568090487	1.82E.03	9/20	 93349
202	15.600640014	15.000040014	-	15 611025551	15.000000401	1 22E 02	20/20	0.470
203	15.012507145	15.012507145	-	15.011235518	15.011235518	-1.55E-05	20/20	9419
204	15.644738394	15.652649998	15.644738394	15.642484085	15.642522181	-2.25 E - 03	1/20	18445
205	15.695538521	15.709043666	15.695538521	15.690988269	15.691079511	-4.55 E - 0.3	5/20	22144
206	15.736799931	15.736799931	-	15.734557511	15.736968076	-2.24 E - 03	1/20	22321
207	15.770190573	15.770271664	15.770190573	15.770190569	15.773476577	-3.80 ± 0.09	3/20	21559
208	15.811985301	15.811985301	-	15.811764086	15.811852669	-2.21 E - 04	12/20	20214
209	15.844267752	15.844267752	-	15.839871358	15.840916273	-4.40 ± 0.03	3/20	30942
210	15.879201277	15.879201277	-	15.878779424	15.878800075	-4.22E-04	18/20	9303
211	15 902512487	15 902512487	_	15 902512487	15 902512487	0.0	20/20	6491
211	15 027491625	15 027421625		15 0 25 260000	15 035360000	2.0512.02	20/20	5262
212	15.00055000	15.070956904	1 5 0 6 0 8 5 6 0 8	15.00005000	15.000855000	4 70 0 08	20/20	2526
213	10.0100000000	16.0107600204	10.0100000000	10.909800941	10.0000000	-4.70E-08	20/20	19050
214	10.018380421	10.018/03220	10.018380421	10.01/995815	10.01/995815	-3.91E-04	20/20	18952
215	16.050828504	16.050828504	=	16.049306210	16.050205425	-1.52 ± -0.3	3/20	26274
216	16.087017095	16.087407652	16.087017095	16.085154499	16.085298637	-1.86 E - 03	8/20	21517
217	16.118237367	16.119370348	16.118237367	16.116693296	16.117369938	-1.54 ± -03	6/20	21763
218	16.151019810	16.151019810	-	16.149552938	16.149653633	-1.47 E - 0.3	12/20	24221
219	16.169155113	16.169155113	-	16.169155098	16.171217331	-1.49 ± 0.08	1/20	26209
220	16.225373549	16.225373549	-	16.224094825	16.224134520	-1.28E-03	18/20	13400
221	16.261873763	16.261873985	16.261873763	16.258834346	16.259426290	-3.04 ± -03	1/20	26332
222	16.299162417	16.299696226	16.299162417	16.298789347	16.298897565	-3.73E-04	1/20	23040
223	16.337822305	16 337822305	_	16 337166598	16 337327474	-6.56E-04	3/20	19201
220	16 369591221	16 371899241	16 369591991	16 368831685	16 369065/19	7.60E.04	1/20	20358
227	16 409410599	16 400054970	16 409 4105 221	16 402602783	16 402082211	4 91 10 02	8/20	10020
220	10.408410328	10.409034279	10.408410528	10.403003782	10.403963211	-4.81E-03	0/20	19930
226	16.449824611	16.450019502	16.449824611	16.448318718	16.448320646	-1.51E-03	18/20	18076
227	16.489753739	16.494400009	16.489753739	16.488369922	16.488433032	-1.38 ± -03	10/20	23388
228	16.527071189	16.527340870	16.527071189	16.524998071	16.525000425	$-2.07 \mathrm{E} \cdot 0.3$	14/20	21565
229	16.564350195	16.566377981	16.564350195	16.562664605	16.562714547	-1.69 E - 0.3	7/20	22247
230	16.596246697	16.596430072	16.596246697	16.592564989	16.594176903	-3.68 ± -03	3/20	26229
231	16.631031907	16.640078327	16.631031907	16.629060933	16.629325490	-1.97 E - 0.3	1/20	25846
232	16.669457196	16.669457196	-	16.664704645	16.668814250	-4.75 ± 0.03	1/20	23617
233	16.694829942	16.694829942	-	16.696155400	16.700043062	1.33E-03	1/20	27503
234	16.706335883	16.706335883	-	16.706344401	16.712776770	8.52 E - 06	1/20	31503
235	16.712575786	16.712575786	-	16.712575786	16.728429055	0.0	1/20	33291
236	16 774738750	16 774738750	_	16 774392488	16 774678757	-3 46E-04	2/20	26494
200	16 802145502	16 802145502		16 801582860	16 800220/80	5.62 0 0 1	1/20	18070
201	16 997119497	16.002140000	-	16 836008005	16 836010834	-0.00E-04	10/20	14576
200	10.827113437	10.02/11040/	-	10.820908995	10.820910824	-2.04E-04	19/20	14570
239	16.863843301	16.863843301	-	16.863505622	16.863507770	-3.38E-04	18/20	12708
240	16.897165895	16.897165895	=	16.894472076	16.894472076	-2.69E-03	20/20	7648
241	16.915064584	16.915064584	-	16.915064584	16.915349265	0.0	1/20	17897
242	16.961287246	16.962132986	16.961287246	16.960708659	16.960708660	-5.79 E - 04	9/20	17587
243	17.001947599	17.004065250	17.001947599	17.000247953	17.000248010	-1.70 ± -0.3	10/20	12620
244	17.039559451	17.039719464	17.039559451	17.034806378	17.034896401	-4.75 E - 0.3	4/20	25380
245	17.078003394	17.079365818	17.078003394	17.074689206	17.074689206	-3.31 ± 0.03	20/20	5873
246	17.113112319	17.113998222	17.113112319	17.107922480	17.107922480	-5.19 ± -03	20/20	5679
247	17.132526683	17.141082424	17.132526683	17.132068945	17.132378242	-4.58 ± 0.04	12/20	21726
248	17.182444113	17.184447103	17.182444113	17.182167927	17.182167998	-2.76E-04	18/20	17176
249	17.220431735	17.220431735	-	17.219002124	17.219002124	-1.43E-03	20/20	5728
250	17 262962239	17 262962239	_	17.261954907	17.262287793	-1 01E-03	1/20	21907
255	17.202602156	17.205245616	17 207607156	17 205280808	17 205601630	2 22E 02	1/20	22000
201	17.297007130	17.303243010	17.297007130	17.295569696	17.295001050	-2.22E-03	1/20	22029
202	17.320883903	17.331245569	17.320883903	10.929195900	10.020008074	-1.09E-03	2/20	21310
253	17.345956323	17.345956323	-	17.346089752	17.346171694	1.33E-04	1/20	17275
254	17.400641308	17.400734609	17.400641308	17.393763187	17.394169348	-6.88E-03	1/20	25791
255	17.454058463	17.454200693	17.454058463	17.444011350	17.444080914	-1.00 E - 0.2	16/20	20552
256	17.493101490	17.494310641	17.493101490	17.486251304	17.487129555	-6.85 ± 0.03	3/20	24549
257	17.523849714	17.523849714	-	17.517964918	17.519827002	-5.88 ± -03	1/20	27861
258	17.547085193	17.547880529	17.547085193	17.538235776	17.539101690	-8.85 ± 0.03	3/20	33153
259	17.580456185	17.580456185	-	17.573954655	17.575365809	-6.50E-03	1/20	30320
260	17.604955193	17.604955193	-	17.600835484	17.600906404	-4.12E-03	6/20	25377
#Improve				54	51			
#Equal				3	-			
# Wor				3	8			
# worse				0 9 6 1 12 10	4 7917 6			
p-vaiue				2.01E-10	4.10E-U			

Table 6

Computational results and comparison on the 60 instances with $261 \le N \le 320$. The improved results are indicated in bold compared to the best-known results R^* both in terms of R_{best} and R_{avg} , and the worse results are indicated in italic.

					IDTS	(this work)		
N	R^{*} [23,47]	R_1 [47]	R_2 [23]	R _{best}	Ravq	$R_{best} - R^*$	\mathbf{SR}	time(s)
261	17.634766878	17.634862233	17.634766878	17.627240672	17.628625372	-7.53E-03	1/20	28424
262	17 662924961	17 662924961	_	17.657906787	17.661282499	-5.02E-03	1/20	27050
263	17 693359550	17 693359550	_	17 688613836	17 689565543	-4 75E-03	1/20	24287
264	17 701373926	17 701373926		17 701373026	17 705037060	0.0	12/20	23728
204	17.701575920	17.701575920	-	17.701373320	17.705257002	2.1412.04	12/20	20120
203	17.741000902	17.741000902	-	17.741224703	17.741700383	-3.14E-04	1/20	30347
200	17.778852591	17.778852591	-	17.776086768	17.777217033	-2.77E-03	1/20	24801
267	17.797657056	17.797657056	-	17.797361304	17.797538147	-2.96 ± -04	1/20	25569
268	17.832086714	17.832086714	-	17.832068508	17.832093428	-1.82 ± 0.05	1/20	22276
269	17.863552746	17.863552746	-	17.862579267	17.862674626	-9.73 E - 04	10/20	25078
270	17.887265668	17.887265668	-	17.887265668	17.890234807	0.0	1/20	27231
271	17.930192221	17.930192221	-	17.929693883	17.929914822	-4.98 ± -04	3/20	23896
272	17.961933270	17.961933270	-	17.959189722	17.959347069	-2.74 ± -0.3	6/20	22175
273	17.996459047	17.996459047	-	17.995299347	17.995315566	-1.16 ± -03	15/20	24635
274	18.034743806	18.034743806	-	18.033698365	18.033832315	-1.05E-03	1/20	19498
275	18.064257143	18.064257143	-	18.062653689	18.062808429	-1.60 ± 0.03	4/20	25389
276	18.106737167	18.106737167	_	18.103416474	18.103756760	-3.32E-03	3/20	24124
277	18 139629995	18 142486517	18 139629995	18.136079464	18.136758887	-3 55E-03	1/20	22376
278	18 187675017	18 189804499	18 187675017	18 180555975	18 180925160	7 12E 03	1/20	26026
270	10.101010011	18 334068630	18 991579602	10.100000070	10.100320100	4.00E.02	1/20	20320
219	18.221072093	18.224008029	10.221072095	18.217508448	18.218195720	-4.00E-03	1/20	29421
280	18.247226743	18.247226743	-	18.245927474	18.246904727	-1.30E-03	1/20	30016
281	18.281539686	18.284504843	18.281539686	18.280408576	18.280832129	-1.13E-03	1/20	28344
282	18.309334921	18.315754346	18.309334921	18.308789945	18.310816728	-5.45 ± 04	1/20	22753
283	18.340942447	18.340942447	-	18.340236575	18.341407581	-7.06 E - 04	1/20	31114
284	18.359456641	18.359456641	-	18.361020810	18.366038322	1.56 E - 0.3	1/20	34313
285	18.414548614	18.414548614	-	18.402678595	18.405461625	-1.19 ± 0.02	1/20	25875
286	18.434157792	18.434315259	18.434157792	18.429241763	18.431535841	-4.92 ± -0.3	1/20	30801
287	18.468823749	18.468823749	-	18.468212077	18.468883851	-6.12 ± 0.04	1/20	23803
288	18.494844941	18.494844941	-	18.494381728	18.496038151	-4.63 E - 04	1/20	28802
289	18.511602090	18.511602090	-	18.511810011	18.513773621	2.08 E - 04	1/20	28047
290	18.549375070	18.549375070	_	18.548707587	18.549023499	-6.67E-04	$\frac{1}{2}$	19030
291	18.567351454	18.567351454	-	18.566314463	18.567300968	-1.04 ± 0.03	2/20	27074
292	18 597179792	18 597179792	_	18.594501090	18.595234278	-2.68E-03	1/20	29822
293	18 623366700	18 623366700	_	18 693599730	18 69/790565	2.33E-04	1/20	20991
200	18 646948051	18.646248051		18.623835758	18 645507816	1 40 - 02	1/20	20221
204	18.040248001	18.040240001	-	18.044848087	10 650507710	7 705 04	1/20	20710
290	10.000217022	10.000217022	-	18.055990000	10.000027712	7.79E-04	1/20	24/94
296	18.703338597	18.704963368	18.703338597	18.702750006	18.703029204	-5.89E-04	1/20	24419
297	18.731053485	18.731053485	-	18.729781499	18.730183831	-1.27 ± -03	2/20	30727
298	18.759535176	18.759535176	-	18.759344750	18.759574994	-1.90 E - 04	4/20	23969
299	18.786282897	18.786282897	-	18.785427812	18.785802880	-8.55 E - 04	3/20	27798
300	18.813583364	18.813583364	-	18.813153706	18.813180138	-4.30 ± 0.04	6/20	21553
301	18.843675327	18.843979274	18.843675327	18.843463507	18.843586628	-2.12 E - 04	4/20	24968
302	18.892376640	18.895682962	18.892376640	18.891782255	18.892069366	-5.94 E - 04	1/20	26223
303	18.935589502	18.936286113	18.935589502	18.929749153	18.930127041	-5.84 ± 0.03	1/20	25122
304	18.972060389	18.973327183	18.972060389	18.964441751	18.964787942	-7.62E-03	1/20	24562
305	19.008914111	19.010908936	19.008914111	19.001754565	19.002296693	-7.16E-03	1/20	26941
306	19.033069424	19.033069424	-	19.030389407	19.031089900	-2.68E-03	1/20	20928
307	19.063881602	19.063881602	_	19.060160922	19.061046757	-3.72E-03	1/20	22978
308	19 120984457	19 121680199	19 120984457	19 104991437	19 108690710	-1 60E-02	1/20	23202
309	19 146749239	19.146749239	-	19 142573165	19 144543174	-4 18E-03	1/20	32491
210	10 184850462	10.194950462		10 178028265	10 19101919999	5.02E 02	1/20	28042
310	10.011006405	10.011006405	-	10.010005000	10.01/00000	-0.9511-05	1/20	20042
311	19.211386405	19.211386405	-	19.212305030	19.214696924	9.79E-04	1/20	20635
312	19.234773095	19.234773095	-	19.233585653	19.236023545	-1.19E-03	1/20	31080
313	19.259264009	19.259264009	-	19.257103014	19.259829708	-2.16 ± -03	1/20	28332
314	19.288083255	19.288083255	-	19.286195141	19.286677783	-1.89E-03	2/20	31615
315	19.302300677	19.302300677	-	19.302288067	19.303378383	-1.26 E - 05	2/20	24985
316	19.335029425	19.335029425	-	19.334041754	19.335453673	-9.88 ± 04	2/20	30840
317	19.375211471	19.375211471	-	19.367595672	19.368188858	-7.62 ± -03	1/20	20441
318	19.396538989	19.407004242	19.396538989	19.391566091	19.392633602	$-4.97 \mathrm{E} - 0.3$	2/20	30334
319	19.432246442	19.432992566	19.432246442	19.424277830	19.425905156	-7.97 ± 0.03	6/20	24676
320	19.451309906	19.456230764	19.451309906	19.451649630	19.453763706	3.40 ± 0.04	1/20	24894
#Improve				52	40			
#Equal				2	0			
#Worse				6	20			
n-value				3.39E-9	2.09E-3			
P = 0.01000								

Fig. 5. Best packing configurations found in this work for some representative instances in the range of $101 \le N \le 320$.

From these results, we can make the following observations.

Fig. 6. Packing density plots for the current best known solutions.

Table 7					
Summary of co	omputation	nal results			
	N	# Instance	#Improve	#Equal	# Worse
	101-150	50	5	45	0
	151 - 200	50	25	25	0
	201 - 260	60	54	3	3

52

136

60

220

Summary of computational results

261-320

Total

(1) For the 50 instances with $101 \le N \le 150$ (Table 3), IDTS improved and matched the best-known results for 5 and 45 instances, respectively. The algorithm obtained its best results (R_{best}) with a perfect success rate of 100% except for 3 instances.

 $\mathbf{2}$

75

6

9

(2) For the 50 instances with $151 \le N \le 200$ (Table 4), IDTS improved the best-known results for half of these instances while matching the bestknown results for the other instances. The small p-value (9.43e-6) means that the difference between the best results of the IDTS algorithm and the best-known results is significant. On the other hand, the algorithm reached a perfect success rate of 100% for 29 instances. For 12 instances, the success rate for the algorithm to hit its best results drops to less than 10/20, indicating the increasing difficulty of these instances. In addition, it is worth noting that even the average result R_{avg} of the IDTS algorithm is better than the best-known result R^* for 22 out of 50 instances, implying a strong searching ability of the algorithm.

(3) For the 120 largest instances with $201 \leq N \leq 320$ (Tables 5 and 6), IDTS improved the best-known results for 106 instances, matched the best-known result for 5 instances, and missed the best-known result only for 9 instances. Moreover, the average result of the IDTS algorithm (R_{avg}) is better than the best-known result (R^*) for 91 out 120 instances. The small *p*-values show that both in terms of R_{best} and R_{avg} there exist a significant difference between the results of the IDTS algorithm and the best-known results. Moreover, for these largest instances, the success rate for the algorithm to hit its best results continues to decrease, confirming that they are the most difficult to solve among all tested instances.

Table 7 summarizes the results achieved by the IDTS algorithm on the 4 sets of instances, where the first column indicates the range of instances, the second column gives the number of instances in the associated set, and the last three columns show the numbers of instances for which the IDTS algorithm obtained an improved, equal, worse result compared with the best-known result R^* . The last row shows the total number of instances for each column. We observe from Table 7 that the proposed IDTS algorithm improved 136 best-known results for the 220 instances with $101 \leq N \leq 320$, matched the best-known result for 75 instances, and missed the best-known result only for 9 instances. These results demonstrate the high competitiveness of the proposed IDTS algorithm compared with the state-of-the-art methods.

For an intuitive presentation of the computational results, we illustrate the best packing configurations found for some representative instances in the range of $101 \le N \le 320$ in Fig. 4 (with clear regular patterns) and Fig. 5 (with less clear regular patterns).

Furthermore, to observe the packing density of the neighboring instances in size (i.e., the number of circles N), we plotted in Fig. 6 the evolution of packing density of the current best known configurations as a function of the instance size (N) for the 4 sets of instances. The packing density p of a feasible packing configuration is calculated as $p = \frac{N\pi r^2}{\pi R^2}$, where R represents the container radius and r is the radius of packed circle (r = 1 for unit circles). One observes from Fig. 6 that there exit a number of instances for which the best-known solution has a particularly high or low packing density compared with the neighboring instances in size.

Finally, to have an idea about the capacity of our approach for dealing with very large instances (N > 1000), we tested IDTS on 17 instances with N = 1077-1080, 1090-1092, 1094, 1096, 1099, 1100, 1200, 1300, 1500, 3000, 4000, 5000.

Interestingly, compared to the best-known results for these instances at the Packomania website [47], which were achieved by the IIPP-random/lattice-IPOPT algorithm [49] under unknown conditions, IDTS can improve 7 best-known results (N = 1080, 1094, 1096, 1099, 1100, 1200, 1300). Meanwhile, we recognize that IDTS requires a very high computation time (2 to 5.7 days) to converge to its best solutions for these instances. In [49], it is indicated that the lattice-based initialization is critical for their IIPP-random/lattice-IPOPT algorithm. Thus, as a research perspective, it would be interesting to investigate this idea as well as other local optimization methods within our IDTS approach to accelerate the algorithm.

5 Analysis

In this section, we analyze several important elements of the proposed algorithm including the two-phase local optimization method (Section 3.2) and the sensitivity of the settings of parameters on the performance of the algorithm.

5.1 Sensitivity Analysis of Parameters

The proposed algorithm employs three main parameters (θ , MaxIter and μ). This section discusses their influences on the algorithm.

5.1.1 Sensitivity Analysis of Parameters θ and MaxIter

The scaling factor θ of Δ_R (line 7 of Algorithm 1) and the maximum number of iterations (*MaxIter*) for each run of the dynamic thresholding search procedure are two important parameters of the IDTS algorithm. To show their sensitivity on the algorithm, we carried out two additional experiments on four representative instances with N = 162, 185, 191 and 193.

The first experiment aims to analyze the sensitivity of parameter θ . For this, we varied θ in the range of {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, and performed the IDTS algorithm 20 times with each θ value to solve each instance. The results are summarized in Fig. 7 using the popular box and whisker plots, where the X-axis indicates the values of parameter θ and the Y-axis indicates the gap between the obtained objective value R and the current best-known result R^* . Fig. 7 shows that all tested settings of θ lead to very similar results for the 20 runs and tested instances, which means that the algorithm is not sensitive to the setting of θ .

The second experiment aims to investigate the sensitivity of parameter MaxIter.

Fig. 7. Influence of parameter θ on the performance of the algorithm for 4 representative instances.

Like in the previous experiment, we varied the value of MaxIter in the range of [500, 1500] by an interval of 100, and then performed the IDTS algorithm 20 times with each MaxIter value to solve each instance. The results are summarized in Fig. 8, where the X-axis indicates the values of MaxIter and the Y-axis indicates the gap between the objective value R and the current bestknown result R^* . One observes from Fig. 8 that most MaxIter values lead to very similar results for the tested instances, which means that the IDTS algorithm is not sensitive to the setting of parameter MaxIter.

5.1.2 Sensitivity Analysis of Parameter μ

The dynamic thresholding search procedure described in Algorithm 3 is one main component of the proposed IDTS algorithm. It employs a key parameter μ to dynamically adjust the threshold to determine whether a new solution should be accepted as the current solution or not. To check the influence of this parameter, we tested the IDTS algorithm on 15 selected difficult instances

Fig. 8. Influence of parameter MaxIter on the performance of the algorithm for 4 representative instances.

with $101 \leq N \leq 200$, by varying μ in the range $\{0.75, 0.8, 0.85, 0.9, 0.95, 0.98\}$. Experimental results are summarized in Table 8, where the first column gives the number of circles in the instance (N) and columns 2–7 show respectively the average results (R_{avg}) of the algorithm over 20 runs for each tested μ value. The rows Avg. and #Best indicate respectively the average value for each column and the numbers of instances for which the corresponding μ value leads to the best result in terms of R_{avg} among all the tested values.

Table 8 shows that the algorithm is statistically sensitive to the setting of this parameter. Specifically, the algorithm with $\mu = 0.75$ obtained the best performance in terms of R_{avg} for 8 out of the tested 15 instances, a much higher number than with the other 5 μ values. On the other hand, the effectiveness of the parameter setting depends also on the instance to be solved. For example, for N = 146 and 156, the algorithm with $\mu = 0.98$ leads to the best result, but for N = 140 and 193, $\mu = 0.8$ is the most appropriate. As a result, the default value of μ is set to 0.75 in this work, given that this setting generated the global best results both in terms of Avg. and #Best.

Table 8

Influence of the parameter μ on the average results (R_{avg}) for 15 selected difficult instances in the range of $101 \leq N \leq 200$, where the best results obtained among the tested parameter values are indicated in bold.

-	R_{avg}								
N/μ	0.75	0.8	0.85	0.90	0.95	0.98			
140	13.059841914	13.059817453	13.059823270	13.059869899	13.059888973	13.059835537			
145	13.277790851	13.279272357	13.279111852	13.331265740	13.279055403	13.278586300			
146	13.331264325	13.331264474	13.331270819	13.279138230	13.331277731	13.331261815			
155	13.673710758	13.673711182	13.673711394	13.673713813	13.673713389	13.673713813			
156	13.716830585	13.716872226	13.716815459	13.716939820	13.716864271	13.716725394			
160	13.919810338	13.919881950	13.919825081	13.919900855	13.919864987	13.919819064			
162	14.010217255	14.010262026	14.010301040	14.010339043	14.010382355	14.010458278			
163	14.065216603	14.065224398	14.065240188	14.065243626	14.065249862	14.065378644			
182	14.823505353	14.823788704	14.822847381	14.823913472	14.822465558	14.822936227			
185	14.939607732	14.941075551	14.939665117	14.940375880	14.940583282	14.940206054			
187	14.990022721	14.990192813	14.989746864	14.989629606	14.989615934	14.989776456			
191	15.142357505	15.142360122	15.142357509	15.142357573	15.142357526	15.142357509			
193	15.199379498	15.199379252	15.199382766	15.199380312	15.199382248	15.199383836			
195	15.287684736	15.287625886	15.287717064	15.287688537	15.287611777	15.287697020			
198	15.389903201	15.389903201	15.389903201	15.389903201	15.389903288	15.389903245			
Avg.	14.321809558	14.322042106	14.321847933	14.321977307	14.321881105	14.321869279			
#Best	8	3	2	1	2	2			

In addition, it is worth mentioning that we tested several dynamic strategies to adjust the value of μ . However, no significant improvement was observed with these strategies, which indicates a good robustness of the adopted strategy.

5.2 Effectiveness of the Two-phase Local Optimization

The two-phase local optimization procedure described in Section 3.2 is one of the basic components of the proposed algorithm. It runs the LBFGS algorithm in two phases instead of one single phase. To verify whether such a two-phase approach is more efficient than the popular one-phase approach, we carried out an experiment based on 96 PECC-FR instances with $N \in$ $\{50, 60, \ldots, 990, 1000\}$, where for each N the container radius R was set to the best result published at the well-known Packomania website [47]. In this experiment, the two-phase local optimization method and the standard LBFGS method were respectively performed 100 times to solve each instance, and at each time the initial solution was generated by uniformly and randomly distributing the centers (x_i, y_i) $(i = 1, 2, \ldots, N)$ of N circles in the given container. Moreover, to make a fair comparison, two local optimization methods employed the same stopping condition which is $||g||_{\infty} < 10^{-13}$. The experimental results are summarized in Fig. 9, where the X-axis denotes the number of circles (N) and the Y-axis denotes the average run times needed.

Fig. 9. Comparison between the standard one-phase local optimization method and the two-phase local optimization method used in the proposed algorithm.

One observes from Fig. 9 that the two-phase method is much more efficient compared to the popular one-phase method. For the one-phase method (i.e., the standard LBFGS method), the run time increases almost quadratically with the number of circles (N). However, for the two-phase method, the time increases almost linearly as N increases. As a result, the two-phase local optimization method is much more faster than the one-phase method on the large instances. For example, for the instance with N = 1000, these two methods consumed respectively 3 and 19 seconds for one run. This observation implies that at the later stage of local optimizations the search process can be sped up significantly if the computational complexity for evaluating the objective function $E_R(X)$ is reduced by considering only the overlaps between neighboring circles especially for the large instances. Indeed, the two-phase local optimization procedure greatly contributed to the excellent performance reported in the last section especially on large instances.

6 Conclusions and Future Work

We presented an effective search algorithm for the packing equal circles in a circle problem, which is computationally challenging in terms of global optimization and relevant in terms of important applications. The proposed iterated dynamic thresholding search algorithm originally integrates three main complementary components (i.e., two-phase local optimization, dynamic thresholding search and container adjustment). The excellent performance of the algorithm was demonstrated on well-known benchmark instances with up to 320 circles. Indeed, the algorithm updated 136 best-known results (improved upper bounds) and matched the best-known results for other 175 instances. Given that the studied problem has a number of practical applications, the code of our algorithm, which we make publicly available, can be used to solve some of these applications where the run time is not a strong constraint.

On the other hand, the proposed algorithm can be further improved from the following directions. First, the popular penalty function method used in the container adjustment procedure leads to results of low precision for some instances. To deal with this limitation, other approaches such as the augmented Langerian multiplier method can be applied for container adjustment to improve the precision of the results. Second, to further improve the search capacity, the dynamic thresholding search proposed in this study can serve as the key intensification component of a population-based hybrid evolutionary method in combination with a suitable crossover operator. Third, this work demonstrates that even though the best-known results are already of very high quality, it is still possible to make improvements. However, this is at the price of high computational efforts. Therefore, it would be of great interest to improve the computation efficiency of the method. For instance, lattice packing can be used for solution initialization (e.g., [49]) and block-coordinate descent methods can serve as the local optimization method of the IDTS algorithm. Such fast methods would be useful to deal with very-large and super-large instances (e.g., N > 500), and contribute to better solve practical applications where the run time is a critical constraint.

Finally, the underlying ideas of the two-phase optimization strategy and the dynamic thresholding search method are of general nature. As such, they can be applied to other related problems such as equal circle packing on a sphere [9], equal sphere packing in a regular container [4], and covering a convex polygon region by equal circles [10].

Acknowledgments

We are grateful to the reviewers for their valuable comments and suggestions which helped us to improve the paper. This work was partially supported by the National Natural Science Foundation of China (Grant No. 61703213), six talent peaks project in Jiangsu Province (Grant No. RJFW-011), and Shenzhen Science and Technology Innovation Commission under Grant Nos. JCYJ20180508162601910 and 2019-INT003.

References

- Addis B., Locatelli M., Schoen F., 2008, Efficiently packing unequal disks in a circle. Operations Research Letters, 36, 37–42.
- [2] Addis B., Locatelli M., Schoen F., 2008, Disk packing in a square: A new global optimization approach. INFORMS Journal on Computing, 20(4), 516–524
- [3] Akiyama J., Mochizuki R., Mutoh N., Nakamura G., 2002, Maximin distance for n points in a unit square or a unit circle. In: Akiyama, J., Kano, M. (Eds.), Japanese Conference on Discrete and Computational Geometry, JCDCG 2002, Tokyo, Japan, pp 9–13.
- [4] Birgin E.G., Sobral F.N.C., 2008, Minimizing the object dimensions in circle and sphere packing problems. *Computers & Operations Research*, 35, 2357–2375.
- [5] Birgin E.G., Gentil J.M., 2010, New and improved results for packing identical unitary radius circles within triangles, rectangles and strips. *Computers & Operations Research*, 37, 1318–1327.
- [6] Boll D.W., Donovan J., Graham R.L., Lubachevsky B.D., 2000, Improving dense packings of equal disks in a square. *The Electronic Journal of Combinatorics*, 7, R46.
- [7] Castillo I., Kampas F.K., Pintér J.D., 2008, Solving circle packing problems by global optimization: Numerical results and industrial applications. *European Journal of Operational Research*, 191, 786–802.
- [8] Chen M., Tang X.Y., Song T., Zeng Z.Z., Peng X.C, Liu S.Y., 2018, Greedy heuristic algorithm for packing equal circles into a circular container. *Computers & Industrial Engineering*, 119, 114–120.
- [9] Clare B.W., Kepert D.L., 1991, The optimal packing of circles on a sphere. Journal of Mathematical Chemistry, 6, 325-349.
- [10] Das G.K., Das S., Nandy S.C., Sinha B.P., 2006, Efficient algorithm for placing a given number of base stations to cover a convex region. *Journal of Parallel and Distributed Computing*, 66, 1353–1359.
- [11] Demaine E.D., Fekete S.P., Lang R.J., 2010, Circle packing for origami design is hard. CoRR, arXiv:1008.1224.
- [12] Doye J.P.K., Leary R.H., Locatelli M., Schoen F., 2004, Global optimization of Morse clusters by potential energy transformations. *INFORMS Journal on Computing*, 16(4), 371–379.
- [13] Dueck, G., Scheuer, T., 1990, Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing. *Journal of Computational Physics*, 90, 161–175.
- [14] Fiacco A.V., GP McCormick G.P., 1964, Computational algorithm for the sequential unconstrained minimization technique for nonlinear programming. *Management Science*, 10, 601–617.

- [15] Fodor F., 1999, The densest packing of 19 congruent circles in a circle. Geometriae Dedicata, 74, 139–145.
- [16] Fu Z.H., Huang W.Q., Lü Z.P., 2013, Iterated tabu search for the circular open dimension problem. European Journal of Operational Research, 225(2), 236-243.
- [17] Galiev S.I., Lisafina M.S., 2013, Linear models for the approximate solution of the problem of packing equal circles into a given domain. *European Journal of Operational Research*, 230, 505–514.
- [18] Graham R.L., 1968. Sets of points with given minimum separation (solution to problem El921). American Mathematical Monthly, 75, 192–193.
- [19] Graham R.L., Lubachevsky B.D., Nurmela K.J., Östergard P.R.J., 1998, Dense packings of congruent circles in a circle. *Discrete Mathematics*, 181, 139–154.
- [20] Grebennik I.V., Kovalenko A.A., Romanova T.E., Urniaieva I.A., Shekhovtsov S.B., 2018, Combinatorial configurations in balance layout optimization problems, *Cybernetics and Systems Analysis*, 54, 221–231.
- [21] Grosso A., Jamali A.R.M.J.U., Locatelli M., Schoen F., 2010, Solving the problem of packing equal and unequal circles in a circular container. *Journal of Global Optimization*, 47, 63–81.
- [22] Hager W.W., Zhang H.C, 2005, A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM Journal on Optimization, 16, 170-192.
- [23] He K., Ye H., Wang Z.L., Liu J.F., 2018, An efficient quasi-physical quasi-human algorithm for packing equal circles in a circular container. *Computers & Operations Research*, 92, 26–36.
- [24] Hifi M., M' Hallah R., 2007, A dynamic adaptive local search algorithm for the circular packing problem. *European Journal of Operational Research*, 183, 1280– 1294.
- [25] Hifi M., Yousef L., 2019, A local search-based method for sphere packing problems. European Journal of Operational Research, 274, 482–500.
- [26] Huang W.Q., Ye T., 2010, Greedy vacancy search algorithm for packing equal circles in a square. Operations Research Letters, 38, 378–382.
- [27] Huang W.Q., Ye T., 2011, Global optimization method for finding dense packing of equal circle in a circle. *European Journal of Operational Research*, 210, 474–481.
- [28] Kravitz S., 1967, Packing cylinders into cylindrical containers. Mathematics Magazine, 40, 65–71.
- [29] Leary R., 2000, Global optimization on funneling landscapes. Journal of Global Optimization, 18, 367–383
- [30] Liu D.C., Nocedal J., 1989, On the limited memory BFGS method for large scale optimization. *Mathematical Programming*, 45, 503–528.

- [31] Liu J.F., Xue S.J., Liu Z.X., Xu D.H., 2009, An improved energy landscape paving algorithm for the problem of packing circles into a larger containing circle. *Computers & Industrial Engineering*, 57, 1144–1149.
- [32] Litvinchev I., Ozuna E. L., 2014, Approximate packing circles in a rectangular container: valid inequalities and nesting. *Journal of Applied Research and Technology*, 12,716–723.
- [33] Litvinchev I., Infante L., Espinosa E.L.Q., 2016, Using valid inequalities and different grids in LP-based heuristic for packing circular objects, *Lecture Notes in Computer Science*, 9622, 681-690
- [34] Locatelli M., Raber U., 2002, Packing equal circles in a square: a deterministic global optimization approach. Discrete Applied Mathematics, 122, 139–166.
- [35] Locatelli M., Schoen F., 2002, Fast global optimization of difficult Lennard-Jones clusters. Computational Optimization and Applications, 21, 55–70.
- [36] López C.O., Beasley J.E., 2011, A heuristic for the circle packing problem with a variety of containers. *European Journal of Operational Research*, 214, 512–525.
- [37] López C.O., Beasley J.E., 2013, Packing unequal circles using formulation space search. Computers & Operations Research, 40, 1276–1288.
- [38] López C.O., Beasley J.E., 2016, A formulation space search heuristic for packing unequal circles in a fixed size circular container. *European Journal of Operational Research*, 251, 64–73.
- [39] Lü Z.P., Huang W.Q., 2008, PERM for solving circle packing problem. Computers & Operations Research, 35(5), 1742–1755.
- [40] Markót M.C., Csendes T., 2005, A new verified optimization technique for the "packing circles in a unit square" problems. SIAM Journal on Optimization, 16(1), 193-219.
- [41] Martínez L., Andrade R., Birgin E.G., Martínez J.M., 2009, Packmol: A package for building initial configurations for molecular dynamics simulations. *Journal of Computational Chemistry*, 30(13):2157–2164.
- [42] Melissen H., 1994, Densest packings of eleven congruent circles in a circle. Geometriae Dedicata, 50, 15–25.
- [43] Mladenović N., Plastria K., Urošević D., 2005, Reformulation descent applied to circle packing problems. Computers & Operations Research, 32, 2419–2434.
- [44] Müller A., Schneider J.J., Schömer E., 2009, Packing a multidisperse system of hard disks in a circular environment. *Physical Review E*, 79, 021102.
- [45] Pirl U., 1969, Der Mindestabstand von n in der Einheitskreisscheibe gelegenen Punkten. Mathematische Nachrichten, 40(1-3), 111-124.
- [46] Specht E., 2013, High density packings of equal circles in rectangles with variable aspect ratio. Computers & Operations Research, 40, 58–69.

- [47] Specht E., November 2020 (Accessed), Packomania website: http://www. packomania.com.
- [48] Stetsyuk P.I., Romanova T.E., Scheithauer G., 2016, On the global minimum in a balanced circular packing problem. *Optimization Letters*, 10, 1347–1360.
- [49] Stoyan Y., Yaskov G., Romanova T., Litvinchev I., Yakovlev S., Cantú J.M.V., 2020, Optimized packing multidimensional hyperspheres: a unified approach, *Mathematical Biosciences and Engineering*, 76(6): 6601–6630.
- [50] Stoyan Y., Zlotnik M., Chugay A., 2012, Solving an optimization packing problem of circles and non-convex polygons with rotations into a multiply connected region. *Journal of the Operational Research Society*, 63: 379–391.
- [51] Stoyan Y., Yaskov G., 2014, Packing unequal circles into a strip of minimal length with a jump algorithm. *Optimization Letters*, 8: 949–970.
- [52] Stoyan Y., Scheithauer G., Yaskov G.N., 2016, Packing unequal spheres into various containers. *Cybernetics and Systems Analysis*, 52: 419–426.
- [53] Toledo F.M.B., Carravilla M.A., Ribeiro C., Oliveira J.F., Gomes A.M., 2013, The dotted-board model: a new MIP model for nesting irregular shapes. *International Journal of Production Economics*, 45(2), 478–487.
- [54] Wang H.Q., Huang W.Q., Zhang Q., Xu D.M., 2002, An improved algorithm for the packing of unequal circles within a larger containing circle. *European Journal* of Operational Research, 141, 440–453.
- [55] Zeng Z.Z., Yu X.G., He K., Huang W.Q., Fu Z.H., 2016, Iterated tabu search and variable neighborhood descent for packing unequal circles into a circular container. *European Journal of Operational Research*, 250, 615–627.
- [56] Zhang D.F., Deng A., 2005, An efficient hybrid algorithm for the problem of packing the circles into a larger containing circle. *Computers & Operations Research*, 32(8), 1941–1951.