
Path Relinking for the Fixed Spectrum Frequency
Assignment Problem

Xiangjing Lai, Jin-Kao Hao∗

LERIA, Université d’Angers, 2 bd Lavoisier, 49045 Angers, Cedex 01, France

Abstract

The fixed spectrum frequency assignment problem (FS-FAP) is a highly rele-
vant application in modern wireless systems. This paper presents the first path
relinking (PR) approach for solving FS-FAP. We devise four relinking operators
to generate intermediate solutions (or paths) and a tabu search procedure for
local optimization. We also adopt a diversity-and-quality technique to maintain
population diversity. To show the effectiveness of the proposed approach, we
present computational results on the set of 42 benchmark instances commonly
used in the literature and compare them with the current best results obtained
by any other existing methods. By showing improved best results (new upper
bounds) for 19 instances, we demonstrate the effectiveness of the proposed PR
approach. We investigate the impact of the relinking operators and the popula-
tion updating strategy. The ideas of the proposed could be applicable to other
frequency assignment problems and search problems.
Keywords: Path relinking; Population algorithm; Heuristics; Frequency assign-
ment.

1. Introduction

Frequency assignment represents a key issue in wireless communications sys-
tems and has attracted a lot of attentions (Audhya et al., 2013; Castelino et al.,
1996; Fischettti et al., 2000; Flood et al., 2013; Hale, 1980; Hao et al., 1998; Hur-
ley et al., 1997; Kim et al., 2007; Král, 2005; Lai and Coghill, 1996; Maniezzo
and Carbonaro, 2000; San Jose-Revuelta, 2007; Smith et al., 1998; Subrama-
nian et al., 2008; Tiourine et al., 2000; Wang and Rushforth, 1996; Wu et al.,
2013). The fixed spectrum frequency assignment problem (FS-FAP) studied in
this study is among the most typical frequency assignment problems (Aardal et
al., 2007; Eisenblätter and Koster, 2010; Montemanni and Smith, 2010).

Informally, given a radio network, FS-FAP aims to assign a set of available
frequencies to each transmitter of the network such that the level of interference

∗Corresponding author.
Email addresses: laixiangjing@gmail.com (Xiangjing Lai), hao@info.univ-angers.fr

(Jin-Kao Hao)

Preprint submitted to Elsevier January 20, 2015

of the frequency assignment is minimized. Technically, interference occurs when
two close transmitters are assigned frequencies which are close in the frequency
spectrum.

From a graph-theoretic point of view, FS-FAP can be defined as follows
(Aardal et al., 2007; Montemanni and Smith, 2010). Given a double weight
undirected graph G = (V,E,D, P) with a vertex set V , an edge set E, and
two edge weight sets D and P , as well as a set F of consecutive frequencies,
FS-FAP is to find a mapping (i.e., a frequency assignment) f from V to F ,
(i.e., f : V → F) such that an objective or cost function is minimized. In the
present model, a vertex v ∈ V corresponds to a transmitter of the network, an
edge e ∈ E represents a pair of transmitters for which the assigned frequencies
are constrained, D is the set of edge weights (dij , the first type) defining the
separation constraints between frequencies of any two adjacent vertices, and
P is the set of edge weights (pij , the second type) representing the penalty
values measuring the degree of interference defined as follows. Given a frequency
assignment f and an edge e(i, j) ∈ E, the penalty pij is incurred if |f(i)−f(j)| ≤
dij , i.e., if the separation constraint is violated. Then the cost of the frequency
assignment f is defined as the total interference generated by f which is given
by the summation of the incurred penalty values (pij). The goal of FS-FAP
is then to determine a frequency assignment of minimum cost. Note that in
the literature, there exist other similar FS-FAP models which differ mainly in
the way the cost function is defined (Aardal et al., 2007; Hale, 1980; Hao et
al., 1998; Hurley et al., 1997; Kendall and Mohamad, 2004; Mabed et al., 2011;
Park et al., 2002).

Frequency assignment problems like FS-FAP are closely related to the band-
width coloring problem (also called the restricted T-coloring problem) with k
fixed colors (Dorne and Hao, 1998; Jin and Hao, 2014; Johnson et al., 2008;
Lai and Lü, 2013; Malaguti and Toth, 2008; Roberts, 1991) and known to be
computationally hard in general. Indeed, the FS-FAP problem can be shown
to be NP-hard since it is reduced to the NP-hard graph k-coloring problem
(Hale, 1980). Given the high complexity of FS-FAP, considerable efforts have
been made to develop effective heuristic methods. These include single solu-
tion based approaches like tabu search (Castelino et al., 1996; Hao et al., 1998;
Montemanni et al., 2003), adaptive local search (Kendall and Mohamad, 2004),
heuristic manipulation technique (Montemanni and Smith, 2010). Population-
based approaches are also very popular: ANTS algorithm (Maniezzo and Car-
bonaro, 2000), genetic algorithms (Dorne and Hao, 1996; Park et al., 2002; San
Jose-Revuelta, 2007), hybrid evolutionary algorithms (Dorne and Hao, 1995; Jin
et al., 2001; Kim et al., 2007; Lai and Coghill, 1996), multiple strategy method
(Hurley et al., 1997). In addition to heuristic methods, approaches using integer
programming were also proposed in the literature to determine lower bounds
for the FS-FAP problem, such as those in (Montemanni et al., 2001, 2004).

Recently, the population-based path relinking approach (Glover, 1997; Glover
et al., 2000) has attracted special attention in combinatorial optimization, and
shows outstanding performances in solving a number of difficult problems, such
as antibandwidth problem (Duarte et al., 2011), bandwidth coloring problem

2

(Lai et al., 2014), clustering (Martins de Oliveira et al., 2014), flow shop se-
quencing and scheduling (Costa et al., 2012; Reeves and Yamada, 1998), uncon-
strained binary quadratic optimization (Wang et al., 2012), and web services
composition (Parejo et al., 2014). In this paper, we introduce an effective path
relinking algorithm for solving FS-FAP with the following main contributions.

From the perspective of algorithm design, we base our approach on the gen-
eral path relinking framework and devise dedicated relinking operators. These
operators are used to create solution paths from one initiating solution to a
guiding solution. For the purpose of local optimization, we develop a specific
tabu search procedure. To maintain a healthy diversity of the solution popu-
lation, we apply a quality-and-diversity technique to update the solution pool.
The integration of these ingredients leads to an effective algorithm.

Indeed, the proposed algorithm is assessed on the set of 42 benchmark in-
stances commonly used in the literature and shows a very competitive perfor-
mance in comparison with the best performing method dedicated to the studied
problem in the literature. In particular, the proposed algorithm is able to dis-
cover improved best known results (new upper bounds) for 19 instances and
matches the best known results for 21 other cases.

The rest of this paper is organized as follows. In Section 2, we present the
proposed algorithm. In Section 3, we show computational results by comparing
them with the results of the best performing algorithm in the literature. In
Section 4, we investigate some key ingredients of the proposed algorithm. In
Section 5, we draw conclusions and discuss several research perspectives.

2. Path Relinking Algorithm for FS-FAP

The path relinking algorithm presented in this paper is a hybrid population
algorithm that combines four essential ingredients: population initialization,
local optimization method, relinking operator, and population updating strat-
egy. In this section, we present the general path relinking algorithm and its
ingredients.

2.1. Search Space and Evaluation Function

We first define the search space Ω explored by the algorithm and the evalu-
ation function which is used to measure the quality of a candidate solution.

A solution of FS-FAP is a mapping from V to F (f : V → F), thus a solution
s can be represented by a one-dimensional vector where each variable represents
a vertex and its value is the assigned frequency. The search space Ω explored
by the algorithm is composed of all possible assignment, and hence the size of
the search space is bounded by O(|F ||V |).

To evaluate the quality of a frequency assignment s = (f1, f2, . . . , fn) ∈ Ω,
we calculate the degree of interference as follows:

Cost(s) =
∑

e(i,j)∈E;|fi−fj |≤dij

pij (1)

3

where dij ∈ D represents the distance constraint between the frequencies of
two adjacent vertices i and j, and pij represents the resulting penalty when the
distance constraint is violated, i.e., |fi − fj | > dij . This cost function (to be
minimized) is also referred as the objective function in the rest of the paper.

2.2. Main Framework

Algorithm 1 Pseudo-code of our path relinking algorithm for FS-FAP

1: Input: Problem instance I, the size of population p
2: Output: the best solution s∗ found
3: repeat
4: P = {s1, . . . , sp} ← Population Initialization(I, p) /∗ Section 2.3 ∗/
5: if it is not in the first loop then
6: sw = arg max{f(si) : i = 1, . . . , p}
7: P ← P ∪ {s∗} \ {sw}
8: end if
9: s∗ = arg min{f(si) : i = 1, . . . , p}

10: PairSet← {(si, sj) : 1 ≤ i < j ≤ p}
11: while PairSet ̸= ∅ do
12: Randomly pick a solution pair (si, sj) ∈ PairSet
13: PairSet← PairSet \ {(si, sj)}
14: s

′
← PathRelinking(si, sj), s

′′
← PathRelinking(sj , si)/∗ Section 2.5 ∗/

15: s
′
← TabuSearch(s

′
) /∗ Section 2.4 ∗/

16: if f(s
′
) < f(s∗) then

17: s∗ ← s
′
, f(s∗)← f(s

′
)

18: end if
19: P ← UpdatingPool(PairSet, P, s

′
)

20: PairSet← UpdatingPool(PairSet, P, s
′
) /∗ Section 2.6 ∗/

21: s
′′
← TabuSearch(s

′′
) /∗ Section 2.4 ∗/

22: if f(s
′′
) < f(s∗) then

23: s∗ ← s
′′
, f(s∗)← f(s

′′
)

24: end if
25: P ← UpdatingPool(PairSet, P, s

′′
)

26: PairSet← UpdatingPool(PairSet, P, s
′′
) /∗ Section 2.6 ∗/

27: end while
28: until a stop criterion is met

The general procedure of our path relnking algorithm is shown in Algorithm
1, where the following notations are used. s∗ and sw respectively represent the
best solution found so far and the worst solution in the population, and PairSet
is the set of solution pairs (si, sj) and is initially composed of all possible solution
pairs (si, sj) in the population.

The proposed algorithm starts with an initial population P (line 4) which in-
cludes p different solutions, where each of them is randomly generated (Section
2.3) and then is optimized by the tabu search procedure (Section 2.4). Subse-
quently, the algorithm enters a while loop (lines 11 to 27) and at each iteration

4

a solution pair is randomly selected from PairSet and then is used to generate
new solutions by using a relinking operator (line 14) (Section 2.5) and the tabu
search procedure (lines 15 and 21). Specifically, for the selected solution pair
(si, sj), two paths composed of intermediate solutions are built: one from si to
sj and one from sj to si. Then two particular solutions s

′
and s

′′
are identified

from the two paths and are separately improved by tabu search. After that, the
population updating strategy is used to update the population P with the im-
proved offspring solution (lines 19 and 25). Simultaneously, the PairSet is also
updated accordingly as follows: First, the solution pair (si, sj) is removed from
PairSet (line 13). Then, if the offspring solution s

′
replaces a solution sr in the

population, all solution pairs containing sr are removed from PairSet and all
solution pairs that can be generated by combining s

′
with other solutions in the

population are added into PairSet (see Section 2.6). The while loop ends when
PairSet becomes empty, then the population is recreated, while retaining the
best solution S∗ found so far in the newly created population (lines 4 to 7).

Our algorithm terminates when the population has been rebuilt q times (a
predetermined value) or a given timeout limit is reached.

In the following subsections, the ingredients of the proposed algorithm are
respectively described.

2.3. Population Initialization

Within the proposed algorithm, a population is constructed as follows at
the beginning of the search or when the reference set PairSet becomes empty.
First, we generate 3p random solutions from the search space Ω, where each
variable (or vertex) of each solution is assigned a frequency randomly taken
from the frequency domain F . Then, for each generated solution, the tabu
search procedure (see Section 2.4) is applied to optimize the solution to a local
optimum. Finally, we select the first p best solutions (according to the cost
function given in (1)) to form the initial population.

2.4. Local Optimization with Tabu Search

In the present study, we employ a tabu search (TS) algorithm as the local
optimization routine of our path relinking algorithm.

2.4.1. Neighborhood Structure

The TS procedure adopts the conflict-based neighborhood (Dorne and Hao,
1998; Hao et al., 1998; Montemanni et al., 2003). Given a solution s, a neigh-
boring solution of s with respect to this neighborhood is obtained by changing
the value (frequency) of one conflicting variable (vertex) u from its original fre-
quency fi to another frequency fj (denoted by < u, fi, fj >), and the resulting
neighborhood N(s) is composed of all such neighboring solutions. Here, a vertex
is considered to be conflicting if at least one of the distance constraints associ-
ated with this vertex is violated. Thus, the size of the neighborhood is bounded
by O(|CV | × |F |), where |CV | represents the number of conflicting vertices in
s, and |F | is the number of frequencies available.

5

2.4.2. Tabu List Management

In order to forbid the recently visited solutions to be revisited, a tabu list
is maintained. During the search, each time a move < u, fi, fj > is performed,
(i.e., the frequency of u is changed from fi to fj), vertex u is forbidden to
receive the frequency fi for the next tt iterations unless the aspiration condition
(see Section 2.4.3) is satisfied, where tt is called tabu tenure and is dynamically
determined as follows:

tt(u) = ⌈R× Freq[u][ci]

max0≤v<n,0≤q<|F |{Freq[v][q]}
⌉+ rand(10..12) (2)

In this equation, R is a predetermined parameter, Freq[v][q] represents the
number of times of assigning frequency q to vertex v during the current TS
round, and rand(10..12) represents a random integer from 10 to 12. Thus, the
tabu tenure has a minimum length of 10 which is dynamically adjusted by some
historical information.

2.4.3. Aspiration Criterion and Stopping Condition

Since the attributes (vertices and frequencies used) of the solution instead of
the solution itself are forbidden, some good neighboring solutions may be pre-
vented from being visited by TS. To avoid this, we use the following aspiration
criterion to revoke the tabu status of a forbidden move: A forbidden move is
allowed as long as it leads to a solution better than the best solution found so
far or the set of non-tabu neighborhood solutions becomes empty.

The stopping condition of our TS algorithm is the maximum number α
of iterations during which the best solution has not been improved, and this
number is called the depth of TS algorithm.

2.5. The Relinking Operator

The relinking operator is one of the most important components of the path
relinking approach, and its goal is to generate, from two high-quality parent
solutions, new promising solutions by creating solution paths connecting the
two parent solutions. Our relinking operator includes two main operations.
The first one is to construct a solution path that connects two parent solutions.
The parent solutions located at the beginning and the end of the path are
respectively called the initiating and guiding solutions, while the others are
called intermediate (or path) solutions. The second operation is to choose from
each constructed path one solution as the reference solution which will be further
improved by the tabu search procedure.

To build a path connecting the initiating and guiding solutions, there are
generally several strategies that can be used, leading to different relinking oper-
ators whose effectiveness may vary according to the specific problem structures.
In this study, in order to identify the most appropriate relinking operators for
FS-FAP, we devise four relinking operators: the greedy relinking operator (de-
noted by PR), the random relinking operator (denoted by rPR), the mixed

6

relinking operator (denoted by mPR), and the randomized and mixed relink-
ing operator (denoted by mrPR). In the following, we describe these relinking
operators.

The pseudo-code of the four different relinking operators are respectively
described in Algorithms 2 to 5.

Algorithm 2 Pseudo-code of constructing a path for the greedy PR operator

1: Input: A pair of solutions (s1, s2)
2: Output: Path solutions s(0), s(1), . . . , s(r) from s1 to s2

3: NC ← {l : s1l ̸= s2l , l = 1, 2, . . . , n}
4: s(0)← s1, s← s1, m← 1
5: while |NC| > 0 do
6: l∗ ← argmin{f(s⊕ l) : l ∈ NC}
7: NC ← NC \ {l∗}
8: s← s⊕ l∗

9: s(m)← s , m← m+ 1
10: end while

Algorithm 3 Pseudo-code of constructing a path for the random PR operator

1: Input: A pair of solutions (s1, s2)
2: Output: Path solutions s(0), s(1), . . . , s(r) from s1 to s2

3: NC ← {l : s1l ̸= s2l , l = 1, 2, . . . , n}
4: s(0)← s1, s← s1, m← 1
5: while |NC| > 0 do
6: l∗ ← a randomly selected l ∈ NC
7: NC ← NC \ {l∗}
8: s← s⊕ l∗

9: s(m)← s , m← m+ 1
10: end while

For the PR and rPR relinking operators (Algorithms 2 and 3), a solution
sequence (i.e., a path) with a length of r + 1: (s(0), s(1), s(2) . . . s(r)) is
generated in a step by step way by starting from s(0), where s(m) differs from
s(m− 1) (m = 1, 2 . . . r) by the value of only one variable, and r+ 1 represents
the size of the initial NC, where NC is a set of variables whose values are
different with respect to the two solutions considered. In addition, s(0) and s(r)
correspond respectively to the initiating solution s1 and the guiding solution s2,
while the other solutions are intermediate (or path) solutions. Moreover s ⊕ l
means that the lth variable of s is changed according to the guiding solution.

The only difference between the PR and rPR relinking operators lies in the
way to select the variable l from NC for generating the next solution on the
path. In rPR , based on the current solution s(i), a random variable l (l ∈ NC)
is chosen to generate the next solution s(i + 1), i = 0, 1, . . . , r − 1 , whereas
in the PR relinking operator a variable l (l ∈ NC) yielding the best objective
value is always chosen.

7

Algorithm 4 Pseudo-code of constructing a path for the mixed PR operator

1: Input: A pair of solutions (s1, s2)
2: Output: Path solutions s(0), s(1), . . . , s(r) from s1 to s2

3: NC ← {l : s1l ̸= s2l , l = 1, 2, . . . , n}
4: s(0)← s1, s← s1, m← 1
5: while |NC| > 0 do
6: l∗ ← argmin{f(s⊕ l) : l ∈ NC}
7: NC ← NC \ {l∗}
8: s← s⊕ l∗

9: s(m)← s
10: if m is odd then
11: s1 ← s, s← s2

12: else
13: s2 ← s, s← s1

14: end if
15: m← m+ 1
16: end while

Algorithm 5 Pseudo-code of constructing a path for the randomized mixed
PR operator

1: Input: A pair of solutions (s1, s2)
2: Output: Path solutions s(0), s(1), . . . , s(r) from s1 to s2

3: NC ← {l : s1l ̸= s2l , l = 1, 2, . . . , n}
4: s(0)← s1, s← s1, m← 1
5: while |NC| > 0 do
6: CV L← the first λ best l ∈ NC /* construct a candidate list for variables */
7: l∗ ← a randomly selected l ∈ CV L
8: NC ← NC \ {l∗}
9: s← s⊕ l∗

10: s(m)← s
11: if m is odd then
12: s1 ← s, s← s2

13: else
14: s2 ← s, s← s1

15: end if
16: m← m+ 1
17: end while

8

After the creation of a path, we choose one solution from this path as the
reference solution such that the chosen solution is far enough from both the
initiating and guiding solutions and has a good objective function value (Wang
et al., 2012). Specifically, we first construct a candidate solution list (CSL)
which is composed of the path solutions having a distance of at least ξ · HD
(where ξ is a predefined parameter between 0 and 1.0, and HD is the Hamming
distance between the initiating and guiding solutions) from both the initiating
and guiding solutions, then the solution having the best objective value in CSL
is chosen as the reference solution which will be further improved by the tabu
search procedure.

As for the mixed relinking operator (mPR) described in Algorithm 4, the
path solutions are alternately generated from s1 to s2 and from s2 to s1 in
a greedy way, where s1 and s2 are alternately chosen as the guiding solution.
Specially, let s be the current path solution, s2 the current guiding solution, the
mPR operator will pick the variable l∗ (l∗ ∈ NC) yielding the best objective
value to generate the next path solution (i.e., s ← s⊕ l∗), and NC is updated
accordingly (i.e., NC ← NC \ {l∗}). Then, to generate the next path solution,
the current path solution s is updated and s1 is chosen as the the guiding
solution. The above process is repeated until the NC becomes empty. Finally,
the last generated path solution is chosen as the reference solution.

The mrPR relinking operator described in Algorithm 5 is a randomized
version of the mPR operator, and the difference between them lies in the way to
select the variable from NC for generating the next path solution. In Algorithm
4, the variable yielding the best objective value is always selected at each step.
However, in Algorithm 5, a candidate variable list (CVL) composed of the first
λ best variables (λ = Min{λmax, |NC|}) with respect to the objective value is
first built from NC, then a variable l in CVL is chosen at random.

2.6. Population Updating

Within a population-based algorithm, when a new solution is generated, a
population updating strategy is used to determine whether the new solution
should be inserted into the population and which solution in the population
should be replaced. In the present algorithm, we use a distance-and-quality
based updating strategy to control the diversity of population and maintain
simultaneously high-quality solutions in the population (Lü and Hao, 2010; Po-
rumbel et al., 2010; Sörensen and Sevaux, 2006).

The population updating strategy used in our algorithm is described in Al-
gorithm 6 and can be stated as follows: let so denote the offspring solution, sr

denote the closest solution to so, and sw be the worst solution in the population,
then the population is updated in the following two cases. First, if the distance
between the solutions so and sr is less than or equals to the cutoff distance β×n
(β is a predetermined parameter and n is the number of vertices in the graph)
and so is better than sr in terms of the objective value, then so is inserted into
the population, replacing the solution sr. Second, if the distance between the
solutions so and sr is larger than or equals to the cutoff distance (β × n) and
so is better than sw in terms of the objective value, then so is inserted into

9

the population, replacing the solution sw. Finally, the reference set PairSet is
updated accordingly, as explained in Section 2.2.

Algorithm 6 Pseudo-code of Population Updating Strategy

1: Input: Population P , reference set PairSet, offspring solution so, distance cutoff
factor β

2: Output: Population P , reference set PairSet
3: sw = arg max{f(si) : i = 1, . . . , p}
4: sr ← the closest solution to the offspring so

5: Dis← the Hamming distance between so and sr

6: if f(so) < f(sr) and Dis ≤ β × n then
7: P ← P ∪ {so} \ {sr}
8: PairSet← PairSet ∪ {(so, sk) : sk ∈ P} \ {(sr, sk) : sk ∈ P}
9: else if f(so) < f(sw) and Dis > β × n then

10: P ← P ∪ {so} \ {sw}
11: PairSet← PairSet ∪ {(so, sk) : sk ∈ P} \ {(sw, sk) : sk ∈ P}
12: end if

3. Experimental Results and Comparisons

This section is dedicated to experimental assessments of the proposed path
relinking algorithm and comparisons with the state of the art methods in the
literature.

3.1. Instances and Experimental Protocol

A set of 42 benchmarks is considered in our experiments, which is available
online at http://www.idsia.ch/~roberto/FAP08.zip, and the characteristics
of these instances are summarized in Table 1.

Our path relinking algorithm was programmed in C++ and compiled by
g++ compiler without the optimization option 1, and all experiments are carried
out on a computer with an Intel Xeon E5440 processor (2.83 GHz CPU and 2Gb
RAM). Following the DIMACS machine benchmark, our machine requires 0.43s,
2.62s, and 9.85s respectively for graphs r300.5, r400.5, and r500.5 2. Table 2
gives the descriptions and settings of the parameters used in our algorithm.
Note that these parameter values are determined according to a preliminary
experiment.

In the present study, we conduct two experiments to evaluate systematically
two versions of our path relinking algorithm, i.e., one with the rPR relinking
operator, and another one with the mrPR relinking operator. In the first exper-
iment, we use the maximum number q (q = 5) of rebuilding population as the

1The source code of our algorithm and the best solutions reported in this work will be
available at http://www.info.univ-angers.fr/pub/hao/prfap.html

2fdmax: ftp://dimacs.rutgers.edu/pub/dsj/clique/. Note that the DIMACS machine
benchmark procedure is compiled by gcc compiler without optimization option.

10

stopping condition of algorithm (see Section 3.2). Additionally, in the second
experiment we use the time limit as the stopping condition to make a compari-
son with the reference algorithm (see Section 3.3). Given the stochastic nature
of our path relinking algorithm, for each experiment each instance is indepen-
dently solved 10 times by each tested version of the algorithm, without special
parameter tuning.

Table 1: Characteristics of graph used in the instances
Graph |V | |E| Average

dvw

Average

pvw

AC-45-17 45 482 0.29 1.00

AC-45-25 45 801 0.34 1.00

AC-95-9 95 781 0.00 1.00

AC-95-17 95 2298 0.15 1.00

GSM-93 93 1073 0.28 1.00

GSM-246 246 7611 0.32 1.00

Test95 95 1214 1.37 1.00

Test282 282 10430 1.38 1.00

P06-5 88 3021 0.58 1.00

P06-3 153 9193 0.59 1.00

P06b-5 88 3021 0.39 1.00

P06b-3 153 9193 0.4 1.00

GSM2-184 184 6809 0.2 8.95 × 106

GSM2-227 227 10088 0.18 9.10 × 106

GSM2-272 272 14525 0.16 7.95 × 106

1-1-50-75-30-2-50 75 835 0.26 10.81

1-2-50-75-30-4-50 75 835 0.62 11.01

1-3-50-75-30-0-50 75 835 0.00 10.97

1-4-50-75-30-2-1 75 835 0.25 1.00

1-5-50-75-30-2-100 75 835 0.26 21.35

1-6-50-75-30-0-1000 75 835 0.00 2068.48

Table 2: Settings of important parameters
Parameters Section Description Values

p 2.2 population size 30

α 2.4 depth of TS 103

R 2.4 parameter used in tabu tenure 40

ξ 2.5 distance parameter used in relinking operator 0.33

λmax 2.5 size of candidate variable list 3

q 2.5 number of times of rebuilding population 5

β 2.6 distance parameter used in the pool updating 0.35

3.2. Computational Results of the path relinking algorithms

The first experiment aims to evaluate the performance of two versions of
the proposed algorithm with the rPR and mrPR relinking operators. The com-
putational statistics on the 42 benchmark instances are summarized in Table
3. The first two columns of the table give the characteristics of instance, in-
cluding the name of graph (name) and the span of frequencies (|F |), the third
and fourth columns respectively give the lower bounds obtained by the integer

11

Table 3: Computational statistics of the rPR and mrPR algorithms on the 42 benchmark

instances, including the best objective function value over 10 independent runs, average ob-

jective function value, average running time, and deviation of the best objective function from

the best known result. The improved results are indicated in bold.

rPR mrPR

Graph |F | LB Cpre Cbest Cavg %Dev Tavg Cbest Cavg %Dev Tavg

AC-45-17 7 20 32 32 32.0 0.00 55 32 32.0 0.00 49

AC-45-17 9 10 15 15 15.0 0.00 63 15 15.0 0.00 55

AC-45-25 11 26 33 33 33.0 0.00 94 33 33.0 0.00 107

AC-95-9 6 27 31 31 31.0 0.00 125 31 31.0 0.00 117

AC-95-17 15 28 33 33 33.4 0.00 290 33 33.9 0.00 265

AC-95-17 21 9 10 10 10.0 0.00 207 10 10.0 0.00 247

GSM-93 9 17 32 32 32.2 0.00 170 32 32.1 0.00 185

GSM-93 13 4 7 7 7.3 0.00 127 7 7.5 0.00 155

GSM-246 21 50 79 80 80.8 1.27 882 79 79.7 0.00 1061

GSM-246 31 16 25 25 26.5 0.00 805 25 25.4 0.00 1017

Test95 36 7 8 8 8.0 0.00 138 8 8.0 0.00 180

Test282 61 21 51 54 56.1 5.88 56 54 55.5 5.88 4525

Test282 71 6 27 29 30.1 7.41 4258 28 29.8 3.70 4187

Test282 81 - 10 9 10.7 -10.0 3213 9 10.9 -10.0 3503

P06-5 11 121 133 133 133.0 0.00 204 133 133.0 0.00 152

P06-3 31 109 115 115 116.9 0.00 531 115 115.6 0.00 641

P06b-5 21 49 52 52 52 0.00 142 52 52.0 0.00 157

P06b-5 31 25 25 25 25 0.00 180 25 25 0.00 201

P06b-3 31 106 112 112 112.1 0.00 540 112 112 0.00 681

P06b-3 71 26 26 26 26 0.00 931 26 26 0.00 716

GSM2-184 39 4856 5447 5250 5258.1 -3.62 1529 5258 5266.1 -3.47 1578

GSM2-184 49 874 874 874 874.0 0.00 672 874 874.0 0.00 898

GSM2-184 52 - 162 162 162.0 0.00 295 162 162.0 0.00 425

GSM2-227 29 - 61586 57731 59405.8 -6.26 3131 56955 59573.5 -7.52 3091

GSM2-227 39 7445 10550 8772 9121.6 -16.85 2611 8809 9201.1 -16.50 2251

GSM2-227 49 1998 2459 1998 2004.7 -18.75 2230 1998 2015.5 -18.75 2396

GSM2-272 34 - 56128 53080 54570.2 -5.43 5513 53688 54795.3 -4.35 5344

GSM2-272 39 16144 27416 26237 27475.0 -4.3 6278 26453 28135.1 -3.51 5368

GSM2-272 49 6310 7785 6997 7128.5 -10.12 5798 7056 7208.0 -9.36 4480

1-1-50-75-30-2-50 5 806 1242 1242 1242.0 0.00 89 1242 1242.0 0.00 97

1-1-50-75-30-2-50 10 53 97 96 96.4 -1.03 241 96 96.2 -1.03 242

1-1-50-75-30-2-50 11 36 59 55 57.1 -6.78 223 57 57.7 -3.39 249

1-1-50-75-30-2-50 12 - 36 32 32.1 -11.11 184 32 32.3 -11.11 187

1-2-50-75-30-4-50 9 - 671 665 665.0 -0.89 234 665 665.0 -0.89 246

1-2-50-75-30-4-50 11 - 317 313 313.8 -1.26 282 313 313.6 -1.26 292

1-3-50-75-30-0-50 7 - 194 194 194.4 0.00 173 194 196.0 0.00 172

1-4-50-75-30-2-1 6 - 70 70 70.0 0.00 69 70 70 0.00 76

1-4-50-75-30-2-1 10 17 19 19 19.0 0.00 79 19 19.0 0.00 97

1-5-50-75-30-2-100 10 94 176 168 168.9 -4.55 295 168 168.9 -4.55 278

1-5-50-75-30-2-100 12 - 63 57 57.1 -9.52 229 57 57.5 -9.52 273

1-6-50-75-30-0-1000 10 6586 6840 6777 6777.0 -0.92 288 6777 6785.7 -0.92 301

1-6-50-75-30-0-1000 13 - 1207 1190 1213.7 -1.41 198 1190 1203.1 -1.41 235

#Better 17 17

#Equal 22 23

#Worse 3 2

12

programming approaches (Montemanni et al., 2004) and the best known results
in terms of objective or cost value (Cpre), the columns 5 to 8 report the compu-
tational results of the PR algorithm with the rPR relinking operator (denoted
by rPR), including our best objective value (Cbest) over 10 independent runs,
the average objective value (Cavg), the percentage of deviation (%Dev) of our
best objective value relative to the best known results, which is computed as
((Cbest − Cpre)/Cpre) × 100%, and the average computational time in seconds
(Tavg) per run. Columns 9 to 12 report the results of the PR algorithm with
the mrPR relinking operator (denoted by mrPR). The improved results are in-
dicated in bold and the mark ”-” means that the corresponding result is not
available in the literature. Finally, the rows Better, Equal, Worse respectively
show the number of instances for which the best result of our corresponding PR
algorithm is better, equal, and worse compared to the best known result of the
literature.

One observes from the table that the rPR algorithm is able to improve the
best known results for 17 out of the 42 instances, and match the best known
results for 22 instances. However, it fails to find the previous best known results
for the 3 remaining instances, Test282(61),Test282(71),GSM-246(21). In terms
of the computing speed, it can be seen that the average computing times are less
than 1000 seconds except for the ”GSM2” and ”Test” instances for most of which
the rPR algorithm is able to improve the best known results. Furthermore, the
improvement of the objective value is large for some instances. For instance,
the percentage of improvement reaches 18.75% for GSM2-227(49).

As for the mrPR algorithm, a similar performance can be observed when
comparing with the rPR algorithm. Specifically, the mrPR algorithm is also
able to improve the best known results for 17 instances and to match the best
known results for 23 instances. Nevertheless, for the GSM2 instances, the mrPR
algorithm performs slightly worse than the rPR algorithm in terms of both the
best and average objective function values. It is worth noting that the mrPR
relinking operator has a slightly higher computational complexity than the rPR
relinking operator. However, the additional complexity of the mrPR relinking
operator can be ignored since most of computing time of the proposed PR
algorithms is consumed by the tabu search method.

Thus, the above results indicate that our PR algorithms (including rPR and
mrPR) have a strong search capacity compared to the state-of-the-art results in
the literature.

On the other hand, one also observes from the table that for the 4 instances,
i.e., P06b-5(31), P06b-3(71), GSM2-184(49), GSM2-227(49), our best objec-
tive value is equal to the lower bound yielded by the integer programming ap-
proaches, meaning that the optimality of these results are proved. Moreover, it
is worth noting that the optimality of the result of GSM2-227(49) is for the first
time proved in this work.

3.3. Comparison of the PR algorithm with the best performing algorithm

In order to make a systematical comparison between the present PR algo-
rithms and the best performing FS-FAP algorithm (i.e., the HMT algorithm

13

Table 4: Comparison of the rPR algorithm with the best performing algorithm (HMT) in

terms of the best cost value, average cost value and worst cost value over 10 independent

runs. The winner results between two algorithms are indicated in bold.
Cbest Cavg Cworst

Graph |F | Cpre HMT rPR HMT rPR HMT rPR

AC-45-17 7 32 32 32 32.0 32.0 32 32

AC-45-17 9 15 15 15 15.0 15.0 15 15

AC-45-25 11 33 33 33 33.0 33.0 33 33

AC-95-9 6 31 31 31 31.0 31.0 31 31

AC-95-17 15 33 33 33 33.0 33.0 33 33

AC-95-17 21 10 10 10 10.0 10.0 10 10

GSM-93 9 32 32 32 32.2 32.0 33 32

GSM-93 13 7 7 7 7.0 7.0 7 7

GSM-246 21 79 79 79 80.2 80.6 81 82

GSM-246 31 25 25 26 26.1 26.1 27 27

Test95 36 8 8 8 8.0 8.0 8 8

Test282 61 51 51 56 53.2 56.8 55 58

Test282 71 27 27 29 29.3 30.5 30 33

Test282 81 10 10 9 11.9 10.9 13 14

P06-5 11 133 133 133 133.0 133.0 133 133

P06-3 31 115 115 115 115.0 115.0 115 115

P06b-5 21 52 52 52 52.0 52.0 52 52

P06b-5 31 25 25 25 25.0 25.0 25 25

P06b-3 31 112 112 112 112.0 112.0 112 112

P06b-3 71 26 26 26 26.0 26.0 26 26

GSM2-184 39 5447 5447 5258 5598.8 5270.8 5689 5322

GSM2-184 49 874 874 874 1043.6 874.0 1120 874

GSM2-184 52 162 162 162 260.6 162.0 287 162

GSM2-227 29 61586 61586 57790 66510 59555.4 70105 61300

GSM2-227 39 10550 10550 8656 10897.7 9022.4 1116 9559

GSM2-227 49 2459 2459 1998 2613.1 1998.0 2828 1998

GSM2-272 34 56128 56128 53254 58691.4 55954.2 64353 57360

GSM2-272 39 27416 27416 27503 28488.2 28299.7 29307 28927

GSM2-272 49 7785 7785 7185 7946.7 7265.2 8459 7393

1-1-50-75-30-2-50 5 1242 1242 1242 1253.9 1242.0 1260 1242

1-1-50-75-30-2-50 10 97 97 96 103.8 96.0 109 96

1-1-50-75-30-2-50 11 59 59 55 66.1 55.0 70 55

1-1-50-75-30-2-50 12 36 36 32 38.7 32.0 42 32

1-2-50-75-30-4-50 9 671 671 665 680.6 665.0 691 665

1-2-50-75-30-4-50 11 317 317 313 325.0 313.0 335 313

1-3-50-75-30-0-50 7 194 194 194 196.5 194.0 199 194

1-4-50-75-30-2-1 6 70 70 70 70.9 70.0 71 70

1-4-50-75-30-2-1 10 19 19 19 19.0 19.0 19 19

1-5-50-75-30-2-100 10 176 176 168 183.8 168 199 168

1-5-50-75-30-2-100 12 63 63 57 69.3 57 74 57

1-6-50-75-30-0-1000 10 6840 6840 6777 7064.3 6777.0 7267 6777

1-6-50-75-30-0-1000 13 1207 1207 1190 1365.2 1190.0 1440 1190

#Better 16 22 21

#Equal 22 17 17

#Worse 4 3 4

14

Table 5: Comparison of the mrPR algorithm with the best performing algorithm (HMT) in

terms of the best cost value, average cost value and worst cost value over 10 independent runs.

The winner results between two algorithms are indicated in bold.
Cbest Cavg Cworst

Graph |F | Cprev HMT mrPR HMT mrPR HMT mrPR

AC-45-17 7 32 32 32 32.0 32.0 32 32

AC-45-17 9 15 15 15 15.0 15.0 15 15

AC-45-25 11 33 33 33 33.0 33.0 33 33

AC-95-9 6 31 31 31 31.0 31.0 31 31

AC-95-17 15 33 33 33 33.0 33.0 33 33

AC-95-17 21 10 10 10 10.0 10.0 10 10

GSM-93 9 32 32 32 32.2 32.0 33 32

GSM-93 13 7 7 7 7.0 7.0 7 7

GSM-246 21 79 79 78 80.2 79.0 81 80

GSM-246 31 25 25 24 26.1 25.1 27 26

Test95 36 8 8 8 8.0 8.0 8 8

Test282 61 51 51 56 53.2 57.1 55 58

Test282 71 27 27 29 29.3 30.6 30 32

Test282 81 10 10 10 11.9 11.5 13 13

P06-5 11 133 133 133 133.0 133.0 133 133

P06-3 31 115 115 115 115.0 115.0 115 115

P06b-5 21 52 52 52 52.0 52.0 52 52

P06b-5 31 25 25 25 25.0 25.0 25 25

P06b-3 31 112 112 112 112.0 112.0 112 112

P06b-3 71 26 26 26 26.0 26 26 26

GSM2-184 39 5447 5447 5250 5598.8 5276.9 5689 5322

GSM2-184 49 874 874 874 1043.6 874 1120 874

GSM2-184 52 162 162 162 260.6 162 287 162

GSM2-227 29 61586 61586 58834 66510 59907.7 70105 61269

GSM2-227 39 10550 10550 8760 10897.7 9329.7 11164 9755

GSM2-227 49 2459 2459 1998 2613.1 2009.4 2828 2045

GSM2-272 34 56128 56128 54085 58691.4 56916.3 64353 58524

GSM2-272 39 27416 27416 28074 28488.2 28880.4 29307 29491

GSM2-272 49 7785 7785 7107 7946.7 7252.5 8459 7361

1-1-50-75-30-2-50 5 1242 1242 1242 1253.9 1242.0 1260 1242

1-1-50-75-30-2-50 10 97 97 96 103.8 96.0 109 96

1-1-50-75-30-2-50 11 59 59 55 66.1 55.0 70 55

1-1-50-75-30-2-50 12 36 36 32 38.7 32.0 42 32

1-2-50-75-30-4-50 9 671 671 665 680.6 665.0 691 665

1-2-50-75-30-4-50 11 317 317 313 325.0 313 335 313

1-3-50-75-30-0-50 7 194 194 194 196.5 194 199 194

1-4-50-75-30-2-1 6 70 70 70 70.9 70.0 71 70

1-4-50-75-30-2-1 10 19 19 19 19.0 19.0 19 19

1-5-50-75-30-2-100 10 176 176 168 183.8 168.0 199 168

1-5-50-75-30-2-100 12 63 63 57 69.3 57.0 74 57

1-6-50-75-30-0-1000 10 6840 6840 6777 7064.3 6777.0 7267 6777

1-6-50-75-30-0-1000 13 1207 1207 1190 1365.2 1190.0 1440 1190

#Better 17 24 23

#Equal 22 15 16

#Worse 3 3 3

15

(Montemanni and Smith, 2010)), we carry out the second experiment on the 42
benchmark instances respectively using the rPR and mrPR algorithms with a
cutoff time limit of 2400 seconds, which is the same as that used by the reference
algorithm (HMT).

Like in Montemanni and Smith (2010), the rPR and mrPR algorithms are
respectively run 10 times for each tested instance. The computational results
are summarized in Tables 4 and 5 together with the results of the reference
algorithm (HMT). The first three columns of Table 4 show the information
as before. Columns 4 to 5 report the best results respectively for the HMT
algorithm and the rPR algorithm. The average results are respectively reported
in columns 6 to 7 for both algorithms, and the worst results are respectively
given in columns 8 to 9. Additionally, the results of our mrPR algorithm are
presented in Table 5, with the same notations as in Tables 3 and 4.

From Table 4, one can observe that our rPR algorithm improves the best
known result for 16 out of the 42 instances, matches the best known results for
22 instances and misses the best known result for 4 instances. In terms of the
average objective value, our rPR algorithm is able to find a better result for
22 instances compared with the reference algorithm, match the results obtained
by the reference algorithm for the 17 easy instances, and obtain a worse result
for the 3 remaining instances. In terms of the worst objective value, our rPR
algorithm obtains a better result on 21 instances compared to HMT, and reaches
an equal results for 17 instances.

On the other hand, it can be seen from Table 5 that the mrPR algorithm is
able to improve the best known result for 17 out of the 42 instances, and obtain
a worse result for only 3 instances. In addition, in terms of the average objec-
tive value, mrPR gets a better result than HMT for 24 instances, and obtains
an equal result on 15 instances. As for the worst objective value, the mrPR
algorithm obtains a better and an equal result respectively for 23 instances and
16 instances compared to the reference algorithm.

These results indicate that both our rPR and mrPR algorithms are very
competitive compared with the best performing HMT algorithm for the studied
problem.

4. Analysis and Discussions

In this section, we analyze two essential components of the proposed algo-
rithm, i.e., the relinking operator and the population updating strategy.

4.1. Performance Comparison among the Relinking Operators

First, in order to understand whether the relinking operator has a signifi-
cant influence on the performance of the path relinking algorithm and which
relinking operator is more appropriate for FS-FAP, we compare the four pro-
posed relinking operators based on a set of 11 representative instances. For
each tested relinking operator and each instance considered, the corresponding
algorithm is independently performed 10 times with a maximum number θ of

16

8

8.3

8.6

8.9

9.2

9.5

9.8

10.1

10.4

10.7

11

lo
g
(C

p b
e
s
t
−

C
∗
)

0 10 20 30 40 50 60 70 80 90 100
Number of local searches (×102)

PR
mPR
rPR
mrPR

(a) GSM2-227-29

7

7.3

7.6

7.9

8.2

8.5

8.8

9.1

9.4

9.7

10

lo
g
(C

p b
e
s
t
−
C

∗
)

0 10 20 30 40 50 60 70 80 90 100
Number of local searches (×102)

PR
mPR
rPR
mrPR

(b) GSM2-272-34

7

7.3

7.6

7.9

8.2

8.5

8.8

9.1

9.4

9.7

10

lo
g
(C

p b
e
s
t
−
C

∗
)

0 10 20 30 40 50 60 70 80 90 100
Number of local searches (×102)

PR
mPR
rPR
mrPR

(c) GSM2-272-39

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

lo
g
(C

p b
e
s
t
−
C

∗
)

0 10 20 30 40 50 60 70 80 90 100
Number of local searches (×102)

PR
mPR
rPR
mrPR

(d) P06-3-31

5

5.4

5.8

6.2

6.6

7

7.4

7.8

8.2

8.6

9

lo
g
(C

p b
e
s
t
−
C

∗
)

0 10 20 30 40 50 60 70 80 90 100
Number of local searches (×102)

PR
mPR
rPR
mrPR

(e) GSM2-272-49

3

3.4

3.8

4.2

4.6

5

5.4

5.8

6.2

6.6

7

lo
g
(C

p b
e
s
t
−
C

∗
)

0 10 20 30 40 50 60 70 80 90 100
Number of local searches (×102)

PR
mPR
rPR
mrPR

(f) GSM2-227-49

17

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

lo
g
(C

p b
e
s
t
−
C

∗
)

0 10 20 30 40 50 60 70 80 90 100
Number of local searches (×102)

PR
mPR
rPR
mrPR

(g) GSM-246-21

−1

−0.7

−0.4

−0.1

0.2

0.5

0.8

1.1

1.4

1.7

2

lo
g
(C

p b
e
s
t
−
C

∗
)

0 10 20 30 40 50 60 70 80 90 100
Number of local searches (×102)

PR
mPR
rPR
mrPR

(h) GSM-246-31

3

3.4

3.8

4.2

4.6

5

5.4

5.8

6.2

6.6

7

lo
g
(C

p b
e
s
t
−
C

∗
)

0 10 20 30 40 50 60 70 80 90 100
Number of local searches (×102)

PR
mPR
rPR
mrPR

(i) GSM2-184-39

6

6.3

6.6

6.9

7.2

7.5

7.8

8.1

8.4

8.7

9

lo
g
(C

p b
e
s
t
−
C

∗
)

0 10 20 30 40 50 60 70 80 90 100
Number of local searches (×102)

PR
mPR
rPR
mrPR

(j) GSM2-227-39

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

lo
g
(C

p b
e
s
t
−
C

∗
)

0 10 20 30 40 50 60 70 80 90 100
Number of local searches (×102)

PR
mPR
rPR
mrPR

(k) Test282-81

Figure 1: Comparison among the relinking operators

18

iterations (θ is set to 104), and the gap of the best objective value (Cp
best) in the

population to the current best known result (C∗), i.e., Cp
best − C∗, is recorded

as a function of the number of iterations. The evolution of the logarithm of
Cp

best −C∗ is respectively plotted in Figure 1 for each instance and each relink-
ing operator. Note that the results in this section are based on the average over
10 independent runs, and the logarithm of the gap is used just for the sake of
the clarity of the curves.

One observes from Figure 1 that the relinking operators impact differently
the performance of the path relinking algorithm. Specially, for the instances
GSM2-227(29), GSMS-272(34), and GSMS-272(39), the rPR relinking operator
performs the best while the PR relinking operator performs the worst. However,
for P06-3(31) and GSM2-272(49), the mPR relinking operator is the best one,
and the 3 remaining relinking operators differ significantly from each other.
For GSM2-227(49), the PR relinking operator performs the best while the rPR
relinking operator performs the worst. For the remaining 5 instances, the mrPR
relinking operator performs the best.

This experiment shows clearly that for FS-FAP, the performance of relinking
operator depends strongly on the structures of instances, and no relinking oper-
ator outperforms the other ones on all the instances. In this sense, the proposed
relinking operators can be considered to be complementary and are useful to
solve instances of different structures.

4.2. Importance of Diversity of Population

The second studied ingredient is the population updating strategy. In the
present study, we employ a quality-and-distance based updating strategy (de-
noted by DisQual) to maintain the diversity of population. To show the effect
of this strategy, we compare it with a traditional strategy (denoted by Pool-
Worst), that always replaces the worst solution in the population by the newly
generated solution if it is better than the worst solution (sw) in the population
in terms of objective value.

Similarly, taking the 11 selected instances as a test bed, the computational
experiments are carried out as follows. First, the rPR algorithm with the Dis-
Qual strategy is independently run 10 times for each considered instance, and
the best objective value (Cp

best) in the population is recorded as a function of
the number of iterations at each run. Then, we displace the DisQual strategy by
the PoolWorst strategy and keep other components unchanged, and the above
experiment is again carried out by the resulting algorithm. The evolution of the
gap of Cp

best to the current best known result is respectively plotted in Figure
2 for each instance and each strategy. Note that the results are based on the
average values over 10 runs.

One can clearly observe that the DisQual strategy outperforms the tradi-
tional PoolWorst strategy for all the considered instances, which indicates that
the adopted population updating strategy is relevant for the performance of the
proposed algorithm. By considering both the quality and the distance to the
existing solutions, the DisQual strategy is able to maintain the diversity of pop-

19

0

3×103

6×103

9×103

1.2×104

1.5×104

1.8×104

2.1×104

2.4×104

2.7×104

3×104

S
ol
u
ti
on

ga
p
to

th
e
b
es
t
k
n
ow

n
re
su
lt

0 10 20 30 40 50 60 70 80 90 100
Number of local searches (×102)

PoolWorst

DisQual

(a) GSM2-227-29

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

S
ol
u
ti
on

ga
p
to

th
e
b
es
t
k
n
ow

n
re
su
lt

0 10 20 30 40 50 60 70 80 90 100
Number of local searches (×102)

PoolWorst

DisQual

(b) GSM2-227-39

0

100

200

300

400

500

600

700

800

900

1000

S
ol
u
ti
on

ga
p
to

th
e
b
es
t
k
n
ow

n
re
su
lt

0 10 20 30 40 50 60 70 80 90 100
Number of local searches (×102)

PoolWorst

DisQual

(c) GSM2-227-49

0

2×103

4×103

6×103

8×103

1×104

1.2×104

1.4×104

1.6×104

1.8×104

2×104

S
ol
u
ti
on

ga
p
to

th
e
b
es
t
k
n
ow

n
re
su
lt

0 10 20 30 40 50 60 70 80 90 100
Number of local searches (×102)

PoolWorst

DisQual

(d) GSM2-272-34

0

1.2×103

2.4×103

3.6×103

4.8×103

6×103

7.2×103

8.4×103

9.6×103

1.1×104

1.2×104

S
ol
u
ti
on

ga
p
to

th
e
b
es
t
k
n
ow

n
re
su
lt

0 10 20 30 40 50 60 70 80 90 100
Number of local searches (×102)

PoolWorst

DisQual

(e) GSM2-272-39

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

S
ol
u
ti
on

ga
p
to

th
e
b
es
t
k
n
ow

n
re
su
lt

0 10 20 30 40 50 60 70 80 90 100
Number of local searches (×102)

PoolWorst

DisQual

(f) GSM2-272-49

20

3

3.7

4.4

5.1

5.8

6.5

7.2

7.9

8.6

9.3

10

S
ol
u
ti
on

ga
p
to

th
e
b
es
t
k
n
ow

n
re
su
lt

0 10 20 30 40 50 60 70 80 90 100
Number of local searches (×102)

PoolWorst

DisQual

(g) GSM-246-21

2

2.6

3.2

3.8

4.4

5

5.6

6.2

6.8

7.4

8

S
ol
u
ti
on

ga
p
to

th
e
b
es
t
k
n
ow

n
re
su
lt

0 10 20 30 40 50 60 70 80 90 100
Number of local searches (×102)

PoolWorst

DisQual

(h) GSM-246-31

0

100

200

300

400

500

600

700

800

900

1000

S
ol
u
ti
on

ga
p
to

th
e
b
es
t
k
n
ow

n
re
su
lt

0 10 20 30 40 50 60 70 80 90 100
Number of local searches (×102)

PoolWorst

DisQual

(i) GSM2-184-39

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

S
ol
u
ti
on

ga
p
to

th
e
b
es
t
k
n
ow

n
re
su
lt

0 10 20 30 40 50 60 70 80 90 100
Number of local searches (×102)

PoolWorst

DisQual

(j) P06-3-31

0

1.5

3

4.5

6

7.5

9

10.5

12

13.5

15

S
ol
u
ti
on

ga
p
to

th
e
b
es
t
k
n
ow

n
re
su
lt

0 10 20 30 40 50 60 70 80 90 100
Number of local searches (×102)

PoolWorst

DisQual

(k) Test282-81

Figure 2: Comparison between the population updating strategies

21

ulation to avoid efficiently the premature convergence of population and thus
enhance the performance of the proposed algorithm.

4.3. Sensitivity Analysis of Parameters

10 20 30 40 50 60 70 80 90 100

0.
00

0.
05

0.
10

0.
15

0.
20

(a) Statistical test for R

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

0.
0

0.
2

0.
4

0.
6

0.
8

(b) Statistical test for β

Figure 3: Sensitivity analysis of two common parameters used by the PR algorithms

Our PR algorithms use several parameters. Hence, a sensitivity analysis
of parameters is useful to know whether a given parameter is sensitive and to
find an appropriate values for each parameter. In this study, we focus on two
most important parameters, i.e., R which is used to determine the tabu tenure
and β which is used in the population updating rule to control the population
diversity.

For each of these parameters, we vary its value within a reasonable range
and study their influences on our algorithm, while keeping the other parameters
with their default values (as shown in Table 2). To compare the results in terms
of solution quality, we employ the popular box and whisker plots based on the
rPR algorithm and the 11 representative instances mentioned above.

First, we test the parameter R and show in the subfigure (a) of Figure 3 the
results obtained with 10 different values R ∈ [10, 100], where X-axis indicates
the tested R values and Y-axis shows the solution quality (expressed as the
percentage deviation of the average objective value over 10 independent runs
from the best objective value yielded in this work). One observes from the figure
that the different values of R lead to similar performances, indicating that the
performance of the algorithm is not sensitive to the setting of R.

For the parameter β, we show in the subfigure (b) of Figure 3 the results
achieved with 11 different β ∈ [0.05, 0.55], where X-axis and Y-axis have the
same meaning as for subfigure (a). From subfigure (b), one observes that the
performance of the algorithm is significantly influenced by the value of parameter
β, a too large or too small value will make the algorithm performs badly, and the
rPR algorithm with a medium β value (β = 0.35) performs the best. Therefore,
β = 0.35 is adopted as the default value by the PR algorithms.

22

5. Conclusions

In this paper, we proposed the first path relinking algorithm for solving the
fixed spectrum frequency assignment problem. The main contribution of the
proposed algorithm concerns the introduction of four relinking operators which
are specifically designed to generate solution paths from existing solutions. A
simple tabu search routine is also developed for the purpose of local optimization
and a quality-and-distance strategy is introduced to update the population. We
assessed the proposed algorithm on the set of 42 benchmark instances commonly
used in the literature and obtained improved best results for 19 instances, while
matching the best known results for 21 other instances. These improved results
become new references for future algorithm comparisons and constitute our
second contribution.

Although the proposed PR approach is very competitive in terms of both
solution quality and computational efficiency compared with the state-of-the-
art algorithms in the literature, there are some limitations. First, for several
hard instances, the proposed PR algorithms missed the previous best known
results, indicating the search capacity of our PR algorithms needs to be further
enhanced. Second, the present study shows that the performance of the relinking
operators depends largely on the structure of problem instances and no single
relinking operator dominates other relinking operators on all instances, which
means that it is difficult to obtain a high-quality result for all instances by means
of a single path relinking operator.

Based on the present work and the identified limitations of our PR algo-
rithms, we advance some research perspectives.

First, as mentioned before, the performance of the relinking operators de-
pends on the structure of problem instances. Hence, in order to make the
PR approach more efficient for various types of instances, it is interesting to
integrate different relinking operators within a single PR algorithm. Second,
learning is shown to be very efficient for the related bandwidth coloring prob-
lem Jin and Hao (2014). To reinforce the PR approach, it would be interesting
to investigate learning mechanisms within important search components like the
evaluation function or relinking operators. Finally, from a more general perspec-
tive, it is worth noting that the basic principle of the proposed PR approach
is independent of the FS-FAP problem considered in this paper. Consequently,
it would be valuable to examine its application to other frequency assignment
problems and constraint satisfaction problems.

Acknowledgments

We are grateful to the reviewers for their useful comments which helps us
to improve the paper. The work is partially supported by the LigeRo project
(2009-2013, Region of Pays de la Loire, France), the PGMO project (2013-2015,
Jacques Hadamard Mathematical Foundation) and a post-doc grant (for X.J.
Lai) from the Region of Pays de la Loire (France).

23

References

Aardal, K.I., Van Hoesel, S.P.M., Koster, A.M.C.A., Mannino, C. & Sassano, A.
(2007). Models and solution techniques for the frequency assignment problem.
Annals of Operations Research 153(1), 79–121.

Audhya, G.K., Sinha, K., Mandal, K., Dattagupta, R., Ghosh, S.C., & Sinha,
B.P. (2013). A new approach to fast near-optimal channel assignment in cel-
lular mobile networks. IEEE Transactions on Mobile Computing 12(9), 1814–
1827.

Castelino, D.J., Hurley, S. & Stephens, N.M. (1996). A tabu search algorithm
for frequency assignment. Annals of Operations Research 63(2), 301–319.

Costa, W.E., Goldbarg, M.C. & Goldbarg, E.G. (2012). Hybridizing VNS and
path-relinking on a particle swarm framework to minimize total flowtime.
Expert Systems with Applications 39(18), 13118–13126.

Dorne, R. & Hao, J.K. (1995). An evolutionary approach for frequency assign-
ment in cellular radio networks. Proceedings of IEEE International Conference
on Evolutionary Computation, Perth, Australia, Nov.-Dec. IEEE Press., pp.
539–544.

Dorne, R. & Hao, J.K. (1996). Constraint handling in evolutionary search: A
case study of the frequency assignment. Parallel Problem Solving from Nature
(PPSN IV), Lecture Notes in Computer Science 1141, 801–810.

Dorne, R. & Hao, J.K. (1998). Tabu search for graph coloring, T-colorings and
set T-colorings. In S. Voss, S. Martello, I.H. Osman, C. Roucairol (Eds.),
Meta-heuristics: Advances and Trends in Local Search Paradigms for Opti-
mization. Chapter 6, pp. 77–92, Kluwer.

Duarte, A., Mart́ı, R., Resende, M.G.C. & Silva, R.M.A (2011). GRASP with
path relinking heuristics for the antibandwidth problem. Networks 58(3), 171–
189.

Eisenblätter, A. & Koster, A. (2010). Frequency assignment websit.
http://fap.zib.de/index.php.

Fischettti, M., Lepsch, C., Minerva, G., Romanin-Jacur, G. & Toto, E. (2000).
Frequency assignment in mobile radio systems using branch-and-cut tech-
niques. European Journal of Operational Research 123(2), 241–255.

Flood, I.D., & Allen, S.M. (2013). The fixed links frequency assignment problem
with equipment selection.Wireless Personal Communications 71(1), 181–194.

Glover, F. (1997). A template for scatter search and path relinking. Lecture
Notes in Computer Science 1363, 1–51.

Glover, F., Laguna, M. & Mart́ı, R. (2000). Fundamentals of scatter search and
path relinking. Control Cybernetics 39, 653–684.

24

Hale, W.K. (1980). Frequency assignment: theory and applications. Proceedings
of the IEEE 68(12), 1497–1514.

Hao, J.K., Dorne, R. & Galinier, P. (1998). Tabu search for frequency assign-
ment in mobile radio networks. Journal of Heuristics 4(1), 47–62.

Hurley, S., Smith, D.H. & Thiel, S.U. (1997). FASoft: A system for discrete
channel frequency assignment. Radio Science 32(5), 1921–1939.

Jin, M., Wu, H., Horng, J. & Tsai, C. (2001). An evolutionary approach to
fixed channel assignment problems with limited bandwidth, Proceeding of
IEEE International Conference on Communications, pp. 2100–2104.

Jin, Y., Hao, J.K. (2014) Effective learning-based hybrid search for bandwidth
coloring. Accepted to IEEE Transactions on Systems, Man and Cybernetics:
Systems, DOI:10.1109/TSMC.2014.2360661.

Johnson, D.S., Mehrotra, A. & Trick, M.A. (2008). Special issue on computa-
tional methods for graph coloring and its generalizations. Discrete Applied
Mathematics 156(2), 145–156.

Kendall, G. & Mohamad, M. (2004). Solving the fixed channel assignment prob-
lem in cellular communications using an adaptive local search. Proceedings of
the 5th international conference on the Practice and Theory of Automated
Timetabling (PATAT), Pittsburgh, USA, 18-20 August, 219–231.

Kim, S.S., Smith, A.E. & Lee, J.H. (2007). A memetic algorithm for channel
assignment in wireless FDMA systems. Computers and Operations Research
34(6),1842–1856.

Král, D. (2005). An exact algorithm for the channel assignment problem. Dis-
crete Applied Mathematics 145(2), 326–331.

Lai, X.J. & Lü, Z.P. (2013). Multistart iterated tabu search for bandwidth
coloring problem. Computers and Operations Research 40(5) 1401–1409.

Lai, X.J., Lü, Z.P., Hao, J.K., Glover, F. & Xu, L.P. (2014). Path Relinking for
Bandwidth Coloring Problem. http://arxiv.org/abs/1409.0973.

Lai, W.K. & Coghill, G.G. (1996). Channel assignment through evolutionary
optimization. IEEE Transactions on Vehicular Technology 45(1), 91–95.

Lü, Z.P. & Hao, J.K. (2010). A memetic algorithm for graph coloring. European
Journal of Operational Research 203(1), 241–250.

Mabed, H., Caminada, A. & Hao, J.K. (2011). Genetic Tabu Search for robust
channel assignment under dynamic traffic data. Computational Optimization
and Applications 50(3), 483–506.

25

Malaguti, E. & Toth, P. (2008). An evolutionary approach for bandwidth mul-
ticoloring problems. European Journal of Operational Research 189(3), 638–
651.

Martins de Oliveira, R., Nogueira Lorena, L.A., Chaves, A.A. & Mauri, G.R.
(2014). Hybrid heuristics based on column generation with path-relinking for
clustering problems. Expert Systems with Applications 41(11), 5277–5284.

Maniezzo, V. & Carbonaro, A. (2000). An ANTS heuristic for the frequency
assignment problem. Future Generation Computer Systems 16(8), 927–935.

Montemanni, R., Smith, D.H. & Allen, S.M., (2001). Lower bounds for fixed
spectrum frequency assignment problem. Annals of Operational Research
107(1-4), 237–250.

Montemanni, R., Moon J.N.J. & Smith, D.H. (2003). An improved tabu search
algorithm for the fixed spectrum frequency assignment problem. IEEE Trans-
actions On Vehicular Technology 52(3), 891–901.

Montemanni, R., Smith, D.H. & Allen, S.M., (2004). An improved algorithm to
determine lower bounds for the fixed spectrum frequency assignment problem.
European Journal of Operational Research 156(3), 736–751.

Montemanni, R. & Smith, D.H. (2010). Heuristic manipulation, tabu search and
frequency assignment. Computers and Operations Research 37(3), 543–551.

Parejo, J.A., Segura, S., Fernandez, P. & Ruiz-Cortés, A. (2014). QoS-aware
web services composition using GRASP with Path Relinking. Expert Systems
with Applications 41(9), 4211–4223.

Park, E.J., Kim, Y.H. & Moon, B.R. (2002). Genetic search for fixed channel
assignment problem with limited bandwidth. In Genetic and Evolutionary
Computation Conference, pp. 1172–1179.

Porumbel, D.C., Hao, J.K. & Kuntz, P. (2010). An Evolutionary Approach with
Diversity Guarantee and Well-Informed Grouping Recombination for Graph
Coloring. Computers and Operations Research 37(10), 1822–1832.

Reeves, C.R. & Yamada, T. (1998). Genetic algorithms, path relinking and the
flowshop sequencing problem. Evolutionary Computation 6(1), 230–234.

Roberts, F.S. (1991). T-colorings of graphs: recent results and open problems.
Discrete Mathematics 93(2-3), 229–245.

San José-Revuelta, L.M. (2007). A new adaptive genetic algorithm for fixed
channel assignment. Information Sciences 177(13), 2655–2678.

Smith, D.H., Hurley, S. & Thiel, S.U. (1998). Improving heuristics for the
frequency assignment problem. European Journal of Operational Research
107(1),76–86.

26

Sörensen, K. & Sevaux, M. (2006). MA|PM: memetic algorithms with popula-
tion management. Computers and Operations Research 33, 1214–1225.

Subramanian, A.P., Gupta, H., Das, S.R. & Jing, C. (2008). Minimum interfer-
ence channel assignment in multiradio wireless mesh networks. IEEE Trans-
actions on Mobile Computing 7(12), 1459–1473.

Tiourine, S.R., Hurkens, C.A.J. & Lenstra, J.K. (2000). Local search algorithms
for the radio link frequency assignment problem. Telecommunication systems
13, 293–314.

Wang, W. & Rushforth, C.K. (1996). An adaptive local-search algorithm for the
channel-assignment problem (CAP). IEEE Transactions on Vehicular Tech-
nology 45(3),459–466.

Wang, Y., Lü, Z.P., Glover, F. & Hao, J.K. (2012). Path relinking for un-
constrained binary quadratic programming. European Journal of Operational
Research 223(3), 595–604.

Wu, J., Dai, Y., Zhao, Y.C. (2013). Effective channel assignments in cognitive
radio networks. Computer Communications 36(4), 411–420.

27

