
A CLAUSAL GENETIC REPRESENTATION AND
ITS EVOLUTIONARY PROCEDURES FOR SATISFIABILITY PROBLEMS

Jin-Kao Hao
LGI2P, EMA-EERIE

Parc Scientifique Georges Besse
F-30000 Nîmes, France

email: hao@eerie.fr

Abstract

This paper presents a clausal genetic representation for
the satisfiability problem (SAT). This representation,
CR for short, aims to conserve the intrinsical relations
between variables for a given SAT instance. Based on
CR, a set of evolutionary algorithms (EAs) are
defined. In particular, a class of hybrid EAs
integrating local search into evolutionary operators are
detailed. Various fitness functions for measuring
clausal individuals are identified and their relative
merits analyzed. Some preliminary resluts are
reported.

1. Introduction

The satisfiability problem or SAT [3] is of great
importance in computer science both in theory and in
practice. The statement of the problem is very simple.
Given a well-formed boolean formula F in its
conjunctive normal form (CNF)1, is there a truth
assignment that satisfies it? In theory, SAT is at the
very core of NP-complete problems. In practice, many
applications can be formulated with it. One important
topic related to SAT is to find such a satisfiable truth
assignment for a satisfiable formula F. In this paper,
we are interested in this model-finding problem for
SAT.

Although SAT is NP-complete, many methods
have been devised for practical needs. These methods
can be roughly classified into two large categories:
complete and incomplete methods. As examples of the
first category, we can mention the logic-based
approach (Davis & Putnam algorithm, Binary
Decision Diagrams), the constraint-network-based
approach (CSP, local propagation), and 0/1 linear
programming [1]. The second category includes such
methods as simulated annealing [14, 15], local and

�

. A CNF formula is a set of clauses linked by logic and, a
clause being a set of literals linked by logic or, a literal
being a boolean variable or its negation.

greedy search [6, 9, 13, 14] and evolutionary
algorithms (EAs) [2, 16, 7, 3].

EAs are essentially based on three elements: an
internal representation, an external evaluation function
and an evolution mechanism. It is commonly
recognized that the internal representation greatly
conditions the success or failure of an evolutionary
algorithm. The integration of specific knowledge at
different levels in an evolutionary algorithm may also
improve much its performance.

SAT has a natural binary representation (what we
call variable-coding): an individual represents a
potential solution to the boolean formula F, a gene
coding a variable of F. Genetic algorithms can be
easily developed using the variable-coding and the
traditional genetic operator set. This representation is
also the one used by all the reported work mentioned
above.

Surprisingly, however, no efficient EA has been
found yet using this variable-based representation. In
fact, the reported EAs for SAT are far from being
comparable with GSAT [13, 14], a simple local search
based procedure using the same variable-coding. Why
this happens is not clear, but we have enough reasons
to think that we can devise EAs outperforming GSAT.
First, the evolutionary framework allows GSAT to be
simulated with a singleton population and a controlled
mutation operator. Therefore, we have already a
special EA which can do as well as GSAT does.
Second, we can integrate easily the basic idea of
GSAT into EAs, which should lead to better
performance. We are working on these issues, results
of that will be reported elsewhere.

Another aspect for designing efficient EAs consists
of looking for more intelligent codings, which is the
topic of the current paper. The proposed coding is
based on the following observation. For a given CNF
formula, there are some intrinsical relations among the
clauses of the formula. These relations are defined by
shared variables and important for problem-solving
(model-finding here). However, they are lost in the
variable-coding in which only the values of variables
are manipulated. In this paper, we explore an
alternative coding called clausal representation (CR)

2

which take into account these relations between
clauses.

The paper is organized as follows. In §2, the
clausal representation is defined. In the next two
sections, various fitness functions and CR-based
hybrid EAs are presented. In particular, the integration
of local search within the evolution mechanism are
detailed. In the last two sections, preliminary
experimental results and future work are discussed.

2. CR-A Genetic Clausal Representation

In order to simplify our presentation, without losing
the generality, we will consider the 3-SAT problem.
Recall that a 3-SAT instance F is defined by a set of L
clauses of length 3 connected by logic and (∧), L
being called the length of F. Each clause is composed
of 3 different literals linked by logic or (∨). A literal is
either a boolean variable (called a positive literal) or
the negation of a boolean variable (called a negative
literal). Note that 3-SAT is the preferred form of many
studies, and most methods mentioned above deal with
3-SAT instances.

Given a 3-SAT instance F ≡ C1∧C2∧...∧CL
containing N different variables. We encode clauses
instead of variables. More precisely, for any clause Ci,
there are in total 23=8 possible assignments { 000, 001,
010, 011, 100, 101, 110, 111} . Among them, there are
exactly 7 satisfying assignments and 1 non-satisfying
one. For example, { 100} � is the only non-satisfying
assignment for the clause (¬a∨b∨c). Since this non-
satisfying assignment will never participate in any
solution for SAT instances containing this clause, it
will be advantageous to eliminate this assignment
from chromosomes at the beginning. This analysis
leads us to the following genetic clausal representation
(CR).

For any N-variable SAT instance
F≡C1∧C2∧...∧CL, each individual (chromosome) is
composed of a string having a length 3*L divided into
L parts (genes) <G1, G2,...,GL>, each gene Gi (1²i²L)
taking as its values a satisfying assignment of the
corresponding clause Ci. In other words, we will
forbidden the non-satisfying assignments to be part of
any chromosome. For example, { 010 101} is one valid
chromosome for the formula F ≡ (¬a∨b∨c)∧ (a∨¬c∨b)
while { 100 101} is not since 100 is not a satisfying
assignment for the first clause.

One interesting property of CR is that each gene of
such a chromosome is locally consistent with its
clause, which is a necessary condition for any
solution1. Moreover, the elimination of non-satisfying

�

. Note that this is not case with the variable-coding.

values from chromosomes implies the reduction of the
search space from the beginning. Also the relations
between clauses become more explicit in CR and may
be efficiently exploited.

With CR, a variable may have the two values (0/1)
in a chromosome. Such a variable is said to be
inconsistent. It is easy to see that a chromosome is a
solution iff each of the N variables of the formula F
has a unique 0 or 1 value in the chromosome.
Consequently, the number of inconsistent variables
can be used as a good indicator to measure the fitness
of individuals.

3. Fitness Evaluation

The aim of this evaluation is to measure the "fitness"
of each individual (chromosome) with respect to the
given formula. The difficulty concerning this
evaluation is that no exact measuring rule is available
and only approximate rules can be tried. Several
possibilities exist to define such a fitness function
Eval with our clausal representation. The basic idea is
to use the number of inconsistent variables to define
these evaluation functions since we want to reduce this
number to 0. In the following, we give some of such
functions. Each evaluation function Eval_i(CH, F)
takes as its input a chromosome CH and a CNF
formula F, and gives an integer or a real number as the
fitness of CH w.r.t. the given formula F.

a) Eval_1=∑W(Vi) (1²i²N) where Vi are variables
 W(V)=1 if variable V is inconsistent
 W(V)=0 otherwise

This function simply counts the number of
inconsistent variables. It is easy to see that the value
returned by this function is between 0 (which means a
solution) and N (which means all variables in the
chromosome are inconsistent). The smaller the score,
the better the chromosome. However, this function
cannot differentiate two chromosomes which have the
same number of inconsistent variables.

b) Eval_2=∑C(Vi) (1²i²N) where
C(V) = # of clauses containing V or ¬V

 if variable V is inconsistent
C(V) = 0 otherwise

This function, which is also defined with inconsistent
variables, takes into account the importance of
variables2 in order to differentiate chromosomes
containing the same number of inconsistent variables.

c) Eval_3=∑|N0(Vi)-N1(Vi)| (1²i²N) where

�

. The importance of a variable is defined by the number of
its appearances in the formula.

3

N0(Vi) = # of 0s taken by Vi in CH.
N1(Vi) = # of 1s taken by Vi in CH.

The value returned by this function is an integer
between 0 (all variables have the same number of 0s
and 1s) and ∑(N0(Vi)+N1(Vi)) (all variables have an
unique value 0 or 1). A CH having this biggest value
is a solution while a CH having the value 0 can be
considered to be less fitted.

d) Eval_4=∑|1−2∗N1(Vi)/N01(Vi)| (1²i²N) where
N1(Vi) = # of 1s taken by Vi in CH.
N01(Vi) = # of 0s and 1s taken by Vi in CH, which

 is the total number of literals of Vi.
This function returns a real number between 0 and N.
The value 0 means that all the variables have the same
number of 0s as 1s while the value N corresponds to a
solution.

Moreover, it is possible to combine some of them to
define multiple-step evaluation. Finally, instead of
defining these functions statically, they may be made
self-adapted during the evolution of the population.

4. CR-based Evolutionary Procedures

Using the clausal representation, various evolutionary
algorithms can be directly built with a population of
clausal chromosomes. Operators such as random
crossover and mutation can be directly applied to this
population with some minor constraints. For instance,
in order for crossover to be meaningful, a single point
crossover will take place at a point 3* i (1<i<L-1, L
being the length of the formula F). Mutation will
change a 3-bit value of a selected gene to another 3-bit
valid value. We will not detail this kind of algorithm
since it is straightforward to build them. In the
following, we will first investigate a special
population for clausal individuals. Then we investigate
a class of hybrid algorithms based on this population.

In order to build an evolutionary procedure, an
initial population must be generated in some way.
Although this population may contain any number of
chromosomes, a more intelligent organization can be
devised with the clausal representation. In fact, since
each gene in CR corresponds to a clause which has
exactly 7 satisfying assignments, one natural way of
realizing the initialization is to generate a population
of 7 chromosomes such that for each gene we make
sure that the gene has all of its 7 satisfying
assignments (alleles). Here is an example.

F ≡ (¬a∨b∨c)∧(a∨¬c∨b)∧(c∨¬a∨¬b)∧(¬a∨¬c∨¬b)

Population

Clauses C1 C2 C3 C4
Genes G1 G2 G3 G4

Ind.1 0 0 0 0 0 0 0 0 0 0 0 0
Ind.2 0 0 1 0 0 1 0 0 1 0 0 1
Ind.3 0 1 0 0 1 1 0 1 0 0 1 0
Ind.4 0 1 1 1 0 0 1 0 0 0 1 1
Ind.5 1 0 1 1 0 1 1 0 1 1 0 0
Ind.6 1 1 0 1 1 0 1 1 0 1 0 1
Ind.7 1 1 1 1 1 1 1 1 1 1 1 0
Forbidden-
values 1 0 0 0 1 0 0 1 1 1 1 1

The 7 possible values for each gene are put in
increasing order in this example; the order is not
important in the general case.

One nice property of this population P is that all
the solutions for a given formula are covered by it. In
fact, any solution may be "constructed" from P by
concatenating good values of the genes. This is
because a solution will be necessarily a combination
of all the L genes, each taking a value from 7
satisfying ones for a clause. Therefore, what an EA
must do is to make these chromosomes evolve towards
solutions by using some evolution mechanisms. In the
following, we will see how hybrid EAs can be built
using such a population.

There are many good reasons and different ways to
build hybrid EAs. We will not discuss this general
issue here, see for example [10] for more detail. We
will instead consider the hybridization of the
evolutionary framework with local search using our
clausal coding.

Local search groups a class of heuristics based on
random search and neighborhood relations. They are
known to be very efficient for finding local optima for
certain classes of problems. A typical local search
procedure begins with a starting point s0, often
generated randomly. Then an iterative process follows
to produce a series of points s1,s2,...,sn. The last point
sn will be the best solution found. Each si (1²i²n) is
chosen from a set of neighbors associated to si-1
which are defined by a neighborhood function. In
essence, a local search procedure is characterized by
this neighborhood function and the neighbor selection
strategy (that decide which the neighbor to take).
Various hillclimbers (steepest ascent, next ascent),
simulated annealing [7] and Tabu search [4] are
typical examples of local search. Integrating local
search into EAs makes it possible to combine the
diversity offered by EAs and the efficiency of local
search.

There are essentially two possibilities to realize
this hybridization. First, we can use the local search to
improve all the individuals or a subset of a population
at each generation. This integration which is easy to
realize can be qualified loosely coupled approach.

4

Second, local search can be directly incorporated into
genetic operators. More pricisely, applying local
search at the level of genetic operators consists in
using controlled crossover or mutation to improve
locally the quality of some chromosomes. For
example, crossover can produce, according to the local
search techniques used, the best children or the next
better ones. Similarly, mutation can look for the best
or next better offspring. If a local search technique
like simulated annealing is used, degenerate offsprings
might also be accepted with certain fixed or variable
probability.

The following pseudo code gives an example in
which we decide to improve a single (the first)
chromosome by local search. For convention, we use
P[I,J] to indicate the Jth gene of the Ith chromosome
(1²I²7, 7 being the population size, 1²J²L, L being the
length of the SAT instance F), and we use CH[I] to
represent the Ith chromosome of P.

Procedure Local_Genetic
{
1. generate (P); /* as described above */
2. while not stop_condition do
3. for J=1 to L /* L=length of F */
4. for I=2 to population_size /* equal to 7 */
5. if improve(P[1,J], P[I,J])
6. then swap(P[1,J], P[I,J]);
}

The "improve" operation tests if swaping the two
alleles for a given gene improves the fitness of the
given chromosome. This test can be carried out by
using the evaluation functions described in §3.
Remember that an chromosome is a solution iff all its
variables have a unique 0/1 value. Thus improving an
individual means to reduce the number of its
inconsistent variables. The "swap" operation takes the
corresponding genes of two chromosomes and
exchanges effectively their alleles. It is interesting to
note that "swap" can be considered as either mutation
or two-point crossover. Note also that selection is
realized implicitly; the two children produced by
"swap" replace their parents. The "stop_condition" in
the while loop may be defined according to different
criteria. One possible way is to fix the number of
generations. Another way is to check if the
chromosome which is being locally improved is
effectively improved during the last iteration. The
complexity analysis of this algorithm is
straightforward.

From this simple algorithm, many variants can be
easily deduced. Here are some examples, First, this
algorithm tries systematically to improve all of the L
genes of a given chromosome. A test can be added
between the lines 3 and 4 to select only the genes

containing at least an inconsistent variable. Second,
for a given gene, the algorithm may swap at most 6
alleles due to the for loop at the line 4. This loop can
be replaced by a procedure which may look for the
next better allele or the best one, and then swap only
once. Third, this algorithm look for improving only a
single chromosome. It can be easily modified to allow
all the chromosomes of the population to be improved
at each while loop. Finally, classic crossover can be
similarly adapted to include local search.

5. Experimental Results

Experimentations are being carried out. To test the
different methods described above, we are using such
SAT instances as those of the second Dimacs
challenge and random instances as described in [10].
We observe that the methods based on local search are
very efficient to reach local optima (which may or
may not be solutions). Very often, local optima can be
found after a small number of generations for
formulae containing 50, 100, 200 variables. However,
it is too early to make any final conclusion yet given
the fact that only partial experiments have been
realized. We hope more results will be available in the
near future.

6. Discussion & Conclusions

We presented an original genetic representation for
SAT based on clause assignments and its associated
evolutionary procedures. In particular, a class of
procedures integrating the local search within the
evolution mechanism are introduced. Several
evaluation functions are identified.

Experiments are being carried out to study the
effectiveness of these ideas. The limited experimental
results prevent us to give any conclusive remarks, but
show that these procedures need only a small number
of generations to find (local or global) optima for the
set of SAT instances tested. Note that the population
size (only 7 individuals) used is dramatically small
compared with the search space visited.

One possible disadvantage of the clausal-coding
may be its bigger search space compared with that of
the variable-coding given the fact that there are often
more clauses than variables in hard SAT instances.
Also there are more alleles for each gene with the
clausal-coding than with the variable-coding.
However, with the clausal coding which conserves
relations among variables, there may exist more room
for us to devise more accurate fitness functions and
some intelligent genetic operators which permit to
exploit efficiently these relations.

5

Another interesting point worth of studing is the
landscapes related to the two different codings. For
example, the distributions and depths of local optima
of these two codings are a priori very different. A
better understanding of these issues will help to design
more appropriate fitness functions and genetic
operators.

We continue to experiment various EAs for SAT
using both the variable-coding and clausal-coding. We
wish to be able to compare the two codings and their
related algorithms. Finally, the ultimate goal of our
study on SAT is to develop hybrid EAs (which may
use either of the two codings) more efficient than the
simple local search procedures like GSAT.

Acknowledgments

The author would like to thank R. Dorne and S. Vautier for
the many useful discussions. The work is partially supported
by the Bahia project (PRC-IA the French nationl coordinated
research programme for artificial intelligence).

References

[1] BAHIA project. "Comparative study of three
formalisms in propositional logic" (in French).
5ème Journées Nationales PRC-GDR en
Intelligence Artificielle, Nancy, February 1995.

[2] De Jong K.A. & Spears W.M. "Using genetic
algorithms to solve NP-complete problems".
Intl. Conf. on Genetic Algorithms (ICGA'89),
Fairfax, Virginia, June 1989, pp124-132.

[3] Dorne R. & Hao J.K. "New genetic operators
based on a stratified population for SAT" (in
French). Evolution Artificielle, Toulouse,
France, September 1994.

[4] Garey M.R. & Johnson D.S. "Computers and
intractability: a guide to the theory of NP-
completeness". Freeman, San Francisco, CA,
1979.

[5] Glover F. & Laguna M. Tabu search. in [12].

[6] Gu J. "Efficient local search for very large-scale
satisfiability problems". SIGART Bulletin, Vol.
3, No. 1, January 1992.

[7] Hao J.K. & Dorne R. "A new population-based
method for satisfiability problems". Proc. of
11th European Conf. on Artificial Intelligence
(ECAI'94), Amsterdam, Aug. 94, pp135-139.

[8] Kirkpatric S., Gelatt C.D. & Vecchi M.P.
"Optimistion by Simulated Annealing". Science,
Vol. 220, May 1983, pp671-680.

[9] Koutsoupias E. & Papadimitriou C.H. "On the
greedy algorithm for satisfiability". Information
Processing Letters, Vol. 43 1992, pp53-55.

[10] Lawrence D. Handbook of genetic algorithms,
Van Nostrand Reinhold, New York, 1991.

[11] Mitchell M., Selman B. & Levesque H.. "Hard
and easy distributions of SAT problem". Proc. of
the AAAI '92, an Jose, CA, 1992, pp.459-465.

[12] Reeves C.R. (Ed.) "Modern Heuristic
Techniques for Combinatorial Problems".
Blackwell Scientifi-que Publications, Oxford,
1993.

[13] Selman B., Levesque H. & Mitchell M. "A new
method for solving hard satisfiability problems".
Proc. of the AAAI '92, San Jose, CA, 1992,
pp.440-446.

[14] Selman B., Kautz H.A. & Bram C. "Noise
strategies for improving locla search". Proc. of
the AAAI '94, Seattle, WA, 1994,.

[15] Spears W.M. "Simulated annealing for hard
satisfiability problems". NCARAI Technical
Report #AIC-93-015, Washington D.C. July
1993.

[16] Young R.A. and Reel A. "A hybrid genetic
algorithm for a logic problem", Proc. of the 9th
European Conf. on Artificial Intelligence,
Stockholm, Sweden, Aug. 1990, pp.744-746.

