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Abstract Graph vertex coloring is one of the most studied NP-hard c¢oatb-
rial optimization problems. Given the hardness of the pohlvarious heuristic
algorithms have been proposed for practical graph colpbaged on local search,
population-based approaches and hybrid methods. Thercbsi@agraph coloring
heuristics is very active and improved results have beeaimdd recently, notably
for coloring large and very large graphs. This chapter stsand analyzes graph
coloring heuristics with a focus on the most recent advances

1 Introduction

The graph coloring problem is one of the most important aedbst studied prob-
lems in combinatorial optimization. The problem has agtians in many domains,
such as timetabling and scheduling, frequency assignmeggister allocation, rout-
ing and wavelenth assigment, and many others.

In the following, we consider a non-oriented gra@h= (V,E), with a setV of
n vertices and a sdf of medges d = n<§[“1) defines thalensityof G). Given an
integerk, ak-coloringc is a function that assigns to each verteaf the graph an
integerc(v) chosen in sef1,2,....k} (the set of colors), all vertices colored the
same defining a “color class”. kecoloringc is apropercoloring if the endpoints of
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any edge are assigned different colors. A grapk-éelorable if it admits a proper
k-coloring. The chromatic numbef(G) of a given graptG is the smallest integer
k for which G is k-colorable. A propek-coloring such thak = x(G) is named an
optimal coloring. Thegraph coloringproblem is the problem to find an optimal
coloring of a given graph. For a given gra@and a given integek, thek-coloring
problem is the problem to determineGfis k-colorable and, if it is the case, to find
a properk-coloring of G.

Graph coloring is NP-hard aridcoloring is NP-complete for any integkr> 3
(but 2-coloring is polynomial) [23, 40]. Therefore, no aligom can solve graph
coloring in polynomial time in the general case (assumira % NP). In addi-
tion, note that the problem to findkacoloring with no more than twice the optimal
number of colors is still NP-hard. Also, finding an optimalaring turns out to be
particularly difficult in practice. As a matter of fact, tieeare graphs with as few
as 125 vertices that can not be solved optimally even by ubiedpest performing
exact algorithms. For larger graphs, it is therefore nenge® resort tcheuristics
i.e., algorithmic techniques that provide sub-optimaliohs within an acceptable
amount of time.

A simple and classical way to generate a sub-optimal propleriag is to use
a greedy heuristic. A greedy coloring heuristic builds augoh step by step by
fixing on each step the color of a given vertex. In treedy sequential heuristic
the order in which the vertices are colored is determinedredfand (i.e., statically),
randomly or according to a specific criterion. On each step,considered vertex
is assigned the smallest possible color number such thabmitiat is created with
the already colored vertices. More efficient greedy heigadike DSATUR5] and
Recursive Largest FirsRLF) [42] employ refined rules to dynamically determine
the next vertex to color.

Greedy heuristics are generally fast, but they tend to neechnmore colors
than the chromatic number to color a graph. Better resuttdezobtained by using
much more powerful heuristics, such as notablyal search heuristicandevolu-
tionary algorithms— a survey of heuristics and metaheuristics is proposed]in [4
In fact, almost all of the most popular metaheuristics hdse heen applied and
implemented on the graph coloring problem. From a histbpoat of view, sim-
ulated annealing and tabu search are among the first localhsepproaches that
were successfully applied to graph coloring. In local seaeccandidate solution
is progressively improved by local transformations (narfradves”). Population-
based approaches (e.g., memetic algorithms, quantumlarg)eapresent another
family of heuristics that established themself as one ofntlost effective coloring
methods. Thanks to the introduction of a pool of solutiormygrful search op-
erators are made available like various solution recontioing and hybridization
with local search. Finally, a latest approach based on iex@gnt set extraction and
progressive coloring proves to be quite useful to color Varge graphs.

In the following sections, we present the different colgrireuristics grouped in
four categories: Local search heuristics in Sect. 3, eiiaty algorithms in Sect. 4,
independent set extraction approaches in Sect. 5, andlahestics (such as quan-
tum annealing, neural networks, ant colonies, etc.) in.$ecthen, we review ex-
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tensions of graph coloring problems and applications edlab graph coloring in
Sect. 7. Finally, Sect. 8 reports on standard benchmarkgralpong with the results
obtained by the best performing coloring heuristics onglggaphs.

2 General Solution Strategies Applicableto Coloring Problems

It is important to note that the search space and the evaiuétinction used by
a heuristic are not necessarily the same as those of thenalrigioblem. In the
following, we name “strategy” a particular way to define tiearsh space and the
evaluation function. Thus, a strategy can be seen as a refation of the original
problem. Solution strategies designed Kezoloring are presented below.

¢ In the k-fixed penalty strategfB3, 39], a configuration is any (non necessarily
proper)k-coloring and its cost is the number of conflicts — i.e., edgbsse
endpoints are assigned the same color. This strategy miagessible to use a
very simple type of move, named “1-moves”. A 1-move consisthanging the
color of a single vertex.

e In thek-fixed partial proper strateggnamedimpasse neighborhooi [50]), a
configuration is any partial (propek}coloring — a partial propek-coloring is
similar to a propek-coloring except that some vertices may remain uncolored.
The cost of a given configuration is the number of unassigretices — it can
also be the sum of the degrees of unassigned vertices. A mawged f-swap”)
consists in assigning a coloto an uncolored vertex and, at the same time, to
deassign all neighbors gfwhose color is in the current configuration.

A k-coloring heuristic can also be used to solve the graph icgqroblem. This
can be done as follows: First, find a projpecoloring by using a greedy heuristic.
Then apply theék-coloring heuristic and reduce the valuekodach time a propes
coloring is found. Strategies designed to tackle dire¢teydraph coloring problem
are briefly presented below.

e Intheproper strategy39], a configuration is any prop&rcoloring. The evalua-
tion function is designed so as to promote the variance ddittesof the different
color classes and, as a side-effect, to reduce their numberove (named a
“Kempe chain”) consists in making an exchange of verticas/éen two color
classes, while preserving the legality of the solution. [88¢for more details.

¢ Inthepenalty strategya configuration is anlg-coloring. The evaluation function
is designed so as to decrease both the number of conflictshandutmber of
colors, see [39]. The moves used in this strategy are 1-moedimed above).

¢ Intheorder-based strategyw configuration is any ordering of the vertices, which
is subsequently “decoded” (i.e., transformed into a prapésring) by using the
greedy sequential heuristic [13].

¢ In theedge orienting strategya configuration is any orientation of the edges of
the input graph, and its cost is the length of a longest patieinesulting digraph.
Types of move mechanisms applicable to this strategy asepted in [24].
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3 Local Search Heuristics

Local search is a simple yet very powerful approach. The rnasic local search
heuristic is iterative improvement. Aterative improvemenprocedure (odescent
consists in choosing on each iteration a move that produdesm@ease in the cost
function until alocal optimumis reached. Unfortunately, iterative improvement may
get trapped rapidly in a poor local optimum. Advanced loealrsh heuristics resort
to different kinds of mechanisms in order to circumvent thabpem posed by local
optima. For examplesimulated annealingelies on randomness in order to allow
“uphill” moves (i.e., moves that increase the cost functidghanks to theéemper-
ature parameterTabu searchuses a short term diversification mechanism named a
tabu list.Iterated local searctandvariable neighborhood searatombine descents
and perturbations (equivalent to jumps performed in thecbespace). Prominent
local search heuristics proposed for coloring graphs weilpbesented and analyzed
in the remaining of this section.

3.1 Local Search Heuristics Proposed for Coloring Graphs

Two heuristics based on tlkefixed penalty strategy were proposed in 1987: A sim-
ulated annealing algorithm in [9] and a tabu algorithm nam@@UCOLin [33].
The tabu mechanism used in this latter algorithm is as faloMfter performing a
move (i.e., changing the color of a vertex), it is forbiddenr@¢assign to this vertex
its former color for a few iterations. In spite of its simptig this technique turned
out to be remarkably efficient. In particulRABUCOLoutperformed the simulated
annealing heuristic proposed in [9].

An exhaustive experimental study is conducted in [39] irneortd evaluate and
compare several graph coloring heuristics, notably threalated annealing heuris-
tics based on three different strategies. Note that norteosktstrategies (thefixed
penalty strategy, the proper strategy, and the penaltiegypdominated clearly the
others in these experiments.

One of the first and most efficient local search coloring tetiaris the simulated
annealing algorithm proposed in [50] — as its temperaturamater remains con-
stant, this algorithm is named a Metropolis algorithm. TKistropolis algorithm
is based on th&-fixed partial proper strategy and it combines two types of@so
i-swaps and-chains — a&-chain is a generalization of Kempe chains, see [50]. More
recently, a tabu heuristic (nam&ARTIALCOL) also based on thlefixed partial
proper strategy has been developed in [3]. Experimentsumtiaed withTABUCOL
andPARTIALCOL indicate that, although they are based on different stiedethe
two tabu algorithms obtain similar results on most graphs.
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3.2 Recent Advances

Several authors have tried to improve the efficiency of a tadoring heuristic,
notably by a more careful management of the tabu list. Trggral TABUCOIluses
a static tabu list (i.e., the tabu tenure is constant) [3®)wEler, it can be noticed
that the size of the neighborhood changes throughout thelseéor this reason,
it is suggested in [20] to set the tabu tenure accordinglytilAnsore sophisticated
and robust technique proposed in [3] allows to tune autarallyyi the tabu tenure
throughout the search.

A different idea explored in [55] makes it possible to impedhe efficiency of
TABUCOIby modifying its evaluation function. While any edge viotatientails the
same cost in the original algorithm, a specific penalty iggassl to each edge. Two
new evaluation functions are proposed in [55]. In the fir#,dhe penalty assigned
to a given edge depends on the degree of its endpoints — edyese vendpoints
have a larger degree (assumed to be more difficult to satisé/nssigned a larger
penalty. In the second one, the penalty of each edge is dgadynadjusted during
the search.

In [56], it is proposed to guide a local search operator thhawt the search
space by measuring distances between solutions. Two thgwrithat exploit this
idea are presented. The first one uses a learning procesg® aybasic tabu op-
erator TABUCO) toward yet unvisited spheres. The second algorithm magep d
investigations within a bounded region by organizing it asea-like structure of
connected spheres. Experiments show that these algorahtperform the under-
lying tabu algorithm and obtain remarkable results.

The iterated local search and variable neighborhood seaetaheuristics have
also been investigated for coloring graphs. The variabighi®rhood search algo-
rithm proposed in [2] useBABUCOlIas a local search operator and applies different
types of perturbation operators. Also, an iterated locatdealgorithm is presented
in [10].

A new local search coloring heuristic, named “Variable $f&earch”{SS-Col ),
is proposed in [34]. Th¥SS-Col heuristic alternates the use of three different lo-
cal search heuristics that adopt different strategiéd8UCOLPARTIALCOL, and
a third tabu algorithm (detailed in [24]), which is not cortipee by itself but com-
plements adequately the two others. This algorithm obtaétter results than each
of its components and produces some of the best resultsieldtaiith local search
heuristics.

Several other graph coloring local search heuristics haea proposed recently.
In particular, large-scale neighborhoods are explore@. [

3.3 Discussion

To finish with local search, we underline three importantjmi
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e The speed of a graph coloring local search heuristic depéiglsly on its imple-
mentation A local search heuristic must determine on each iteratierpérfor-
mance of a large number of moves —i.e., its impact on the @&serer decrease of
the cost of the configuration. It is therefore important tonpaite efficiently the
performance of each move. This can be done by using an inatafrtechnique
such as the one described in [19, 21];

e Local search is a key ingredient for coloring graphdost efficient coloring
heuristics developed so far use local search. They areréghee” local search
heuristics, or they use a local search operator as one aof ¢baiponents. In
particular, greedy algorithms, “pure” genetic algorith(ese Sect. 4), or neural
networks (see Sect. 6) are generally unable to compete withidiics that use
local search;

e Local search is not sufficient to efficiently color large gnag'Pure” local search
heuristics are well-suited for the coloring of small and medsized graphs,
but their results are often far from the optimum when it corteesoloring
large graphs (graphs having 500 vertices or more). For lgrgphs, better so-
lutions can be obtained by using the independent set exiraapproach (see
Sect. 5) or evolutionary algorithms using specialized neoimation operators
(see Sect. 4.1).

4 The Evolutionary Approach

Evolutionary algorithms have long been a popular and sséalesptimization ap-
proach for graph coloring. The first algorithms based on tiemad evolutionary
principles were developed in the early 1990s [13]. Sinca tiraportant progress
has been made and a number of specific coloring techniquesbean established.
For instance, it is now generally accepted that traditiamaform crossovers are
outperformed bylass-orientedrossovers —i.e., crossovers that construct offspring
by “blending” color classesrom parents (see Sect. 4.1). Other recent developments
concern population diversity issues, the exploitatioplesation balance, popula-
tion dynamics (mating and survival selection), hybridi@aatwith exact algorithms
(see Sect. 4.2), etc. However, let us first present a numlgradral principles that
are used by most evolutionary coloring algorithms.

As opposed to local search (Sect. 3), the evolutionary a@mbrés based on a
population (pool) of several different individuals (cahays) that are improved via
an “evolutionary” process of optimization. There existam@é number of evolution-
ary paradigms (evolution strategies, genetic algoritrewslutionary programming,
scatter search, etc) and they are generally inspired by iDemvprinciples, as for
example: “Survival of the fittest” (e.g., remove the lessdwiquality individuals),
preferential mating (higher quality individuals are moseesi¢y allowed to become
parents), recombination or crossover (the selected maseatrecombined to gener-
ate offspring), adaptation and evolution (e.g., by locarel and optimization).
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The most popular evolutionary algorithms for graph colgrare the classical
steady-statgenetic algorithms. These coloring algorithms often usallgearch,
and so, the approach can also be regarded as an instanmoenoéticcomput-
ing [51]. The population (referred to &%op) is defined as a set of “individuals”
Indivy, Indivy,...Indiv|pg, . Each individual representskacoloring (withk fixed
or not) that is evaluated according to a fitness function -héevolutionary termi-
nology, the objective function from optimization is refedrto as the fitness function.
At each “generation”, two or more parent individuals areestdd and recombined
to generate offspring solutions. This offspring can be iorpd via local search and
then replace some individuals selected for eliminatiore ganeric schema of this
genetic process is described below.

1: Initialize parent populatioRop « {Indivy, Indivz,...,Indiv|pg, }
2. while a stopping condition is not meb
3:  parents— matingSelectiorifop)
Offspr « recombinationgparentg
Offspr « localSearchDffspr, maxliter)
R < eliminationSelectiorifop)
Pop «— Pop U{Offspr} —R
8: end while
9: Return the fittest individual ever visited

The last decade has seen a surge of interest in integratad) dearch in ge-
netic coloring algorithms (see step 5 in the above schemaing the memetic ap-
proach [51] more and more popular. Besides classical gealgrithms, even more
particular evolutionary paradigms (crossover-free itisted search [8, 49], scatter
search [29] or adaptive memory algorithms [22]) do incogt@ra local search col-
oring routine (often based cPABUCOL[33] or on thek-fixed partial proper strat-
egy [49]).

In this section, we discuss some key issues of evolutionalgriag algorithms
like crossover design, population dynamics and diverkigiridizations with other
search methods.

N gk

4.1 Specialized Recombination Operators

The recombination is a crucial concept in many areas of &eolary computing
and defines the way information is transmitted from paremtsffispring. A chal-
lenging issue is to make this “inheritance” process as nmggduli for the problem as
possible, i.e., so as to preserve the good features of tleatsaand disrupts the bad
ones [60]. Recombination ideas in earlier work [13, 19] weaieed on the standard
uniformcrossover or on therder-basediniform crossover.

The first of the above crossovers is based on a straightfdresaiey encoding
that associate vertices to integer colors. In principle,dffspring solution is con-
structed by assigning to each vertex V either the color o¥/ in the first parent or
the color ofv in the second parent. Regarding the second crossover {oaded),



8 Philippe Galinier, Jean-Philippe Hamiez, Jin-Kao Hao, andi€@dorumbel

it does not encode individuals directly as colorings budlifectly) as permutations
of V. A permutation indicates an order of vertices that can bedked into an ac-
tual coloring by greedily assigning colors one by one in thider. Since indirect
encodings lie outside the scope of this chapter, we referehder to [52] for in-

teresting recombination issues in this context. Howevamaling to [16, 19], both
early uniform crossovers failed to make the evolutionasrsle reach significantly
better results that local search.

An important breakthrough in evolutionary graph coloriegepresented by the
first crossover models that manipulatdor classesnstead otolor valuesAs such,
the Greedy Partition Crossover (GPX) [20] established tieatgorithms as one of
the most competitive methods for graph coloring. In thisrapph, an individual is
seen as a partition &f (into k classes). The parents transmit classes to the offspring
in an alternate manner until the offspring receikedasses. Any remaining uncol-
ored vertex is assigned a random color (some studies sugglesting this color
using a greedy criterion). This class-based approachnesjaivery low computing
time compared to the number of local search iterationseltnsgto be very useful for
many other combinatorial optimization problems calledbtgving problems” [18].

During the last few years, a number of new developments apdowements of
GPX have been presented. For instance, the “GHZ” recombmafperator [22]
combines conflict-free classes (independent sets) fromdilliduals of the popula-
tion. An interesting issue of the class-oriented approache risk of inheritingoo
manyclasses from only one parent. To overcome such risks, GP¥aers the two
parentsalternatelywhen deciding which parent to transmit classes. Other assudi
propose using several parents and forbidding each tratisgnparent to re-transmit
for a number of generations [43].

In order to minimize the number of vertices that remain uoid in the end (re-
call that onlyk classes are transmitted to the offspring), the above cvessalways
transmit classes of maximum size (this is why they are céd{Bréedy”). However,
this criterion (maximum size) can be refined to more meaningkasures [57]. For
instance, one can consider that a large class with conflictislde less useful than
a slightly smaller class with no conflicts. The number of p&ésehas also been a
topic of interest but several studies seem to indicate thisigumany parents does
not always improve results. For instandé#ACOL[43] uses a random number be-
tween 2 and 6. In [57], certain epistasis arguments (theyaisadf the impact of the
interactions between classes) argue that more parentsigreseful for instances
with large class size (e.g., 50).

One should be aware that the large graph coloring literaige contains ref-
erences to other types of crossover operators, based gringngairs of conflict-
free sub-classes [14], on sexual reproduction using disgliof the graph into two
parts [48], distance-preserving crossovers [63], etc.
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4.2 Other Evolutionary Advances and Algorithms

Besides recombination operators, research in graph ogltas also led to several
other advances in understanding genetic algorithms. Argeokallenge in genetic
algorithms is to make the algorithm reach a proper balantedas two conflict-
ing aspects of heuristic search: (i) Exploration — typicalsured via crossover or
other population-based operators and (ii) exploitatiorfterorepresented by local
search. The local search exploitation potential explamsuccess in improving ge-
netic algorithms: A local search routine is able to find higheality individuals in
the proximity of lower-quality offspring generated by retoination. The balance
question is naturally formulated: What is the best way tocalte a given amount of
computing time between exploration (crossover) and etation (local search).

This balance can be controlled by the maximum number oftiterathat are al-
lowed after each crossovenéxlterat step 5 in the algorithmic schema at page 7).
At a first glance, it might seem that more local search iterstileads to more
exploitation and less exploration. However, certain pap20, 22] indicate that a
longer local search routine can actually improve the extion capacity of the
search process and preserve diversity — more local searetidins can scatter the
offspring to more distant and diverse areas. As such, mgseimentations spend
(considerably) less computing time on crossover or seectutines (usually linear
in n) than on local search iterationséxltercan be an order of magnitude higher
thann). Finally, notice that this local search operator does eedto be very com-
plex: Even very rudimentary local search methods (steajesstent) could lead ge-
netic algorithms to good performances under certain cmm#if12, 26].

A related central topic in genetic algorithms is maintainpopulation diversity
— a recurrent issue in genetic algorithimsgeneralthat can be approached from
numerous perspectives. Very often, the general diver&ifgative is to control the
population dynamics using so-called “population managgfrechemes: By cre-
ating diversity-oriented subpopulations, by proposingdrediversity-guided elim-
ination rules, new offspring rejection mechanisms, by &dgghe crossover, etc.
In some cases, even the classical genetic algorithm teengdat be modified so as
to adapt to certain diversity objectives. For instance sttater-search evolutionary
paradigm is used in [29]: A “diversity-oriented” subpoptita is specifically gen-
erated so as to keep reference to very diverse individudls.algorithm proposed
in [22] uses an adaptive memory that contains a number oper#ent sets instead
of a population of individuals. When a set-based diversityasoee falls below a
certain threshold, the algorithm triggers a “diversifyiragtion by allowing more
local search.

If one wants to stay in the classical genetic algorithm textggldiversity can
still be achieved by modifying the population dynamics atiaie steps, e.g., by
rejecting certain offspring that do not satisfy distance ammilarity criteria. For
instance, in [45], if the offspring is too similar to one o&tkxisting solutions, then
it is not inserted in the population. The similarity in thiase is based on conflict
numbers and number of uncolored vertices. However, thdipartlistance [27, 59]
conveys a more direct and semantic sense of distance araftsused in coloring
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papers for various purposes [20, 22, 26, 29, 43, 57]. A siroffpring rejection
rule based on this metric is presented in [57] and it seemghkapproach can be
generalized to other problems as well [58]. Another poinerhone can intervene
is the elimination step. Indeed, an approach that uses mgduoinction (based on
the distance metric) to decide which individual should h@aeed by the offspring
is presented in [43]. Notice that the parent selection stlfe very influent in other
evolutionary computing areas, seems to have a secondaagctrimpgraph coloring.

Finally, let us comment on the fact that genetic algorithmesteetter suited than
local search for hybridization with exact algorithms. Aa$ein the column genera-
tion approach described in [46], tiMMTgenetic algorithm [45] can generate more
diverse columns than local seardiiMTworks with conflict-free classes (indepen-
dent sets) that constitute partial colorings improved trk-fixed partial proper
strategy [49]. The resulting independent sets fit very wed set covering coloring
formulation: Construct a linear program that minimizesiienber of independent
sets necessary to cover all vertices of the graph. Let ustednyas the set of all
existing independent sets Gfand letx; = 1 if and only ifi € .7 is utilized by the
current coloring. The objective of the program is to minienj » x. The con-
straints impose to cover each vertex by at least one selewegendent set. Since
# can not be usually completely generated, this set is firspkadrfrom the (di-
verse) classes provided by the populatioddfiTIn a second stage, more indepen-
dent sets are constructed via column generation: The staéem requires finding
columnsi € .# that could improve the objective function (because theyatgothe
dual constraints).

4.3 Discussion and Concluding Remarks

To conclude the evolutionary part, a number of points canrukedined:

1. Genetic algorithms represent a popular and flexible amprdo optimization
problems that seems very effective for many classes of diffgraphs;

2. Much attention has been paid to the recombination opesai® it is generally
accepted that:

e Recombination operators must be specialized to the proldimdly using
unspecialized operators (e.g., standard uniform crossca® render quite
impractical a genetic algorithm otherwise well-designed,;

e The most effective coloring crossovers are class-orierted parent classes
are chosen for transmission using greedy selections;

e Refining more detailed aspects can be very useful in cerases; e.g., in-
stances with large color classes seem to benefit from usirrg than two
parents.

3. A chiseled population dynamics (using partition disen¢o modify certain
steps, by applying scatter search or adaptive memory frama)y seems a
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promising choice for future research (diversity preseovais an important topic
in general genetic algorithm research).

5 Approaches Based on Independent Set Extraction

5.1 Basic Approach

As observed in many studies, it is difficult, if not impossipto find a propek-
coloring of a large grapks (e.g., with 1 000 vertices or more) withclose tox (G)
by applying directly a given coloring algorithm @ A basic approach to deal with
large graphs is to apply the general principle of “reducd-solve”. This approach
is composed of areprocessing phadellowed by acoloring phase

The preprocessing phase typically identifies and remove® targe) indepen-
dent sets from the original graph to obtain a reduced subgfegiled “residual”
graph). The subsequent coloring phase determines a projoeing for the residual
graph. Given the residual graph is of reduced size, it is &egkto be easier to color
than the initial graph. Now it suffices to consider each etad independent set as
a new color class (i.e., by assigning a new color to all théices of each of these
sets). The coloring of the residual graph and all the ex¢chstdependent sets give
a proper coloring of the initial graph. This approach werglesed with success in
early studies like [9, 19, 33, 39].

Algorithms based on this approach can use different mettwftisd a large in-
dependent set in the graph. In [9], this was achieved witimpls greedy heuristic
while in [19, 33], large independent sets were identified lofedicated tabu search
algorithm. In [39], the authors introduced tX&RLF heuristic which operates in
two steps. First, a number of independent sets are colleieg) Leighton’s Re-
cursive Largest FirstRLF) heuristic [42]. Then, an independent set is iteratively
selected and extracted from the graph such that its remanahies the density of
the reduced graph. This process continues until the relsipiaph reaches a given
threshold.

For the subsequent residual graph coloring, various methade been used in-
cluding exhaustive search [39], tabu search [33], simdlatenealing [9, 39] and
hybrid genetic tabu search [19].

5.2 Enhancing I ndependent Set Extraction

Very recently, this basic independent set extraction agravas revisited and im-
proved results were reported on several large graphs [7B1]2

As stated previously, a propé&rcoloring of a given graplG corresponds to a
partition of V into k independent sets. Suppose that we want to cGlavith k
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colors. Assume now that we extrack k independent setl, ...l from G. It is
clear that if we maximize the number of vertices covered Iat ihdependent sets
(i.e., |l1U...Uli] is as large as possible), we obtain a residual graph withrfewe
vertices whery U... U l; are removed fron®. This would make the residual graph
easier to color using the remainikg-t colors.

The basic strategy for independent set extraction degtitb8ect. 5.1 operates
greedily by removing exactly one independent set at a tiniés Ppreprocessing
phase was improved in [71] by identifying and removing ateadraction iteration
a maximum number of disjoint independent s&tshe same size from the graph.
This extraction procedure can be summarized as follows.

. ldentify a maximum independent deh G;

. Collectin a seM as many other independent sets of slzas possible;
. Find fromM a maximal number afiisjointindependent sets, ..., lt;

. Remove the vertices dfU...Ul; from G;

. Repeat the above steps until the subgraph becomes smagjten

O~ WN P

The number of vertices of the last subgraph (residual grdepgnds on the sub-
sequent coloring algorithm applied to the residual grapfiz1, 72, 31], values from
500 to 800 are suggested.

In step 1 of the above extraction process, one needs to figenthaximum in-
dependent set. Notice that the problem of finding a maximutependent set in a
graph is NP-hard [23, 40] in the general case. For this pe;pbe authors of [71]
use the so-called adaptive tabu search heuristic desigmatd equivalent maxi-
mum clique problem to find large independent sets [70]. Tieesaeuristic is also
employed to build the pod¥ composed of independent sets of a given size (step 2).

In step 3, itis required to find among the candidateslai maximal number of
disjoint independent sets. This latter task corresponds in factetortiiximum set
packing problem, which is equivalent to the maximum cligtiei$ the maximum
independent set) problem [23, 40]. To see this, it sufficesottstruct an instance
of the independent set problem frdvh= {4, ..., 1;} as follows. Define a new graph
G = (V/,E) whereV’' = {1,...,t} and{i,j} € E' (i,j € V') if |; andl; share at
least one element, i.dj,N1; # 0. Now it is clear that there is a strict equivalence
between an independent setGhand a set of disjoint independent setdvin Con-
sequently, one can apply again any maximum clique or indidp@rset algorithm
to approximate the problem.

As shown in [71], this extraction strategy packs more vesithan with the con-
ventional one-by-one extraction strategy with the samebrarrof color classes. This
generates smaller residual graphs that tend to be easieloto TheEXTRACOIal-
gorithm described in [71] combines this independent setetibn strategy with the
memetic coloring algorithiACOL[43]. Evaluation oEXTRACOIon the set of the
largest graphs (with 1 000 to 4 000 vertices) of the DIMACSllelmge benchmarks
showed remarkable results (see Sect. 8.2).
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5.3 An Extraction and Expansion Approach

Preprocessing a graph by extracting independent setsagsdhe initial graph and
tends to ease the coloring task. Such a preprocessinggstraiées on the hypoth-
esis that each extracted independent set defines a colsrafléise final coloring.
Unfortunately, this may not be the case all the time. Forainse, it is shown that
EXTRACOIL[71] performs poorly on some large geometric graphs althatsgper-
formance is remarkable on all the other tested graphs. A ahbsck discloses that
due to the particular structure of these graphs, many lafgesacted) independent
sets are not part of a final coloring. In this case, it is a hatidf remove defini-
tively these independent sets from the graph since thisprévent inevitably the
subsequent coloring algorithm from reaching an optimabiiog. To mitigate this
difficulty, one solution is to allow the subsequent coloraigorithm to “reconsider”
the extracted independent sets and allow some verticeseeé tbxtracted sets to
change their colors.

In [72, 31], the approach of independent set extractiorofzdld by a coloring
phase is expended to an “extraction and expansion” apprdachapproach can be
summarized by the following procedure composed of thresgdia

1. Theextractionphase simplifies the initial graph by removing iteratively large
independent sets from the original graph. This phase stdEshvhe residual
graph becomes sufficiently small fixed by a threshold. Thaues graph will
be first colored (phase 2) and then extended during the expeasd backward
coloring process (phase 3);

2. Theinitial coloring phase applies a graph coloring algorithm to the residual
graph to determine & — t)-coloring wheret is the number of extracted inde-
pendent sets. If a propgk — t)-coloring c for the residual graph is found, then
c plus thet independent sets extracted during the phase 1 constituiespar
k-coloring of the initial graplG, return thisk-coloring and stop. Otherwise, con-
tinue to phase 3 to trigger the expansion and backward cgj@tase;

3. Theexpansion and backward colorimhase extends the current subgr&ploy
adding back one or more extracted independent sets to antegxtended sub-
graphG”. Then the coloring algorithm is run d&’ by starting from the current

coloring of G’ extended with the added independent sets as new color glasse

Once again, if a proper coloring is found for the subgr&jhthis coloring plus
the remaining independent sets forms a prdpeoloring of the initial graphs
and the whole procedure stops. Otherwise, one repeatsasigion and back-
ward coloring phase until no more independent set is leftmoger coloring is
found for the current subgraph under consideration.

Notice that the approaches described in Sect. 5.1 and 5r@spand to phases
1 and 2 and consequently can be considered as a special dagseeatraction and
expansion approach. The expansion and backward coloriageptphase 3) is crit-
ical since the extracted independent sets are re-examinéukelcoloring process.
If some vertices of an extracted independent set shouldeweive the same color,
they have a chance to be assigned the right color by the dpgiiering algorithm.
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The key issues to be considered concern the way to seleatdepéndent sets
to add back to the current coloring (and to rebuild the cpoasing subgraph).
Several strategies are possible for this selection [31]:

e First, we can consider how many independent sets are to betasélfor ex-
pansion. Basically, this decision can be made accordingéadtwo rules: One
independent set or several independent sets at a time.Aditeanay have influ-
ences on the subsequent coloring process. Indeed, addikgpba independent
set at a time implies limited extensions to the current éogpfonly one new
color class is added). This leads thus to a more gradualinglaptimization.
On the other hand, using several independents sets to ekiendrrent subgraph
and colorings offers more freedom and diversification fdodng optimization;

e Second, we can also consider which independent sets areseddmted. This de-
cision can be achieved following the reverse of extractiaten extraction order,
or random order. This decision can also be based on the sthe aidependent
sets. Notice that given the way independent sets are extraciring the extrac-
tion phase, applying the reverse of extraction order hartile independent sets
from the smallest to the largest [72] while applying exti@ttorder does the
opposite.

Itis clear that any combination of the above two decisioasgl$eto a strategy that
can be used to determine the independent sets for backwiarthgooptimization.

Finally, it is easy to see that the underlaying coloring gthm employed for
the initial coloring (phase 2) and subsequent coloringsaigph3) also impacts the
performance of this extraction and expansion coloring @ggh. In [72], the task of
coloring is ensured by a perturbation-based tabu searcari@ of theTABUCOL
procedure [33], see Sect. 3.1) while in [31], the more powerfemetic algorithm
MACOL43] is preferred.

Experimental evaluations of this extraction and expansipproach reported
in [72, 31] demonstrated a remarkable performance on somehard and large
graphs with more than 2000 vertices by improving very reagyger bounds of
several large benchmark graphs.

6 Other Approaches

In this section, we review a few other strategies based ooepia or metaphors that
are (almost) different from those presented in the predestsiions.

Quantum Annealing: In [66], an effective quantum annealing algorithm is de-
scribed fork-coloring. This strategy can be seen as a population-basadktic (an
individual is called here a “replica”) and inherits ideasrfrquantummechanics.
Compared with simulated annealing, it includes an addifigrarameter (with
the classical temperature parameter). While simulatedadimgeevolves in a neigh-
borhood of constant radiuk, is used here to modify the radius of the neighborhood
(to control diversity) and to reinforce the evaluation ftioo with a “kinetic” energy
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relying on interactions between replicas (roughly spegkimuantifies the similar-
ity of replicas). This kinetic energy aims to help escapoal optima. Experiments
reported in [66] shown remarkable results on some testedd@IBIgraphs.

Neural Networks: In [36], an artificial neural network algorithm is descrikier
the graph coloring problem. This algorithm, callB8A-AIS, follows the partial
proper strategy defined in Sect. 2.RBA-AIS , the value ok (initially, k=A + 1,
where A is the maximum connection degree) and the network dizer{ cells)
can be modified by aadaptive multiple restart local searcipproach (theRBA
component). Roughly speakinBBAruns several times a randomized dynamical
algorithm (called StochasticSteepDescent”,SSD where the initial state of each
SSDcall (except the first one which is constant) is determinedhgyresults of
previousSSDexecutionsAIS component). Other coloring algorithms using neural
networks are reported in [41, 64]. Except for some strucktgraphs, existing neural
network coloring algorithms are not competitive.

Ant Colony: ALS-COL [54] seems to be the most recent ant colony optimization
algorithm fork-coloring. It follows the partial proper strategy definedSect. 2,
each ant running a tabu search inspired frBmrTIALCOL [3] (let us call it
ALS-TS). While decisions in classical ant colony optimization aitfons rely on
a parametric probability that is time consuming (since iased orall possible de-
cisions),ALS-TS uses less parameters and just considerstabumoves (to save
time). Results reported in [54] indicate th&ltS-COL outperformsPARTIALCOL
and some previous ant colony optimization heuristics pseddor graph coloring
(see e.g., [35, 62]). Given sufficient time, the algorithmadfs very competitive
results on several graphs.

Bounding Strategies: A column generation approach was recently described in
[32] (let us call itCQ for computing lower bounds gf. CGtries to determine the
fractional chromatic numbey [44, 73] sincex(G) > [x1(G)|. CGcomputes a
lower boundys of xs using a recursive depth-first search or a local search with
restarts. Arestrictedlinear programming model is also solved to compute an up-
per boundy; of x;. CGwas tested on 136 instances (including DIMACS graphs),
Xt and Xt being determined for 119 of them. kdl the 119 cases, it turned out

that M = (ﬁ} (this avoids the floating-point inaccuracy of linear pragnaing

solvers). Improved lower bounds gfwere proposed, reducing (sometimes consid-
erably) the gap to upper bounds. For some large graphs v@®cannot compute
[Xf], CGwas run on subgraphs. Here again, this leads to improved lootends.

7 Extensions and Applications of Graph Coloring

7.1 Extensions and Generalizations of Graph Coloring

In T-coloring [28, 37], one associates to each edggvj} € E a sett; ; of pos-
itive integer values (0 included) and impose$v;) — c(vj)| ¢ ti j. The spanof a
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T-coloringc s the difference between the smallest and the highest oobiGiven
a graphG, theT-coloring problem (in its optimization version) is to deténe the
minimum span for all possibl€-colorings ofG. Graph k-)coloring corresponds to
a special case af-coloring where each ; = {0}.

Set T-coloring[65] is a generalization of -coloring (with the same objective)
where an integer “demand} > 0 is further associated to eaghe V, corresponding
to the number of different colors required ay & =1 = c(vi) = {Gi1,....Gi | }. A
“co-node” constraint must then be verified byall{Ci 4, C; 2o } € C(Vi) X C(Vi) =
|Ci.a — Ci gl ¢ i Finally, the constraint previously introduced fbrcoloring must
also hold here{vi,vj} € E = [Ci.q — Cjg| & tij V{Ci.a,Cjp} € C(Vi) x c(vj). The
graph k-)coloring problem is a special case of §etoloring where eacld = 1
(andtj j = {0}).

Bandwidth coloring25] is a restriction ofl -coloring where the constraint on ad-
jacent vertices is replaced Ig(vi) —c(vj)| >t j (ti,; is not a set here, but a numeri-
cal value) Multi-coloring [47] is a special case of s€tcoloring where alt; j = {0}.
The bandwidth multi-coloringproblem [47] is a combination of bandwidth color-
ing and a variant of sef-coloring where the co-node constraint is simplified to
{Cia,Cigra}t € C(Vi) x (Vi) = [Cia — Cig| > ti; (tij is @a numerical value). In the
case oflist-coloring [53], the color of each vertex must be chosen in a predefined
set of authorized colors.

More than 200penproblems related tokf)coloring are presented in [38], see
also the programs from the meetings of the “DIMACS / DIMATIARényi Work-
ing Group on Graph Colorings and their Generalizatiortgtp(//dimacs.
rutgers.edu/Workshops/GraphColor/main.html ) and the “Graph Col-
oring and its Generalizations” symposium series (COLOR)226 ..., http:
//mat.gsia.cmu.edu/COLORO03 ) for instance.

7.2 Applications of Graph Coloring

There are few real-world problems that can be directly medibly a graph coloring
problem. On the other hand, many applications are similgraph coloring or are
somehow related to graph coloring problems or their extarssj1, 7, 15, 61]. We
give several examples below for illustration.

A timetabling problem is the task to assign a time slot to events (exams, lec
tures) subject to pairwise constraints [61]. The constsaimvolve pairs of events
that can not be assigned to the same time slot — for exampidettures given by
the same professor. Graph coloring has been used for a lmegriorder to model
timetabling problems. In a standard representation, tlemtevare represented by
vertices, constraints by edges and time slots by colorsddlitian to (mandatory)
constraints expressed by coloring constraints, othettiaddi hard constraints may
be present and soft constraints can be used in order tordisate among legal
solutions.
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Register allocation is an important problem in compiler optimization. Given a
target source code, the problem is to choose among a largberunh variables
those that will be assigned to registers — the other vasabié be kept in RAM
and require much slower access times. Each of these vaziahlst be assigned
a register subject to the constraint that two variables &hatin use at the same
time cannot be assigned to the same register. Registeatitloccan be modeled as
a weighted partial coloring problem (the problem to find aiphproper coloring
such that the weighted sum of colored vertices is maximiZé{d)Variables are
represented by vertices, constraints by edges and registamolors. The weight of
a vertex expresses the savings of keeping the corresporditaple in a register
rather than in RAM.

Freguency assignment problems have been playing an important role in telecom-
munication networks for more than twenty years. In this kafiggroblem, frequen-
cies chosen in a specified set (the frequency domain) mustdigned to physical
communication equipments (antennas or links, dependirth®context). A com-
mon feature of these problems is the presence of distancgraons imposed on
pairs of frequencies in order to avoid (or at least reduceyfierence between geo-
graphically close communication equipments [1]. Themefirequency assignment
problems can be seen as an extension of the bandwidth aplaratblem where ver-
tices represent equipments, and colors frequencies. Ipieatycase, the number of
frequencies is fixed (and very limited) and the problem isrid & non necessarily
legal solution with a minimum number of conflicts (interfiece level).

Routing and wavelength assignment (RWA) problems play an important role in
all-optical networks. A network is represented by a noioted graph whose nodes
figure stations and edges represent links. One is also gisat af pairs (origin-
destination) of stations, named “demands”. In order tesBad demand, a lightpath
must be constructed, i.e., a route (path) in the graph, alditiga frequency. A
legal solution of the problem is a set of lightpaths such that lightpaths that
share a common link never use the same frequency [15]. In #xeREVA problem,
the number of available frequencies is fixed and the goal gatisfy a maximum
number of demands. The max-RWA problem can be modeled as -astandard
variant of the partial coloring problem. The paths in thepfrare represented by
vertices, the constaints by edges and the frequencies byscih practice, solution
techniques exploit a graph that contains only a limited neinaf paths.

8 Benchmarksand Computational Results

8.1 Benchmarks

The first federative library of graph coloring instances weasated in the 1990’
for the second DIMACS challenge on graph coloring and marinulique. Orig-
inally [68], it was composed of the 32 graphs available fritpv/dimacs.
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rutgers.edu/pub/challenge/graph/benchmarks/volume/C olor

(the “.b " suffix indicates that files are compressed, &p&/dimacs.rutge
rs.edu/pub/challenge/graph/translators/binformat for unpack-
ing). Additional well-known instances are available frdtp://mat.gsia.
cmu.edu/COLOR/instances.html . Various classes of graphs are represented:
Random, real-world inspired, translation from other peohs$, etc.

A recentmore expanded library, including most of the previous nwergd
benchmarks, has been proposed along with the “Graph Cglend its Gener-
alizations” symposium series (COLOR, 2002 ). It is available fromhttp:
//mat.gsia.cmu.edu/COLORO02 . New graph domains include matrix parti-
tioning or optical network design for instance.

Many classes of random graphs exist, the most studied ofithére graph color-
ing research community being those following the “uniforiy’, model [17]. These
graphs constitute a real challenge and their optimums arallysinknown. To our
knowledge, just one federative library has been proposgfd(§&e also [16, 30] for
3-coloring). The 30 smallest instances used in [38¢({100,300}) are available
from http://people.brunel.ac.uk/ ~ mastjjb/jeb/orlib/files (gcoll.txt
—gcol 30.txt). The 8 largest instancesq {500,1000}) are available from the sec-
ond author upon request.

Some generators have been developed to build (specifigeslas graphs. See

http://www.cs.ualberta.ca/ ~joe/Coloring for register-interference,
Brockington, evacuation, quasi-randérpartite, and timetabling-inspired graphs or
ftp://dimacs.rutgers.edu/pub/challenge/graph/contri bute

d/morgenstern  for Leighton, randomk-partite, geometrical, and planar graphs.
The following are the most popular hard instances:

1. Five large and very large random graphs (dsjc500.5, @8j€5 dsjc1000.1,
dsjc1000.5, and dsjc1000.9) following the unifofff, model and proposed in
[39]. The first and second number in the name of each graplesept respec-
tively the numben of vertices and the probability that an edge exists between
any pair of vertices. The chromatic numbers of these graghargknown;

2. Two random “flat” graphs (flat3Q28_0 and flat100076.0). They are structured
graphs with known chromatic number (respectively 28 andl 76)

3. Two random “leighton” graphs (le4586c and le45®5d) withn = 450 andy =
25 containing numerous cliques of various sizes;

4. Four large random geometric graphs (dsjr500.1c, dsj8&00000.1c, and r1000.
5). These graphs are generated by picking random pointsa@gyin a plane and
by linking two points situated within a certain geometricédtance [39]. The
chromatic number is unknown for r1000.1c and is equal to 84&r500.1c,
122 for dsjr500.5 and 234 for r1000.5;

5. Three very large random graphs (c2000.5, c2000.9, areDc8P The chromatic
numbers of these graphs are unknown. Due to the size andutlifficf these
graphs, they are not always used in computational expetgmerthe literature;

6. One “latin square” graph (latisquare10) with unknown chromatic number that
models a problem related to latin squares;
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7. Eight “wap” graphs (wap01 to wap08). These graphs stem freal-life optical
network design problems. Each vertex corresponds to glightin the network,
edges correspond to intersecting paths. These structuapthgghave unknown
chromatic number except wap05 (50).

The graphs of families 1 to 6 were initially collected for tred DIMACS chal-
lenge while the wap graphs were made available for the COL@®Rpetitions. One
notices that contrary to most DIMACS graphs, the wap grapismich less studied
in the literature [6, 11, 22, 31].

8.2 Results of Some Heuristics

Most graph coloring research papers provide both a theafetigorithmic descrip-
tion and a number of empirical results that we summarize is $kction. First,
one should keep in mind that the evaluation and comparisqmaaftical results is
always complicated by the fact that the computational emirents can be very dif-
ferent from algorithm to algorithm (e.g., different congss, stopping criteria, im-
plementation styles, etc). Besides this, certain papémsdace metaheuristic ideas
of general interest, while others algorithms propose vemscsic graph coloring
techniques. As such, the summary tables from this sectiamtlaim at providing
an absolute ranking of algorithms, but rather to convey fiffecalty of coloring
certain graphs.

Let us first introduce in Table 1 the so-called “easy instaho# the DIMACS
benchmark. Numerous algorithms are able to find proper icgswith k* colors
for all these graphs, but there is no mention of a proper caowith less colors.
By usingk* — 1 colors, the instance probably moves into an “unSAT” sidét or
becomes overly difficult. In what follows, we concentratdyoon the rest of the
instanceslifard instances), as most coloring research papers do.

Regarding these hard instances, we provide in Table 2 theupger bounds
reported by a dozen afoloring approachedrom the literature. In this context, a
coloring approachmight simply refer to a unique algorithm or #oclass of al-
gorithms— certain results are reported by combining the performainfeeveral
algorithm versions. The instances are grouped in thresetasiepending on the
graph densityl: Sparse graphgl(< %1), medium density instance% Kd< %) and
dense graphgi(> %). Notice that certain large wap instances can also be caeside
to be hard. However, since these instances are much leed teghe literature, we
do not include them in the table.

One can see that the correlation between graph difficultydmmgity is rather
limited, or inexistent. Other criteria that might influengeaph difficulty include
the graph ordern) and the graph family (random, geometrical, etc). We oleserv
that the largest performance variations of the most redgorithms are reported
on: flat300.280 (a small graph), r1000.5, latisquarel0, c2000.5, and c4000.5.
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Furthermore, for the huge graphs c2000.5 and c4000.5, aegg time limits are
often used (days or weeks).

G k*||G k|G k|G k*
dsjc125.1 §r125.1 §|le4505a flat300.200 20
dsjc125.5 1}|r125.5 36(le4505b flat300.260 26
dsjc125.9 44r125.1c 461e4505¢ flat1000.500 50
dsjc250.1 8§r250.1 8|le4505d flat1000.6Q0 60
dsjc250.5 28r250.1c 64|le45015a 158{schooll 14
dsjc250.9 79r250.5 63(le450.15b 15|schoollnsh 14
dsjc500.1 14r1000.1 2(le45025a 2

dsjr500.1 121e45025b 2

Table1l Easy DIMACS coloring instances. Numerous papers report exthetlgame values of the
best upper bounk* for these graphs.

9 Conclusion

In this chapter, we reviewed some recent advances for gpllimwell-known graph
coloring problem. Given the hardness of the problem, a latgeber of heuristics
have been devised in order to find satisfactory solutiongs&teuristics are typ-
ically based on greedy method, local search, populatiGedaearch, and various
hybrid approaches. Among all these approaches, locallsalyorithms play an im-
portant role, especially because they constitute an iedisgble component of many
successful and more sophisticated hybrid techniques.|&ipubased algorithms
are very powerful thanks to their specific solution recoration operator (memetic
algorithms) or solution interaction mechanism (quantumeating). To handle very
large graphs, approaches that combine independent sattoms and progressive
coloring expansions prove to be quite promising. Finatgse different coloring
approaches should be considered to provide a set of comptangesolution tools
for approximating this difficult problem. After all, no sitegcoloring algorithm can
dominate all the other approaches on all the graphs.

Finally, we remark that graph coloring is a quite generichem — no particu-
larly skewed constraints and a very simple objective fumctConsequently, ideas
of the coloring algorithms would have a general interest emald be applied to
similar and related problems.
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Graph name |n,m,d x/K Local Search Algorithms Hybrid algorithms
(population-based, independent set extraction, quantum annealing, etc.)

20022003 2008 2008 2010 1996(1996/1999 2008 |2008 2010 | 2010 | 2011 |2011|2012

ILS [VNS|PARTIALCOL|VSS-Col |TS-Div/Int DCNS$HGA HEA| AmaCol | MMTEvoDiv [MACOLQA-col |DHQAECo I

[101] [2] (3] [34] [56] [49] |[19]|[20]| [22] |[45]| [57] | [43] | [66] |[67]] [71]
dsjc1000.1 (1000, 49629, 0.1 |>10/20 — | — 20 20 20 — | — |20 20 20 20 20 20 20 | 20
le450.25¢ 450, 17343, 0.17 |25/25 26 | — 25 26 25 25 | 25 | 26 26 25 25 25 25 25 | —
le450.25d 450, 17425, 0.17 |25/25 26 | — 25 26 25 25 | 25 | — 26 25 25 25 25 25 | —
dsjc500.5 500, 62624,0.5 |[>43/48 49 | 49 48 48 48 49 | 49| 48 48 48 48 48 48 48
dsjc1000.5 1000, 249826, 0.5|> 73/83 89 | 90 88 87 85 89 | 84| 83 84 83 83 83 83 83 | 83
dsjr500.5 500, 58862, 0.47 |122/122 || 124| — 126 125 — 123 (130 — 125 [122| 122 122 122 122 | —
r1000.5 1000, 238267. 0.4R234/234 || — | 248 — 241 — 268 | — | — — 234 | 237 245 238 | 234 | 249
flat300.280 300, 21695, 0.48 |28/28 31| 31 28 28 28 31 | 33| 31 31 31 29 29 31 28 | —
flat1000.760 |1000, 246 708, 0.4P76/82 — | 89 88 86 85 89 | 84| 83 84 82 82 82 82 82 | 82
€2000.5 2000, 999836, 0.5(>99/146 || — | — — — — 150 | 153| — — — 148 148 — 147 | 146
€2000.9 2000,1799532,0{9-80/409 || — | — — — — — | — | — — — — 413 — — | 409
c4000.5 4000, 4000268, 0)5- 107/26Q| — | — — — — — | 280 — — 271 272 — — | 260
dsjc500.9 500, 112437,0.9 [>123/126] 126 | — 126 126 126 — | =1 - 126 | 127 126 126 126 126 | —
dsjc1000.9  [1000, 449449, 0.9|> 216/223| — | — 225 224 223 226 | — |224| 224 |225| 223 223 222 | 222 | 222
dsjr500.1c 500, 121275, 0.97 |84/85 — | — 85 85 — 85 | 85 | — 86 85 85 85 85 — | —
r1000.1c 1000, 485090, 0.9/08/98 — | — 98 — 98 98 | 99 | — — 98 98 98 98 — | 101
latin_square10/900, 307 350, 0.76 | > 90/97 99 | — — — — 98 | 106| — 104 |101| 98 99 98 97 | —

Table 2 The upper bounds reported by 15 coloring approaches froriténature (bold entries signal results reaching the beswknooloringk*). For each

Buliojo) xausA ydelo ul seoueApy U829y

graph, we provide: (i) The name (Column 1); (ii) The number ofiges (), edgesif) and the densitg (Column 2); (iii) The chromatic number (or a lower

bound if unknown) and the best known upper bound even founddnjaaing algorithm (Column 3); And (iv) the upper bounds répd by 15 papers in the

last 15 columns. Notice that new upper bounds were reportedreeently for flat1000.7® (k*
(k* = 259) [31].

81), c2000.5K* = 145), c2000.9K* = 408) and c4000.5

TC
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