
Recent Advances in Graph Vertex Coloring

Philippe Galinier, Jean-Philippe Hamiez, Jin-Kao Hao, andDaniel Porumbel

Abstract Graph vertex coloring is one of the most studied NP-hard combinato-
rial optimization problems. Given the hardness of the problem, various heuristic
algorithms have been proposed for practical graph coloring, based on local search,
population-based approaches and hybrid methods. The research in graph coloring
heuristics is very active and improved results have been obtained recently, notably
for coloring large and very large graphs. This chapter surveys and analyzes graph
coloring heuristics with a focus on the most recent advances.

1 Introduction

The graph coloring problem is one of the most important and the most studied prob-
lems in combinatorial optimization. The problem has applications in many domains,
such as timetabling and scheduling, frequency assignment,register allocation, rout-
ing and wavelenth assigment, and many others.

In the following, we consider a non-oriented graphG = (V,E), with a setV of
n vertices and a setE of m edges (d = 2m

n(n−1) defines thedensityof G). Given an
integerk, a k-coloringc is a function that assigns to each vertexv of the graph an
integerc(v) chosen in set{1,2, ...,k} (the set of colors), all vertices colored the
same defining a “color class”. Ak-coloringc is apropercoloring if the endpoints of

Philippe Galinier
CRT –École Polytechnique, 3 000 chemin de la Côte Sainte-Catherine, Montréal, Qúebec, Canada,
e-mail:philippe.galinier@polymtl.ca

Jean-Philippe Hamiez· Jin-Kao Hao
LERIA – Universit́e d’Angers, 2 boulevard Lavoisier, 49 045 Angers CEDEX 01, France, e-mail:
{hamiez,hao}@info.univ-angers.fr

Daniel Porumbel
LGI2A – Universit́e d’Artois, Technoparc Futura, 62 400 Béthune CEDEX, France, e-mail:
daniel.porumbel@univ-artois.fr

1

2 Philippe Galinier, Jean-Philippe Hamiez, Jin-Kao Hao, and Daniel Porumbel

any edge are assigned different colors. A graph isk-colorable if it admits a proper
k-coloring. The chromatic numberχ(G) of a given graphG is the smallest integer
k for which G is k-colorable. A properk-coloring such thatk = χ(G) is named an
optimal coloring. Thegraph coloringproblem is the problem to find an optimal
coloring of a given graph. For a given graphG and a given integerk, thek-coloring
problem is the problem to determine ifG is k-colorable and, if it is the case, to find
a properk-coloring ofG.

Graph coloring is NP-hard andk-coloring is NP-complete for any integerk≥ 3
(but 2-coloring is polynomial) [23, 40]. Therefore, no algorithm can solve graph
coloring in polynomial time in the general case (assuming that N 6= NP). In addi-
tion, note that the problem to find ak-coloring with no more than twice the optimal
number of colors is still NP-hard. Also, finding an optimal coloring turns out to be
particularly difficult in practice. As a matter of fact, there are graphs with as few
as 125 vertices that can not be solved optimally even by usingthe best performing
exact algorithms. For larger graphs, it is therefore necessary to resort toheuristics,
i.e., algorithmic techniques that provide sub-optimal solutions within an acceptable
amount of time.

A simple and classical way to generate a sub-optimal proper coloring is to use
a greedy heuristic. A greedy coloring heuristic builds a solution step by step by
fixing on each step the color of a given vertex. In thegreedy sequential heuristic,
the order in which the vertices are colored is determined beforehand (i.e., statically),
randomly or according to a specific criterion. On each step, the considered vertex
is assigned the smallest possible color number such that no conflict is created with
the already colored vertices. More efficient greedy heuristics like DSATUR[5] and
Recursive Largest First (RLF) [42] employ refined rules to dynamically determine
the next vertex to color.

Greedy heuristics are generally fast, but they tend to need much more colors
than the chromatic number to color a graph. Better results can be obtained by using
much more powerful heuristics, such as notablylocal search heuristicsandevolu-
tionary algorithms– a survey of heuristics and metaheuristics is proposed in [4].
In fact, almost all of the most popular metaheuristics have also been applied and
implemented on the graph coloring problem. From a historical point of view, sim-
ulated annealing and tabu search are among the first local search approaches that
were successfully applied to graph coloring. In local search, a candidate solution
is progressively improved by local transformations (named“moves”). Population-
based approaches (e.g., memetic algorithms, quantum annealing) represent another
family of heuristics that established themself as one of themost effective coloring
methods. Thanks to the introduction of a pool of solutions, powerful search op-
erators are made available like various solution recombinations and hybridization
with local search. Finally, a latest approach based on independent set extraction and
progressive coloring proves to be quite useful to color verylarge graphs.

In the following sections, we present the different coloring heuristics grouped in
four categories: Local search heuristics in Sect. 3, evolutionary algorithms in Sect. 4,
independent set extraction approaches in Sect. 5, and otherheuristics (such as quan-
tum annealing, neural networks, ant colonies, etc.) in Sect. 6. Then, we review ex-

Recent Advances in Graph Vertex Coloring 3

tensions of graph coloring problems and applications related to graph coloring in
Sect. 7. Finally, Sect. 8 reports on standard benchmark graphs along with the results
obtained by the best performing coloring heuristics on these graphs.

2 General Solution Strategies Applicable to Coloring Problems

It is important to note that the search space and the evaluation function used by
a heuristic are not necessarily the same as those of the original problem. In the
following, we name “strategy” a particular way to define the search space and the
evaluation function. Thus, a strategy can be seen as a reformulation of the original
problem. Solution strategies designed fork-coloring are presented below.

• In the k-fixed penalty strategy[33, 39], a configuration is any (non necessarily
proper)k-coloring and its cost is the number of conflicts – i.e., edgeswhose
endpoints are assigned the same color. This strategy makes it possible to use a
very simple type of move, named “1-moves”. A 1-move consistsin changing the
color of a single vertex.

• In the k-fixed partial proper strategy(namedImpasse neighborhoodin [50]), a
configuration is any partial (proper)k-coloring – a partial properk-coloring is
similar to a properk-coloring except that some vertices may remain uncolored.
The cost of a given configuration is the number of unassigned vertices – it can
also be the sum of the degrees of unassigned vertices. A move (named “i-swap”)
consists in assigning a colori to an uncolored vertexv and, at the same time, to
deassign all neighbors ofv whose color isi in the current configuration.

A k-coloring heuristic can also be used to solve the graph coloring problem. This
can be done as follows: First, find a properk-coloring by using a greedy heuristic.
Then apply thek-coloring heuristic and reduce the value ofk each time a properk-
coloring is found. Strategies designed to tackle directly the graph coloring problem
are briefly presented below.

• In theproper strategy[39], a configuration is any properk-coloring. The evalua-
tion function is designed so as to promote the variance of thesize of the different
color classes and, as a side-effect, to reduce their number.A move (named a
“Kempe chain”) consists in making an exchange of vertices between two color
classes, while preserving the legality of the solution. See[39] for more details.

• In thepenalty strategy, a configuration is anyk-coloring. The evaluation function
is designed so as to decrease both the number of conflicts and the number of
colors, see [39]. The moves used in this strategy are 1-moves(defined above).

• In theorder-based strategy, a configuration is any ordering of the vertices, which
is subsequently “decoded” (i.e., transformed into a propercoloring) by using the
greedy sequential heuristic [13].

• In theedge orienting strategy, a configuration is any orientation of the edges of
the input graph, and its cost is the length of a longest path inthe resulting digraph.
Types of move mechanisms applicable to this strategy are presented in [24].

4 Philippe Galinier, Jean-Philippe Hamiez, Jin-Kao Hao, and Daniel Porumbel

3 Local Search Heuristics

Local search is a simple yet very powerful approach. The mostbasic local search
heuristic is iterative improvement. Aniterative improvementprocedure (ordescent)
consists in choosing on each iteration a move that produces adecrease in the cost
function until alocal optimumis reached. Unfortunately, iterative improvement may
get trapped rapidly in a poor local optimum. Advanced local search heuristics resort
to different kinds of mechanisms in order to circumvent the problem posed by local
optima. For example,simulated annealingrelies on randomness in order to allow
“uphill” moves (i.e., moves that increase the cost function), thanks to thetemper-
atureparameter.Tabu searchuses a short term diversification mechanism named a
tabu list.Iterated local searchandvariable neighborhood searchcombine descents
and perturbations (equivalent to jumps performed in the search space). Prominent
local search heuristics proposed for coloring graphs will be presented and analyzed
in the remaining of this section.

3.1 Local Search Heuristics Proposed for Coloring Graphs

Two heuristics based on thek-fixed penalty strategy were proposed in 1987: A sim-
ulated annealing algorithm in [9] and a tabu algorithm namedTABUCOLin [33].
The tabu mechanism used in this latter algorithm is as follows: After performing a
move (i.e., changing the color of a vertex), it is forbidden to reassign to this vertex
its former color for a few iterations. In spite of its simplicity, this technique turned
out to be remarkably efficient. In particularTABUCOLoutperformed the simulated
annealing heuristic proposed in [9].

An exhaustive experimental study is conducted in [39] in order to evaluate and
compare several graph coloring heuristics, notably three simulated annealing heuris-
tics based on three different strategies. Note that none of those strategies (thek-fixed
penalty strategy, the proper strategy, and the penalty strategy) dominated clearly the
others in these experiments.

One of the first and most efficient local search coloring heuristic is the simulated
annealing algorithm proposed in [50] – as its temperature parameter remains con-
stant, this algorithm is named a Metropolis algorithm. ThisMetropolis algorithm
is based on thek-fixed partial proper strategy and it combines two types of moves:
i-swaps ands-chains – as-chain is a generalization of Kempe chains, see [50]. More
recently, a tabu heuristic (namedPA R T I A L C O L) also based on thek-fixed partial
proper strategy has been developed in [3]. Experiments conducted withTABUCOL
andPA R T I A L C O L indicate that, although they are based on different strategies, the
two tabu algorithms obtain similar results on most graphs.

Recent Advances in Graph Vertex Coloring 5

3.2 Recent Advances

Several authors have tried to improve the efficiency of a tabucoloring heuristic,
notably by a more careful management of the tabu list. The originalTABUCOLuses
a static tabu list (i.e., the tabu tenure is constant) [33]. However, it can be noticed
that the size of the neighborhood changes throughout the search. For this reason,
it is suggested in [20] to set the tabu tenure accordingly. A still more sophisticated
and robust technique proposed in [3] allows to tune automatically the tabu tenure
throughout the search.

A different idea explored in [55] makes it possible to improve the efficiency of
TABUCOLby modifying its evaluation function. While any edge violation entails the
same cost in the original algorithm, a specific penalty is assigned to each edge. Two
new evaluation functions are proposed in [55]. In the first one, the penalty assigned
to a given edge depends on the degree of its endpoints – edges whose endpoints
have a larger degree (assumed to be more difficult to satisfy)are assigned a larger
penalty. In the second one, the penalty of each edge is dynamically adjusted during
the search.

In [56], it is proposed to guide a local search operator throughout the search
space by measuring distances between solutions. Two algorithms that exploit this
idea are presented. The first one uses a learning process to guide a basic tabu op-
erator (TABUCOL) toward yet unvisited spheres. The second algorithm makes deep
investigations within a bounded region by organizing it as atree-like structure of
connected spheres. Experiments show that these algorithmsoutperform the under-
lying tabu algorithm and obtain remarkable results.

The iterated local search and variable neighborhood searchmetaheuristics have
also been investigated for coloring graphs. The variable neighborhood search algo-
rithm proposed in [2] usesTABUCOLas a local search operator and applies different
types of perturbation operators. Also, an iterated local search algorithm is presented
in [10].

A new local search coloring heuristic, named “Variable Space Search” (VSS-Col),
is proposed in [34]. TheVSS-Col heuristic alternates the use of three different lo-
cal search heuristics that adopt different strategies:TABUCOL, PA R T I A L C O L, and
a third tabu algorithm (detailed in [24]), which is not competitive by itself but com-
plements adequately the two others. This algorithm obtainsbetter results than each
of its components and produces some of the best results obtained with local search
heuristics.

Several other graph coloring local search heuristics have been proposed recently.
In particular, large-scale neighborhoods are explored in [69].

3.3 Discussion

To finish with local search, we underline three important points:

6 Philippe Galinier, Jean-Philippe Hamiez, Jin-Kao Hao, and Daniel Porumbel

• The speed of a graph coloring local search heuristic dependshighly on its imple-
mentation.A local search heuristic must determine on each iteration the perfor-
mance of a large number of moves – i.e., its impact on the increase or decrease of
the cost of the configuration. It is therefore important to compute efficiently the
performance of each move. This can be done by using an incremental technique
such as the one described in [19, 21];

• Local search is a key ingredient for coloring graphs.Most efficient coloring
heuristics developed so far use local search. They are either “pure” local search
heuristics, or they use a local search operator as one of their components. In
particular, greedy algorithms, “pure” genetic algorithms(see Sect. 4), or neural
networks (see Sect. 6) are generally unable to compete with heuristics that use
local search;

• Local search is not sufficient to efficiently color large graphs.“Pure” local search
heuristics are well-suited for the coloring of small and medium-sized graphs,
but their results are often far from the optimum when it comesto coloring
large graphs (graphs having 500 vertices or more). For largegraphs, better so-
lutions can be obtained by using the independent set extraction approach (see
Sect. 5) or evolutionary algorithms using specialized recombination operators
(see Sect. 4.1).

4 The Evolutionary Approach

Evolutionary algorithms have long been a popular and successful optimization ap-
proach for graph coloring. The first algorithms based on genetic and evolutionary
principles were developed in the early 1990s [13]. Since then, important progress
has been made and a number of specific coloring techniques have been established.
For instance, it is now generally accepted that traditionaluniform crossovers are
outperformed byclass-orientedcrossovers – i.e., crossovers that construct offspring
by “blending”color classesfrom parents (see Sect. 4.1). Other recent developments
concern population diversity issues, the exploitation-exploration balance, popula-
tion dynamics (mating and survival selection), hybridization with exact algorithms
(see Sect. 4.2), etc. However, let us first present a number ofgeneral principles that
are used by most evolutionary coloring algorithms.

As opposed to local search (Sect. 3), the evolutionary approach is based on a
population (pool) of several different individuals (colorings) that are improved via
an “evolutionary” process of optimization. There exists a large number of evolution-
ary paradigms (evolution strategies, genetic algorithms,evolutionary programming,
scatter search, etc) and they are generally inspired by Darwinian principles, as for
example: “Survival of the fittest” (e.g., remove the less fit low-quality individuals),
preferential mating (higher quality individuals are more easily allowed to become
parents), recombination or crossover (the selected parents are recombined to gener-
ate offspring), adaptation and evolution (e.g., by local search and optimization).

Recent Advances in Graph Vertex Coloring 7

The most popular evolutionary algorithms for graph coloring are the classical
steady-stategenetic algorithms. These coloring algorithms often use local search,
and so, the approach can also be regarded as an instance ofmemeticcomput-
ing [51]. The population (referred to asPop) is defined as a set of “individuals”
Indiv1,Indiv2, . . .Indiv|Pop|. Each individual represents ak-coloring (with k fixed
or not) that is evaluated according to a fitness function – in the evolutionary termi-
nology, the objective function from optimization is referred to as the fitness function.
At each “generation”, two or more parent individuals are selected and recombined
to generate offspring solutions. This offspring can be improved via local search and
then replace some individuals selected for elimination. The generic schema of this
genetic process is described below.

1: Initialize parent populationPop←{Indiv1,Indiv2, . . . ,Indiv|Pop|}
2: while a stopping condition is not metdo
3: parents←matingSelection(Pop)
4: Offspr← recombination(parents)
5: Offspr← localSearch(Offspr, maxIter)
6: R← eliminationSelection(Pop)
7: Pop ← Pop ∪{Offspr}−R
8: end while
9: Return the fittest individual ever visited

The last decade has seen a surge of interest in integrating local search in ge-
netic coloring algorithms (see step 5 in the above schema), making the memetic ap-
proach [51] more and more popular. Besides classical genetic algorithms, even more
particular evolutionary paradigms (crossover-free distributed search [8, 49], scatter
search [29] or adaptive memory algorithms [22]) do incorporate a local search col-
oring routine (often based onTABUCOL[33] or on thek-fixed partial proper strat-
egy [49]).

In this section, we discuss some key issues of evolutionary coloring algorithms
like crossover design, population dynamics and diversity,hybridizations with other
search methods.

4.1 Specialized Recombination Operators

The recombination is a crucial concept in many areas of evolutionary computing
and defines the way information is transmitted from parents to offspring. A chal-
lenging issue is to make this “inheritance” process as meaningful for the problem as
possible, i.e., so as to preserve the good features of the parents and disrupts the bad
ones [60]. Recombination ideas in earlier work [13, 19] werebased on the standard
uniformcrossover or on theorder-baseduniform crossover.

The first of the above crossovers is based on a straightforward array encoding
that associate vertices to integer colors. In principle, the offspring solution is con-
structed by assigning to each vertexv∈V either the color ofv in the first parent or
the color ofv in the second parent. Regarding the second crossover (order-based),

8 Philippe Galinier, Jean-Philippe Hamiez, Jin-Kao Hao, and Daniel Porumbel

it does not encode individuals directly as colorings but (indirectly) as permutations
of V. A permutation indicates an order of vertices that can be decoded into an ac-
tual coloring by greedily assigning colors one by one in thisorder. Since indirect
encodings lie outside the scope of this chapter, we refer thereader to [52] for in-
teresting recombination issues in this context. However, according to [16, 19], both
early uniform crossovers failed to make the evolutionary search reach significantly
better results that local search.

An important breakthrough in evolutionary graph coloring is represented by the
first crossover models that manipulatecolor classesinstead ofcolor values. As such,
the Greedy Partition Crossover (GPX) [20] established genetic algorithms as one of
the most competitive methods for graph coloring. In this approach, an individual is
seen as a partition ofV (into k classes). The parents transmit classes to the offspring
in an alternate manner until the offspring receivesk classes. Any remaining uncol-
ored vertex is assigned a random color (some studies suggestselecting this color
using a greedy criterion). This class-based approach requires a very low computing
time compared to the number of local search iterations. It seems to be very useful for
many other combinatorial optimization problems called “grouping problems” [18].

During the last few years, a number of new developments and improvements of
GPX have been presented. For instance, the “GHZ” recombination operator [22]
combines conflict-free classes (independent sets) from allindividuals of the popula-
tion. An interesting issue of the class-oriented approach is the risk of inheritingtoo
manyclasses from only one parent. To overcome such risks, GPX considers the two
parentsalternatelywhen deciding which parent to transmit classes. Other studies
propose using several parents and forbidding each transmitting parent to re-transmit
for a number of generations [43].

In order to minimize the number of vertices that remain uncolored in the end (re-
call that onlyk classes are transmitted to the offspring), the above crossovers always
transmit classes of maximum size (this is why they are called“Greedy”). However,
this criterion (maximum size) can be refined to more meaningful measures [57]. For
instance, one can consider that a large class with conflicts could be less useful than
a slightly smaller class with no conflicts. The number of parents has also been a
topic of interest but several studies seem to indicate that using many parents does
not always improve results. For instance,MACOL[43] uses a random number be-
tween 2 and 6. In [57], certain epistasis arguments (the analysis of the impact of the
interactions between classes) argue that more parents are only useful for instances
with large class size (e.g., 50).

One should be aware that the large graph coloring literaturealso contains ref-
erences to other types of crossover operators, based on unifying pairs of conflict-
free sub-classes [14], on sexual reproduction using a splitting of the graph into two
parts [48], distance-preserving crossovers [63], etc.

Recent Advances in Graph Vertex Coloring 9

4.2 Other Evolutionary Advances and Algorithms

Besides recombination operators, research in graph coloring has also led to several
other advances in understanding genetic algorithms. A general challenge in genetic
algorithms is to make the algorithm reach a proper balance between two conflict-
ing aspects of heuristic search: (i) Exploration – typically assured via crossover or
other population-based operators and (ii) exploitation – often represented by local
search. The local search exploitation potential explains its success in improving ge-
netic algorithms: A local search routine is able to find higher-quality individuals in
the proximity of lower-quality offspring generated by recombination. The balance
question is naturally formulated: What is the best way to allocate a given amount of
computing time between exploration (crossover) and exploitation (local search).

This balance can be controlled by the maximum number of iterations that are al-
lowed after each crossover (maxIterat step 5 in the algorithmic schema at page 7).
At a first glance, it might seem that more local search iterations leads to more
exploitation and less exploration. However, certain papers [20, 22] indicate that a
longer local search routine can actually improve the exploration capacity of the
search process and preserve diversity – more local search iterations can scatter the
offspring to more distant and diverse areas. As such, most implementations spend
(considerably) less computing time on crossover or selection routines (usually linear
in n) than on local search iterations (maxItercan be an order of magnitude higher
thann). Finally, notice that this local search operator does not need to be very com-
plex: Even very rudimentary local search methods (steepestdescent) could lead ge-
netic algorithms to good performances under certain conditions [12, 26].

A related central topic in genetic algorithms is maintaining population diversity
– a recurrent issue in genetic algorithmsin generalthat can be approached from
numerous perspectives. Very often, the general diversity objective is to control the
population dynamics using so-called “population management” schemes: By cre-
ating diversity-oriented subpopulations, by proposing better diversity-guided elim-
ination rules, new offspring rejection mechanisms, by adapting the crossover, etc.
In some cases, even the classical genetic algorithm template can be modified so as
to adapt to certain diversity objectives. For instance, thescatter-search evolutionary
paradigm is used in [29]: A “diversity-oriented” subpopulation is specifically gen-
erated so as to keep reference to very diverse individuals. The algorithm proposed
in [22] uses an adaptive memory that contains a number of independent sets instead
of a population of individuals. When a set-based diversity measure falls below a
certain threshold, the algorithm triggers a “diversifying” action by allowing more
local search.

If one wants to stay in the classical genetic algorithm template, diversity can
still be achieved by modifying the population dynamics at certain steps, e.g., by
rejecting certain offspring that do not satisfy distance and similarity criteria. For
instance, in [45], if the offspring is too similar to one of the existing solutions, then
it is not inserted in the population. The similarity in this case is based on conflict
numbers and number of uncolored vertices. However, the partition distance [27, 59]
conveys a more direct and semantic sense of distance and it isoften used in coloring

10 Philippe Galinier, Jean-Philippe Hamiez, Jin-Kao Hao, and Daniel Porumbel

papers for various purposes [20, 22, 26, 29, 43, 57]. A simpleoffspring rejection
rule based on this metric is presented in [57] and it seems that the approach can be
generalized to other problems as well [58]. Another point where one can intervene
is the elimination step. Indeed, an approach that uses a scoring function (based on
the distance metric) to decide which individual should be replaced by the offspring
is presented in [43]. Notice that the parent selection step,while very influent in other
evolutionary computing areas, seems to have a secondary impact in graph coloring.

Finally, let us comment on the fact that genetic algorithms are better suited than
local search for hybridization with exact algorithms. At least in the column genera-
tion approach described in [46], theMMTgenetic algorithm [45] can generate more
diverse columns than local search.MMTworks with conflict-free classes (indepen-
dent sets) that constitute partial colorings improved via the k-fixed partial proper
strategy [49]. The resulting independent sets fit very well in a set covering coloring
formulation: Construct a linear program that minimizes thenumber of independent
sets necessary to cover all vertices of the graph. Let us denote byI the set of all
existing independent sets ofG and letxi = 1 if and only if i ∈I is utilized by the
current coloring. The objective of the program is to minimize ∑i∈I xi . The con-
straints impose to cover each vertex by at least one selectedindependent set. Since
I can not be usually completely generated, this set is first sampled from the (di-
verse) classes provided by the population ofMMT. In a second stage, more indepen-
dent sets are constructed via column generation: The slave problem requires finding
columnsi ∈I that could improve the objective function (because they violate the
dual constraints).

4.3 Discussion and Concluding Remarks

To conclude the evolutionary part, a number of points can be underlined:

1. Genetic algorithms represent a popular and flexible approach to optimization
problems that seems very effective for many classes of difficult graphs;

2. Much attention has been paid to the recombination operator and it is generally
accepted that:

• Recombination operators must be specialized to the problem. Blindly using
unspecialized operators (e.g., standard uniform crossover) can render quite
impractical a genetic algorithm otherwise well-designed;

• The most effective coloring crossovers are class-oriented. The parent classes
are chosen for transmission using greedy selections;

• Refining more detailed aspects can be very useful in certain cases, e.g., in-
stances with large color classes seem to benefit from using more than two
parents.

3. A chiseled population dynamics (using partition distances to modify certain
steps, by applying scatter search or adaptive memory frameworks) seems a

Recent Advances in Graph Vertex Coloring 11

promising choice for future research (diversity preservation is an important topic
in general genetic algorithm research).

5 Approaches Based on Independent Set Extraction

5.1 Basic Approach

As observed in many studies, it is difficult, if not impossible, to find a properk-
coloring of a large graphG (e.g., with 1 000 vertices or more) withk close toχ(G)
by applying directly a given coloring algorithm onG. A basic approach to deal with
large graphs is to apply the general principle of “reduce-and-solve”. This approach
is composed of apreprocessing phasefollowed by acoloring phase.

The preprocessing phase typically identifies and removes some (large) indepen-
dent sets from the original graph to obtain a reduced subgraph (called “residual”
graph). The subsequent coloring phase determines a proper coloring for the residual
graph. Given the residual graph is of reduced size, it is expected to be easier to color
than the initial graph. Now it suffices to consider each extracted independent set as
a new color class (i.e., by assigning a new color to all the vertices of each of these
sets). The coloring of the residual graph and all the extracted independent sets give
a proper coloring of the initial graph. This approach were explored with success in
early studies like [9, 19, 33, 39].

Algorithms based on this approach can use different methodsto find a large in-
dependent set in the graph. In [9], this was achieved with a simple greedy heuristic
while in [19, 33], large independent sets were identified by adedicated tabu search
algorithm. In [39], the authors introduced theXRLF heuristic which operates in
two steps. First, a number of independent sets are collectedusing Leighton’s Re-
cursive Largest First (RLF) heuristic [42]. Then, an independent set is iteratively
selected and extracted from the graph such that its removal minimizes the density of
the reduced graph. This process continues until the residual graph reaches a given
threshold.

For the subsequent residual graph coloring, various methods have been used in-
cluding exhaustive search [39], tabu search [33], simulated annealing [9, 39] and
hybrid genetic tabu search [19].

5.2 Enhancing Independent Set Extraction

Very recently, this basic independent set extraction approach was revisited and im-
proved results were reported on several large graphs [71, 72, 31].

As stated previously, a properk-coloring of a given graphG corresponds to a
partition of V into k independent sets. Suppose that we want to colorG with k

12 Philippe Galinier, Jean-Philippe Hamiez, Jin-Kao Hao, and Daniel Porumbel

colors. Assume now that we extractt < k independent setsI1, ..., It from G. It is
clear that if we maximize the number of vertices covered by the t independent sets
(i.e., |I1∪ ...∪ It | is as large as possible), we obtain a residual graph with fewer
vertices whenI1∪ ...∪ It are removed fromG. This would make the residual graph
easier to color using the remainingk− t colors.

The basic strategy for independent set extraction described in Sect. 5.1 operates
greedily by removing exactly one independent set at a time. This preprocessing
phase was improved in [71] by identifying and removing at each extraction iteration
a maximum number of disjoint independent setsof the same size from the graph.
This extraction procedure can be summarized as follows.

1. Identify a maximum independent setI in G;
2. Collect in a setM as many other independent sets of size|I | as possible;
3. Find fromM a maximal number ofdisjoint independent setsI1, ..., It ;
4. Remove the vertices ofI1∪ . . .∪ It from G;
5. Repeat the above steps until the subgraph becomes small enough.

The number of vertices of the last subgraph (residual graph)depends on the sub-
sequent coloring algorithm applied to the residual graph. In [71, 72, 31], values from
500 to 800 are suggested.

In step 1 of the above extraction process, one needs to identify a maximum in-
dependent set. Notice that the problem of finding a maximum independent set in a
graph is NP-hard [23, 40] in the general case. For this purpose, the authors of [71]
use the so-called adaptive tabu search heuristic designed for the equivalent maxi-
mum clique problem to find large independent sets [70]. The same heuristic is also
employed to build the poolM composed of independent sets of a given size (step 2).

In step 3, it is required to find among the candidates ofM a maximal number of
disjoint independent sets. This latter task corresponds in fact to the maximum set
packing problem, which is equivalent to the maximum clique (thus the maximum
independent set) problem [23, 40]. To see this, it suffices toconstruct an instance
of the independent set problem fromM = {I1, ..., It} as follows. Define a new graph
G′ = (V ′,E′) whereV ′ = {1, ..., t} and{i, j} ∈ E′ (i, j ∈ V ′) if Ii and I j share at
least one element, i.e.,Ii ∩ I j 6= /0. Now it is clear that there is a strict equivalence
between an independent set inG′ and a set of disjoint independent sets inM. Con-
sequently, one can apply again any maximum clique or independent set algorithm
to approximate the problem.

As shown in [71], this extraction strategy packs more vertices than with the con-
ventional one-by-one extraction strategy with the same number of color classes. This
generates smaller residual graphs that tend to be easier to color. TheEXTRACOLal-
gorithm described in [71] combines this independent set extraction strategy with the
memetic coloring algorithmMACOL[43]. Evaluation ofEXTRACOLon the set of the
largest graphs (with 1 000 to 4 000 vertices) of the DIMACS challenge benchmarks
showed remarkable results (see Sect. 8.2).

Recent Advances in Graph Vertex Coloring 13

5.3 An Extraction and Expansion Approach

Preprocessing a graph by extracting independent sets reduces the initial graph and
tends to ease the coloring task. Such a preprocessing strategy relies on the hypoth-
esis that each extracted independent set defines a color class of the final coloring.
Unfortunately, this may not be the case all the time. For instance, it is shown that
EXTRACOL[71] performs poorly on some large geometric graphs although its per-
formance is remarkable on all the other tested graphs. A close check discloses that
due to the particular structure of these graphs, many largest (extracted) independent
sets are not part of a final coloring. In this case, it is a harmful to remove defini-
tively these independent sets from the graph since this willprevent inevitably the
subsequent coloring algorithm from reaching an optimal coloring. To mitigate this
difficulty, one solution is to allow the subsequent coloringalgorithm to “reconsider”
the extracted independent sets and allow some vertices of these extracted sets to
change their colors.

In [72, 31], the approach of independent set extraction followed by a coloring
phase is expended to an “extraction and expansion” approach. This approach can be
summarized by the following procedure composed of three phases:

1. Theextractionphase simplifies the initial graphG by removing iteratively large
independent sets from the original graph. This phase stops when the residual
graph becomes sufficiently small fixed by a threshold. The residual graph will
be first colored (phase 2) and then extended during the expansion and backward
coloring process (phase 3);

2. The initial coloring phase applies a graph coloring algorithm to the residual
graph to determine a(k− t)-coloring wheret is the number of extracted inde-
pendent sets. If a proper(k− t)-coloringc for the residual graph is found, then
c plus thet independent sets extracted during the phase 1 constitutes aproper
k-coloring of the initial graphG, return thisk-coloring and stop. Otherwise, con-
tinue to phase 3 to trigger the expansion and backward coloring phase;

3. Theexpansion and backward coloringphase extends the current subgraphG′ by
adding back one or more extracted independent sets to obtainan extended sub-
graphG′′. Then the coloring algorithm is run onG′′ by starting from the current
coloring of G′ extended with the added independent sets as new color classes.
Once again, if a proper coloring is found for the subgraphG′′, this coloring plus
the remaining independent sets forms a properk-coloring of the initial graphG
and the whole procedure stops. Otherwise, one repeats this expansion and back-
ward coloring phase until no more independent set is left or aproper coloring is
found for the current subgraph under consideration.

Notice that the approaches described in Sect. 5.1 and 5.2 correspond to phases
1 and 2 and consequently can be considered as a special case ofthe extraction and
expansion approach. The expansion and backward coloring phase (phase 3) is crit-
ical since the extracted independent sets are re-examined by the coloring process.
If some vertices of an extracted independent set should not receive the same color,
they have a chance to be assigned the right color by the applied coloring algorithm.

14 Philippe Galinier, Jean-Philippe Hamiez, Jin-Kao Hao, and Daniel Porumbel

The key issues to be considered concern the way to select the independent sets
to add back to the current coloring (and to rebuild the corresponding subgraph).
Several strategies are possible for this selection [31]:

• First, we can consider how many independent sets are to be selected for ex-
pansion. Basically, this decision can be made according to one of two rules: One
independent set or several independent sets at a time. This choice may have influ-
ences on the subsequent coloring process. Indeed, adding back one independent
set at a time implies limited extensions to the current coloring (only one new
color class is added). This leads thus to a more gradual coloring optimization.
On the other hand, using several independents sets to extendthe current subgraph
and colorings offers more freedom and diversification for coloring optimization;

• Second, we can also consider which independent sets are to beselected. This de-
cision can be achieved following the reverse of extraction order, extraction order,
or random order. This decision can also be based on the size ofthe independent
sets. Notice that given the way independent sets are extracted during the extrac-
tion phase, applying the reverse of extraction order handles the independent sets
from the smallest to the largest [72] while applying extraction order does the
opposite.

It is clear that any combination of the above two decisions leads to a strategy that
can be used to determine the independent sets for backward coloring optimization.

Finally, it is easy to see that the underlaying coloring algorithm employed for
the initial coloring (phase 2) and subsequent colorings (phase 3) also impacts the
performance of this extraction and expansion coloring approach. In [72], the task of
coloring is ensured by a perturbation-based tabu search (a variant of theTABUCOL
procedure [33], see Sect. 3.1) while in [31], the more powerful memetic algorithm
MACOL[43] is preferred.

Experimental evaluations of this extraction and expansionapproach reported
in [72, 31] demonstrated a remarkable performance on some very hard and large
graphs with more than 2 000 vertices by improving very recentupper bounds of
several large benchmark graphs.

6 Other Approaches

In this section, we review a few other strategies based on concepts or metaphors that
are (almost) different from those presented in the precedent sections.

Quantum Annealing: In [66], an effective quantum annealing algorithm is de-
scribed fork-coloring. This strategy can be seen as a population-based heuristic (an
individual is called here a “replica”) and inherits ideas from quantummechanics.
Compared with simulated annealing, it includes an additional parameterΓ (with
the classical temperature parameter). While simulated annealing evolves in a neigh-
borhood of constant radius,Γ is used here to modify the radius of the neighborhood
(to control diversity) and to reinforce the evaluation function with a “kinetic” energy

Recent Advances in Graph Vertex Coloring 15

relying on interactions between replicas (roughly speaking, it quantifies the similar-
ity of replicas). This kinetic energy aims to help escaping local optima. Experiments
reported in [66] shown remarkable results on some tested DIMACS graphs.

Neural Networks: In [36], an artificial neural network algorithm is described for
the graph coloring problem. This algorithm, calledRBA-AIS , follows the partial
proper strategy defined in Sect. 2. InRBA-AIS , the value ofk (initially, k = ∆ +1,
where∆ is the maximum connection degree) and the network size (k× n cells)
can be modified by anadaptive multiple restart local searchapproach (theRBA
component). Roughly speaking,RBAruns several times a randomized dynamical
algorithm (called “StochasticSteepDescent”,SSD) where the initial state of each
SSDcall (except the first one which is constant) is determined bythe results of
previousSSDexecutions (AIS component). Other coloring algorithms using neural
networks are reported in [41, 64]. Except for some structured graphs, existing neural
network coloring algorithms are not competitive.

Ant Colony: ALS-COL [54] seems to be the most recent ant colony optimization
algorithm fork-coloring. It follows the partial proper strategy defined inSect. 2,
each ant running a tabu search inspired fromPA R T I A L C O L [3] (let us call it
ALS-TS). While decisions in classical ant colony optimization algorithms rely on
a parametric probability that is time consuming (since it isbased onall possible de-
cisions),ALS-TS uses less parameters and just considersnon-tabumoves (to save
time). Results reported in [54] indicate thatALS-COL outperformsPA R T I A L C O L

and some previous ant colony optimization heuristics proposed for graph coloring
(see e.g., [35, 62]). Given sufficient time, the algorithm obtains very competitive
results on several graphs.

Bounding Strategies: A column generation approach was recently described in
[32] (let us call itCG) for computing lower bounds ofχ . CGtries to determine the
fractional chromatic numberχ f [44, 73] sinceχ(G) ≥

⌈

χ f (G)
⌉

. CGcomputes a
lower boundχ f of χ f using a recursive depth-first search or a local search with
restarts. Arestricted linear programming model is also solved to compute an up-
per boundχ f of χ f . CGwas tested on 136 instances (including DIMACS graphs),
χ f and χ f being determined for 119 of them. Inall the 119 cases, it turned out

that
⌈

χ f

⌉

=
⌈

χ f
⌉

(this avoids the floating-point inaccuracy of linear programming

solvers). Improved lower bounds ofχ were proposed, reducing (sometimes consid-
erably) the gap to upper bounds. For some large graphs whereCGcannot compute
⌈

χ f
⌉

, CGwas run on subgraphs. Here again, this leads to improved lower bounds.

7 Extensions and Applications of Graph Coloring

7.1 Extensions and Generalizations of Graph Coloring

In T-coloring [28, 37], one associates to each edge{vi ,v j} ∈ E a setti, j of pos-
itive integer values (0 included) and imposes|c(vi)− c(v j)| /∈ ti, j . The spanof a

16 Philippe Galinier, Jean-Philippe Hamiez, Jin-Kao Hao, and Daniel Porumbel

T-coloringc is the difference between the smallest and the highest colorin c. Given
a graphG, theT-coloring problem (in its optimization version) is to determine the
minimum span for all possibleT-colorings ofG. Graph (k-)coloring corresponds to
a special case ofT-coloring where eachti, j = {0}.

Set T-coloring[65] is a generalization ofT-coloring (with the same objective)
where an integer “demand”δi > 0 is further associated to eachvi ∈V, corresponding
to the number of different colors required byvi : δi = l ⇒ c(vi) = {ci,1, . . . ,ci,l}. A
“co-node” constraint must then be verified by allvi : {ci,α ,ci,β 6=α} ∈ c(vi)×c(vi)⇒
|ci,α − ci,β | /∈ ti,i . Finally, the constraint previously introduced forT-coloring must
also hold here:{vi ,v j} ∈ E⇒ |ci,α − c j,β | /∈ ti, j ∀{ci,α ,c j,β} ∈ c(vi)× c(v j). The
graph (k-)coloring problem is a special case of setT-coloring where eachδi = 1
(andti, j = {0}).

Bandwidth coloring[25] is a restriction ofT-coloring where the constraint on ad-
jacent vertices is replaced by|c(vi)−c(v j)| ≥ ti, j (ti, j is not a set here, but a numeri-
cal value).Multi-coloring [47] is a special case of setT-coloring where allti, j = {0}.
The bandwidth multi-coloringproblem [47] is a combination of bandwidth color-
ing and a variant of setT-coloring where the co-node constraint is simplified to
{ci,α ,ci,β 6=α} ∈ c(vi)× c(vi)⇒ |ci,α − ci,β | ≥ ti,i (ti,i is a numerical value). In the
case oflist-coloring [53], the color of each vertex must be chosen in a predefined
set of authorized colors.

More than 200openproblems related to (k-)coloring are presented in [38], see
also the programs from the meetings of the “DIMACS / DIMATIA /Rényi Work-
ing Group on Graph Colorings and their Generalizations” (http://dimacs.
rutgers.edu/Workshops/GraphColor/main.html) and the “Graph Col-
oring and its Generalizations” symposium series (COLOR, 2002 – . . ., http:
//mat.gsia.cmu.edu/COLOR03) for instance.

7.2 Applications of Graph Coloring

There are few real-world problems that can be directly modeled by a graph coloring
problem. On the other hand, many applications are similar tograph coloring or are
somehow related to graph coloring problems or their extensions [1, 7, 15, 61]. We
give several examples below for illustration.

A timetabling problem is the task to assign a time slot to events (exams, lec-
tures) subject to pairwise constraints [61]. The constraints involve pairs of events
that can not be assigned to the same time slot – for example, two lectures given by
the same professor. Graph coloring has been used for a long time in order to model
timetabling problems. In a standard representation, the events are represented by
vertices, constraints by edges and time slots by colors. In addition to (mandatory)
constraints expressed by coloring constraints, other additional hard constraints may
be present and soft constraints can be used in order to discriminate among legal
solutions.

Recent Advances in Graph Vertex Coloring 17

Register allocation is an important problem in compiler optimization. Given a
target source code, the problem is to choose among a large number of variables
those that will be assigned to registers – the other variables will be kept in RAM
and require much slower access times. Each of these variables must be assigned
a register subject to the constraint that two variables thatare in use at the same
time cannot be assigned to the same register. Register allocation can be modeled as
a weighted partial coloring problem (the problem to find a partial proper coloring
such that the weighted sum of colored vertices is maximized)[7]. Variables are
represented by vertices, constraints by edges and registers by colors. The weight of
a vertex expresses the savings of keeping the correspondingvariable in a register
rather than in RAM.

Frequency assignment problems have been playing an important role in telecom-
munication networks for more than twenty years. In this kindof problem, frequen-
cies chosen in a specified set (the frequency domain) must be assigned to physical
communication equipments (antennas or links, depending onthe context). A com-
mon feature of these problems is the presence of distance constraints imposed on
pairs of frequencies in order to avoid (or at least reduce) interference between geo-
graphically close communication equipments [1]. Therefore, frequency assignment
problems can be seen as an extension of the bandwidth coloring problem where ver-
tices represent equipments, and colors frequencies. In a typical case, the number of
frequencies is fixed (and very limited) and the problem is to find a non necessarily
legal solution with a minimum number of conflicts (interference level).

Routing and wavelength assignment (RWA) problems play an important role in
all-optical networks. A network is represented by a non-oriented graph whose nodes
figure stations and edges represent links. One is also given aset of pairs (origin-
destination) of stations, named “demands”. In order to satisfy a demand, a lightpath
must be constructed, i.e., a route (path) in the graph, alongwith a frequency. A
legal solution of the problem is a set of lightpaths such thattwo lightpaths that
share a common link never use the same frequency [15]. In the max-RWA problem,
the number of available frequencies is fixed and the goal is tosatisfy a maximum
number of demands. The max-RWA problem can be modeled as a non-standard
variant of the partial coloring problem. The paths in the graph are represented by
vertices, the constaints by edges and the frequencies by colors. In practice, solution
techniques exploit a graph that contains only a limited number of paths.

8 Benchmarks and Computational Results

8.1 Benchmarks

The first federative library of graph coloring instances wascreated in the 1990’
for the second DIMACS challenge on graph coloring and maximum clique. Orig-
inally [68], it was composed of the 32 graphs available fromftp://dimacs.

18 Philippe Galinier, Jean-Philippe Hamiez, Jin-Kao Hao, and Daniel Porumbel

rutgers.edu/pub/challenge/graph/benchmarks/volume/C olor
(the “.b ” suffix indicates that files are compressed, seeftp://dimacs.rutge
rs.edu/pub/challenge/graph/translators/binformat for unpack-
ing). Additional well-known instances are available fromhttp://mat.gsia.
cmu.edu/COLOR/instances.html . Various classes of graphs are represented:
Random, real-world inspired, translation from other problems, etc.

A recent more expanded library, including most of the previous mentioned
benchmarks, has been proposed along with the “Graph Coloring and its Gener-
alizations” symposium series (COLOR, 2002 –. . .). It is available fromhttp:
//mat.gsia.cmu.edu/COLOR02 . New graph domains include matrix parti-
tioning or optical network design for instance.

Many classes of random graphs exist, the most studied of themin the graph color-
ing research community being those following the “uniform”Gn,p model [17]. These
graphs constitute a real challenge and their optimums are usually unknown. To our
knowledge, just one federative library has been proposed [33] (see also [16, 30] for
3-coloring). The 30 smallest instances used in [33] (n ∈ {100,300}) are available
fromhttp://people.brunel.ac.uk/ ˜ mastjjb/jeb/orlib/files (gcol1.txt
– gcol 30.txt). The 8 largest instances (n∈ {500,1000}) are available from the sec-
ond author upon request.

Some generators have been developed to build (specific) classes of graphs. See
http://www.cs.ualberta.ca/ ˜ joe/Coloring for register-interference,
Brockington, evacuation, quasi-randomk-partite, and timetabling-inspired graphs or
ftp://dimacs.rutgers.edu/pub/challenge/graph/contri bute
d/morgenstern for Leighton, random,k-partite, geometrical, and planar graphs.
The following are the most popular hard instances:

1. Five large and very large random graphs (dsjc500.5, dsjc500.9, dsjc1000.1,
dsjc1000.5, and dsjc1000.9) following the uniformGn,p model and proposed in
[39]. The first and second number in the name of each graph represent respec-
tively the numbern of vertices and the probabilityp that an edge exists between
any pair of vertices. The chromatic numbers of these graphs are unknown;

2. Two random “flat” graphs (flat30028 0 and flat100076 0). They are structured
graphs with known chromatic number (respectively 28 and 76);

3. Two random “leighton” graphs (le45025c and le45025d) withn= 450 andχ =
25 containing numerous cliques of various sizes;

4. Four large random geometric graphs (dsjr500.1c, dsjr500.5, r1000.1c, and r1000.
5). These graphs are generated by picking random points (vertices) in a plane and
by linking two points situated within a certain geometricaldistance [39]. The
chromatic number is unknown for r1000.1c and is equal to 84 for dsjr500.1c,
122 for dsjr500.5 and 234 for r1000.5;

5. Three very large random graphs (c2000.5, c2000.9, and c4000.5). The chromatic
numbers of these graphs are unknown. Due to the size and difficulty of these
graphs, they are not always used in computational experiments in the literature;

6. One “latin square” graph (latinsquare10) with unknown chromatic number that
models a problem related to latin squares;

Recent Advances in Graph Vertex Coloring 19

7. Eight “‘wap” graphs (wap01 to wap08). These graphs stem from real-life optical
network design problems. Each vertex corresponds to a lightpath in the network,
edges correspond to intersecting paths. These structured graphs have unknown
chromatic number except wap05 (50).

The graphs of families 1 to 6 were initially collected for the2nd DIMACS chal-
lenge while the wap graphs were made available for the COLOR competitions. One
notices that contrary to most DIMACS graphs, the wap graphs are much less studied
in the literature [6, 11, 22, 31].

8.2 Results of Some Heuristics

Most graph coloring research papers provide both a theoretical algorithmic descrip-
tion and a number of empirical results that we summarize in this section. First,
one should keep in mind that the evaluation and comparison ofpractical results is
always complicated by the fact that the computational environments can be very dif-
ferent from algorithm to algorithm (e.g., different compilers, stopping criteria, im-
plementation styles, etc). Besides this, certain papers introduce metaheuristic ideas
of general interest, while others algorithms propose very specific graph coloring
techniques. As such, the summary tables from this section donot aim at providing
an absolute ranking of algorithms, but rather to convey the difficulty of coloring
certain graphs.

Let us first introduce in Table 1 the so-called “easy instances” of the DIMACS
benchmark. Numerous algorithms are able to find proper colorings with k∗ colors
for all these graphs, but there is no mention of a proper coloring with less colors.
By using k∗ − 1 colors, the instance probably moves into an “unSAT” side orit
becomes overly difficult. In what follows, we concentrate only on the rest of the
instances (hard instances), as most coloring research papers do.

Regarding these hard instances, we provide in Table 2 the best upper bounds
reported by a dozen ofcoloring approachesfrom the literature. In this context, a
coloring approachmight simply refer to a unique algorithm or toa class of al-
gorithms– certain results are reported by combining the performances of several
algorithm versions. The instances are grouped in three classes, depending on the
graph densityd: Sparse graphs (d < 1

4), medium density instances (1
4 ≤ d≤ 3

4) and
dense graphs (d > 3

4). Notice that certain large wap instances can also be considered
to be hard. However, since these instances are much less tested in the literature, we
do not include them in the table.

One can see that the correlation between graph difficulty anddensity is rather
limited, or inexistent. Other criteria that might influencegraph difficulty include
the graph order (n) and the graph family (random, geometrical, etc). We observe
that the largest performance variations of the most recent algorithms are reported
on: flat300.280 (a small graph), r1000.5, latinsquare10, c2000.5, and c4000.5.

20 Philippe Galinier, Jean-Philippe Hamiez, Jin-Kao Hao, and Daniel Porumbel

Furthermore, for the huge graphs c2000.5 and c4000.5, very large time limits are
often used (days or weeks).

G k∗ G k∗ G k∗ G k∗

dsjc125.1 5r125.1 5 le4505a 5 flat300.200 20
dsjc125.5 17r125.5 36 le4505b 5 flat300.260 26
dsjc125.9 44r125.1c 46 le4505c 5 flat1000.500 50
dsjc250.1 8r250.1 8 le4505d 5 flat1000.600 60
dsjc250.5 28r250.1c 64 le45015a 15 school1 14
dsjc250.9 72r250.5 65 le45015b 15 school1nsh 14
dsjc500.1 12r1000.1 20 le45025a 25

dsjr500.1 12le45025b 25

Table 1 Easy DIMACS coloring instances. Numerous papers report exactlythe same values of the
best upper boundk∗ for these graphs.

9 Conclusion

In this chapter, we reviewed some recent advances for solving the well-known graph
coloring problem. Given the hardness of the problem, a largenumber of heuristics
have been devised in order to find satisfactory solutions. These heuristics are typ-
ically based on greedy method, local search, population-based search, and various
hybrid approaches. Among all these approaches, local search algorithms play an im-
portant role, especially because they constitute an indispensable component of many
successful and more sophisticated hybrid techniques. Population-based algorithms
are very powerful thanks to their specific solution recombination operator (memetic
algorithms) or solution interaction mechanism (quantum annealing). To handle very
large graphs, approaches that combine independent set extractions and progressive
coloring expansions prove to be quite promising. Finally, these different coloring
approaches should be considered to provide a set of complementary solution tools
for approximating this difficult problem. After all, no single coloring algorithm can
dominate all the other approaches on all the graphs.

Finally, we remark that graph coloring is a quite generic problem – no particu-
larly skewed constraints and a very simple objective function. Consequently, ideas
of the coloring algorithms would have a general interest andcould be applied to
similar and related problems.

Acknowledgements The work is partially supported by the “Pays de la Loire” Region (France)
within the RaDaPop (2009 – 2013) and LigeRO (2010 – 2013) projects.

R
ecentA

dvances
in

G
raph

Vertex
C

oloring
21

Graph name n,m,d χ/k∗ Local Search Algorithms Hybrid algorithms
(population-based, independent set extraction, quantum annealing, etc.)

2002 2003 2008 2008 2010 1996 1996 1999 2008 2008 2010 2010 2011 2011 2012
ILS VNS PA R T I A L C O L VSS-Col TS-Div/Int DCNSHGA HEA AmaCol MMTEvoDiv MACOLQA-col DHQAECol
[10] [2] [3] [34] [56] [49] [19] [20] [22] [45] [57] [43] [66] [67] [71]

dsjc1000.1 1 000, 49 629, 0.1 ≥ 10/20 — — 20 20 20 — — 20 20 20 20 20 20 20 20
le450.25c 450, 17 343, 0.17 25/25 26 — 25 26 25 25 25 26 26 25 25 25 25 25 —
le450.25d 450, 17 425, 0.17 25/25 26 — 25 26 25 25 25 — 26 25 25 25 25 25 —
dsjc500.5 500, 62 624, 0.5 ≥ 43/48 49 49 48 48 48 49 49 48 48 48 48 48 48 48
dsjc1000.5 1 000, 249 826, 0.5 ≥ 73/83 89 90 88 87 85 89 84 83 84 83 83 83 83 83 83
dsjr500.5 500, 58 862, 0.47 122/122 124 — 126 125 — 123 130 — 125 122 122 122 122 122 —
r1000.5 1 000, 238 267. 0.48234/234 — 248 — 241 — 268 — — — 234 237 245 238 234 249
flat300.280 300, 21 695, 0.48 28/28 31 31 28 28 28 31 33 31 31 31 29 29 31 28 —
flat1000.760 1 000, 246 708, 0.4976/82 — 89 88 86 85 89 84 83 84 82 82 82 82 82 82
c2000.5 2 000, 999 836, 0.5 ≥ 99/146 — — — — — 150 153 — — — 148 148 — 147 146
c2000.9 2 000, 1 799 532, 0.9≥ 80/409 — — — — — — — — — — — 413 — — 409
c4000.5 4 000, 4 000 268, 0.5≥ 107/260 — — — — — — 280 — — — 271 272 — — 260
dsjc500.9 500, 112 437, 0.9 ≥ 123/126 126 — 126 126 126 — — — 126 127 126 126 126 126 —
dsjc1000.9 1 000, 449 449, 0.9 ≥ 216/222 — — 225 224 223 226 — 224 224 225 223 223 222 222 222
dsjr500.1c 500, 121 275, 0.97 84/85 — — 85 85 — 85 85 — 86 85 85 85 85 — —
r1000.1c 1 000, 485 090, 0.9798/98 — — 98 — 98 98 99 — — 98 98 98 98 — 101
latin square10 900, 307 350, 0.76 ≥ 90/97 99 — — — — 98 106 — 104 101 98 99 98 97 —

Table 2 The upper bounds reported by 15 coloring approaches from theliterature (bold entries signal results reaching the best-known coloringk∗). For each
graph, we provide: (i) The name (Column 1); (ii) The number of vertices (n), edges (m) and the densityd (Column 2); (iii) The chromatic number (or a lower
bound if unknown) and the best known upper bound even found by acoloring algorithm (Column 3); And (iv) the upper bounds reported by 15 papers in the
last 15 columns. Notice that new upper bounds were reported veryrecently for flat1000.760 (k∗ = 81), c2000.5 (k∗ = 145), c2000.9 (k∗ = 408) and c4000.5
(k∗ = 259) [31].

22 Philippe Galinier, Jean-Philippe Hamiez, Jin-Kao Hao, and Daniel Porumbel

References

1. Aardal, K., van Hoesel, S.P.M., Koster, A.M.C.A., Mannino,C., Sassano, A.: Models and
solution techniques for frequency assignment problems. Ann. of Oper. Res.153(1), 79–129
(2007)

2. Avanthay, C., Hertz, A., Zufferey, N.: A variable neighborhood search for graph coloring. Eur.
J. of Oper. Res.151(2), 379–388 (2003)

3. Blöechliger, I., Zufferey, N.: A graph coloring heuristic usingpartial solutions and a reactive
tabu scheme. Comput. & Oper. Res.35(3), 960–975 (2008)

4. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual
comparison. ACM Comput. Surveys,35(3), 268–308 (2003)

5. Brélaz, D.: New methods to color the vertices of a graph. Commun. ofthe ACM 22(4), 251–
256 (1979)

6. Bui, T.N., Nguyen, T.V.H., Patel C.M., Phan K.-A.T.: An ant-based algorithm for coloring
graphs. Discrete Appl. Math.156(2), 190–200 (2008)

7. Chaitin, G.J.: Register allocation and spilling via graph coloring. ACM SIGPLAN Notices
17(6), 98–105 (1982)

8. Chalupa, D.: Population-based and learning-based metaheuristic algorithms for the graph col-
oring problem. In: N. Krasnogor, P. Lanzi (eds.) Proc. of the 13th annual Genet. and Evol.
Comput. Conf.(GECCO, Dublin, Ireland, July 12–16, 2011), pp. 465–472. ACM Press, N. Y.,
USA (2011)

9. Chams, M., Hertz, A., de Werra, D.: Some experiments with simulated annealing for coloring
graphs. Eur. J. of Oper. Res.32(2), 260–266 (1987)

10. Chiarandini, M., Sẗutzle, T.: An application of iterated local search to graph coloring. In:
D. Johnson, A. Mehrotra, M. Trick (eds.) Proc. of the Comput. Symp.on Graph Color. and its
Gen.(COLOR, Ithaca, N. Y., USA, Sept. 7–8, 2002), pp. 112–125 (2002)

11. Chiarandini, M., Sẗutzle, T.: An analysis of heuristics for vertex colouring. In:P. Festa (ed.)
Experimental Algorithms,Lect. Notes in Comput. Sci., vol. 6049, pp. 326–337. Springer, Hei-
delberg, Ger. (2010)

12. Costa, D., Hertz, A., Dubuis, O.: Embedding of a sequential procedure within an evolutionary
algorithm for coloring problems in graphs. J. of Heuristics1(1), 105–128 (1995)

13. Davis, L.: Order-based genetic algorithms and the graph coloring problem. In: L. Davis (ed.)
Handbook of Genetic Algorithms, pp. 72–90. Van Nostrand Reinhold, N. Y., USA (1991)

14. Dorne, R., Hao, J.K.: A new genetic local search algorithm for graph coloring. In: A. Eiben,
T. Bäck, M. Schoenauer, H. Schwefel (eds.) Parallel Problem Solving from Nature - PPSN V,
Lect. Notes in Comput. Sci., vol. 1498, pp. 745–754. Springer, Heidelberg, Ger. (1998)

15. Dzongang, C., Galinier, P., Pierre, S.: A Tabu search heuristic for the routing and wavelength
assignment problem in optical networks. IEEE Commun. Lett.9(5), 426–428 (1998)

16. Eiben, A., van der Hauw, J., van Hemert, J.: Graph coloring with adaptive evolutionary algo-
rithms. J. of Heuristics4(1), 24–46 (1998)

17. Erd̋os, P., Ŕenyi, A.: On random graphs I. Publ. Math. Debr.6, 290–297 (1959)
18. Falkenauer, E.: Genetic Algorithms and Grouping Problems.John Wiley & Sons, Inc., N. Y.,

USA (1997)
19. Fleurent, C., Ferland, J.: Genetic and hybrid algorithms for graph coloring. Ann. of Oper. Res.

63(3), 437–461 (1996)
20. Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. J. of Comb. Optim.

3(4), 379–397 (1999)
21. Galinier, P., Hertz, A.: A survey of local search methods forgraph coloring. Comput. & Oper.

Res.33(9), 2547–2562 (2006)
22. Galinier, P., Hertz, A., Zufferey, N.: An adaptive memory algorithm for thek-coloring prob-

lem. Discrete Appl. Math.156(2), 267–279 (2008)
23. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-

Completness. W.H. Freeman and Co., San Franc., USA (1979)

Recent Advances in Graph Vertex Coloring 23

24. Gendron, B., Hertz, A., St-Louis, P.: On edge orienting methods for graph coloring. J. of
Comb. Optim.13(2), 163–178 (2007)

25. Gendron, B., Hertz, A., St-Louis, P.: On a generalizationof the Gallai-Roy-Vitaver theorem
to the bandwidth coloring problem. Oper. Res. Lett.36(1), 345–350 (2008)

26. Glass, C., Prügel-Bennett, A.: Genetic algorithm for graph coloring: Exploration of Galinier
and Hao’s algorithm. J. of Comb. Optim.7(3), 229–236 (2003)

27. Gusfield, D.: Partition-distance: A problem and class of perfect graphs arising in clustering.
Inf. Process. Lett.82(3), 159–164 (2002)

28. Hale, W.K.: Frequency assignment: Theory and applications.IEEE Trans. on Veh. Technol.
68(12), 1497–1514 (1980)

29. Hamiez, J.P., Hao, J.K.: Scatter search for graph coloring,Lect. Notes in Comput. Sci., vol.
2310, pp. 168–179. Springer, Heidelberg, Ger. (2002)

30. Hamiez, J.P., Hao, J.K., Glover, F.: A study of tabu search for coloring random 3-colorable
graphs around the phase transition. Int. J. of Appl. Metaheuristic Comput.1(4), 1–24 (2010)

31. Hao, J.K., Wu, Q.: Improving the extraction and expansion approach for large graph coloring.
Submitted manuscr. (Sept. 2011)

32. Held, S., Cook, W., Sewell, E.: Safe lower bounds for graph coloring. In: O. G̈unlük, G. Woeg-
inger (eds.) Proc. of the15th Int. Conf. on Integer Program. and Comb. Optim.(IPCO, N. Y.,
USA, June 15-17, 2011),Lect. Notes in Comput. Sci., vol. 6655, pp. 261–273. Springer, Hei-
delberg, Ger. (2011)

33. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Comput.39(4),
345–351 (1987)

34. Hertz, A., Plumettaz, M., Zufferey, N.: Variable space search for graph coloring. Discrete
Appl. Math.156(13), 2551–2560 (2008)

35. Hertz, A., Zufferey, N.: A new ant algorithm for graph coloring. In: Proc. of theWorkshop
on Nat. Inspired Coop. Strateg. for Optim.(NISCO, Granada, Spain, June 29–30, 2006), pp.
51–60 (2006)

36. Jagota, A.: An adaptive, multiple restarts neural network algorithm for graph coloring. Eur. J.
of Oper. Res.93(2), 257–270 (1996)

37. Janczewski, R.:T-coloring of graphs,Contemp. Math., vol. 352, chap. 5, pp. 67–77. Am.
Math. Soc., New Providence, USA (2004)

38. Jensen, T., Toft, B.: Graph Coloring Problems. Wiley-Interscience Ser. in Discrete Math. and
Optim. John Wiley & Sons, Inc., N. Y., USA (1994)

39. Johnson, D., Aragon, C., McGeoch, L., Schevon, C.: Optimization by simulated annealing: An
experimental evaluation; Part II, Graph coloring and number partitioning. Oper. Res.39(3),
378–406 (1991)

40. Karp, R.: Reducibility among combinatorial problems, pp. 85–103. Plenum Press, N. Y., USA
(1972)

41. Korst, J., Aarts, E.: Combinatorial optimization on a boltzmann machine. J. of Parallel and
Distrib. Comput.6(2), 331–357 (1989)

42. Leighton, F.: A graph coloring algorithm for large scheduling problems. J. of Res. of the Natl.
Bureau of Stand.84(6), 489–506 (1979)

43. Lü, Z., Hao, J.K.: A memetic algorithm for graph coloring. Eur. J. of Oper. Res.203(2),
241–250 (2010)

44. Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. J. of
the ACM 41(5), 960–981 (1994)

45. Malaguti, E., Monaci, M., Toth, P.: A metaheuristic approach for the vertex coloring problem.
INFORMS J. on Comput.20(2), 302–316 (2008)

46. Malaguti, E., Monaci, M., Toth, P.: An exact approach forthe vertex coloring problem. Dis-
crete Optim.8(2), 174–190 (2011)

47. Malaguti, E., Toth, P.: An evolutionary approach for bandwidth multicoloring problems. Eur.
J. of Oper. Res.189(3), 638–651 (2008)

48. Marino, A., Pr̈ugel-Bennett, A., Glass, C.: Improving graph colouring with linear program-
ming and genetic algorithms. In: Proc. of the Short Course on Evol. Algorithms in Eng. and
Comput. Sci.(EUROGEN, Jyv̈askyl̈a, Finland, May 30 – June 3, 1999), pp. 113–118 (1999)

24 Philippe Galinier, Jean-Philippe Hamiez, Jin-Kao Hao, and Daniel Porumbel

49. Morgenstern, C.: Distributed coloration neighborhood search. In: D. Johnson, M. Trick (eds.)
Cliques, Coloring, and Satisfiability,DIMACS Ser. in Discrete Math. and Theor. Comput. Sci.,
vol. 26, pp. 335–357. Am. Math. Soc., New Providence, USA (1996)

50. Morgenstern, C., Shapiro, H.: Coloration neighborhood structures for general graph coloring.
In: D. Johnson (ed.) Proc. of the 1st Ann. ACM-SIAM Symp. on Discrete Algorithms(SODA,
San Franc., USA, January 22–24, 1990), pp. 226–235. Soc. for Ind. and Appl. Math., Phila.,
USA (1990)

51. Moscato, P.: Memetic algorithms: A short introduction. In: D.Corne, F. Glover, M. Dorigo
(eds.) New Ideas in Optimization, pp. 219–234. McGraw-Hill Educ., N. Y., USA (1999)

52. Mumford, C.: New order-based crossovers for the graph coloring problem. In: T. Runarsson,
H.G. Beyer, E. Burke, J. Merelo-Guervós, L. Whitley, X. Yao (eds.) Parallel Problem Solv-
ing from Nature - PPSN IX,Lect. Notes in Comput. Sci., vol. 4193, pp. 880–889. Springer,
Heidelberg, Ger. (2006)

53. Piwakowski, K.: List coloring of graphs,Contemp. Math., vol. 352, chap. 11, pp. 153–162.
Am. Math. Soc., New Providence, USA (2004)

54. Plumettaz, M., Schindl, D., Zufferey, N.: Ant Local Search and its efficient adaptation to graph
colouring. J. of the Oper. Res. Soc.61(5), 819–826 (2010)

55. Porumbel, D., Hao, J.K., Kuntz, P.: A study of evaluation functions for the graph K-coloring
problem,Lect. Notes in Comput. Sci., vol. 4926, pp. 124–135. Springer, Heidelberg, Ger.
(2008)

56. Porumbel, C., Hao, J., Kuntz, P.: A search space “cartography” for guiding graph coloring
heuristics. Comput. & Oper. Res.37, 769–778 (2010)

57. Porumbel, D., Hao, J.K., Kuntz, P.: An evolutionary approach with diversity guarantee and
well-informed grouping recombination for graph coloring. Comput. & Oper. Res.37(10),
1822–1832 (2010)

58. Porumbel, D., Hao, J.K., Kuntz, P.: Spacing memetic algorithms. In: N. Krasnogor, P. Lanzi
(eds.) Proc. of the 13th annual Genet. and Evol. Comput. Conf.(GECCO, Dublin, Ireland,
July 12–16, 2011), pp. 1061–1068. ACM Press, N. Y., USA (2011)

59. Porumbel, D., Hao, J.K., Kuntz, P.: An efficient algorithm for computing the distance between
close partitions. Discrete Appl. Math.159(1), 53–59 (2011)

60. Radcliffe, N.: The algebra of genetic algorithms. Ann. of Math. and Artif. Intell.10(4), 339–
384 (1994)

61. Schaerf, A.: A survey of automated timetabling. Artif. Intell. Rev. 13(2), 87–127 (1999)
62. Shawe-Taylor, J.,̌Zerovnik, J.: Ants and graph coloring. Tech. Rep. 952, Univ. of Ljubljana /

Math. Dep., Slovenia (2004). URLhttp://www.imfm.si/preprinti/PDF/00952.
pdf

63. Tagawa, K., Kanesige, K., Inoue, K., Haneda, H.: Distance based hybrid genetic algorithm:
An application for the graph coloring problem. In: Proc. of the 1999 Congr. on Evol. Comput.,
pp. 2325–2332 (1999)

64. Takefuji, Y., Lee, K.: Artificial neural networks for four-coloring map problems and K-
colorability problems. IEEE Trans. on Circuits and Syst.38(3), 326–333 (1991)

65. Tesman, B.: Set T-colorings of graphs. Congr. Numer.77, 229–242 (1990)
66. Titiloye, O., Crispin, A.: Quantum annealing of the graphcoloring problem. Discrete Optim.

8(2), 376–384 (2011)
67. Titiloye, O., Crispin, A.: Graph coloring with a distributed hybrid quantum annealing algo-

rithm. In: J. O’Shea, N. Nguyen, K. Crockett, R. Howlett, L. Jain(eds.) Agent and Multi-
Agent Systems: Technologies and Applications,Lect. Notes in Comput. Sci., vol. 6682, pp.
553–562 (2011)

68. Trick, M.: Appendix: Second DIMACS challenge test problems, DIMACS Ser. in Discrete
Math. and Theor. Comput. Sci., vol. 26, pp. 653–657. Am. Math. Soc., New Providence, USA
(1996)

69. Trick, M., Yildiz, H.: A large neighborhood search heuristic for graph coloring. In: P. Van
Hentenryck, L. Wolsey (eds.) Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems,Lect. Notes in Comput. Sci., vol. 4510, pp.
346–360. Springer, Heidelberg, Ger. (2007)

Recent Advances in Graph Vertex Coloring 25

70. Wu, Q., Hao, J.K.: An adaptive multistart tabu search approach to solve the maximum clique
problem. DOI: 10.1007/s10878-011-9437-8 (2012)

71. Wu, Q., Hao, J.K.: Coloring large graphs based on independent set extraction. Comput. &
Oper. Res.39(2), 283–290 (2012)

72. Wu, Q., Hao, J.K.: An extraction and expansion approach forgraph coloring. Asia-Pac. J. of
Oper. Res. (2012). In press

73. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chro-
matic number. Theory of Comput.3, 103–128 (2007)

