Tabu Search for Frequency Assignment in Mobile Radio
Networks™

Jin-Kao Hao, Raphael Dorne and Philippe Galinier
LGI2P
EMA-EERIE
Parc Scientifique Georges Besse
F-30000 Nimes
France
email: {hao, dorne, galinier}@eerie.fr

In the Journal of Heuristics, 4: 47-62 (1998), Kluwer Academic Publishers

Abstract

The main goal of the Frequency Assignment Problem in mobile radio networks
consists of assigning a limited number of frequencies to each radio cell in a cellular
network while minimizing electro-magneticinterference due to the re-use of frequencies.
This problem, known to be NP-hard, is of great importance in practice since better
solutions will allow a telecommunications operator to manage larger cellular networks.
This paper presents a new Tabu Search algorithm for this application. The algorithm
is tested on realistic and large problem instances and compared with other methods
based on simulated annealing, constraint programming and graph coloring algorithms.
Empirical evidence shows that the Tabu algorithm is very competitive by giving the
best solutions to the tested instances.

Keywords: Tabu Search, frequency assignment, constraints, optimization

1 Introduction

The Frequency Assignment Problem (FAP) is one of the key applications in mobile radio
networks engineering!. Although different versions of the FAP can be defined, the main
purpose is to assign a limited number of available frequencies to each cell in a mobile radio
network while minimizing electro-magnetic interference due to the re-use of frequencies.
The difficulty of this application comes from the fact that an acceptable solution of the
FAP must satisfy a set of multiple constraints, which impose conflicting objectives. The
most severe constraint concerns a very limited radio spectrum consisting of a small number
of frequencies (or channels). Telecommunications operators such as France Telecom must
cope with a maximum of 60 frequencies for their networks, whatever the traffic volume

*Work supported by the CNET (French National Research Center for Telecommunications) under the
grant No.961B134.

!The frequency assignment problem studied in this paper applies essentially to widely used cellular
networks and does not necessarily apply to other wireless technologies, such as the CDMA.

to be covered, and this, in agreement with national and international regulations. This
constraint imposes a high degree of frequency re-use, which in turn increases the probability
of frequency interference. Indeed, in addition to this constraint, there are frequency
interference constraints which state that frequencies assigned to some cells must satisfy
a given separation distance in the frequency domain.

The basic FAP can be shown to be NP-hard in its simplest form because it is reduced
to the graph coloring problem [13]. More generally, the problem is equivalent to the so-
called “set T-coloring problem” [20]. Therefore, it is very unlikely to find any efficient
algorithm for this problem. So far, many heuristic methods have been proposed to tackle
the FAP in cellular networks, including graph coloring algorithms (GCA) [11], constraint
programming (CP) [1], simulated annealing (SA) [8], artificial neural networks [18, 10],
evolutionary algorithms (EAs) [14] and Tabu Search (TS) [15]. Similar techniques have
been developed and experimented on a closely related problem called “radio link frequency
assignment” in the setting of military application [6, 17, 3, 4].

In this paper, we present a new and highly effective TS algorithm tailored for the
frequency assignment problem. This algorithm distinguishes itself from previous algorithms
by some important features such as incremental evaluation of solutions, dynamic tabu
tenure, candidate list strategy, and co-cell constraints handling. Experiments carried out on
realistic and large problem instances (up to 300 cells, 30,000 constraints with 30 frequencies)
show that this TS algorithm is very competitive and gives us the best results for the tested
instances compared with other methods based on graph coloring algorithms, constraint
programming, and simulated annealing.

The paper is organized as follows. In Section 2, the FAP is modeled as an optimization
problem. In Section 3, TS is briefly reviewed. In Section 4, the components of the TS
algorithm are described. In Section 5, after a review of the test data, experimental results
are presented and compared. Conclusions are given in the last section.

2 The Frequency Assignment Problem

2.1 Constraints in the FAP

A cellular network is defined by a set {C1,C5...Cy} of N cells, each cell C; requiring T;
frequencies. The number T;, called the traffic of C;, is determined by an estimation of the
maximum number of communications which can simultaneously arise within a cell.

The basic FAP consists of assigning to each cell C; of the network T; frequencies
taken from a set of available frequencies while respecting a set of frequency wnterference
constraints. Since the number of available frequencies is very limited and usually much
smaller than the sum of the total traffics of the network, frequencies must be re-used by
different cells in an assignment. It is this frequency re-using that may lead to frequency
interference.

Interference occurs when two frequencies assigned to a same cell or two adjacent cells?
are not sufficiently separated. Therefore, the frequency interference constraints over a
network are divided into co-cell constraints and adjacent-cell constraints.

e co-cell constraint: any pair of frequencies assigned to a radio cell must have a certain
distance between them in the frequency domain.

?Two cells are adjacent if they emit within a common area even if they are not geographically adjacent.

e adjacent-cell constraint: any pair of frequencies assigned to two adjacent cells must
be sufficiently separated in the frequency domain.

These interference constraints are conveniently represented by a symmetric compatibility
matriz M[N, N] where N is the number of cells in the network and each element of M
is a non negative integer. Let f;) denote the value of the kth frequency (k € {1..T;}) of
C; and let {1..NF} denote the set of NF available frequency values, then the interference
constraints are formulated as follows:

e M[i,i] (i € {1..N}) is the minimum frequency separation necessary to satisfy the
co-cell constraints for the cell C;. Vm, n € {1.T3}, m # n, |fim — fin| > M[,14]

e M[i,j] (i,j € {1..N},i# j) represents the minimum frequency separation required to
satisfy the adjacent-cell constraints between two cells C; and Cj. M[i, j] = 0 means
there is no constraint between the cells C; and Cj;.

Vm € {1ﬂ}, Vn € {]'T]} |fi,m - fj,nl > M[Zvj]

2.2 Optimization in FAP

Given a network defined by N cells with T; traffic for each cell C; and the compatibility
matrix M, two basic optimization (minimization) problems can be defined.

The first problem consists of minimizing frequency interference with a fixed number
of frequencies. In this case, the optimization problem is defined by a couple (S,f) where
the search space S is defined by the set of all possible frequency assignments and the cost
function fto be minimized is defined as follows. For any sin S, f(s) represents frequency
interference, measured by the number of unsatisfied co-cell and adjacent-cell constraints.
More formally, one has:

f(s) = Z;V:l Efrj:l Ezi:rrH—l CO(i,m,n) + 2511 E‘]N:Z—‘rl 25:1 251:1 AD(i,j,m,n) (1)

Lif |fim = fin| < M[i, 1]

0 otherwise

1if |fi,'m - fj.nl <]\/I[i,j]
0 otherwise

CO(i,m,n) = { AD(i,j,m,n) = {

The second problem consists of minimizing the number of frequencies required in an
interference-free assignment®. This problem can be dealt with as a series of the first
problems as follows.

To minimize the number of frequencies NF used in an assignment, one fixes NF' to
a sufficiently high value? and seeks an interference-free assignment s (f(s) = 0) within
the above mentioned search space S and the cost function f If such an interference-free
assignment is found, one proceeds with NF-1 frequencies and so on. This process continues
until one can no longer find an interference-free assignment. This minimization process is
similar to that used by Hertz and de Werra in their TS algorithm for graph coloring [16].

Let us notice that minimizing the number of frequencies used is of great importance in
practice since free frequencies can easily be used for extensions to an existing network.

3More generally, the interference-free requirement may be relaxed to allow any interference threshold.
*This initial value can be determined with a greedy method.

3 A Brief Review of Tabu Search

This section gives a brief review of Tabu Search, emphasizing the most important features
which have been implemented in our TS algorithm. For a complete presentation of TS,
the reader is invited to consult the recent book by Glover and Laguna [12].

Tabu Search is a meta-heuristic designed for tackling hard combinatorial optimization
problems. Contrary to randomizing approaches such as SA where randomness is extensively
used, TS is based on the belief that intelligent searching should embrace more systematic
forms of guidance such as memorizing and learning.

TS can be described as a form of neighborhood search with a set of critical and
complementary components. For a given instance of an optimization problem characterized
by a search space S and a cost function f, a function N: § — 29 is first introduced to
determine a neighborhood. A typical T'S algorithm begins then with an initial configuration
sin S and then proceeds iteratively to visit a series of locally best configurations following
the neighborhood function. At each iteration, a best neighbor s’ € N(s) is sought to replace
the current configuration even if s’ does not improve the current configuration in terms
of the cost function. To avoid the problem of possible cycling and to allow the search to
go beyond local optima, TS introduces the notion of Tabu list, one of the most important
components of the method.

A tabu list is a special short term memory that maintains a selective history H,
composed of previously encountered solutions or more generally pertinent attributes of
such solutions. A simple TS strategy based on this short term memory H consists in
preventing solutions of H from being reconsidered for next k iterations (k, called tabu
tenure, is problem dependent). Now, at each iteration, TS searches for a best neighbor
from this dynamically modified neighborhood N(H,s), instead of N{(s)itself. Such a strategy
prevents Tabu from being trapped in short term cycling and allows the search process to
go beyond local optima.

When attributes of solutions instead of solutions are recorded in tabu list, some non-
visited, yet interesting solutions may be prevented from being considered. Aspiration
criterta may be used to overcome this problem. One widely used aspiration criterion
consists of removing a tabu classification from a move when the move leads to a solution
better than the best obtained so far.

TS uses an aggressive search strategy to exploit its neighborhood. Therefore, it is
crucial to have special data structures and techniques which allow a fast updating of move
evaluations, and reduce the effort of finding best moves. Moreover, candidate list strategies
may be used to limit the neighbors to be considered at each iteration to a subset of the
entire neighborhood. A typical strategy consists of identifying subsets of influential moves,
such as those considered promising to lead to improved solutions. A good candidate list
strategy combined with an efficient technique for move evaluations is essential for high
solution speed and good quality.

There are other techniques available in TS such as intensification and diversification.
In this paper, we show that a TS algorithm based on the above mentioned elements may
be very effective and robust.

4 A TS Algorithm for FAP

The following notations will be used in the presentation: N the number of cells of a network,
NF the number of available frequencies, {1.. NF} the set of NF frequency values, C; and T;
a cell and its traffic, f; (fix € {1..NF}) the value of the kth frequency of C;.

4.1 Components

Configuration, search space and cost function

Given a FAP instance involving N cells, traffics T; (i € {1..N}), a set of frequency values
{1..NF}, and a compatibility matrix M [N, N|, a configuration s corresponds to a complete
frequency assignment:

s =< frrfirm--firfir-fni. fary > such that:
Vie {l.N},Vm, n € {1.T;}, m #n, |fim — fin| > M, 4.

In other words, a configuration is a frequency assignment satisfying the co-cell constraints
of the given instance. The search space S of the instance is therefore composed of all such
configurations.

According to equation (1) (Section 2), for each solution s € S, f(s) corresponds to the
total number of unsatisfied interference constraints. Since co-cell constraints are taken
into account by the configuration s, f(s) is now simplified to be the number of unsatisfied
adjacent-cell constraints. Note that for an interference-free assignment s, f(s) = 0.

An alternative approach consists of not imposing the satisfaction of co-cell constraints.
However, as explained later, directly integrating co-cell constraints into configurations is
an important factor in improving the search efficiency for this application.

Neighborhood and candidate list

Given S, the neighborhood function N : S — 29 is defined as follows: s and s’ € S are
neighbors if they are different at the value of a single frequency of a cell. More formally,
let s(f;) denote the value of the kth frequency of the cell C; in s, then s’ € N(s) if and
only if the following condition is verified:

3! (i,m) € {1.N} x {1..T;} such that s(f;) # s'(fim) and
v (Jan) € {1N} X {113} (j,Il) 7é (i’nl)a s(fj,n,) = sj(fj,n)

Therefore, a neighbor of s can be obtained by changing the value f; ;,, of the mth frequency
of a cell C; in s in such a way that the new value always satisfies the co-cell constraint. A
move is thus characterized by a triplet < ¢,m,v >, ¢, m and v being respectively a cell, a
frequency of the cell and a frequency value.

The members of N(s) are not equally interesting. Indeed, it will be less pertinent
to change a frequency value which does not violate any interference constraint. This
observation leads us to define the following candidate list strategy:

V* = {s’€ N(s) | s’and s are different at the value of a conflicting frequency}

5A frequency of a cell is said to be conflicting if its value violates some interference constraints.

Clearly, the size of V* varies during the search according to the number of conflicting
frequencies and in general is much smaller than |N(s)|. This candidate list strategy helps
the search to concentrate on influential moves and to avoid irrelevant ones. Moreover, it
significantly reduces the number of neighbors to be considered at each iteration.

Incremental evaluation and neighborhood examination

For any solution s, its cost f(s) represents frequency interference, measured by the
number of unsatisfied interference constraints. Since the number of neighbors to consider
may be very high at each iteration, we adopt a fast evaluation method inspired by a
technique proposed by Fleurent and Ferland [9]. Let us note W = Elil T;. The main
idea consists of maintaining incrementally in a N F x« W matrix 6 the move value or cost
variation for each possible move of the current solution s. Each time a move is carried
out, the elements of the matrix affected by the move are updated accordingly. Initializing
8 takes time O(NF x W?). After a move, the matrix can be updated in time O(NF x W)
in the worst case. A best neighbor in V* can be searched in time O(|V*|). Given that |V
is smaller then N F %« W, each iteration takes thus time O(NF %= W) in the worst case.

Tabu list and tabu tenure

When the value of a frequency of a cell C; in a solution s is changed to a new value,
the pair < cell, old_value > is classified tabu for £ (tabu tenure) iterations. That is, the
old value will not be allowed to be re-assigned to C; during this period. To implement the
tabu list, we use an N *= N F matrix T. Each time < cell, old_value > is added to the tabu
list, the corresponding element of T is set to the current iteration number plus tabu tenure
k. At any moment, it is easy to verify if a given move is tabu or not by simply comparing
the current iteration number with that recorded in the tabu matrix T.

The tabu tenure k is dynamically adjusted by a function defined over the size of the
candidate list V*. More precisely, k = «|V*| where « is a value from (0,1] and k is bounded
by two constants Min and Maz. Since |V*| varies during the search, so does k for any fixed
a. « typically takes values from 0.1 to 0.5. To avoid too large values of k due to the
presence of many conflicting cells in a configuration, a constant Maz is used to limit k.
Similarly, a lower bound Min is used to prevent k from becoming too small at late stages
of the search. Mwn and Max are typically fixed at 10 «x N F and NF.

Aspiration criteria

A very simple aspiration criterion is used: the tabu status of a move is cancelled if the
move leads to a solution better than the best solution s* encountered so far.

4.2 Tabu Algorithm

Now that the components of the TS algorithm have been presented, we give below the
general algorithm.

Tabu algorithm

begin

T = 0 /* initialize tabu matrix */

Iter = 0 /* initialize the iteration counter */

s = generate() /* generate an initial solution */

s* = s /* record the best configuration found so far */

[=f(")
while Iter < MAX do
Iter = Iter + 1

choose a best neighbor s’ = s + < 2, m, new_v >€ V*
such that NB > T'[i,new_v] or f(s’) < f*

s=s’

T[i,oldv] = Iter + k; /* < Cy,0ld_v > becomes tabu */
update § matrix

update tabu tenure k (k = o|V*|)

if f(s) < f* then

end
Figure 1. Tabu Search Algorithm for the Frequency Assignment Problem

This algorithm can directly be used to deal with the first optimization version of the
frequency assignment problem defined in Section 2, i.e. to minimize frequency interference
with a fixed number of NF frequencies. The algorithm stops and returns the best assignment
found after MAX iterations.

This algorithm can also be used to minimize the number of frequencies NF required in
an interference-free assignment as explained in Section 2.2:

1. apply the above TS algorithm to search an interference-free assignment s (f(s) = 0)
with NF frequencies;

2. decrement NF,i.e. NF «— NF-1, and go to step 1 if such an assignment is found;

3. stop and return NF+1 if no interference-free solution is found within MAX iterations.

Each time the TS algorithm is called with a decremented number of frequencies, an
initial configuration using NF-1 frequencies must be generated. There are two possibilities
to do this. First, one can generate a completely new configuration from scratch. Second,
one can re-use the last assignment obtained with NF frequencies as follows: for each
frequency having a value greater than the decremented NF, it is given a new value randomly
taken from 1 to the decremented NFS.

Note finally that this optimization process can be used to minimize the number of
frequencies NF required by an assignment with any admissible interference threshold.

4.3 Comments on the TS Algorithm

The current TS algorithm distinguishes itself from a previous TS algorithm [15] by some
important features. The first feature concerns the evaluation method. The § matrix

SGiven the definition of a configuration, this new frequency value must verify co-cell constraints.

introduced above allows a fast searching of best moves and an efficient updating of move
values. Conversely, no data structure is used in [15] to record move values. The evaluation
of neighbors is thus expensive and very time-consuming in the previous TS algorithm.

The second point concerns the candidate list strategy. It is well-known that the
number and nature of the neighbors visited at each iteration have a great influence on
the performance of a TS algorithm. The conflict-based strategy is an informative way to
isolate influential moves and is more efficient than the entire neighborhood. Experimental
data are presented in Section 5.4. to support this point.

The third point concerns the way co-cell constraints are handled. In the initial problem
formulation, both co-cell and adjacent-cell constraints are used to define the cost function
(see Section 2). Therefore, both of them can be treated exactly in the same way to evaluate
the quality of a configuration. This is the approach taken in [15]. However, a close look
at these two types of constraints makes it clear that they are in fact different. In some
sense, co-cell constraints are harder to solve than adjacent-cell constraints since co-cell
constraints, defined on each pair of frequencies of a same cell, form cliques. As shown
in [7], it is more interesting to remove these hard constraints from the cost function and
solve them first. This is realized by imposing the satisfaction of co-cell constraints by all
configurations (feasibility with respect to these constraints). This technique, called co-cell
handling (CCH) in [7], allows to reduce the search space and to simplify the cost function.
Experimental data are presented in Section 5.4. to support this point.

Finally, the dynamic tabu tenure is another factor contributing to the efficiency of the
algorithm. Indeed, it seems more natural to allow the tabu tenure to adjust itself during
the search than to impose a fixed value.

5 Experimentation and Results

In this section, we present experimental results of the TS algorithm on two sets of real size
FAP instances provided by the French National Research Center for Telecommunications.
These instances are produced by a generator in such a way that they reflect various
situations encountered in real networks or sub-networks of France Telecom. The main goal
here consists of finding interference-free assignments (f(s) = 0) with a minimal number of
frequencies.

Two sets of experiments were carried out. The first one aims to evaluate the performance
of the Tabu algorithm by comparing it with a baseline algorithm. The purpose of the second
one is to compare the results of the Tabu algorithm with the best known results on the
same instances obtained with other methods.

5.1 Tests
Test Set No.1 (Traffic=1)

The first set of FAP instances has the following characteristics.

o traffic: T; =1 (i € {1..N}); i.e. each cell is assigned one frequency. Consequently, a
co-cell constraint does not exist.

o adjacent constraint: |fi1 — fj1| > M[i,j] =1 (i,] € {1..N}) for two adjacent cells
C; and Cj; i.e. C; and Cj must be assigned different frequency values.

It is easy to see that these instances correspond to the classic graph coloring problem.
Finding an optimal frequency assignment is equivalent to coloring a graph using only
a minimum number (the chromatic number) of colors. For this test set, the chromatic
number, noted Opt for each instance, is known in advance.

These instances are labeled as NF.N.d representing respectively the optimal number of
frequencies needed for an interference-free assignment, the number of cells in the network
and the density of interference constraints over the network. For example, 8.150.30 defines a
network composed of 150 cells with 8 the number of frequencies required in an interference-
free assignment and 30% of a total of 150*%(150-1)/2 interference constraints.

Test Set No.2 (Traffic=2)

The second set of FAP instances has the following characteristics.

o traffic: T; = 2 (i € {1..N}); i.e. each cell is assigned two frequencies.

o co-cell constraint: |fim— fin| > M[i,i] =3 (i € {1..N}); i.e. two frequencies assigned
to the same cell must have a minimum distance of 3.

o adjacent constraint: |fim — fin] > M[i,j] € {1,2} (i, j € {1.N}) if C; and C;}
are adjacent cells; i.e. two frequencies assigned to two adjacent cells must have a
minimum distance of 1 or 2 according to the cells.

The instances of this set are labeled as ¢.N.d.p. The first parameter has no special
meaning. The second and third parameters have similar meanings to those of the first
set. The fourth parameter allows distinguishing between different instances of the same
class. For this set of instances, the exact optimal number of frequencies for an interference-
free assignment is no longer known due to the way the instances are generated, but it is
bounded by a lower bound LB given by the generator.

Compared with the first set, these instances are often larger in terms of the number
of constraints due to the doubled traffic. Large instances of 300 cells (representing 600
integer variables) contain up to 30,000 interference constraints. As we will see in the next
section, these instances are usually harder to solve than those of the first set.

5.2 Performance Evaluation
5.2.1 Baseline Algorithm

In order to evaluate the performance of the Tabu algorithm, we need a reference for
comparison. We take the standard steepest descent (SD) algorithm (with re-runs) as a
baseline reference for several practical reasons. First, SD is a well known and simple
algorithm. Second, SD requires no parameter to tune. Third, from the point of view of
implementation, SD and TS may share many important data structures. Forth, the results
of SD will give us some indication as to the difficulty of the instances tested.

The SD algorithm consists of repeating the following SD operation:

Steepest descent (SD): At each iteration, choose a best neighbor s” € V* such that
f(s’) < f(s) (break ties randomly).

We must point out that the SD algorithm uses the same neighborhood N(s), candidate
list V* and evaluation method as those used by the TS algorithm.

5.2.2 Method of Experimentation and Evaluation Criteria

The TS algorithm is run with initial random configurations. For a fixed number of
frequencies, TS is run 10 times, each run being limited to a maximum of 100,000 iterations.
Once an interference-free assignment is found with NF frequencies, the TS algorithm is
called with a new random assignment using NF-1 frequencies.

The parameter « of tabu tenure (k = «|V*|) was determined according to the following
process. Values from 0.1 to 0.5 were tested for each instance with limited iterations (50,000
in this study) and the best one is used in later experiments (100,000 in this study).

In order to make the comparison between TS and SD as fair as possible, we give both
algorithms the same number of iterations (100,000). However, while TS may improve its
results with more iterations, this is not the case for SD. To avoid this problem, we give SD
more re-runs. For each run of TS, SD is run 20 times, each being limited to 5,000 iterations
in order to reach 100,000 iterations. The number 5,000 is empirically determined in such
a way that it is sufficiently high for SD to reach local optima and move around with some
side-walks.

The following three criteria are used to carry out the evaluation.

NF(S) the smallest number of frequencies found for an interference-free assignment, followed
in parenthesis by the number of successful runs which find such an interference-free
assignment with NF frequencies. This criterion reflects the quality of a solution.

Iter the number of iterations averaged over successful runs for the smallest number of
frequencies found for an interference-free assignment. One iteration corresponds to a
move from one solution to one of its neighbors. This criterion reflects the machine-
independent speed of an algorithm.

T(sec) the average user time’ in seconds averaged over successful runs for the smallest

number of frequencies found. The timing is based on a SPARCstation 5 (75MHz,
32MB RAM).

5.2.3 Experimental Results

Table 1 shows the results of T'S and SD on 4 instances of the first set and 6 instances of
the second set. These instances are taken from a total of 60 instances and represent some
hard problems.

For each instance, we give its name (first column), the optimal number of frequencies
(Opt) for the first set or the lower bound (LB) for the second set (2nd column), followed
by the results of TS (3rd-7th columns) and SD (8th-11th columns). For instance, the data
for 8.150.20 have the following meanings. TS finds optimal solutions for each of its 10 runs
with an average of 18,923 iterations and 123 seconds per (successful) run. SD finds 8 times
(out of 200) an interference-free assignment with 10 frequencies after 347 iterations and 3
seconds while none of its 200 runs manages to find an interference-free assignment with 9
frequencies after 5,000 iterations per run.

From the higher part of Table 1, we see that the 4 instances of the first set are too
difficult for SD to solve to optimality. Indeed, SD requires 2 to 8 extra frequencies to find
an interference-free assignment. On the contrary, T'S solves all the instances to optimality
at each run with a maximum of 10 minutes. Following the size and the difficulty of an

"Both TS and SD are programmed in C++.

10

Problems Opt/LB TS SD
Runs | o NF(S) Iter T[sec] | runs | NF(S) | Tter | Tlsec]

8.150.20 8 10 | 0.4 | 8(10) | 18923 | 123 | 200 | 10(8) | 347 3
8.150.30 8 10 0.2 | 8(10) 404 3 200 | 13(14) | 484 3
15.300.20 15 10 0.2 | 15(10) | 41484 573 200 17(4) | 1646 27
15.300.30 15 10 0.1 | 15(10) | 22429 327 200 23(2) 927 19
8.75.25.1 16 10 0.2 | 17(10) | 34414 274 200 20(2) 170 3
8.75.25.3 16 10 0.3 | 16(5) | 62764 | 485 200 19(2) 743 9
8.150.15.3 16 10 0.3 | 18(10) | 46425 668 200 | 22(10) | 536 12
8.150.25.6 16 10 0.3 16(3) 56120 906 200 | 27(10) | 986 24
15.300.25.6 30 10 0.2 | 35(2) 78266 | 2940 200 49(2) 635 48
15.300.25.9 30 10 0.1 35(2) 61294 | 2168 200 45(1) 823 65

Table 1: Results of TS and SD, 100,000/5,000 iterations per run for TS/SD

instance, TS does approximately 70 to 150 iterations per second. Since SD and TS gives
solutions of highly different quality, it is difficult to compare their solving speeds.

Concerning the instances of the second set (the lower part of Table 1), let us notice
that they are more difficult than the previous ones (the two 15.300.25.x instances seem
extremely hard). For these instances, the difference between the results of SD and TS is
even larger. Indeed, to find an interference-free assignment, SD requires at least 3 extra
frequencies above the lower bound. For the last two instances, this excess number reaches
respectively 19 and 15.

TS finds interference-free assignments with the lower bound frequency for 2 of 6 instances
within the limit of 100,000 iterations. For the 4 other instances, 1 to 5 extra frequencies
above the lower bound are necessary to have an interference-free assignment with success
rates ranging from 20% to 100%. As shown in the next section, these results will be
improved if more iterations is given to the T'S algorithm. For these instances, T'S achieves
approximately 30 to 120 iterations per second. Finally, T'S needs about 5 to 50 minutes
to find its solutions for these instances. These computing times are considered to be quite
satisfactory since in practice up to 48 hours are allowed to find a frequency assignment.
Moreover, minimizing the number of frequencies used is far more important than the
solution speed.

5.3 Comparisons with Other Methods

In this section, we contrast the results of the TS algorithm with the best results on the same
instances obtained with other methods including algorithms based on Simulated Annealing
(SA), Constraint Programming with ILOG-solver (CP) and Graph Coloring (GCA) [11].

The results of TS are those presented above, limited to 100,000 iterations. The results
of SA, CP, and GCA are those reported in [1, 2, 19]. Timing for SA and CP (not available
for GCA) is based on HP Stations (HP 735, 125 MHz, 128MB RAM) which are considered
to be about 2 to 3 times faster than the SPARCstation 5 (75MHz, 32MB RAM) we used.
SA and CP are respectively stopped after 2 and 10 hours on HP Stations, equivalent to
about 6 and 30 hours on a SPARGCstation 5. Table 2 gives a summary of the results of
all these methods on the same set of instances. A minus “-” in the table means that the
result is not available.

From the data of Table 2, we notice first that TS and SA largely outperform CP
and GCA on these instances in terms of the quality of solutions. Indeed, none of these
instances is solved to optimality by CP or GCA (with the exception for 8.150.20 by GCA).

11

Problems Opt/LB TS SA CP GCA
NF(S) Tter Tlsec] | NF | Tlsec] | NE [T[sec] NF
8.150.20 8 8(10) 18923 123 8 509 9 7200 8
8.150.30 8 8(10) 404 3 8 446 12 10800 15
15.300.20 15 15(10) | 41484 573 15 | 4788 17 | 3600 20
15.300.30 15 15(10) | 22429 327 15 2053 24 | 36000 27
8.75.25.1 16 17(10) | 34414 274 17 1382 20 1000 19
8.75.25.3 16 16(5) | 62764 | 485 17 1744 19 7595 19
8.150.15.3 16 18(10) | 46425 668 18 3705 22 375 22
8.150.25.6 16 16(3) 56120 906 17 5981 30 153 29
15.300.25.6 30 35(2) 78266 2940 36 5359 47 380 47
15.300.25.9 30 35(1) 61294 2168 36 6586 45 - 45

Table 2: Comparison of T'S with other methods (maximum iterations for T'S = 100,000)

Many extra frequencies (up to 17) are needed by CP and GCA to find an interference-free
assignment. On the contrary, the results of TS and SA are much better on all the instances.
In general, the harder the problem, the bigger the difference: for some instances, there is
a difference of more than 12 frequencies.

Let us now examine the results of T'S and SA. In terms of the quality of solutions, we
see that the TS algorithm outperforms the SA algorithm on 4 instances (in bold) and does
as well as SA on the other instances. This is remarkable since reducing even one frequency
for such hard problems makes the problem much harder to solve. In terms of computing
time, TS is always faster than SA even for solutions of better quality. If we take into
account the difference of computing power between the machines used, it should be clear
that TS dominates SA.

In order to see how far the TS algorithm can go, another experiment was carried out.
In this experiment, we run the algorithm with more iterations (1,000,000 maximum) on 4
instances for which no interference-free assignment was found at 100,000 iterations with
lower bound frequencies. Table 3 shows the results of this experiment.

Problems Runs TS

NF(S) Tter T[sec]
8.75.25.1 10 17(10) | 46425 441
8.150.15.3 10 16(3) | 684200 | 12478
15.300.25.6 5 32(3) | 458764 | 20729
15.300.25.9 5 34(1) | 995667 | 37410

Table 3: More TS results, maximum iterations = 1,000,000

From Table 3, we see that 8.150.15.3 is solved with 16 frequencies (lower bound). The
results of 15.300.25.6 and 15.300.25.9 are improved with a gain of 1 and 3 frequencies
respectively. For 8.75.25.1, no interference-free solution is found with 16 frequencies. To
solve the last three instances, a large number of iterations are needed with a running time
ranging from 6 to 10 hours.

In summary, we see that the TS algorithm gives the best results for these instances
in terms of solution quality and solving speed. This remains true for 50 other instances
solved but not reported here. Due to insufficient information about the testing conditions
and implementation details of some algorithms, it is difficult to give a really fair comparison.
However, contrasting these results seems to give some clear indications about the performance
as to these algorithms.

12

Finally, we point out that in addition to the previous results, the T'S algorithm was also
applied to real data representing some largest mobile networks used in France to minimize
interference for a fixed number of frequencies and to minimize the number of frequencies for
interference-free assignments. Due to the confidential nature, we cannot report in details
our experiments on these networks. Suffice to say however that the TS algorithm gives
very competitive assignments for these real networks compared with other methods.

5.4 Discussions

The TS algorithm presented in this paper offers a significant improvement over the previous
best results on the set of tested instances. The high performance of the algorithm comes
from the combination of different features. In this section, we study the influence of some
of these features.

Conflict-based candidate list strategy

In order to see the influence of this strategy, experiments were carried out using the
entire neighborhood N(s) and the conflict-based candidate list V*. We re-run the TS
algorithm on some instances with different fixed number of frequencies. Table 4 shows the
comparative results on a particular instance (8.75.25.3). In the table, each line corresponds

to the result of 5 runs and “-” means that no result is found after 100,000 iterations.

NF N(s) V*

Tter T[sec] Tter Tsec]
23 237 1.8 86 0.5
22 | 267 2 104 0.6
21 14596 37 133 0.7
20 - - 150 1
19 - - 369 2
18 - - 1370 10
17 - - 6481 50
16 - - 78692 565

Table 4: Influence of candidate list strategy on 8.75.25.3, maximum iterations = 100,000

We observe from the table that none of the 5 runs (100,000 iterations each) using the
entire neighborhood N(s) is able to find an interference-free assignment using a number
of frequencies smaller than 21. On the contrary, the conflict-based strategy allows the
algorithm to find interference-free assignments with only 16 frequencies. Moreover, this
strategy is much more efficient in terms of number of iterations and computing time. These
remarks remain valid for other tested instances.

Another popular candidate list strategy is random sampling, i.e. only a percentage of
the neighborhood is randomly considered at each iteration. Similar tests show that once
again the conflict-based strategy largely dominates this sampling technique.

Co-cell constraint handling

In order to see the influence of this technique for the TS algorithm, we re-run our
TS algorithm 10 times with the CCH option disabled on the second test set (no co-cell

13

constraint exists in the first test set). Table 5 shows the comparative results of TS with
and without CCH.

Problems LB | Runs TS with CCH TS without CCH
NF(S) Tter Tlsec] | NF(S) Tter TJsec]
8.75.25.1 16 10 17(10) | 34414 274 17(10) | 34519 280
8.75.25.3 16 10 16(5) | 62764 485 16(4) | 41284 319
8.150.15.3 16 10 18(10) | 46425 668 18(8) | 51555 776
8.150.25.6 16 10 16(3) | 56120 906 17(5) | 59783 954
15.300.25.6 | 30 10 35(2) 78266 | 2940 37(2) 77455 2880
15.300.25.9 | 30 10 35(1) | 61294 | 2168 36(1) | 96722 3511

Table 5: Influence of co-cell constraint handling, maximum iterations = 100,000

From the table, we observe that CCH gives better solutions by reducing the number of
frequencies by 1 or 2 for the last 3 instances. Also, to obtain solutions of the same quality,
CCH seems to be more robust since the solutions are found more often. More generally,
CCH allows to reduce the search space and to accelerate the search process.

Re-generation

Recall that there are two different ways to generate an initial configuration with NF-1
frequencies when an interference-free assignment is found with NF frequencies. One may
take a completely new random configuration or re-generate a configuration from the last
interference-free assignment (see Section 4.2).

Results represented above are obtained with random initial configurations. It is thus
interesting to know if the “re-generation” technique can lead to different results. Limited
experiments were carried out for this purpose. We observed that given the same number of
iterations, the re-generation often makes the search faster. We also observed that the re-
generation may effectively improve the results. In particular, it helps finding interference-
free assignments with 30 frequencies (lower bound) for the two largest instances 15.300.25.x.
At the same time, we notice that the improvement is problem-dependent. More work is
needed to know to which extent and in which cases the re-generation is beneficial in general.

6 Conclusions and Future Work

In this paper, we have presented a powerful TS algorithm for the frequency assignment
problem. The algorithm has some key features including incremental evaluation, co-cell
constraint handling, candidate list strategy and dynamic tabu tenure. The algorithm was
evaluated against a steepest descent algorithm on various realistic instances. Results of
the TS algorithm were also compared with the best results obtained with other algorithms
based on simulated annealing, constraint programming and graph coloring. Empirical
evidence shows that the TS algorithm outperforms largely other algorithms by producing
the best results for the set of tested instances both in terms of quality of solution and solving
speed. Consequently, TS should be considered to be a very competitive and promising
method for the frequency assignment problem.

The FAP instances solved in this work may be considered to be large for today’s
networks. However, mobile radio networks grow extremely fast and will reach easily 1,000
to 2,000 cells (several thousands of variables) in the near future. Therefore, very powerful

14

optimization methods are needed to deal with such networks. Parallel and distributed TS
techniques may be considered since they are probably among the most promising methods
for tackling large and challenging combinatorial problems [5].

Acknowledgments

We would like to thank gratefully Dr. A. Caminada from CNET - France Telecom for his

assistance. We also thank the referees of the paper for their useful comments.

References

[1] A. Caminada, “Résolution du Probleme de I’Affectation des Fréquences Par
Programmation Par Contraintes”, Technical Report FT.CNET/BEL/POH/CDI/71-
95/CA, CNET, Belfort, 1995.

[2] A. Caminada, Some Results of Constraint Programming for Frequency Assignment,
Personal Communication, 1996.

[3] CALMAR Symposium on Combinatorial Algorithms for Military Applications,
Scheveningen, Holland, November 1995.

[4] D.J. Castelino, S. Hurley and N.M. Stephens, “A Tabu Search Algorithm for Frequency
Assignment”, Annals of Operations Research, Vol.63, pp301-319, 1996.

[5] T. G. Crainic, M. Toulouse and M. Gendreau, “Towards a Taxonomy of Parallel Tabu
Search Heuristics”, ORSA Journal of Computing, (to appear).

[6] W. Crompton, S. Hurley and N.M. Stephens, “A Parallel Genetic Algorithm for
Frequency Assignment Problems”, Proc. of IMACS SPRANN’'94, pp81-84, 1994.

[7] R. Dorne and J.K. Hao, “Constraint Handling in Evolutionary Search: A Case Study
on Frequency Assignment”, 4th Int. Conf. on Parallel Problem Solving from Nature,
Lecture Notes in Computer Science 1141, pp801-810, Springer-Verlag, 1996.

[8] M. Duque-Anton, D. Kunz and B. Riiber, “Channel Assignment for Cellular Radio
Using Simulated Annealing”, IEEE Trans. on Vehicular Technology, Vol.42, pp14-21,
1993.

[9] C. Fleurent and J.A. Ferland, “Genetic and Hybrid Algorithms for Graph Coloring”,
in G. Laporte, I. H. Osman, and P. L. Hammer (Eds.), Annals of Operations Research,
”Metaheuristics in Combinatorial Optimization”, Vol.63, 1996.

[10] N. Funabiki and Y. Takefuji, “A Neural Network Parallel Algorithm for Channel
Assignment Problems in Cellular Radio Network”, IEEE Trans. on Vehicular
Technology, Vol.41, pp430-437, 1992.

[11] A. Gamst, “A Ressource Allocation Technique for FDMA Systems”, Alfa Frequenza,
Vol.57, No.2, pp89-96, 1988.

[12] F. Glover and M. Laguna, “Tabu Search”, Kluwer Academic Publishers, Boston, USA,
1997.

[13] W.K. Hale, “Frequency Assignment: Theory and Application”, Proceedings of the
TEEE, Vol.68, No.12, pp1498-1573, 1980.

[14] J.K. Hao and R. Dorne, “Study of Genetic Search for the Frequency Assignment
Problem”, Artificial Evolution, Lecture Notes in Computer Science 1063, pp333-344,
Springer-Verlag, 1996.

[15] J.K. Hao and L. Perrier, “Tabu Search for the Frequency Assignment Problem in
Cellelar Radio Networks”, French Workshop on Practical Solving of NP-Complete
Problems, Dijon, France, March, 1996.

[16] A. Hertz and D. de Werra, “Using Tabu Search Techniques for Graph Coloring”.
Computing Vol.39, pp345-351, 1987.

[17] A. Kapsalis, V.J. Rayward-Smith and G.D. Smith, “Using Genetic Algorithms to
Solve the Radio Link Frequency Assignment Problem”, Proc. of Intl. Conf. on ANN
and GAs, pp37-40, Ales, France, 1995.

[18] D. Kunz, “Channel Assignment for Cellular Radio Using Neural Networks”, IEEE
Trans. on Vehicular Technology, Vol.40, pp188-193, 1991.

[19] A. Ortega, J.M. Raibaud, M. Karray, M. Marzoug, and A. Caminada, “Algorithmes
de Coloration des Graphes et d’Affectation des Fréquences: Approches Géométrique
et Analytiques, Heuristiques, Recuit Simulé, Programmation par Contraintes,
Algorithmes Génétiques”, Technical Report NT/PAB/SRM/RRM/4353, CNET, Paris,
August 1995.

[20] F.S. Roberts, “T-colorings of Graphs: Recent Results and Open Problems”, Discrete
Mathematics, Vol.93, pp229-245, 1991.

16

