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Abstract—The task assignment problem (TAP) is concerned
with assigning a set of tasks to a set of agents subject to the limited
processing and memory capacities of each agent. The objective to
be minimized is the total assignment cost and total communica-
tion cost. TAP is a relevant model for many practical applications,
yet solving the problem is computationally challenging. Most of
current metaheuristic algorithms for TAP adopt population based
search frameworks, whose search behaviors are usually difficult
to analyze and understand due to their complex features. In this
work, unlike previous population based solution methods, we
concentrate on single trajectory stochastic local search model to
solve TAP. Specially, we consider TAP from the perspective of a
grouping problem and introduce the first probability learning
based local search algorithm for the problem. The proposed
algorithm relies on a dual probability learning procedure to
discover promising search regions and a gain-based neighborhood
search procedure to intensively exploit a given search region. We
perform extensive computational experiments on a set of 180
benchmark instances with the proposed algorithm as well as the
general mixed integer programming solver CPLEX. We assess
the composing ingredients of the proposed algorithm to shed light
on their impacts on the performance of the algorithm.

Note to Practitioners—This work is motivated by the problem
of program modules designing and task allocation in parallel
and distribution systems. It can also be applied to deal with job
(task) grouping problems in practical industrial applications. This
paper presents a novel and effective learning-based local search
algorithm to obtain high-quality solutions of the considered
problem. Results of numerical experiments and comparisons
show that our algorithm can achieve good search performances
on problem instances of different scales and difficulties. After-
wards, we use the proposed solution method to solve a real-life
open-order slab assignment problem, which is derived from the
production planning of silicon steel for an iron and steel company.
The learning techniques of the proposed algorithm are of general
interest and can be used in search algorithms for solving other
real-life optimization problems with grouping features. For future
research, we will design solution methods based on these learning
techniques to address other practical optimization problems.

Index Terms—Task assignment, learning-based search, neigh-
borhood search.
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NOMENCLATURE

BKS best known solution of a TAP instance
CI confidence interval
DOE design of experiment
DPLS dual probability learning local search approach
ETC expected time to compute matrix
GNS gain-based neighborhood search procedure
HBMO honeybee mating optimization
IDE improved differential evolution
JPD joint probability distribution
LPD local probability distribution
MPD marginal probability distribution
NGHS harmony search algorithm
OPT optimal solution of certain instance
OSAP open-order slab assignment problem
PLS probability learning local search method
TAP task assignment problem
TIG task interaction graph

I. INTRODUCTION

THE TASK assignment problem (TAP) [1] involves as-
signing N tasks to M agents subject to the constrained

processing capability and memory capacity of each agent. The
objective is to minimize the total cost consisting of two parts:
1) the total assignment cost of assigning tasks to agents, and 2)
the total communication cost between tasks that are assigned
to different agents.

Formally, let N={1,...,N} be the set of tasks, M={1,...,M}
the set of agents, cij the assignment cost of assigning task
i ∈ N to agent j ∈ M, ei,k the communication cost between
tasks i ∈ N and k ∈ N when they are assigned to different
agents, pi the processing requirement of task i, qi the memory
requirement of task i, Pj the processing capacity of agent
j, and Qj the memory capacity of agent j. TAP can be
formulated as follows [2]–[4]:

Min
N∑
i=1

M∑
j=1

cijxij+

N−1∑
i=1

N∑
k=i+1

eik

(
1−

M∑
l=1

xilxkl

)
(1)

subject to∑M

j=1
xij = 1,∀i ∈ N, (2)∑N

i=1
pixij ≤ Pj ,∀j ∈M, (3)∑N

i=1
qixij ≤ Qj ,∀j ∈M, (4)

xij ∈ {0, 1},∀i ∈ N, j ∈M, (5)
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where xij is the decision variable indicating whether task i
is assigned to agent j. Objective (1) is to minimize the total
cost where the two terms correspond to the total assignment
cost and the total communication cost respectively. Constraints
(2) require that each task can only be assigned to a unique
agent. Constraints (3) and (4) ensure that the total processing
and memory requirements of the tasks assigned to an agent
must be less than the corresponding capacities of the agent.
Constraints (5) define the binary decision variables.

TAP is encountered in a number of real-life applications,
such as program modules designing [5], community-aware
task allocation [6], multirobot task allocation [7] and naval task
grouping [8]. TAP has also a number of variants with regard
to different practical scenarios (see the review of Section II).
Next, we share a real-life application that can be described by
the model of TAP.

Over the past 3 years, the authors conducted a real-life appli-
cation project for an iron and steel company in Hebei, China.
Our work was to make the plant-wide production planning
for silicon steel1. As shown in Fig. 1, the production of the
silicon steel involves multi-stage processes, i.e., ironmaking,
steelmaking-continuous casting, hot rolling and cold rolling.
The company uses make-to-order strategy and the production
planning depends closely on customer orders. Due to the
batch features and the uncertainties of the production process,
slabs coming out from the steelmaking-continuous casting may
not perfectly match with orders. Thereby, open-order slabs,
which do not belong to any orders, are inevitably created.
The undesirable open-order slabs will increase the inventory
cost and block the production process. Hence, we propose
to consider an open-order slab assignment problem (OSAP),
which can be modeled as TAP. In OSAP, the sets of open-
order slabs (tasks) and orders (agents) are identified first. And
then, the cutting cost (assignment cost) of matching each open-
order slab with each order is calculated. We also consider
another kind of cutting cost (communication cost), concerned
with two open-order slabs stemming from the same original
slab. There is a limited weight (memory capacity) for each
order. Moreover, the assigned slabs for each order that have
not arrived at inventory yard must be smaller than a given
threshold value (processing capacity), to guarantee due dates
and improve customer satisfactions. In this paper, OSAP is
used as a case study as detailed in Section V.

In spite of its importance and application focuses, solving
TAP is computationally challenging because the problem is
known to be NP-hard even when only three agents are con-
sidered [9], [10]. In this sense, exact algorithms are limited
to solve small-sized TAP instances. For large instances, meta-
heuristics whose goals are to find high-quality solutions within
an acceptable computation time frame are preferred. Generally,
metaheuristics for combinatorial optimization are classified as
single trajectory method and population based method [11]. In
the search space, the former builds a trajectory based on which
a single solution is produced at each iteration. The latter, on
the contrary, uses a search model to describe the emergence

1Silicon steel is usually used as magnetic materials for electric motors,
transformers, electric instruments, etc.

Ironmaking Steelmaking Continuous casting Slabs

Hot rollingHot coilsCold rollingCustomers Cold coils

Open-order
slabs

Fig. 1. Sketch of the production process of silicon steel.

phenomenon of collective intelligence and maintains a set of
solutions during the search. The performance of population
based methods depends strongly on search models. However,
it is usually difficult to select the most suitable search models,
since there are still no universal conclusions on this issue [11].
Meanwhile, the designs of components for population based
methods are complex, which should account for both search
behavior and problem-specific knowledge [12], [13]. More-
over, population based methods are usually time consuming
because they generally require a large number of objective
function evaluations, especially, in some complex applications
[14], [15]. As we observe from the literature review in Section
II, most existing metaheuristic algorithms for TAP adopt
population based search models. As such, these algorithms
are often highly complex and their behaviors are difficult to
analyze and understand. In this work, unlike population based
solution methods, we focus on the single trajectory stochastic
local search framework [16], which has shown to be a powerful
tool for solving a great number of hard combinatorial problems
including various assignment problems [17]–[19].

Machine learning has shown powerful ability for improving
different optimization methods [20]. It can structure valuable
information and so guides metaheuristics to find better so-
lutions [21]. In existing learning based metaheuristics, prob-
ability learning method, which adopts a probability model
to depict the distribution of promising search regions, has
shown good performance for solving a number of optimization
problems [22]. In general, the probability learning method first
estimates the probability model from high-quality solutions
and then generates new solutions using sampling operations.
In this sense, it has relevant theoretical foundations from the
probability theory perspectives. Specially, we investigate a
dual probability learning local search approach (DPLS), which
is inspired by and extends the recent probability learning local
search method (PLS) [23], [24] designed for solving the class
of so-called grouping problems [25].

Indeed, TAP can be considered as a special grouping
problem where we want to create groups of tasks for the
given agents subject to respecting the given constraints while
optimizing the objective of the problem. From such a perspec-
tive, we are interested in finding useful information that can
help us to determine task-to-agent assignment (i.e., which task
should be assigned to which agent and which tasks should stay
together). As shown in [23], [24], PLS is a relevant method
that employs learning techniques to acquire knowledge (in
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terms of probability distributions) from high-quality solutions
sampled by a local optimization procedure and then uses the
learnt knowledge to create promising groups that are further
improved by the local search procedure. Nevertheless, the
probability distributions used in [23], [24] are estimated based
on the differences between newly generated solution and the
corresponding improved one of local search procedure. Hence,
such probability distributions tend only to concentrate on the
local level features of search space. In this work, we adapt the
PLS method to TAP from the perspective of grouping problem
and introduce an additional global level learning strategy to
enhance the learning capacity of the proposed algorithm. Thus,
it is different from previous solution methods of [23], [24]. The
contributions of the work can be summarized as follows.

First, in terms of solution method, we present a probability
learning based local search algorithm to solve TAP. Specif-
ically, the proposed DPLS relies on two key and comple-
mentary components: the dual probability learning procedure
and the gain-based neighborhood search procedure (GNS).
On the one hand, by combining global level learning and
local level learning, the dual probability learning aims to ac-
quire problem-specific knowledge related to promising search
regions where high-quality solutions could be found. The
learning process of DPLS not only exploits local information
related to two correlated local optima like in PLS of [23],
[24], but also extracts global information from a long term
memory composed of previously discovered elite solutions.
On the other hand, GNS ensures an effective exploitation of
a given search region with a dedicated neighborhood search
method. To examine neighbor solutions, both cost gain and
constraint violation gain are simultaneously considered with
the notion of Pareto dominance. In GNS, we treat two kinds of
gains as conflicting goals when constructing the neighborhood,
which can balance the gains regarding the objective and the
constraint violation. We will compare it with the existing gain
based local search procedure of [2] in Section IV.

Second, from a perspective of computational performance
and practical applications, we introduce a real-life case study
that arises from a cooperative iron and steel company. This
case study demonstrates the practical values of the proposed
solution methods. Moreover, we report detailed computational
results for a set of 180 TAP benchmark instances, which would
be valuable for future research on TAP.

Third, the idea of combining global level learning and local
level learning used in the dual probability learning procedure
is of general interest and could be advantageously adopted by
search algorithms for solving other grouping problems.

The rest of this paper is organized as follows. Section II is
dedicated to a literature review on TAP. The proposed DPLS
algorithm is presented in Section III. Numerical results and
comparisons on 180 benchmark instances are reported and
discussed in Section IV. In Section V, we provide the details
of the introduced real-life case study. In Section VI, we draw
concluding comments.

II. RELATED WORK

TAP was first formalized by Glover et al. [1] in the 1970s.
Since then, a number of studies on TAP ( [5], [9], [10], [26]–

[30]) have been reported. A comprehensive review of TAP can
be found in [31]. In this section, we review some representative
studies on models and algorithms for TAP.

TAP as well as its variants have been extensively used
to model several real-life applications. Lee [26] presented a
number of variants of TAP with respect to different practical
scenarios. Hamam and Hindi [5] adopted TAP to formulate
the program modules designing problem in communication
networks. Wang and Jiang [6] established the community-
aware task allocation model based on a TAP variant. Lee et al.
[7] used TAP to formulate a kind of multi-robot task allocation
problem, so as to enhance the overall performance of the
multi-robot system. Karasakal et al. [8] employed the basic
model of TAP to formulate the sector allocation problem in
the naval task grouping area. TAP was also extended to address
other practical applications, such as real-time task allocation
in software engineering projects [32], reliability-oriented task
assignment in distributed systems [33] and task assignment
in mobile agent networks [34]. The above studies reveal the
practical values of TAP, indicating that developing effective
solution methods for solving the problem is both necessary
and meaningful.

In general, existing solution methods for TAP are classified
as exact algorithms and metaheuristic algorithms. Karasakal
et al. [8] proposed a branch and bound algorithm for a naval
task grouping application considered as a kind of TAP. Ernst
et al. [9] presented exact algorithms to solve the uncapacitated
and capacitated TAP and introduced a number of integer
linear programming formulations and a column generation
formulation. Li et al. [27] proposed a logarithmic method
to reduce the numbers of binary variables and the inequality
constraints in solving TAP. Their algorithms can achieve good
performance for instances with 10, 20 and 30 tasks. Kamer
and Uçar [30] presented an exact algorithm based on the A*
search algorithm for the uncapacitated TAP. One notices that
existing exact algorithms are usually limited to small-sized
problems.

In recent years, various metaheuristic algorithms have been
used to solve TAP approximately. Kang and He [2] proposed
a honeybee mating optimization (HBMO) algorithm for TAP,
where they introduced a gain-based improvement approach
to strengthen the local search ability of HBMO. Zou et al.
[3] reported a harmony search algorithm (NGHS), in which a
normalized penalty function method was used to handle the
constraints. Zou et al. [4] developed an improved differential
evolution (IDE) for TAP, wherein they presented a adaptive
mechanism to adjust the mutation and crossover operators of
IDE. Other metaheuristics, such as simulated annealing (SA)
[5] and variable neighborhood search [29] were also proposed
to solve TAP.

As reviewed above, most existing metaheuristic algorithms
for TAP adopt the population based search frameworks, whose
search behaviors are guided by certain relative relationships
among the solutions of the population. However, there may
be short of analysis on the distributions of promising search
regions during the search process. In this work, we advance the
state-of-the-art of solving TAP by proposing a new probability
learning based local search algorithm.
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III. DUAL PROBABILITY LEARNING BASED LOCAL
SEARCH FOR TAP

In DPLS, we adopt an agent-based solution representation
with an integer vector π where πi = j indicates that task i is
assigned to agent j. For example, π = [1, 3, 1, 3, 2] represents
the assignment where tasks 1 and 3 are assigned to agent 1,
tasks 2 and 4 are assigned to agent 3, task 5 is assigned to agent
2. Based on this solution representation, the components of
DPLS including dual probability learning and GNS explore the
solution space of TAP. Below, we present the general scheme
of the proposed DPLS algorithm and then its components.

A. General Scheme

DPLS considers its search process as a special online active
learning [35]. During the search process, problem-specific
knowledge is learnt online via its dual probability learning
procedure (see Section III-B). The learnt information, which
is recorded in the adopted probability models (distributions),
is then used to guide the algorithm toward promising search
regions. In the dual probability learning, a marginal probability
distribution (MPD) and a joint probability distribution (JPD)
are applied for the global level learning, whereas a local
probability distribution (LPD) is employed for the local level
learning. In addition to the component of the dual probability
learning, DPLS uses a powerful local search method (i.e.,
GNS, see Section III-E) to intensively examine a given region
identified by the dual probability learning. As such, DPLS iter-
atively explores the given search space by alternating between
the dual probability learning and GNS components to attain a
suitable balance of search intensification and diversification.

Let tMax be the maximum generation of DPLS, mprot =
[mprot,j,i]M×N and cprot = [cprot,i,k]N×N the probability
distributions of MPD and JPD at generation t, lprot =
[lprot,j,i]M×N the probability distribution of LPD, At the
solution generated by sampling MPD and JPD,Bt the solution
generated by sampling LPD, St the solution selected from
At and Bt, Ŝt the improved solution produced from St by
using GNS, As the predetermined size of the external archive,
ExAt the external archive (t ≥ As, if t < As then As = t),
and gBest the best feasible solution found so far by DPLS.
Note that cprot,i,k represents the probability of tasks i and
k that are assigned to the same agent, while mprot,j,i and
lprot,j,i represent the probability of task i selects agent j.
Then the proposed DPLS algorithm for TAP is presented in
Algorithm 1 with its flowchart shown in Fig. 2.

As Algorithm 1 shows, DPLS is driven by the interactions
of the dual probability learning and GNS (Lines 11 to 20).
At each generation, MPD and JPD are learnt (updated) by
Ŝt and solutions in ExAt (Lines 14 to 15). Since Ŝt and
ExAt are dynamically updated along with the search process
of DPLS, they always consist of high-quality solutions. MPD
and JPD can thus reveal specific knowledge of the problem
instance and search behavior of DPLS at a global level. It is
probable, however, that ExAt is not updated for a number
of iterations of DPLS. In this case, MPD and JPD cannot be
updated. Hence, to avoid the partial stagnation of DPLS, we do
not use the solutions in ExAt to update MPD. Note that MPD

Algorithm 1 DPLS for solving TAP
1: Input: parameters of TAP and DPLS
2: Output: gBest
3: For t := 1 to tMax do
4: If t = 1 then
5: /*initialization*/
6: Set mprot,j,i := 1/M ,i ∈ N, j ∈ M; //equal probability
7: Set lprot,j,i := 1/M ,i ∈ N, j ∈ M; //equal probability
8: Randomly generate St and initialize ExAt with St alone;

meanwhile, if St is feasible, then set gBest := St;
9: Else

10: /*main iteration*/
11: Perform GNS to obtain Ŝt from St−1; //Section III-E
12: Update gBest with a feasible and better Ŝt;
13: Update ExAt by adding Ŝt to it if t ≤ As; otherwise,

replacing the worst solution in ExAt with Ŝt;
14: Perform global level learning to learn (update) mprot

using Ŝt; //Section III-B
15: Perform global level learning to learn (update) cprot using

ExAt; //Section III-B
16: Perform local level learning to learn (update) lprot based

on the differences between St−1 and Ŝt; //Section III-B
17: Generate At from mprot and cprot; //Section III-C
18: Generate Bt from lprot; //Section III-C
19: Select solution St from {At,Bt}: if they are all feasible,

select the one with smaller ftc; if only one is feasible, select
it; if they are all infeasible, select the one with smaller fcv;

20: Perform probability smoothing operator; //Section III-D
21: End If
22: End For
23: If {gBest} = ∅ then
24: Perform repair operator for infeasible solutions; //Section III-F
25: End If
26: Return: gBest

mprot
Solution 

Solution 

Solution

St 1(t)

Solution 

t

Archive 

Ex

A: GNS;

  t >tMax

No
Yes

gBest
cprot

lprot

B

C

D

E

F
J

B: Update ExAt; C: Learn mprot; D: Learn cprot; E: Learn lprot; F: Generate At;

G: Generate Bt; H: Select St ; J: Repair operator (optional).

mprot+1

lprot+1

G

I: Probability smoothing ;

I H A

Fig. 2. Flowchart of proposed DPLS for TAP.

is not updated by using the best solution in ExAt, because we
found in our preliminary experiments that such a way is very
likely to lead undesirable convergence of MPD. In addition,
LPD is updated based on the differences of St−1 and Ŝt (Line
16). Indeed, one can regard LPD as a “quasi-direction” of
promising solutions in the current search region. Hence, LPD
can capture more detailed information about the search regions
that are being exploited, which is used to precisely guide GNS.
Afterwards, GNS is used to discover high-quality local optima
with the given region (Line 11), which is beneficial to reduce
the sampling errors in producing At and Bt as well. In view
of the general framework of DPLS, it highlights the integration
of learning methods associated with the global and local levels
and is this different from the PLS algorithms of [23], [24].
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B. Dual Probability Learning

1) Global level learning: The purpose of the global level
learning is to accumulate probability information of high-
quality solutions found so far, so as to predict promising search
regions. However, the learning goals for MPD and JPD are
different, since they account for different solution features of
TAP. We update mprot as follows:

mprot,J,i =

{
mprot−1,J,i + LR, if J = Ŝt,i
mprot−1,J,i, otherwise

, i ∈M, (6)

where LR is the learning rate. One observes that mprot−1
andmprot (t ≥ 2) are connected with LR and the differences
between them are uniquely determined by Ŝt. Arguably, a
larger value of LR results in stronger learning ability and faster
convergence of mprot, while a smaller LR value leads to
relatively weaker learning ability.

Note that mprot,j,i tends to become large if task i is
frequently assigned to agent j regarding Ŝt at each generation.
Thus, mprot is suitable to determine “which task should go
to which agent”. Thereafter, we normalize mprot as follows:

mprot,j,i = mprot,j,i/(1 + LR),∀i ∈ N, j ∈M. (7)

On the other hand, the global level learning also concerns
the grouping preference about “which tasks should stay to-
gether”, which is represented by cprot and updated by high-
quality solutions in ExAt. Unlike mprot, the elements of
cprot are the probability values of any pair of tasks that are
assigned to the same agent. The learning method of cprot is
given in Algorithm 2.

Algorithm 2 Learning Method of cprot (Global Level)
1: Input: ExAt

2: Output: cprot
3: Set tmpAs := t, if t < As; otherwise, set tmpAs := As;

//current size of ExAt

4: Set cprot,i,k = 1/2 · (N2 −N),∀i 6= k ∈ N; //initialization
5: /*frequency of each pair of tasks that stay together*/
6: Set tmpCa := 0;
7: For s := 1 to tmpAs do
8: For each pair (i, k) ∈ {(i′, k′)|k′ > i′, ∀i′, k′ ∈ N} do
9: If ExAt,s,i = ExAt,s,k then

10: Set cprot,i,k := cprot,i,k + 1; //update the probability
11: Set tmpCa := tmpCa+ 1; //number of pairwise tasks

that stay together
12: End If
13: End For
14: End For
15: /*normalization of probability value*/
16: Set scalV al := 1 + tmpCa; //scaling factor for normalization
17: For each pair (i, k) ∈ {(i′, k′)|k′ > i′, ∀i′, k′ ∈ N} do
18: Set cprot,i,k := cprot,i,k/scaleV al; //normalization
19: Set cprot,k,i := cprot,i,k; //symmetric feature of probability
20: End For
21: Return: cprot

In Algorithm 2, we first initialize cprot with equal proba-
bility (Line 4). The elements of cprot are then approximated
by the frequencies extracted from solutions in ExAt, which
is a maximum likelihood estimation. It is thus reliable to use
Algorithm 2 for capturing the grouping preferences of tasks.
Note that the elements of cprot to be learnt are only located

in the upper triangular part excluding the diagonal ones, which
is beneficial to the efficiency of the learning method (Line 19).

2) Local level learning: The purpose of the local level
learning is to discover detailed information about the current
search regions. Here, we adopt the learning method in [23],
[24] proposed for the graph coloring problem. Its original
idea comes from reinforcement learning, consisting of reward,
penalization and compensation operators. Let α, β and γ be
the reward factor, penalization factor and compensation factor.
The learning method of lprot is given in Algorithm 3.

Algorithm 3 Learning Method of lprot (Local Level)

1: Input: St−1, Ŝt
2: Output: lprot
3: For i := 1 to N do
4: If St−1,i = Ŝt,i then
5: Set lprot,St−1,i,i := α+ (1− α) · lprot,St−1,i,i; //reward
6: Else
7: Set lprot,St−1,i,i := (1 − γ) · (1 − β) ·

lprot,St−1,i,i;//penalization
8: Set lprot,Ŝt,i,i

:= γ + (1− γ) · β
M−1

+ (1− γ) · (1− β) ·
lprot,Ŝt,i,i

; //compensation
9: For j := 1 to M do

10: If St−1,i = j and Ŝt,i = j then
11: Set lprot,j,i := (1 − γ) · β

M−1
+ (1 − γ) · (1 − β) ·

lprot,j,i; //normalization
12: End If
13: End For
14: End If
15: End For
16: Return: lprot

From Algorithm 3, we can see that lprot is constructed
based on the differences between St−1 and Ŝt. After execut-
ing the reward (Line 5), the penalization (Line 7), the compen-
sation (Line 8) and the normalization (Line 11) operators, the
final lprot can be obtained. Accordingly, lprot can be useful
to predict promising areas that may contain high-quality local
optima in the current search region.

C. Sampling Method for New Solutions

At each generation of DPLS, new solutions At and Bt are
generated by sampling the probability distributions learnt in
the dual probability learning. To be specific, At is sampled
from the combination of mprot and cprot while Bt is
sampled from lprot. From the search model of DPLS (Fig.
2), one can see that At and Bt are generated from two inde-
pendent learning components of DPLS. They thus contribute
differently to the overall search behavior of DPLS. Meanwhile,
the used probability distributions mprot, cprot and lprot
are concerned with different considerations. Therefore, we will
adopt different sampling methods for At and Bt.

1) Proposed sampling method for At: A hybrid sampling
method is proposed to generate At, which not only depends
on mprot and cprot but also a random noise. Let noise
be the random noise, and rv = [rv1, ..., rvM+1] the roulette
vector for a given task. The proposed sampling method for At

is given in Algorithm 4.
In Algorithm 4, the sampling manner for each task is

determined by noise (Line 7). Such a method can make good
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use of the randomness and so enhances the diversification
of the algorithm. If the noise condition is not satisfied, the
sampling process is executed based on the integration of
mprot and cprot (Lines 11 to 29). That is, we first sample
the ith task using the roulette vector (Lines 11 to 21). Then,
if there are still tasks needed to be sampled, we select a task
nL having the largest probability for staying together with
task i and assign nL to agent Ai (Lines 22 to 29). By doing
so, At can maintain a good tracking performance for the
information from both mprot and cprot, so as to enhance
the intensification of the algorithm.

Algorithm 4 Proposed Sampling Method for At

1: Input: mprot and cprot
2: Output: At

3: Set flagTaski := false, i ∈ N; //flags of already assigned tasks
4: Set nTask := 0; //total number of already assigned tasks
5: For i := 1 to N do
6: If flagTaski = false then
7: If random[0, 1] < noise then
8: Set At,i := random{1, ...,M}, flagTaski := ture;
9: Set nTask := nTask + 1;

10: Else
11: Set rv1 := 0 and rvM+1 := 1; //construct roulette vector
12: For j := 2 to M do
13: Set rvj := rvj−1 +mprot,j−1,i;
14: End For
15: Set rnd := random[0, 1);
16: For j := 1 to M do
17: If rnd ≥ rvj and rnd < rvj+1 then
18: Set At,i := j and flagTaski := true;
19: Set nTask := nTask + 1; Break;
20: End If
21: End For
22: If nTask < N then
23: Set T := {i′|flagTaski′ = false, i′ ∈ N};

//tasks need to be assigned
24: For each task n ∈ T with cprot,n,i 6= 0 do
25: Select a task nL from T that satisfies cprot,nL,i >

cprot,n,i, n ∈ T \{nL};
26: Set At,nL := At,i and flagTasknL := true;
27: Set nTask := nTask + 1;
28: End For
29: End If
30: End If
31: End If
32: End For
33: Return: At

2) Sampling method for Bt: The sampling method pro-
posed in [23], [24] is adopted to generate Bt, and the
sampling manner for each task is determined by a random
noise as well. The sampling process for Bt works as follows.
For each task i ∈ N, the noise condition is first checked
(the same as Line 7 in Algorithm 4). And then we set
Bt,i = random{1, ...,M} if the random value random[0, 1]
is smaller than noise. Otherwise, we select an agent mL ∈M
satisfying lprot,mL,i > lprot,m,i, m ∈ M\{mL} and set
Bt,i = mL. As shown in Algorithm 1, selecting a solution
from {At, Bt} to determine St is in fact a complementing
strategy for the two kinds of probability distributions of DPLS.
That is, the random noises adopted in both sampling methods
for At and Bt are consistent with each other. Thus, we use
the same value of noise as in Algorithm 4.

D. Probability Smoothing Method for mprot and lprot
It is very likely that the probability distributions gradually

converge to stable states (i.e., some probability values are
close to 0 or 1) along with the iteration of DPLS. Such a
convergence may lead to undesirable local optima especially
in some flat search regions. We found in our preliminary
observations that cprot does not have a tendency to converge
to 0 or 1. Since the learning methods of mprot and lprot
depend on Ŝt that may speed up the convergence, it is
necessary to execute smoothing operators for them. Due to the
same features of mprot and lprot, we adopt the smoothing
procedure [23], [24] and parameters for them.

Let thre be the threshold of the smoothing operator and ρ
the smoothing factor. Takemprot for example, the smoothing
procedure works as follows. For each task i ∈ N, we check the
probability of mprot,j,i for each agent j ∈M. If mprot,j,i ≥
thre, we record the probability rec = mprot,j,i and set
mprot,j,i = ρ ·mprot,j,i. Then, we normalize the probability
values for l ∈M as mprot,l,i = mprot,l,i/(1− (1− ρ) · rec).
The above procedure continues until the probability values
mprot,j,i (j ∈ M) of the ith task are all less than thre. The
smoothing operator allows the algorithm to forget some old
memories of probability distributions and thus enhances the
diversification of DPLS.

E. Proposed Gain-based Neighborhood Search (GNS)

In this work, we reformulate TAP in a penalty function form
without Constraints (3) and (4) as follows:

Min h = {ftc + fcv}
subject to Constraints (2) and (5),

(8)

where ftc is the total cost (i.e., the objective function in (1)),
and fcv is the penalty term of constraint violations defined as

fcv =
∑
j∈M

{
max

{∑
i∈N pixij − Pj , 0

}}2
+
∑
j∈M

{
max

{∑
i∈N qixij −Qj , 0

}}2
.

(9)

If fcv > 0, the solution does not satisfy Constraints (3)
or (4) and thus is infeasible. In this case, h = ftc + fcv is
used to assess the solution quality. That is, we always use the
solutions with better values of h to perform the components
of DPLS, regardless of their feasibility. This is also the basic
idea of penalty function strategy for handling the constraints
of metaheuristics [11]. However, it is often difficult to select
a suitable penalty weight, which is strongly sensitive to the
problem instances as well as the solution methods. For these
reasons, the square function in Eq. (9) is adopted to cope with
this difficulty.

Given that we adopt a penalty weight λ and build another
penalty term f

′

cv , the related conclusion is as follows:

lim
fcv→λ2

{
f
′

cv − fcv
}
= lim
fcv→λ2

{
λ ·
√
fcv − fcv

}
= 0, (10)

where f
′

cv = fcv at point (λ2, λ2). In addition, f
′

cv > fcv if
fcv < λ2 while f

′

cv < fcv if fcv > λ2. Therefore, the square
penalty term in Eq. (9) is reasonable to address the constrains
of TAP. It would be worthwhile to design other effective
constraint handling methods for TAP in future research.
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Based on the above reformulation, to discover high-quality
local optima, we propose a GNS-based local optimization
method which is based on two kinds of gains regarding the
cost and the constraint violation. We use the gain calculation
method proposed in [2] with the notable difference that our
method is based on the notion of Pareto dominance. Specif-
ically, in GNS, we treat two kinds of gains as conflicting
goals when constructing the neighborhood. This is because,
in TAP, smaller assignment or communication cost for tasks
does not mean smaller processing or memory requirements.
Besides, two kinds of gains are often in different magnitude.
Accordingly, the two kinds of gains are in nature suitable
to be regarded as conflicting ones. Note that the proposed
Pareto-dominance GNS aims at exploiting high-quality local
optima and thus does not concern the diversity metrics of
conventional multi-objective optimization solution methods
[12]. In Section IV, we will put forward relevant assessments
on the effectiveness of the presented Pareto-dominance GNS,
comparing DPLS with its variant that uses another GNS based
on the linear sum of the two gains.

Let αj (j ∈ M) be the set of tasks assigned to agent j.
Then, the gain of the cost associated with moving task i ∈ αj
from agent j to agent l ∈M\{j} is defined as follows:

gtci,j,l =
∑
k′∈αl

eik′ −
∑
k∈αj\{i} eik + cij − cil,

∀i ∈ αj , l ∈M\{j}, (11)

where we set eik′ = 0 if αl = ∅ and eik = 0 if αj\{i} = ∅.
The moving operator of tasks in GNS is illustrated in Fig. 3.

j l

moving operator

i i

i j i l
, ,

tc
i j lg

Fig. 3. Illustration of moving operator (moving task i from agents j to l).

The gain of the constraint violation gcvi,j,l with regard to
moving task i from agent j to l can be calculated according
to Eqs. (12) to (16) [2]. It is composed of 8 sub gains (Eq. (12))
representing different scenarios of the constraint violations of
agents j and l. Here, we combine the definitions of these
sub gains regarding the processing capacity and the memory
capacity due to the same principles.

gcvi,j,l = gcvai,j,l + gcvbi,j,l + gcvci,j,l + gcvdi,j,l + gcvei,j,l

+gcvfi,j,l + gcvgi,j,l + gcvhi,j,l,
(12)

where

g
cva(e)
i,j,l =

( ∑
i′∈αj

p(q)i′ − P (Q)j

)2

−

( ∑
i′∈αj\{i}

p(q)i′ − P (Q)j

)2

,

if
∑

i′∈αj\{i}
p(q)i′ > P (Q)j , otherwise 0,

(13)

g
cvb(f)
i,j,l =

( ∑
i′∈αj

p(q)i′ − P (Q)j

)2

,

if
∑
i′∈αj

p(q)i′ > P (Q)j and∑
i′∈αj\{i}

p(q)i′ ≤ P (Q)j , otherwise 0,

(14)

g
cvc(g)
i,j,l = −

( ∑
k∈αl∪{i}

p(q)k − P (Q)l

)2

,

if
∑
k∈αl

p(q)k ≤ P (Q)l and∑
k∈αl∪{i}

p(q)k > P (Q)l, otherwise 0,

(15)

g
cvd(h)
i,j,l =

( ∑
k∈αl

p(q)k − P (Q)l

)2

−

( ∑
k∈αl∪{i}

p(q)k − P (Q)l

)2

,

if
∑
k∈αl

p(q)k > P (Q)l, otherwise 0.

(16)

For memory constraints, we illustrate the sub gains of Eqs.
(13) to (16) in Fig. 4. The first two figures show the conditions
for Eqs. (13) and (14), while the last two the conditions for
Eqs. (15) and (16). Note that for calculating gcvi,j,l we only
consider gcvai,j,l to gcvhi,j,l and the others gcvai′,j′,l′ to gcvhi′,j′,l′ (i′ 6=
i, j′ 6= j and l′ 6= l) are not changed. This is beneficial to the
efficiency of GNS.

Eq. (13)

qi

' 'j
i iq

Assigned memory amounts of agent j or l before moving operator;

Memory capacity of agent j or l;

Memory requitement of task i.

Eq. (14) Eq. (15) Eq. (16)

Qj
Ql

qi

l
k kq

Agent j Agent l

Fig. 4. Illustration of the gain of constraint violation (for memory constraints).

The proposed GNS procedure is shown in Algorithm 5. Two
kinds of gains and nondominated set P are initialized first
(Lines 5 to 6). We build P based on the values of the two
gains to be maximized where at least one gain is larger than
0. Then, whenever P 6= ∅ (Line 8), the main loop of GNS
is repeated until P = ∅ (Lines 9 to 25). For each loop of
GNS, a vector (i, j, l) is determined based on the proposed
Rules 1 to 3 (Lines 14 to 16). Since, the two gains are seen
as conflicting goals in Rules 1 to 3, and the moving operator
is executed to update St−1 (Line 17). Next, St−1 is evaluated
(Line 19). It is very likely that gtci,j,l + gvci,j,l ≤ 0 for each
loop, so we always check the relationship between h(St−1)
and h(Ŝt) before updating Ŝt (Lines 20 to 22). In view of
the above procedures, the existing GNS method of [2], which
is based on the linear sum of the two gains, can be seen as a
special case of our Pareto-dominance GNS.
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Algorithm 5 Proposed Pareto-dominance-based GNS
1: Input: St−1

2: Output: Ŝt
3: /*initialization*/
4: Set Ŝt := St−1 and h(Ŝt) := h(St−1);
5: Calculate gtci,j,l and gcvi,j,l, i ∈ N, j = St−1,i and l ∈ M\{j};

//Eqs. (11) to (16)
6: Construct nondominated set P based on N × (M − 1) pairs of

gains (gtci,j,l, g
cv
i,j,l) such that (gtci,j,l > 0) ∨ (gcvi,j,l > 0), i ∈ N,

j = St−1,i and l ∈ M\{j});
7: /*neighborhood search*/
8: If P 6= ∅ then
9: Repeat

10: If |P| = 1 then
11: Perform moving operator for (i, j, l) and update St−1;
12: Else
13: Determine a vector (i, j, l) based on following rules:
14: Rule 1: If there exist one or more pairs of gains in P

satisfying (gtc• ≥ 0) ∧ (gcv• ≥ 0), select (i, j, l) from
such pairs with the largest gtc• + gcv• ;

15: Rule 2: If conditions in Rule 1 are not satisfied, and
there exist one or more pairs of gains in P satisfying
(gtc• < 0) ∧ (gcv• > 0), select (i, j, l) from such pairs
with the largest gcv• ;

16: Rule 3: If conditions in Rules 1 and 2 are not satisfied,
and there exist one or more pairs in P of gains satisfying
(gtc• > 0) ∧ (gcv• < 0), select (i, j, l) from such pairs
with the largest gtc• ;

17: Perform moving operator for (i, j, l) and update St−1;
18: End If
19: Update objective h(St−1) := h(St−1)− (gtci,j,l + gvci,j,l);
20: If h(St−1) < h(Ŝt) then
21: Set Ŝt := St−1 and h(Ŝt) := h(St−1); //update Ŝt
22: End If
23: Calculate gtci,j,l and gcvi,j,l, i ∈ N, j = St−1,i and l ∈

M\{j}; //Eqs. (11) to (16)
24: Construct set P; //use the same method in Line 6
25: Until (P = ∅)
26: End If
27: Return: Ŝt

F. Constraint Handling Method for Infeasible Solutions

A problem-specific repair operator for infeasible solutions
is proposed, which will be invoked if and only if no feasible
solution can be found at the end of the search process of DPLS.
In this case, during the search process of DPLS, the solution
quality is evaluated based on the newly introduced objective
function in Eq. (8). That is, we do not remove infeasible
solutions when updating probability distributions in the dual
probability learning stage. Hence, the search process of DPLS
may start from the infeasible side of the search space of TAP.
The proposed repair operator is given in Algorithm 6.

As Algorithm 6 shows, the repair operator is an iterative
procedure (Lines 9 to 23), starting from the initialization of
the spare capacity of each agent (Line 8). The primary idea is
to balance the spare capacity of each agent, so as to transform
an infeasible solution in ExAtMax into a feasible solution.
We only consider infeasible agents (i.e., the spare capacities
are less than 0, Line 11) and move the related task to the
agent having the largest spare capacity (Line 15). The spare
capacity of each agent and the total number of infeasible
agents are dynamically updated (Lines 17 and 22). We repeat
these operators until a feasible solution is produced.

Algorithm 6 Repair Operator for Infeasible Solutions
1: Input: ExAtMax

2: Output: gBest
3: For s := 1 to As do
4: Set SCj := 0 for each j ∈ M; //initial spare capacities
5: For i := 1 to N do
6: Set jj = ExAtMax,s,i and SCjj := SCjj + pi + qi;
7: End For
8: Set SCj := Pj+Qj−SCj for each j ∈ M; //spare capacities
9: Repeat

10: For j := 1 to M do
11: If SCj < 0 then
12: Set CT := {i|ExAtMax,s,i = j, i ∈ N};
13: Rank solutions in CT according to the value of pii+

qii (ii ∈ CT );
14: For ii := 1 to |CT | do
15: Find an agent jj from M that has the largest spare

capacity;
16: Set ExAtMax,s,ii := jj; //move task ii to jj
17: Set SCj := SCj + pii+ qii and SCjj := SCjj −

pii − qii; If SCj ≥ 0 then Break;
18: End For
19: End If
20: End For
21: Set nif := |{j|SCj < 0, j ∈ M}|; //#infeasible agents
22: Until (nif = 0)
23: Calculate the objective function for solution ExAtMax,s;
24: End For
25: Find π̃ with the smallest objective function from ExAtMax;
26: Set gBest := π̃;
27: Return: gBest

IV. NUMERICAL RESULTS AND COMPARISONS

A. Test Instances and Experimental Design

To assess the effectiveness of the proposed DPLS, we
generate 180 benchmark instances of TAP based on the work
of Kaya and Uçar [30]. In their work, the relationships among
tasks was described using an undirected task interaction graph
(TIG) G = (N,E) where a node of N represents a task and
E is the set of edges representing the communication between
each pair of task. Meanwhile, an expected time to compute
matrix ETC = [cij ]N×M , whose elements are the assignment
cost, was also introduced. If a pair of tasks are not contained
in E, the communication cost between them is always 0 even
they stay in different agents. Hence, TIG and ETC determine
the solving difficulty of the instances of TAP. As suggested
in [30], an inconsistent ETC matrix is better than a consistent
matrix due to the heterogeneous features of tasks. In fact, the
consistent ETC matrix is a special case of the inconsistent
one. The inconsistent ETC matrix can provide more general
solution features of TAP, which is helpful in showing the
synthetical performance of TAP algorithms studied. Thus, to
generate the test instances, we use an inconsistent ETC matrix
which consists of 4 types, i.e., ETC ={0, 1, 2, 3}. Moreover,
a communication-to-computation ratio rcom is introduced to
determine the different impacts of the communication cost and
the assignment cost on the objective function of TAP. More
details about the above definitions and the generation methods
of ei,k and ci,j can be found in [30].

Nevertheless, different from the approach proposed in [30],
the processing capacity and the memory capacity of agents
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need to be considered in this work. To do so, we first generate
the memory requirements qi and the processing requirements
pi for each task as follows: qi = random{1, ..., 100} and
pi = random{5, ..., 25}. Such different distributions of pi and
qi are to distinguish the two kinds of attributes of tasks. And
then the processing capacity and the memory capacity for each
agent are generated as follows: Pj =

((∑
i∈N pi

)
/M
)
/η and

Qj =
((∑

i∈N qi
)
/M
)
/ζ. The parameters that we use are:

η = ζ = 0.8, which represent the utilization of the average
processing and memory requirements expected for each agent.

In addition to the topologies of the TIGs, 5 sparse DWT
matrices2, which originally describe a set of unweighted struc-
tural problems, are adopted, including dwt59, dwt66, dwt162,
dwt245 and dwt 310. Based on the above definitions and
generation methods of the parameters of TAP, we generate
benchmark instances for combinations N×M ={59, 66, 162,
245, 310}×{4, 6, 8} concerned with ETC ={0, 1, 2, 3}
and rcom = {0.7, 1.0, 1.4}. Therefore, there are a total of 180
benchmark instances3.

Numerical results and comparisons on the aforementioned
180 benchmark instances are carried out. For each instance,
DPLS and other compared algorithms are independently run
21 times. The results are reported as BV , AV and SD, which
represent the best objective value, mean objective value and
standard deviation of the obtained solutions. In addition, we
use #Best to represent the numbers of instances that an
algorithm can obtain the best values of the quality indicators.
To assess the statistical significance of the differences between
DPLS and each compared algorithm, we conduct the non-
parametric Friedman test at a 95% confidence interval (CI)
and report the p-values. All the algorithms are coded in C++
(Visual Studio 2008) and executed on a PC with Intel Core
i7-6700 3.4 GHz CPU and 4GB memory.

B. Parameter Analysis and Settings

The parameters of DPLS are: the reward factor α, the pe-
nalization factor β, the compensation factor γ, the smoothing
factor ρ, the sampling noise noise, the smoothing threshold
thre, the learning rate LR and the size of the external archive
As. To find an appropriate combination of parameters, we con-
duct the design of experiment (DOE), in which the orthogonal
array L49(5

8) with 49 combinations of levels is used. The
first necessity of DOE is to determine the factor levels based
on the ranges of parameters. It is not uncommon, however,
that certain extreme values in the ranges of parameters may
cause sharp deterioration of the performance of DPLS. In
this sense, we find two extreme values for each parameter
which are used as the boundary values of factor levels. Note
that the determinations of such boundary values are based
on preliminary observations on a number of instances with
different sizes. Thereafter, the factor levels can be generated
by using a arithmetic progression. Take LR for example, we
first identify the extreme values of LR with 0 and 0.3, and
then give its factor levels: 0.05, 0.10, 0.15, 0.20 and 0.25. The

2Topologies of DWT matrices are available from the MATRIX MARKET:
https://sparse.tamu.edu/.

3Instances are available at: http://dx.doi.org/10.13140/RG.2.2.25431.62887.

levels of all parameters (factors) of DPLS are given in Table
I. Using a medium-sized instance t162p4r1.0ETC2, for each
parameter combination, we independently run DPLS 21 times
with the stopping condition tMax = 5000 and use the values
of AV as response values4. The level trends of parameters
are given in Fig. 5. Moreover, we carry out the analysis of
variance (ANOVA) at the 95% CI, as shown in Table II. As
it shows, the p-values for all the parameters are larger than
0.05, indicating that DPLS is relatively less sensitive to its
parameters and in turn can retain better robustness for solving
different kinds of TAP instances.

TABLE I
LEVELS OF PARAMETERS

Level
Parameter 1 2 3 4 5
α 0.05 0.10 0.15 0.20 0.25
β 0.05 0.10 0.15 0.20 0.25
γ 0.10 0.20 0.30 0.40 0.50
ρ 0.15 0.20 0.25 0.30 0.35
noise 0.10 0.20 0.30 0.40 0.50
thre 0.75 0.80 0.85 0.90 0.95
LR 0.05 0.10 0.15 0.20 0.25
As 5 10 15 20 25

(a) α (b) β (c) γ

(d) ρ (e) noise (f) thre

(g) LR (h) As

Fig. 5. Level trend of each parameter (using AV as response values).

Note that the selections of parameters should balance the
effectiveness and the efficiency of DPLS. In particular, we
observe the level trends of parameters that use average CPU
time as response values5. For example, in Fig. 5, the levels
of β display a better value of margin mean corresponding
to the level 5, while the related level trend of CPU time
shows a relatively small difference between levels 1 and 5.
Thus, the selection of β can be 0.25. Based on the above
guidelines, we give the selections of parameters in Table II. We

4Details of the orthogonal array and the corresponding response values are
available at: http://dx.doi.org/10.13140/RG.2.2.17462.45124.

5Level trends of parameters concerned with CPU time are available at:
http://dx.doi.org/10.13140/RG.2.2.35182.64322.
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also perform relevant experiments for the parameter settings
of DPLS considering small-sized t59p6r1.4e1 and large-sized
t310p4r1.0e0 and are able to confirm these settings.

TABLE II
ANOVA RESULTS AND PARAMETER SELECTIONS

ANOVA Selection
Parameter Mean square F-value p-value Value Rank
α 67092.973 0.923 0.475 0.20 5
β 98965.918 1.361 0.291 0.25 2
γ 46389.433 0.638 0.643 0.20 6
ρ 85565.490 1.177 0.358 0.35 4
noise 153632.030 2.113 0.127 0.30 1
thre 5648.331 0.078 0.988 0.90 8
LR 85892.153 1.181 0.356 0.10 3
As 28773.647 0.396 0.809 5 7

C. Comparisons of DPLS and State-of-the-art Algorithms

In this section, we compare DPLS with three state-of-the-art
reference algorithms, i.e., IDE [4], HBMO [2] and NGHS [3].
To be fair, we first run DPLS for each instance (tMax = 5000)
and record the CPU time, and then the three algorithms are run
with the same CPU time6. In terms of BV , AV and SD, the
values of #Best for algorithm pairs “DPLS vs. IDE”, “DPLS
vs. NGHS” and “DPLS vs. HBMO” are summarized in Fig. 6.
In addition, the significance of the difference between DPLS
and the three algorithms is given in Table III.

(a) DPLS vs. IDE

(b) DPLS vs. NGHS

(c) DPLS vs. HBMO

Fig. 6. Summary of results of IDE, NGHS, HBMO and DPLS (180 instances).

From Table III and Fig. 6, we can see that DPLS outper-
forms the other three algorithms in terms of BV , AV and SD.
The corresponding p-values are all less than 0.05, except that
the BV of “DPLS vs. HBMO” is 0.089. One can also find
that DPLS and HBMO have the same value of #Best with
regard to BV . Therefore, it is necessary to further discuss

6Details of comparison results associated with 180 individual instances are
available at: http://dx.doi.org/10.13140/RG.2.2.10496.87047.

TABLE III
SIGNIFICANCE OF THE DIFFERENCE BETWEEN DPLS AND

STATE-OF-THE-ART ALGORITHMS

p-values of two indicators
Algorithm pair BV Significance AV Significance
DPLS vs. IDE 0.000 Yes 0.000 Yes
DPLS vs. NGHS 0.000 Yes 0.000 Yes
DPLS vs. HBMO 0.089 No 0.002 Yes

the competitiveness of DPLS and HBMO. Particularly, we
calculate two Gap (%) values to the best known solution
(BKS)7: the best relative error (BRE) and the average relative
error (ARE) as follows:

BRE = ((BV −BKS)/BKS))× 100%, (17)

ARE = ((AV −BKS)/BKS))× 100%. (18)

In terms of BRE and ARE, we give violin plots for HBMO
and DPLS in Fig. 7. Note that these violin plots correspond
only to the instances with M = 6 and 8. This is because, for all
the instances with M = 4, DPLS achieves a more competitive
performance than the other compared algorithms. From Fig. 7,
one observes that the statistic distributions of DPLS are better
than HBMO. Apparently, DPLS has better median lines and
more reasonable dispersions than those of HBMO, indicating
that DPLS can obtain more robust solutions than HBMO.
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Fig. 7. Violin plots for solutions of HBMO and DPLS (M = 6 and 8).

To demonstrate the stability of DPLS, for each combination
of N , M , and rcom, we consider the average value of SD
(i.e., SDavg) of each algorithm with regard to ETC =
0, 1, 2 and 3. Thus, there are a total of 45 groups of SDavg

values (i.e., t59p4r0.7 to t310p8r1.4) for each algorithm. We
here only consider IDE, HBMO and DPLS, because DPLS
obviously outperforms NGHS associated with BV , AV and
SD (see Fig. 6). The trend of SDavg is given in Fig. 8. As Fig.
8 shows, DPLS obtains smaller SDavg values than HBMO (37
out of 45 groups) and IDE (43 out of 45 groups). These results
verify the competitive stability of DPLS for solving TAP.

Fig. 8. Trends of SDavg for IDE, HBMO and DPLS (45 groups).

7See more details about the BKS of TAP instances in Section IV-D.
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To observe the statistic distributions of the solutions of
DPLS and the three compared algorithms, we draw the box
plots for instances t66p61.0e1, t162p61.0e1, t245p61.0e1 and
t310p61.0e1 in Fig. 9. Meanwhile, we give the related 95%
CI’s of these algorithms in Fig. 10. It can be clearly found from
Figs. 9 and 10 that DPLS has a more reasonable distribution
than the other compared algorithms, regarding t66p61.0e1,
t245p61.0e1 and t310p61.0e1. However, the median line of
DPLS is similar to that of HBMO with respect to t162p61.0e1.
Thereby, the Q-Q plots which reveal the detailed information
about the solution distributions of HBMO and DPLS are given
in Fig. 11. As shown in Fig. 11, DPLS achieves a good match
between the observed values (objective functions) and the
relevant expected values, which is better than HBMO. In view
of the above observations, DPLS can obtain better statistic
distributions of solutions than the compared algorithms.

(a) t66p61.0e1 (b) t162p61.0e1

(c) t245p61.0e1 (d) t310p61.0e1

Fig. 9. Box plots for IDE, HBMO, NGHS and DPLS.

(a) t66p61.0e1 (b) t162p61.0e1

(c) t245p61.0e1 (d) t310p61.0e1

Fig. 10. 95% CI’s for IDE, HBMO, NGHS and DPLS.

Moreover, we give the trends of Tavg(s) for each instance
in Fig. 12. We can see from Fig. 12 that the values of Tavg(s)
increase along with the enlargement of the problem size.
However, the values of Tavg(s) ranged from 5s to 250s for
instances with N = 59, 66 and 162, while 200s to 1300s for
instances with N = 245 and 310. Thus, the values of Tavg(s)
are acceptable and in turn reveal the efficiency of DPLS. Due
to the effectiveness and efficiency, it would be highly desirable

(a) HBMO (b) DPLS

Fig. 11. Q-Q plots for HBMO and DPLS (t162p61.0e1).

to use DPLS for addressing relevant real-life applications that
can be modeled as TAP.

(a) 1−36: t59p4r0.7e0−t59p8r1.4e3

(b) 1−36: t66p4r0.7e0−t66p8r1.4e3

(c) 1−36: t162p4r0.7e0−t162p8r1.4e3

(d) 1−36: t245p4r0.7e0−t245p8r1.4e3

(e) 1−36: t310p4r0.7e0−t310p8r1.4e3

Fig. 12. Trends of Tavg(s) for each instance.

D. Additional Assessments of DPLS

We provide additional assessments of DPLS concerning the
following issues: 1) number of BKS obtained by DPLS, 2)
effectiveness of DPLS for difficult instances, and 3) effec-
tiveness of DPLS’s components. Thereby, we can verify the
overall performance of DPLS and the contributions of the main
components of DPLS.

1) Number of BKS obtained by DPLS: Since no previous
results are available for the 180 benchmark instances, we
report the values of BKS as a useful supplement. For each
instance, we solve the mathematical model of TAP (Section
I) using the CPLEX solver. BKS for each instance is reported
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as the optimal solution if it is solved by CPLEX. Otherwise,
the values of BKS are reported as the best objective func-
tions found by IDE, HBMO, NGHS or DPLS. The stopping
condition of CPLEX is the determined running time of 2.5
hours8. Among all 180 benchmark instances, the numbers of
BKS as well as optimal solutions (denoted as OPT) that can
be found by IDE, HBMO, NGHS and DPLS are given in Fig.
13. One can clearly see that DPLS finds 97 instances among
all 180 instances that can be reported as BKS, wherein 80 of
them are optimal solutions, which are much better than IDE,
HBMO and NGHS.

Fig. 13. Numbers of BKS and OPT for IDE, HBMO, NGHS and DPLS.

Moreover, we observe that CPLEX can obtain 134 optimal
solutions out of 180 instances. Note that for the other 46 large-
sized instances CPLEX stops with the error message ”out of
memory”. This fact shows that CPLEX is limited to small
or medium instances and for large instances metaheuristics
like DPLS are a useful alternative. For the 134 instances
with known optima, DPLS attains 80 optimal solutions, with
computation times Tavg(s) which are significantly shorter than
CPLEX (see Fig. 12). Furthermore, for the other 54 instances9

for which DPLS fails to attain optimal solutions, we calculate
BRE and ARE. The trends of the values of BRE and ARE
of DPLS are given in Fig. 14. It is clear that the gaps to the
optima for most of these 54 instances are relatively small:
less than 1% for BRE and less than 3% for ARE. On the
basis of the above analysis, DPLS has a large potential to find
high-quality solutions of TAP.

Fig. 14. Trends of BRE and ARE of DPLS for 54 instances.

2) Effectiveness of DPLS for difficult instances: As men-
tioned above, CPLEX fails to solve the 46 large-sized in-
stances, which can be considered to be the most difficult
instances. We now conduct comparisons of IDE, NGHS,
HBMO and DPLS on these 46 instances, so as to verify the
effectiveness of DPLS for solving difficult instances compared
to the reference algorithms10. In terms of BRE, ARE and

8The values of BKS for the 180 benchmark instances are available at:
http://dx.doi.org/10.13140/RG.2.2.29371.23847.

9See the list of these 54 instances at: http://dx.doi.org/10.13140/RG.2.2.2
8532.37763.

10Detailed comparisons of IDE, NGHS, HBMO and DPLS for 46 difficult
instances are available at: http://dx.doi.org/10.13140/RG.2.2.32569.39522.

SD, we summarize the values of #Best obtained by DPLS
and the three compared algorithms in Fig.15. Moreover, the
significance of the difference between DPLS and the compared
algorithms is given in Table IV.

Fig. 15. Summary of comparison results for difficult instances.

TABLE IV
SIGNIFICANCE OF DIFFERENCE FOR DIFFICULT INSTANCES

p-values of two indicators
Algorithm pair BRE Significance ARE Significance
DPLS vs. IDE 0.000 Yes 0.000 Yes
DPLS vs. NGHS 0.000 Yes 0.000 Yes
DPLS vs. HBMO 0.763 No 0.039 Yes

As Fig. 15 and Table IV show, DPLS performs better than
the reference algorithms with regard to ARE and SD. The
values of #Best of DPLS for ARE and SD are 29 and 28
which are larger than those of the compared algorithms. For
BRE, HBMO has a slightly better value of #Best. However,
the related p-value is 0.763 (> 0.05), which means that
there is no significant difference between HBMO and DPLS
regarding BRE. Thereby, we conduct further discussions
on the performance of HBMO and DPLS for the difficult
instances. In particular, the 46 instances are divided into 3
groups including “N ≤ 162”, “N = 245” and “N = 310”. In
terms of BRE and ARE, the violin plots for these groups of
solutions of HBMO and DPLS are given in Fig. 16
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Fig. 16. Violin plots for solutions of HBMO and DPLS (difficult instances).

From Fig. 16, we find that DPLS obtains better values of
BRE and ARE than HBMO, concerned with the groups “N
≤ 162” and “N = 310”. However, HBMO has a slightly better
performance than DPLS for the group “N = 245”. Such worse
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values of BRE and ARE for DPLS are mainly due to the
extreme points of the instance t245p8r1.4e1 (see Fig. 16).
Moreover, we give the violin plots for the solutions of HBMO
and DPLS considering large-sized instances with N = 310
and M = 8 in Fig. 17, and so confirm the competitiveness of
the proposed DPLS. Furthermore, the BRE values of DPLS
for these large-sized instances are given in Fig. 18. It can
be seen from Fig. 18 that the BRE values of DPLS are less
than 0.5% for almost all these large-sized instances. The above
results prove the effectiveness of DPLS for difficult instances
of TAP. Thus, DPLS can be a potential method to address
real-life applications in complex conditions.
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Fig. 17. Violin plots for solutions of HBMO and DPLS (N = 310, M = 8).

Fig. 18. BRE values of DPLS for large-sized instances (N = 310, M = 8).

3) Effectiveness of DPLS’s components: The dual probabil-
ity learning and GNS are two main components of DPLS. To
assess their effectiveness, we introduce three variants of DPLS
as follows. 1) DPLS V1 is a DPLS variant where we remove
the global level learning and the dual probability learning only
contains the local level learning to guide GNS; 2) DPLS V2
is a DPLS variant where the global level learning is used only
and the local level learning is disabled; and 3) DPLS V3
is a DPLS variant where the Pareto-dominance method in
Algorithm 5 is replaced by the linear sum of two gains in GNS.
Note that DPLS V1 can also be regarded as a variant of the
solution methods of [23], [24] which are concerned only with
the local level learning and GNS of DPLS. Hence, comparing
DPLS with DPLS V1 and DPLS V2, the effectiveness of the
interactions between the two learning levels of DPLS can be
verified. In addition, we perform the comparison of DPLS V3
and DPLS to study the competitiveness of the proposed Pareto-
dominance GNS and the existing linear-sum-based approach
[2]. For this comparison, DPLS V1, DPLS V2 and DPLS V3
adopt the same CPU time as DPLS. We summarize the
comparison results of the three variants and DPLS in Fig.
1911. Moreover, the significances of the differences between
DPLS and the three variants is given in Table V.

11Detailed comparisons of DPLS and the three variants for the 180 instances
are available at: http://dx.doi.org/10.13140/RG.2.2.34666.54723.

Fig. 19. Summary of results of three variants and DPLS (180 instances).

TABLE V
SIGNIFICANCE OF DIFFERENCE BETWEEN DPLS AND THREE VARIANTS

p-values of two indicators
Algorithm pair BV Significance AV Significance
DPLS vs. DPLS V1 0.000 Yes 0.000 Yes
DPLS vs. DPLS V2 0.000 Yes 0.000 Yes
DPLS vs. DPLS V3 0.000 Yes 0.000 Yes

As shown in Fig. 19, for the values of #Best, DPLS reports
the values of 131, 143 and 129 out of 180 instances regarding
BV , AV and SD which are much better than those of the
three compared variants. Meanwhile, we observe from Table
V that the p-values for all the three algorithm pairs are all
less than 0.05. The above results prove that the proposed
interaction mechanisms between the two learning levels of
DPLS and the Pareto-dominance GNS contribute significantly
to the performance of DPLS.

(a) t66p61.0e1 (b) t162p61.0e1

(c) t245p61.0e1 (d) t310p61.0e1

Fig. 20. Box plots for DPLS V1, DPLS V2, DPLS V3 and DPLS.

Moreover, we draw the box plots for DPLS V1, DPLS V2,
DPLS V3 and DPLS for 4 instances in Fig. 20, showing
that the statistical distributions of the solutions of DPLS are
reasonable. In view of the above analysis, we conclude that
the proposed dual probability learning and Pareto-dominance
GNS are useful to enhance the performance of DPLS.
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V. REAL-LIFE CASE STUDY

In this section, we apply the proposed DPLS to solve the
real-life OSAP for the production of silicon steel mentioned in
Section I. The sketch of OSAP is illustrated in Fig. 21. Note
that we here refer to the term “open-order slabs” as “slabs” for
short. For OSAP, we first identify a number of original slabs
with relatively large weight according to current customer
orders and production statuses. And then these original slabs
are virtually cut into a set of slabs (with small weight) to be
assigned. Such a virtual cutting operator guarantees that some
orders with very small weight can still have available slabs to
be assigned. Next, the cutting cost (communication cost) of
two slabs from the same original slabs are calculated, which
is determined by both the width and the thickness of slabs.
To satisfy the width requirements of orders, we introduce
another cutting cost (assignment cost) resulted from the loss
of materials. Accordingly, we can obtain the factory data of
OSAP12. Afterwards, slabs are assigned to customer orders
subject to the two considered capacities (see Section I).

C

Original   slabs Set of slabs Set of orders

A: Build the set of slabs to be assigned;   B: Assign slabs to orders;
C: Calculate communication cost; D: Calculate assignment cost.

D

A B

Fig. 21. Sketch of OSAP for the production of silicon steel.

In this case study, we compare DPLS with HBMO that
performs relatively better than IDE and NGHS for the 180
benchmark instances. We independently run DPLS 21 times
with tMax = 5000 and calculate the related Tavg(s). Then,
we run HBMO 21 times and for each run check the CPU time
at each iteration. HBMO is terminated if the current CPU time
reaches Tavg(s). The comparison results of HBMO and DPLS
are reported in Table VI.

TABLE VI
COMPARISON RESULTS OF HBMO AND DPLS (CASE STUDY)

Algorithm BV AV SD Tavg(s)
HBMO 5094290 5094295.21 6.44 195.68
DPLS 5094286 5094286.00 0.00 195.13

As Table VI shows, DPLS outperforms HBMO with respect
to BV , AV and SD. Meanwhile, the value of Tavg(s) of
DPLS is less than 200s which is quite acceptable for man-
agement practices. Moreover, for the best solution of DPLS,
we give the load (ton) and utility (%) of each order regarding
memory and processing requirements that have been assigned
in Table VII. It shows that the best value of the memory utility

12The applied factory data of OSAP in this case study are available at:
http://dx.doi.org/10.13140/RG.2.2.36553.98403.

is 96.18% and most of the memory utility values (7 out of 10
orders) are larger than 70%. As for the values of the processing
utility, they are all smaller than the capacity of each order (the
best value is 0.0%). Based on our previous survey, the above
results can highly satisfy the real-life production conditions,
as well as the customer satisfactions.

TABLE VII
LOAD AND UTILITY OF CUSTOMER ORDERS (DPLS)

Customer order
Load (ton) 1 2 3 4 5 6 7 8 9 10
Memory 67 67 76 368 142 342 132 245 163 208
Processing 18 0 26 186 0 127 132 160 163 71

Customer order
Utility (%) 1 2 3 4 5 6 7 8 9 10
Memory 53.90 74.52 88.51 94.74 92.09 96.18 41.95 70.67 49.68 95.26
Processing 28.96 0.00 60.56 95.77 0.00 71.43 83.90 92.30 99.37 65.03

VI. CONCLUSIONS AND FUTURE WORK

We proposed a dual probability learning based local search
(DPLS) to solve the challenging task assignment problem
(TAP). To our best knowledge, this is the first local search
algorithm based on probability learning for TAP. The dual
probability learning component of DPLS combines global
level learning and local level learning to identify promising
search regions, that are examined by the gain-based neighbor-
hood search component. Thanks to tight interactions of these
two original and complementary components, DPLS achieves
a suitable balance between intensification and diversification
of the given search space.

To assess the performance of the proposed algorithm, we
introduced a set of 180 benchmark instances with different
features and reported computational results for them with
our algorithm in comparison with three reference algorithms
and the general CPLEX solver. These results can serve as
references for performance assessment of new TAP algorithms.
Moreover, a real-life case study from an iron and steel com-
pany is introduced to show the practical values of our DPLS.

The idea of the proposed DPLS that adopts a dual probabil-
ity learning mechanism is of general interest. It would be in-
teresting to apply the same idea to solve other task assignment
problems such as equilibrium TAP (ETAP), reliability-oriented
TAP (RTAP) and multi-objective TAP (MOTAP).
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