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Abstract

The Hamiltonian p median problem consists of finding p (p is given) non-intersecting
Hamiltonian cycles in a complete edge-weighted graph such that each cycle visits at
least three vertices and each vertex belongs to exactly one cycle, while minimizing
the total cost of p cycles. In this work, we present an effective and scalable hybrid
genetic algorithm to solve this computationally challenging problem. The algorithm
combines an edge-assembly crossover to generate promising offspring solutions from
high-quality parents, and a multiple neighborhood local search to improve each
offspring solution. To promote population diversity, the algorithm applies a mutation
operator to the offspring solutions and a quality-and-distance update strategy to
manage the population. We compare the method to the best reference algorithms in
the literature based on three sets of 145 popular benchmark instances (with up to 318
vertices), and report improved best upper bounds for 8 instances. To evaluate the
scalability of the method, we perform experiments on a new set of 70 large instances
(with up to 1060 vertices). We examine the contributions of key components of the
algorithm.

Keywords: p-median; Traveling salesman; Memetic search; Edge assembly crossover;
Local search; Metaheuristic.

1 Introduction

The Hamiltonian p-median problem (HpMP) [3] is defined on a complete graph
G=V,E), where V = {wvg, vy, - ,v,-1} is the vertex set and & is the edge
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set. Let C be a non-negative cost matrix associated with €. The HpMP is to
find p (p is given) non-intersecting Hamiltonian cycles such that each cycle
visits at least three vertices and each vertex appears on exactly one cycle with
the objective of minimizing the total cost of the p cycles. A mathematical
formulation of the problem is shown in Appendix [A] The popular symmetric
traveling salesman problem (TSP) is a particular case of HpMP when p = 1.

As a mixed routing location problem [16], the HpMP combines the p-median
problem [20/25] and the TSP [1]. As such, the HpMP is a relevant model for
a variety of practical problems related to school locations, depot locations,
multi-depot vehicle routing, industrial process scheduling or leather cutting
[7]. On the other hand, the HpMP is known to be N'P-hard for any p > 1 on
Euclidean graphs [19] and is therefore computationally challenging.

Since the introduction of HpMP in 1990, a number of solution methods have
been developed. Several formulations have been studied within the polyhedral
approach [QI5135]. Gollowitzer et al. [8] performed theoretical and computa-
tional comparisons of seven different formulations. Marzouk et al. [19] devel-
oped a branch-and-price (B&P) algorithm and presented results for three sets
of 754 benchmark instances (21-318 vertices), including optimal solutions for
272 small and medium instances (with 21-127 vertices) and 10 optimal solu-
tions for large instances (with 150-318 vertices). Independently, Erdogan et
al. [5] presented an effective branch-and-cut algorithm (HpMP2) and showed
results for two sets of 110 instances with up to 100 vertices, including optimal
solutions for all 55 small instances and 43 medium instances (with 58-100
vertices). In addition, Bektag et al. [2] studied the related directed Hamilto-
nian p-median problem and proposed a dedicated branch-and-cut algorithm.
According to the results in the literature, B&P [19] and HpMP2 [5] are the
two state-of-the-art exact HpMP algorithms.

On the other hand, heuristics were investigated to obtain approximate solu-
tions for large instances in acceptable runtimes. Glaab [6] studied some HpMP
variants and presented fast heuristics and LP-relaxations to obtain upper and
lower bounds. Uster and Kumar [31] studied a related balanced ring prob-
lem and presented a heuristic algorithm incorporating several GRASP-based
randomized solution construction routines and an effective local search im-
provement procedure. Erdogan et al. [5] introduced a heuristic algorithm that
integrates a giant tour and a dynamic programming formulation as well as an
iterated local search algorithm (ILS) using 2-exchange and 1-opt operators.
Herran et al. [I4] proposed a general variable neighborhood search algorithm
(PGVNS) for the HpMP. The algorithm consists of three neighborhoods based
on classical moves for routing problems. Computational results on 145 bench-
mark instances showed that PGVNS outperformed other existing methods
and is the state-of-the-art heuristic algorithm for the HpMP. However, large
instances remain a challenge for all existing algorithms.
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Our literature review shows that despite the relevance of HpMP in theory
and practice, there are not many methods in the literature that effectively
address the problem. This is in stark contrast to the related single-route TSP
and multi-route vehicle routing problem (VRP), for which there are numerous
solution methods that can handle large and even very large problem instances.
On the other hand, population-based genetic algorithms are among the most
powerful approaches for solving various routing and location problems. It is
surprising that this approach has not yet been studied for solving the HpMP.

In this work, we conduct the first study on the application of the population-
based hybrid search framework to the HpMP. In doing so, we take advantage
of existing effective search operators and strategies for solving related TSP
and VRPs to develop a highly effective heuristic algorithm for this challeng-
ing mixed routing location problem. The proposed population-based hybrid
genetic search algorithm (HGA) incorporates an adapted popular edge as-
sembly crossover, originally developed for TSP, and an effective local search
procedure. The crossover generates promising offspring solutions by inheriting
common edges from the parent solutions and assembling non-common edges,
while the local search improves each offspring solution through an intensive
neighborhood search. To further increase the search capacity of the algorithm,
a mutation operator and an advanced population management are also incor-
porated, with the first operator introducing new edges into the descendant
solutions and the second ensuring a high-quality and diverse population.

We evaluate the proposed algorithm on three sets of 145 benchmark instances
(with up to 318 vertices) that are commonly tested in the literature, and com-
pare the results with state-of-the-art algorithms. We also test the algorithm on
a new set of 70 large instances (with 400 to 1060 vertices). In addition, we per-
form experiments to shed light on the role of key components of the algorithm.
In particular, we show for the first time through experimental observations the
relevance of the idea of edge assembly to the HpMP.

The rest of the paper is organized as follows. The proposed hybrid genetic
algorithm is introduced in Section [2 including its search operators and de-
tailed procedures. This is followed by a detailed computational comparison
with the state-of-the-art methods in the literature in Section Bl Additional
experiments are shown to analyze the main algorithmic ingredients and gain
an understanding of their roles in Section [4]. We conclude with a summary of
the main findings and future work in Section o]

2 Hybrid genetic algorithm for HpMP

The proposed hybrid genetic algorithm (HGA) for the HpMP follows the gen-
eral approach of memetic algorithms [21J26], which benefit from a synergistic
combination of population-based search and neighborhood-based search. In-
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deed, this approach has been quite successful in solving several TSPs [11124]
and various routing problems [I822/2327I2932/T2/13]. We show in this paper
that this approach is also very suitable for the HpMP.
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Fig. 1. Flow chart of the hybrid genetic algorithm

As illustrated in Fig. 1} the HGA algorithm starts with an initial population
P in which each individual is constructed by a greedy heuristic (Section [2.1]).
The population is then evolved through multiple generations by applying three
search operators, including crossover, local search, and mutation. For each gen-
eration, two parent solutions are selected and combined by the edge assembly
crossover (EAX) [24] (Section [2.2)), resulting in 3 offspring solutions (5 is a
parameter), that are first improved by local search (Section , and then
diversified by the mutation (Section . Finally, each new solution is used to
update the population based on a quality-and-distance strategy (Section .
The algorithm terminates and returns the best solution (* if the predefined
termination condition is satisfied (e.g., a maximum cutoff time or a maximum
number of iterations).

Of particular interest is the edge-assembly crossover, which allows a descen-
dant solution not only to inherit common edges (defined in Section of the
parents, but also to effectively assemble non-common edges. Since crossover
can introduce relatively few edges that are not present in both parents, the
mutation operator enhances the diversity of the descendant by introducing
new edges. The quality-and-distance update strategy allows for desirable and
continuous diversity of the population.

2.1 Population initialization

The population P is initialized as follows. An initial solution is constructed by
a greedy heuristic and local search is then applied to improve the quality. If
the solution is different from all other solutions in the population, it is inserted
into P. The quality and distance update strategy is activated to keep u
solutions once the population reaches the maximum size p + A. This process
stops and returns the population when 4 x p initial solutions are considered.
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For each initial solution, the greedy heuristic operates according to the fol-
lowing steps. First, p vertices are randomly selected and each of them is used
to initialize a cycle. To ensure that each cycle visits at least three vertices, we
add two more vertices to the cycle in a greedy manner, chosen from the near-
est neighbors (introduced in section of the vertices in the cycle. Finally,
the remaining vertices are added to arbitrary cycles in a greedy manner con-
sidering the nearest neighbor rule. Once all vertices are considered, a feasible
initial solution is constructed. The time complexity is bounded by O(n x «),
where « is a parameter of the nearest neighbor rule.

2.2  Edge assembly crossover

Before triggering the crossover to generate offspring solutions, the HGA selects
two parent solutions ¢4 and ¢pg by a binary tournament strategy with respect
to the objective value. In this work, we adopt the edge assembly crossover op-
erator (EAX) to generate promising offspring solutions. EAX was originally
introduced to solve the TSP [24] and has shown its effectiveness in vehicle
routing problems [22]23]. The EAX operator has been further generalized to
successfully solve the split delivery vehicle routing problem [12] and the min-
max multiple traveling salesman problem [13|. Given that the HpMP includes
routing as its subproblem, EAX is naturally suited to meet the requirements
of the HpMP. However, since the HpMP is different from the TSP and rout-
ing problems, specific adaptations are needed, which concern the last step
(Restore feasibility) of the crossover procedure as described below.

Given the input graph G = (V,£), let @4 and pp be two parent solutions. Let
Ga= (V,E4) and Gg = (V, E) be the corresponding partial graphs, where €4
and &g are the sets of edges traversed by ¢4 and g, respectively. Note that
the vertices in the corresponding partial graph of a solution have the same
degree of two. EAX uses this property to naturally assemble the edges of the
parents to produce offspring solutions. In what follows, an edge e € £4 U &g
is qualified as a common edge of p4 and g if e € £4 N Ep, otherwise, it is a
non-common edge.

Algorithm 1: The EAX procedure for the HpMP

Input: ¢4 and pp parent solutions, § number of offspring to be created;

Output: 3 offspring solutions;

Step 1: Construct a joint graph Gag = (V, (E4 U EB)\(EANEB));

Step 2: Partition the joint graph G 45 into AB-cycles.

Step 3: Generate 8 FE-sets by combining A B-cycles.

Step 4: Construct S intermediate solutions according to E-sets and a basic
solution.

Step 5: Reduce or add cycles in intermediate solutions if the number of cycles
is not equal to p.

As shown in Algorithm [I} the EAX crossover generates [ offspring solutions
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Fig. 2. Illustration of the EAX crossover for the HpMP
(B is a parameter) through the following steps.

(1) Construct a joint graph G45. From the partial graphs G4 = (V,£4) and
Gs = (V,&p) associated to the parent solutions ¢4 and g, the joint
graph Gag = (V, (E4U E)\(E4 N ER)) is built. One notices that all edges
of G 45 are non-common edges.

(2) Partition the joint graph into AB-cycles. An AB-cycle is defined as a cy-
cle in G45. A random vertex associated with edges from G 45 is selected
to initialize an A B-cycle, which is extended by adjacent edges taken al-
ternatively from £4 and £z. When an added adjacent edge leads to a
cycle and the number of edges is even, an AB-cycle is constructed and
its edges are removed from G 453. When G 45 = 0, all edges are partitioned
into AB-cycles. Since for each vertex in G 45 the number of incident edges
of £4 is equal to that of £z, G45 can always be completely and evenly
partitioned into A B-cycles.

(3) Generate E-sets. An E-set is an union of AB-cycles. AB-cycles that share
common vertices are combined to form FE-sets. Then if the number of E-
sets is greater than parameter 3, some E-sets are randomly combined to
retain 3 FE-sets.

(4) Construct intermediate solutions. Given a basic solution (say ¢4) and an
E-set (say &), an intermediate solution ¢’ = (E4\(EsNEL)) U (E N Ep)
is created. We thus get [ intermediate solutions.

(5) Restore feasibility. Given an intermediate solution ¢’, let p’ be the number
of its Hamiltonian cycles. There are three cases of the value of p/, that is
p > p, p =pand p < p. Infeasible solutions concern the first and third
cases. For the first case (p’ > p), p’ —p cycles are eliminated by the 2-opt™*
operator used in [22]. The process starts by randomly selecting a cycle,
denoted as c¢;. Next, two vertices, v from ¢; and v from another cycle ¢
are selected such that vertex v is among the a nearest neighbors of vertex
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u. Subsequently, edges (u,z) and (v,y) are removed and replaced with
new edges (u,v) and (z,y), where x and y are the successors of u and v,
respectively. This results in the combination of cycles ¢; and ¢y, with the
objective of minimizing the total distance. The best acceptance strategy
is used for this purpose. The iterative process continues until p’ = p. For
the third case (p/ < p), p— p' cycles are added via the 2-opt*. Similar to
the first case, a random cycle, say cy, is selected, and two vertices, u and
v, from the cycle are chosen such that vertex v is among the « nearest
neighbors of vertex u. Then, edges (u, z) and (v, y) are removed, and new
edges (u,v) and (z,y) are added, resulting in the splitting of cycle ¢; into
two cycles. This iterative process continues until p’ = p.

Given an FE-set, half of the edges come from £4 and the other half from &z.
Since an intermediate solution is constructed based on an FE-set and a basic
solution, say @, if the size of F-set is large, more non-common edges from ¢p
are inherited by the intermediate solution. Nagata and Kobayashi [24] demon-
strated that increasing the size of the E-set can help the algorithm escape local
optima. However, excessively large E-sets may produce offspring solutions of
low quality, as intermediate solutions with a high number of subtours can de-
viate too far from the initial solution. On the contrary, if E-sets are too small,
offspring solutions tend to be similar to the basic solution since relatively few
non-common edges coming from the other parent solution are involved. In this
work, we experimentally set 5 = 5 (see Section for a sensitivity analysis

of 3).

Fig. 2] illustrates an example of the EAX procedure with p = 3. There are four
and two cycles in intermediate solutions a’ and ¥/, respectively. For solution
a’, two cycles are connected to restore feasibility. However, a cycle is divided
to ensure the feasibility of solution ¢'. During this process, few common edges
may be broken to re-connect two cycles. For example, as shown in Fig.
two common edges in solution b" are broken. Indeed, in the first four steps,
all common edges are inherited by intermediate solutions, while the last step
may break few common edges to restore feasibility. Thus, the EAX crossover
generates offspring by inheriting nearly all common edges of the parents, as-
sembling non-common edges of the parents and occasionally introducing few
new short edges.

A HpMP solution contains n edges. The space complexity of EAX is O(n).
In the first four steps, 2 x n edges are assembled, and the time complexity
is bounded by O(n). In the last step, suppose that there are m cycles in an
intermediate solution and the cycle with the largest number of edges includes
|| edges. The time complexity of step 5 is bounded by O(|&,,| x «) when
reducing or adding one cycle, where « is the number of the nearest neighbors
introduced in Section 2.3
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2.8 Local search

In the hybrid genetic algorithm framework, local search is the key compo-
nent for search intensification and offspring improvement [10]. To attain high-
quality solutions within a limited time, local search typically integrates en-
riched neighborhood operators and speed-up techniques. For the HpMP, HGA
adopts seven neighborhood operators that are popular for routing problems
and explores them under the framework of variable neighborhood descent.

Although Erdogan et al. [5] and Herran et al. [14] presented local search pro-
cedures, they don’t use any neighborhood reduction technique, making their
algorithms less effective for large instances. In this work, we adopt the so-
called « nearest neighbors rule where o (< n) is a granularity threshold [30]
to restrict the neighborhood search to nearby vertices. The nearest neighbors
rule aims to speed up the neighborhood search and avoid the examination of
non-promising candidate solutions. This is the first time the nearest neighbors
rule is adopted in the context of HpMP.

We define the following notations to introduce our neighborhood operators.
Let vertex v be the nearest neighbor of u. Let ¢(u) and ¢(v) be two cycles
which visit vertices v and v, respectively, and x and y are the successors of u
in c(u) and v in ¢(v), respectively. Let (u,x) be the substring from vertex u
to x and (v, y) be the substring from vertex v to y. Seven basic neighborhood
operators (or moves) are defined as follows.

(1) M1: Vertex u is removed from c(u) and inserted into c(v) after vertex v.

(2) M2: Two consecutive vertices u and x are removed from c¢(u) and inserted
into c(v) after vertex v.

(3) M3: Two consecutive vertices v and z are removed from c(u) and place
(x, u) after vertex v.

(4) M4: Interchange the position of vertex u and vertex v.

(5) Mb5: Interchange (u, x) and vertex wv.

(6) M6: Interchange (u, ) and (v, y).

(7) MT7: This is the 2-opt operator, which replaces (u, z) and (v,y) by (u,v)

and (z,y) if c(u) = ¢(v).

Given the nearest neighbors rule, the time complexity of all operators is
bounded O(n x «).

The seven operators are explored under the framework of variable neighbor-
hood descent according to the order in which they are presented, as illustrated
in Algorithm 2] where My(p) (0 = 1,2, ...,0,m4,) is the current neighborhood
and 0,,,, =7.

We mention that the iterated local search (ILS) of Erdogan et al. [5] explores
only M1 and M2. The PGVNS of Herran et al. [14] adopts two parametric
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Algorithm 2: The variable neighborhood descent with 6,,,, neighbor-
hoods for the HpMP

Input: Solution ¢, 0,4, neighborhoods;
Output: The local optimum solution ¢;
begin
0+ 1;
while 0 < 0,,,,: do
(0, Improve) < My(p):
if Improve = true then
‘ 0+ 1;
else
‘ 0—0+1;
end

end
return o;

end

operators insy and swapy, which covers M1-M6 by varying A. However, none
of the previous studies employ the o nearest neighbors rule to explore the
neighborhoods. Our experiments demonstrated that the o nearest neighbors
rule is a highly effective strategy to improve the search efficiency of the local
search considerably. Finally, PGVNS additionally applies M7 to improve each
individual cycle.

2.4  Mutation

Preserving a healthy population diversity is among the core issues of a hybrid
genetic algorithm [10], whose purpose is to prevent the algorithm from prema-
ture convergence. In HGA, since nearly all edges in an offspring solution come
from its parent solutions and the subsequent local search introduces few new
edges, the population P may face a tricky problem, i.e., the edges of offspring
solutions are almost fully covered by parents and new edges are rarely present
in the population. To cope with this problem, the HGA algorithm applies,
with a probability {, a mutation operator to each offspring solution to intro-
duce new edges. This is a simple and effective way to diversify the offspring
and enhance population diversity.

Given a solution ¢, the mutation changes ¢ in £ X n steps, where £ is the muta-
tion length. During each step, the mutation randomly applies the move M1 or
the move M4 to perturb the solution. Suppose that M1 is applied, two vertices
(denoted by u and v) are randomly picked from distinct cycles, and vertex u
is inserted into r(v) after vertex v. Similarly, if M4 is applied, two vertices are
randomly selected from distinct cycles and their places are swapped. As we
show in Section [£.3] the mutation helps the algorithm to maintain a healthy
population diversity all along the search process and prevents the search from
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premature convergence.

2.5 Population management

Algorithm 3: The quality-and-distance updating strategy

Input: Population P with size of u + A where p is the minimal population size
and )\ is the generation size;

Output: Updated population P with size of u;

begin

The traveling distance of all solutions is saved in the matrix dis;
for i =1 to |P| do
for j=1toido
‘ di, j| < HammingDis(pi, ©;);
end
end
for i =1 to |P| do
‘ Sort d(i); /* From smallest to largest */
end
while [P| > u do
for i =1 to |P| do
| dClost[i] «+ Y2725 dli, 5];
end
Sort dClost; /* From largest to smallest */
Sort dis; /* From smallest to largest */
for i =1 to |P| do
‘ biasedFit[i] < (T;;f + (1— "b‘%fte) X dc}éﬁjrﬁ';
end
W 4= MaATigqy 2,... |p|ybiased Fit[i];
P« P\{Sow};
for i =1 to |P| do
‘ Update d(i) by removing @u,;
end
Update dis by removing ¢,;
end
return P;
end

The main goal of population management is to maintain a healthy diversity of
P all along the search process. HGA uses a population updating strategy sim-
ilar to the technique described in [32]. Each new offspring solution is inserted
into the population if it is not the same as any solution of the population.
Once the number of solutions reaches the maximum size 1 + A where A is the
generation size, \ solutions are removed with respect to a biased fitness, and pu
individuals go to the next generation. Now, we explain how the biased fitness
for each individual is computed. Let d be a two dimensional matrix and d[i, j|
denote the Hamming distance between solution ¢; and ¢,. Let d(i) be the row

10
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of d that stores the Hamming distances between solution ¢; and each other
solution in P.

As shown in Algorithm 3] the Hamming distance between any pair of solutions
equals the ratio between the number of non-common edges and n (lines 3 -
7). Then, given a solution ¢;, |P| — 1 values of d(i) are ranked from smallest
to largest (lines 8 - 10), and the sum of the first nbClost values (nbClost is a
parameter) are regarded as the diversity contribution of ¢; to P, represented
by dClost[i] (lines 12 - 14). Then, the values of dClost are arranged from
largest to smallest and each solution ¢; is associated with a rank dClost’. (line
15). Furthermore, we also rank solutions of P according to their objective
values from the best to the worst, leading to a rank dis’. for each solution ¢;

(line 16). Finally, the biased fitness of solution y; is defined as biasedF'it[i] =
disf; (1 . nbElite) % dClosti

P Pl i
17 - 19). The solution associated with the largest biased fitness is removed

from P and the biased fitness for each remaining solution of P is updated.
The solution removal process is repeated until |P| = p. Following [32], we set
nbClost = 5 and nbElite = 4.

where nbElite is a parameter and less than  (lines

If the best solution found so far ¢* cannot be improved for v consecutive
iterationsE] (v is a parameter called population rebuilding threshold), the al-
gorithm restarts by generating a totally new population.

2.6 Discussions

As our literature review shows, the existing heuristic algorithms for the HpMP
rely on single trajectory-based iterated local search [5] and variable neighbor-
hood search [14], while ignoring the framework of population-based hybrid
genetic search. Meanwhile, hybrid genetic search has been successfully applied
to several related routing problems [T0)22/33/34/T2/T3] and it is surprising to
observe that this approach has never been studied in the context of the HpMP.

As the first algorithm of its kind, the proposed HGA algorithm fills this gap.
In particular, we show that we are able to develop a competitive algorithm
for the HpMP by leveraging the ideas of the successful EAX crossover origi-
nally developed for the TSP and the powerful neighborhood search for routing
problems, as well as specific diversity preservation strategies. Indeed, extensive
computational results show that HGA achieves remarkable results in terms of
solution quality and runtime on various benchmark instances.

Given that the HpMP has a number of applications, the HGA algorithm can
be used to better solve these practical problems. The code of the algorithm

that we make publicly available will facilitate such applications.

1 One iteration corresponds to one invocation of the local search procedure.

11
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3 Experimental Evaluation and Comparisons

In this section, we experimentally evaluate the performance of the proposed
algorithm and compare its results with the best existing algorithms.

3.1 Benchmark instances

Four sets of 215 HpMP instances are adopted for our experimental studies. The
first three sets (S, M, L) include 145 benchmark instances commonly tested in
the literature while the last set (N) includes 70 new large instances generated in
this work. All of the instances are developed from graphs from the TSPLIB?]
For sets S, Ml and L, given a TSPLIB graph, five instances are generated by us-

ing distinct values of p € {|{5], [2], | 5], [ 5], [5]}. For set N, seven instances

per graph are obtained by setting p € {5, |55, [i5), [51, 5], [5]: [5]}

e small set (S): This set includes 55 instances from 11 TSPLIB graphs with
21 to 52 vertices.

e medium set (M): This set includes 55 instances from 11 TSPLIB graphs
with 58 to 100 vertices.

o large set (L): The set includes 35 instances from 7 TSPLIB graphs with 150
to 318 vertices.

e new large set (N): This new set includes 70 instances from 10 TSPLIB graphs
(rd400, 1417, pcb442, d493, ub74, ratb75, p654, u724, rat783, ul060) with
400 to 1060 vertices.

It is worth mentioning that exact algorithms such as HpMP2 [5] and B&P [19]
are able to obtain optimal solutions for all instances of set S (except two for
B&P). Furthermore, most instances in set M are solved optimally by HpMP2
[5]. Thus, sets S and M are less challenging than sets L and N for the purpose
of evaluating HpMP algorithms.

All these 215 instances are used in our experiments to extensively evaluate
the performance of the proposed HGA algorithm. The instances and the best
solutions obtained by HGA are available onlind?]

3.2 Experimental protocol and reference algorithms

Parameter setting. The HGA algorithm has six parameters: the minimum
population size pu, the generation size A, the granularity threshold of near-
est neighbors «a, the mutation probability ¢, the mutation length £ and the
population rebuilding threshold ~. The automatic parameter tuning package
Irace [17] is employed to calibrate these parameters. Given that HGA can ob-

2 http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html
3 https://github.com /pengfeihe-angers/HpMP.git
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tain consistent results with different independent runs when solving small and
medium instances, the instances used during tuning are selected from sets L
and N: pr299-42, 1in318-31, rd400-80, d493-70, pch442-44, d493-70, ub74-82,
p654-130, u724-72, rat783-195, ul060-151, where the values of p are selected
randomly. Furthermore, the maximum number of experiments is 2000 and the
stopping condition per experiment is 3600s or 300,000 iterations. The com-
puter we used for parameter tuning is equipped with an Intel i7-6700HQ of
2.6GHz, where 7 cores are used. The candidate and final values are shown
in Table [I] This setting can be considered as HGA’s default setting and is
consistently used for our experiments.

Table 1
Parameter tuning results.
Parameter  Section Description Considered values Final values
m 2.5 minimal size of population {50, 100, 150, 200, 250} 100
A I2_5I generation size {25, 50, 75,100, 125} 50
a Z granularity threshold {5,8,10,12,15,20} 10
¢ I; mutation probability {0,0.05,0.1,0.15,0.2,0.25, 0.3} 0.15
3 E mutation length {0.05,0.1,0.15,0.2,0.25} 0.25
~y ﬁ population rebuilding threshold {5000, 10000, 20000, 30000, 50000, 80000} 30000

Reference algorithms. We take the following best HpMP heuristic and exact
algorithms, as well as the best known solutions BKS (best upper bounds), as
the references for the comparative study.

e BKS. This indicates the best known solutions (upper bounds) that are sum-
marized from all reference heuristic and exact approaches [BJT9/T4].

e HpMP2 [5]. The branch-and-cut algorithm was implemented in C++, run-
ning on a computer with an i7 2.5 GHz CPU. It solved optimally all small
instances of set S and most medium instances of set M with a time limit of
3600s. No results were reported on set L.

e B&P [19]. This branch-and-price algorithm was implemented in C++. In
[14], the source code of B&P was used to solve the 215 instances of the sets
S, M, and IL on a computer with an Intel i7 6500U processor running at 2.5
GHz and 8 GB RAM. With a time limit of 3600s, B&P was able to obtain
optimal solutions for all but two instances of S and more than half instances
of set M. The detailed results of B&P from [14] are used in our comparative
study.

e PGVNS [I4]. This algorithm was coded in C++ and experiments were con-
ducted on a computer with an Intel i7 6500U processor running at 2.5 GHz
and 8 GB RAM. The algorithm reported excellent results on the sets S,
M, and IL. The source code was kindly provided by the authors. To make
comparisons as fair as possible, we re-run the code on our computer and
report its results under the heading ‘re-PGVNS’.

Given that B&P and HpMP2 are exact algorithms that aim to find optimal
solutions, we consider the best heuristic algorithm PGVNS [14] as the most
significant reference algorithm for our comparative study.
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Experimental setting and stopping criterion. The HGA algorithm was
coded in C++ and compiled using the g++ compiler with the -O3 option[*]
All experiments were run on an Intel Xeon E-2670 processor of 2.5 GHz and
2 GB RAM running Linux with a single thread. Both HGA and PGVNS were
executed 20 times on each instance with distinct random seeds. The HGA
algorithm terminates when it reaches a maximum of 500,000 iterations or the
optimal solution. For PGVNS, we used its default parameter setting given in
[14] with the stopping condition of a maximum of 0.3 X p X n iterations or a
maximum of 3600s cutoff time.

3.8  Computational results and comparisons

We report comparisons of the HGA algorithm with the reference algorithms on
the four sets of benchmark instances. Detailed computational results on each
instance are presented in Appendix [B| (Tables , while a comparison
summary is shown Table 2] To reveal the statistically significant difference be-
tween each pair of compared algorithms, the Wilcoxon signed-rank test with
confidence level of 0.05 is used. Furthermore, a commonly used benchmarking
tool, performance profile [4], is employed to compare distinct algorithms in a
visual way. Given a set of algorithms S and a set of instances Z, the perfor-

mance ratio r,, of algorithm a on instance ¢ with respect to the best approach
T
performance of approach a is determined by Q. (7) = MEI:‘TI%ST‘, which is the
probability for algorithm a that its performance ratio r,, 1s within a factor 7.
Q.(T) represents the (cumulative) distribution function for the performance
ratio. Q,(7 = 1) is the percentage of instances on which algorithm a performs

the best compared to all other algorithms.

for the minimization objective f is given by r,, = The overall

Table 2
Summary of results between the HGA and reference algorithms on four sets of 215
instances.

Instances Pair algorithms Best Ave.
#Wins #Tiers #Losses p-value #Wins #Tiers #Losses p-value

HGA vs. HpMP2 [3] 0 55 0 0.00E+00

S HGA vs. B&P [19] 0 55 0 0.00E-+00 -
HGA vs. PGVNS [14] 0 55 0 0.00E+00 0 55 0 0.00E+400
HGA vs. HpMP2 [3] 5 50 0 6.25E-02

M HGA vs. B&P [19] 23 32 0 2.70E-05
HGA vs. PGVNS [14] 0 55 0 0.00E-+00 -
HGA vs. re-PGVNS 0 55 0 0.00E+00 6 48 1 2.64E-04
HGA vs. B&P [19] 28 3 0 -

L HGA vs. PGVNS [14] 8 27 0 7.81E-03 19 12 4 6.31E-04
HGA vs. re-PGVNS 16 19 0 4.38E-04 29 5 1 1.47E-06
HGA vs. reePGVNS 70 0 0 3.56E-13 70 0 0 3.56E-13

N HGA vs. re-PGVNS-long 68 2 0 7.64E-13 69 1 0 5.21E-13
HGA vs. HGA-long 0 53 17 2.93E-04 0 13 57 3.51E-11

4 The code of the HGA algorithm will be  available at:
https://github.com/pengfeihe-angers/HpMP.git
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Fig. 3. Performance profiles of the compared algorithms on L and N sets

According to the summarized results of Table [2] and detailed results of Tables
B.1 we make the following observations.

e Sets S and M. For the small instances, the two heuristic algorithms HGA

and PGVNS perform identically and are able to attain the optimal solutions
proven by the exact algorithms HpMP2 and B&P generally in less than one
second. Both HGA and PGVNS attain the optimal solutions proven by
the exact algorithms. Between HGA and PGVNS, HGA has a better per-
formance in terms of the average results and is significantly faster than
PGVNS to report solutions of the same quality.

Set IL. For the 35 large instances, our HGA algorithm updates 8 BKS (new
upper bounds) (22.9%) and matches all BKS values for the remaining in-
stances (see detailed results in Table [B.3). The small p-values (< 0.05)
demonstrate that our algorithm dominates all reference algorithms in terms
of both solution quality and computation time. In particular, HGA is sig-
nificantly better than PGVNS in terms of the best and average results.
Moreover, HGA requires always roughly no more than one-third of the time
required by PGVNS to find solutions of equal or better quality. This demon-
strates a clear advantage over the exact algorithms HpMP2 and B&P and
the best heuristic algorithm PGVNS for solving these large instances. The
performance profiles shown in Fig. [3]further confirm the dominance of HGA.

e Set N. For this new set of largest instances, it is only possible to compare
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HGA against PGVNS. For this set of instances, in addition to the standard
stopping condition (a maximum of 500,000 iterations), we also tested HGA
and PGVNS under a relaxed condition, i.e., a maximum of 1,000,000 itera-
tions for HGA and a maximum equivalent runtime of 10800s (3 hours) for
PGVNS. The results of long runs are shown in Tables 2| and under the
headings HGA-long and re-PGVNS-long. According to the reached results,
HGA significantly outperforms PGVNS both under the standard and re-
laxed stopping conditions (p < 0.05). HGA holds 68 best solutions out of
the 70 instances and 2 equal solutions compared to PGVNS. HGA also re-
ports significantly better average results. The performance profiles shown in
Fig. [3] also support these conclusions. Once again, HGA is much faster than
its competitor to report better or equal results, as shown in Table [B.4] It is
also interesting to notice that HGA is able to improve its owe results when
it is given a higher time budget. Indeed, HGA-long performs significantly
better than HGA by obtaining 17 new upper bounds and equal results for
the remaining instances. As shown in Fig. [3} HGA-long dominates all al-
gorithms since Q,(7 = 1) of HGA reaches 1 firstly, which indicates a high
robustness.

To sum, exact algorithms HpMP2 [5] and B&P [19] are valuable for finding the
optimal solutions for the small instances of sets S and some medium instances
of set M. For the large instances of L and N, heuristic algorithms PGVNS
and HGA are indispensable alternatives for finding high-quality approximate
solutions, while they are also able to easily reach the proven optimal solu-
tions for the instances of sets S and M. Between HGA and PGVNS, HGA
dominates PGVNS both in terms of the solution quality and computational
efficiency. In the following, we show additional experiments to investigate the
contributions of the key algorithmic components to the high performance of
the HGA algorithm.

4 Additional experiments

We now present additional experiments to study the roles of the edge as-
sembly crossover and the mutation. The experiments are based on the most
challenging instances of sets I and N.

4.1 Significance of the crossover

The edge assembly crossover (EAX) produces offspring solutions by combin-
ing edges from parents and adding relatively few new short edges. Indeed, all
common edges are inherited, while the size of FE-sets determines how many
non-common edges are involved in intermediate solutions. One notices that
large E-sets may better promote diversity, but may result in low-quality off-
spring solutions due to the presence of too many cycles. Conversely, small
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Table 3
Summary of comparative results between the HGA and five variants.

. . Best Avg.
Pair algorithms

#Wins  #Tiers #Losses p-value #Wins #Tiers #Losses p-value
HGA vs HGA1 (B = 3) 30 65 20 1.72E-01 52 39 24 2.79E-04
HGA vs HGA2 (B = 10) 26 73 16 2.09E-01 57 36 22 2.71E-06
HGA vs HGA3 (B8 =15) 35 69 11 2.91E-03 76 34 5 7.69E-15
HGA vs HGA4 (Disable crossover) 105 10 0 5.84E-19 105 10 0 5.84E-19
HGA vs HGA5 (Disable mutation) 63 52 0 5.17E-12 87 27 1 4.00E-16

E-sets can produce offspring solutions that are very similar to their parents,
potentially limiting diversity [24]. Thus, we need to know which size of E-sets
is the best compromise for the quality and diversity. To gain insights into this
issue, three HGA variants with distinct values of 8, HGAL (5 = 3), HGA2
(8 =10), HGA3 (8 = 15), are compared, along with the standard HGA with
£ = 5. An extra variant named HGA4 is also included where EAX is disabled.
To ensure a fair comparison, the runtime budget of HGA provided by Tables
B.3HB.4] was used to conduct the current experiment. We ran these algorithm
variants on the same machine and report the comparative results in Table [3]
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Fig. 4. Performance profiles of the HGA and its variants.

The performance profiles, shown in Fig. illustrate that the performance
differences are more visible for the average results than for the best results. Still
it is observed that HGA has a higher (1), which reaches the value of 1 earlier
than its variants. Indeed, the results summarized in Table |3 indicate that in
terms of the best results, HGA is marginally better than HGA1 and HGAZ2, but
significantly better than the other variants, while HGA significantly dominates
all its variants in terms of the average results. It is worth observing that HGA1
(with a small § = 3) and HGA2-HGA3 (with large § = 10,15) perform
worse than HGA (with a moderate 5 = 5). This indicates that too large or
too small § is harmful for HGA’s performance. Finally, one observes that
HGA4 (without the crossover) has the worst results, indicating that the EAX
crossover is a key driving search operator of the HGA algorithm.
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Fig. 5. Hamming distance between each pair of local optimal solutions. Brighter
colors correspond to smaller Hamming distances, indicating pairs of similar or closely
related solutions. The brightest colors indicate that more than 95% of the edges are
shared by two solutions, while the darkest blue colors indicate that less than 70% of
the edges are shared by two solutions.

4.2 Rationale behind the crossover

To shed insights on why the EAX crossover is a meaningful operator for the
HpMP, we investigate the relationship between high-quality local optimal so-
lutions in terms of the Hamming distance. Intuitively, if two high-quality local
optimal solutions have a small distance, that means that they share many
common edges. This is then a favorable feature for the EAX crossover, be-
cause EAX allows offspring solutions to inherit the common edges that form
the backbone of a high-quality solution.

For this experiment, we use both HGA and PGVNS to sample various lo-
cal optimal solutions, which are both of high-quality and diverse. Specifically,
we adopt two representative instances (pr299, p = 29 and lin318, p = 31)
with their best known results from Table [B.3l We run HGA and PGVNS on
these instances and record the local optimal solutions whose objective value
is within 5% of the best known value. For each instance, we yield 600 distinct
solutions. The Hamming distance between each pair of these solutions is cal-
culated and the results are shown in Fig. [5[as two dimensional heat map. The
abscissa and ordinate axes represent the rank of solutions from smallest to
largest with respect to the objective value. The colored pixels represent the
Hamming distance between each pair of solutions. Brighter colors correspond
to small Hamming distances, indicating pairs of similar (or close) solutions.
From Fig. 5 one notices that brighter colors center around the bottom left
corner of both figures. This means that higher quality solutions share more
common edges than less good solutions. Given that EAX transmits the com-
mon edges from parents to offspring, the backbone of high-quality solutions is
systematically preserved. This also explains why the EAX crossover needs to
use relatively large E-sets when recombining high-quality parents to preserve
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sufficient diversity in offspring solutions. It is worth noting that these findings
are fully consistent with the conclusions of Nagata and Kobayashi [24] in the
context of applying EAX to the TSP.

4.3 Benefits of the mutation
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Fig. 6. Convergence charts of HGA and HGAJ for solving four representative in-
stances
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Fig. 7. The differences between HGA and HGA without mutation for solving sets L
and N.

HGA uses the mutation operator to diversify offspring solution and promote
population diversity. To assess its usefulness, a new variant (HGADB) is con-
structed by disabling the mutation operator in HGA. HGA is then compared
with HGAS in terms of population diversity by using the following diversity
measure [28]. Let |P| be the number of solutions in the population P. Let
hi; be the Hamming distance between two solutions ¢; and ¢;. During each
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iteration, Equation is used to measure the population diversity. We draw
the convergence charts of HGA and HGA5 together with the population di-
versity, based on four instances (1in318, p = 31, 1in318, p = 45, pcb442, p =
63, and pcb442, p=88). The results are visualized in Fig. @, where HGA-R
and HGA5-R indicate the best results found while HGA-H and HGA5-H are
the average Hamming distance 7 of the population. HGA has a better conver-
gence and dominates HGA5. HGA always keeps a higher value of n along its
evolution compared to HGA5, which indicates that the mutation contributes
to preserve diversity without sacrificing quality.

5 PP
n= hij 1
PIP—1) 2,2, " o

Furthermore, Fig. [7] shows the comparative results of HGA and HGA5 in
terms of both the best and average results on the 105 instances of sets L
and N. The results are presented as the percentage deviation of the results
of HGAbS compared to the results of HGA. Together with the summarized
results reported in Table it is clear that the performance of HGA will
degrade significantly if the mutation operator is disabled. These evidences
confirm that the mutation operator plays a positive role in our algorithm.

5 Conclusions

In this paper, we presented a hybrid genetic algorithm (HGA) for the Hamil-
tonian p-median problem. The method includes a versatile edge assembly
crossover allowing a diversified search and a neighborhood-based search ensur-
ing aggressive solutions improvement. Furthermore, a diversification-oriented
mutation operator and a quality-and-distance population updating strategy
are integrated into the algorithm to manage the population.

Computational experiments on three sets of 145 commonly used benchmark
instances show that the algorithm can effectively solve a wide range of in-
stances within a short time by either improving or matching the optimal or
best known results reported in the literature. In particular, HGA outperformed
all reference algorithms and provides 8 new best upper bounds. We also as-
sessed the algorithm on a new set of 70 large instances and compared with the
best heuristic algorithm and provided the first upper bounds for these chal-
lenging instances. These bounds and the 8 new bounds for the conventional
benchmark instances can be useful for future research on the HpMP. Addi-
tional experiments were conducted to get insights into the roles and rationale
of the edge assembly crossover for the HpMP and the impacts of the mutation
operator.

Given that the HpMP is a relevant model for a number of real-world problems,
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our algorithm whose code will be publicly available can be used to better solve
some of these practical applications.

This work demonstrates that the hybrid genetic approach is highly effective
for this computationally challenging problem, thank to a fruitful synergy be-
tween a meaningful crossover, a powerful local search and suitable diversity
preserving strategies. Finally, we highlight that the general idea of assembling
promising edges of high-quality solutions is much relevant for the HpMP and
this idea can be advantageously adopted to deal with other routing problem:s.
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Appendix

A Mathematical model

The HpMP can be formulated as a set partition problem with additional
constraints [I9/14] to ensure that a feasible solution contains p cycles and
each cycle visits at least three vertices. Let €2 be the set of cycles, each cycle
being given by a sequence of edges. The travel cost ¢, of a cycle k € € is given
by the sum of the cost of the edges in its cycle. Let a;; denote the number
of times vertex 7 is visited by cycle k. Let x;, be a binary variable such that
xr = 1 if the cycle k is in the optimal solution, z; = 0 otherwise. The set
partition formulation of HpMP is as follows.

minimize Y ¢y, (A.1)
keQ
subject to : Z apxr =1, YieV (A.2)
ke
i€V

dap=p (A.4)

ke

xp €{0,1}, VkeQ (A.5)

Objective function minimizes the overall of costs associated to each cycle.
Constraints guarantee that each vertex is visited by exactly one cycle.
Constraints state that each cycle needs to visit at least three vertices.
Constraint guarantees that the number of cycles should equal p.

B Computational results

This section presents the detailed computational results of the proposed HGA
algorithm together with the results of the reference algorithms: exact algo-
rithms HPMP2 [5] and B&P [19] as well as heuristic algorithm PGVNS [14].
For HPMP2, its results are extracted from [5], while for B&P and PGVNS;
their results are compiled from [I4].

In the tables presented hereafter, column Instance indicates the name of each
instance and corresponding value of p; column BKS is the optimal values
(indicated by the " symbol) or best-known values (best upper bounds) sum-
marized from the literature; Best and Avg. are the best and average results
over 20 independent runs obtained by the corresponding algorithm in the
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column header, respectively; MRT(s) in each column represents the time of
each corresponding exact algorithm to find the optimal solution or the total
runtime if no optimal solution is found; Time(s) in each column means the
average runtime in seconds of the corresponding algorithm. In Tables |B.1
Gap in the last column is calculated as Gap = 100 X ( fpest — BR)/BR, where
frest 1s the best objective value of HGA and BR is the best results of all other
algorithms including BKS. The Average row is the average value of a perfor-
mance indicator over the instances of a benchmark set. Improved best results
(new bounds) are indicated by negative Gap values highlighted in boldface.
In Table the dark gray color indicates that the corresponding algorithm
obtains the best result among the compared algorithms on the corresponding
instance; the medium gray color displays the second best results, and so on.
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Table B.1

Results for the HpMP on the instances of set S. The timing information for the ref-
erence algorithms has the following meanings. For PGVNS, STMB(s) is the shortest
run time to attain the best solution among 10 runs (extracted from Table 9 of [14]).
The average time of PGVNS for set S is unavailable. For HGA, Time(s) is the average

runtime over 20 runs.

Instance BKS HPMP2 [5] B&P [19] PGVNS [14] HGA
Name p Best MRT(s) Best MRT(s) Best Avg. STMB(s) Best Avg. Time(s)
2 2773.00* 2773.00 0.49 2773.00 251.00 2773.00 2773.00 0.01 2773.00 2773.00 0.09
3 2774.00% 2774.00 0.34 2774.00 41.00 2774.00 2774.00 0.03 2774.00 2774.00 0.01
gr2l 4 2757.00* 2757.00 0.19 2757.00 8.00 2757.00 2757.00 0.03 2757.00 2757.00 0.01
5 2832.00* 2832.00 0.46 2832.00 35.00 2832.00 2832.00 0.03 2832.00 2832.00 0.01
7 3043.00*% 3043.00 0.45 3043.00 16.00 3043.00 3043.00 0.02 3043.00 3043.00 0.01
2 68.33%* 68.33 0.39 68.33 3601.00 68.33 68.33 0.05 68.33 68.33 0.01
3 66.43%* 66.43 0.38 67.18 3612.00 66.43 66.43 0.04 66.43 66.43 0.01
ulysses22 4 64.23%* 64.23 0.19 64.23 3618.00 64.23 64.23 0.05 64.23 64.23 0.01
5 63.08* 63.08 0.16 63.08 7.00 63.08 63.08 0.03 63.08 63.08 0.01
7 65.08* 65.08 0.18 65.08 25.00 65.08 65.08 0.03 65.08 65.08 0.01
2 1238.00* 1238.00 0.31 1238.00 32.00 1238.00 1238.00 0.03 1238.00 1238.00 0.01
3 1227.00* 1227.00 0.25 1227.00 3601.00 1227.00 1227.00 0.03 1227.00 1227.00 0.12
gr24 4 1227.00* 1227.00 0.27 1227.00 16.00 1227.00 1227.00 0.04 1227.00 1227.00 0.05
6 1266.00* 1266.00 0.51 1266.00 102.00 1266.00 1266.00 0.05 1266.00 1266.00 0.08
8 1317.00* 1317.00 0.24 1317.00 22.00 1317.00 1317.00 0.02 1317.00 1317.00 0.17
2 911.00%* 911.00 0.41 911.00 52.00 911.00 911.00 0.02 911.00 911.00 0.06
3 903.00%* 903.00 0.31 903.00 38.00 903.00 903.00 0.03 903.00 903.00 0.06
fri26 5 893.00%* 893.00 0.44 893.00 33.00 893.00 893.00 0.05 893.00 893.00 0.02
6 886.00%* 886.00 0.37 886.00 12.00 886.00 886.00 0.07 886.00 886.00 0.02
8 885.00%* 885.00 0.21 885.00 10.00 885.00 885.00 0.05 885.00 885.00 0.02
2 1562.00* 1562.00 0.56 1562.00 291.00 1562.00 1562.00 0.02 1562.00 1562.00 0.02
4 1549.00* 1549.00 0.50 1549.00 29.00 1549.00 1549.00 0.08 1549.00 1549.00 0.07
bayg29 5 1555.00* 1555.00 0.53 1555.00 17.00 1555.00 1555.00 0.07 1555.00 1555.00 0.07
7 1618.00* 1618.00 2.15 1618.00 75.00 1618.00 1618.00 0.11 1618.00 1618.00 0.03
9 1676.00* 1676.00 1.73 1676.00 52.00 1676.00 1676.00 0.06 1676.00 1676.00 0.11
4 1232.00* 1232.00 1.37 1232.00 1195.00 1232.00 1232.00 0.17 1232.00 1232.00 0.27
6 1231.00* 1231.00 1.70 1231.00 693.00 1231.00 1231.00 0.27 1231.00 1231.00 0.56
swiss42 8 1231.00* 1231.00 1.56 1231.00 110.00 1231.00 1231.00 0.37 1231.00 1231.00 0.20
10 1238.00* 1238.00 2.02 1238.00 20.00 1238.00 1238.00 0.36 1238.00 1238.00 0.16
14 1292.00* 1292.00 1.12 1292.00 69.00 1292.00 1292.00 0.16 1292.00 1292.00 0.10
4 31903.30* 31903.30 3.73 31903.30 510.00 31903.30 31903.30 0.41 31903.30 31903.30 0.16
6 31836.12* 31836.12 3.41 31836.12 73.00 31836.12 31836.12 0.66 31836.12 31836.12 0.09
att48 9 32195.53* 32195.53 3.99 32195.53 117.00 32195.53 32195.53 0.74 32195.53 32195.53 0.18
12 32742.91*% 32742.91 3.99 32742.91 64.00 32742.91 32742.91 0.68 32742.91 32742.91 0.20
16 37068.82* 37068.82 285.90 38113.80 3632.00 37068.82 37068.82 0.27 37068.82 37068.82 0.17
4 4841.00* 4841.00 2.82 4961.00 3613.00 4841.00 4841.00 0.35 4841.00 4841.00 0.20
6 4805.00* 4805.00 1.76 4805.00 284.00 4805.00 4805.00 0.54 4805.00 4805.00 0.24
gra8 9 4926.00* 4926.00 13.70 4926.00 816.00 4926.00 4926.00 0.63 4926.00 4926.00 0.54
12 5011.00* 5011.00 4.91 5011.00 69.00 5011.00 5011.00 0.63 5011.00 5011.00 0.18
16 5445.00*% 5445.00 24.25 5445.00 914.00 5445.00 5445.00 0.27 5445.00 5445.00 0.19
4 11271.00*% 11271.00 3.48 11271.00 1388.00 11271.00 11271.00 0.34 11271.00 11271.00 0.30
6 11197.00*% 11197.00 2.88 11197.00 37.00 11197.00 11197.00 0.55 11197.00 11197.00 0.65
hk48 9 11292.00* 11292.00 3.05 11292.00 218.00 11292.00 11292.00 0.69 11292.00 11292.00 0.23
12 11450.00*% 11450.00 3.41 11450.00 242.00 11450.00 11450.00 0.63 11450.00 11450.00 0.21
16 12215.00*% 12215.00 10.04 12215.00 236.00 12215.00 12215.00 0.27 12215.00 12215.00 0.15
5 422.32% 422.32 4.58 422.32 921.00 422.32 422.32 0.50 422.32 422.32 1.13
7 424.36%* 424.36 6.88 424.36 401.00 424.36 424.36 0.68 424.36 424.36 1.14
eil51 10 432.49* 432.49 41.32 432.49 1771.00 432.49 432.49 0.81 432.49 432.49 0.55
12 436.59* 436.59 14.41 436.59 189.00 436.59 436.59 0.79 436.59 436.59 0.98
17 473.98%* 473.98 50.96 473.98 1136.00 473.98 473.98 0.34 473.98 473.98 0.85
5 7182.23* 7182.23 3.66 7194.76 3662.00 7182.23 7182.23 0.53 7182.23 7182.23 0.64
7 7167.20*% 7167.20 2.57 7167.20 49.00 7167.20 7167.20 0.82 7167.20 7167.20 2.59
berlin52 10 7206.70*% 7206.70 4.43 7206.70 159.00 7206.70 7206.70 1.00 7206.70 7206.70 0.25
13 7298.63* 7298.63 4.68 7298.63 169.00 7298.63 7298.63 0.90 7298.63 7298.63 0.20
17 7800.77*% T7800.77 48.81 7800.77 1352.00 7800.77 7800.77 0.45 7800.77 7800.77 0.88
Average - 5936.15 5935.15 10.43 5957.57 722.00 5936.15 5936.15 - 5936.15 5936.15
p-value - 0.00E+00 0.00E-+00 - 1.25E-01 - 0.00E400 - - - - -
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