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Abstract. We present a memetic algorithm with adaptive operator
selection for k-coloring and weighted vertex coloring. Our method uses
online selection to adaptively determine the couple of crossover and local
search operators to apply during the search to improve the efficiency of
the algorithm. This leads to better results than without the operator
selection and allows us to find a new coloring with 404 colors for C2000.9,
one of the largest and densest instances of the classical DIMACS coloring
benchmarks. The proposed method also finds three new best solutions
for the weighted vertex coloring problem. We investigate the impacts of
the different algorithmic variants on both problems.
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1 Introduction

Graph coloring problems find applications across various domains, such as matrix
decomposition [25], metropolitan area network design [14], and task scheduling
in distributed computing [17]. Given a graph G = (V, E), defined by its vertex
set V and edge set FE, a legal coloring S of the graph G partitions the vertex set
V into k non-empty and disjoint color groups {V1, ..., Vi } such that the coloring
constraint is satisfied, i.e., for each V;, if z € V; and y € V;, then {z,y} ¢ E.
In other words, the coloring constraint states that two adjacent vertices cannot
go to the same color group (they cannot receive the same color). A coloring
failing to meet the coloring constraint is an illegal coloring. Typically, graph
coloring problems entail finding a legal coloring of the graph G while taking into
account additional decision criteria and constraints. Specifically, the k-coloring
problem (k-col) is a decision problem, where given a number of colors k, the
goal is to find a legal coloring of the graph using these k colors. The graph
coloring problem (GCP) is to determine the smallest number of colors (chromatic
number of the graph) needed to color a graph. In the weighted vertex coloring
problem (WVCP), an additional weight function w : V — RT is defined to
assign a strictly positive weight w(v) to each vertex v € V. The objective of the
WVCP is then to find a legal coloring S = {Vi,...,V;} with a minimal score
f(S) = Ele max,cy, w(v), where the number of used colors & is not specified.
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This paper aims to develop a learning-based framework for solving both the
k-col decision problem and the WVCP minimization problem, which have been
addressed by various methods in the literature. Both problems are known to be
NP-hard in the general case [8], posing computational challenges in practice. For
example, some random graphs with 250 vertices cannot be solved optimally by
current exact algorithms (see [19] for k-col and [11] for WVCP). For this reason,
a number of heuristics have been developed over the last thirty years to obtain
approximate solutions to large graph coloring problems [6,20].

For the k-col, two particularly interesting local search heuristics are TabuCol
[15] and PartialCol [2], which were proposed many years ago. For the WVCP,
dedicated and effective local search procedures are much more recent, including
AFISA [28], RedLS [29], ILS-TS [22] and TabuWeight [12]. None of these meth-
ods really dominates the others for all reference instances of the k-col and the
WVCP [2,12,22]. It would be interesting to choose an appropriate local search
to solve each type of instance for each problem.

However, local search methods may fail to produce high-quality solutions
due to their limited ability to diversify their search. To overcome this diffi-
culty, hybrid algorithms using the framework of memetic algorithms have been
proposed, which benefit from local search for intensification and offer diversifi-
cation possibilities with a population of high-quality solutions recombined with
crossover operators. Hybrid algorithms have mainly been used to date to solve
the k-coloring problem. The HEA (Hybrid Evolutionary Algorithm) algorithm [7]
introduced the powerful GPX crossover (Greedy Partition Crossover) operator
and used a local tabu search inspired by TabuCol. Evo-Div [23] and MACOL [18]
both used crossover strategies with multiple parents and distance management
between solutions. More recently, the HEAD algorithm (HEA in Duet) [21] pro-
poses the use of only two individuals in the population and a reintegration system
for high-quality individuals (elites) found earlier in the search. HEAD also uses
the GPX crossover and an improved TabuCol algorithm. This algorithm HEAD
is currently one of the most efficient solvers for the k-col. For the WVCP, to
our knowledge, there is only one memetic algorithm in the literature, DLMCOL
[10], which uses a large population (more than 20,000) and parallel GPU-based
local searches, combined with a neural network-guided crossover selection.

It was observed by the authors of HEAD [21], that the quality (number of
conflicts) of an offspring solution for the k-col, generated with the GPX crossover
from two parents, is highly correlated with the partition distance [24] between
these two parents, which is the minimum number of vertices that must change
color to transform one solution to another. Based on this insight, the authors
suggested employing modified versions of the GPX crossover, such as conserva-
tive asymmetric crossovers, which can lead to better results for certain types of
instances. In the context of a memetic algorithm, it is therefore important to
choose not only the right local search, but also the right crossover operator to
perform an efficient search.

To this end, in this work, we investigate the use of online hyperheuristics,
suggested in the literature to dynamically select adapted low-level heuristic com-
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ponents during the search process for solving a specific problem instance. We
refer the reader to [3,4] for an overview of existing hyperheuristics used to solve
various combinatorial optimization problems. More specifically, hyperheuristics
have been used to solve partitioning problems, with applications to planning and
graph coloring [5,13,26,27]. However, to our knowledge, no hyperheuristic-based
memetic algorithm for graph coloring has yet been proposed in the literature.
This work fills this gap by:

— investigating new memetic algorithms for the k-col and the WVCP using the
HEAD framework [21] with diverse local search procedures and GPX variants.
— examining the ability of adaptive operator selectors to jointly choose
crossovers and local search procedures during the search for specific instances.

In the rest of the paper, we first present our new general framework, AHEAD
(for Adaptive HEAD), with different strategies for selecting local search proce-
dures and crossovers (Sect. 2). Next, we show the results of the different variants
of AHEAD in comparison with state-of-the-art algorithms (Sect. 3).

2 Adaptive Memetic Algorithm

In this section, we present the general framework of the adaptive memetic algo-
rithm developed for the k-col and the WVCP, as well as the selection operators.

For the k-col, with a graph G = (V, E) and k colors, the search explores the
space (2), of legal and illegal colorings where all vertices are colored, but allowing
color conflicts between adjacent vertices:

In this case, the fitness f (to be minimized) corresponds to the number of con-
flicts in the solution. A solution with the fitness of 0 is a legal coloring.

For the WVCP, the algorithm works in the space of legal solutions {2;, where
all vertices are colored with no limit on the number of colors, but no adjacent
vertices are allowed to share the same color:

Q={{Vi,... i} : (UL Vi = V)A(VinV; =00 # j,1 < i,j < k)
A\ (V'Ul,’l]g6%,(01,@2)¢E,1§i§]€)} (2)
and we search in this search space a solution S = {Vi,...,Vi} whose score
k S
f(S) = >, max,cy, w(v) is minimum.
2.1 Main Scheme

The architecture of the AHEAD framework, illustrated in Fig. 1, extends the
state-of-the-art HEAD framework [21] by introducing an operator selector. In
particular, its simplicity with only two individuals in the population facilitates
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the parent matching and population updating phases compared to other memetic
algorithms in the literature [7,10,18,23].

AHEAD takes as input a graph G = (V, E), and an integer value k for the
k-col or a weight function w for the WVCP, a set of local search operators O!, a
set of crossover operators OF, and a high-level selection strategy my characterized
by a parameter vector . The 7y strategy chooses two pairs of operators <o, 0>
with of € O' and o € O to apply in the current generation to create two new
individuals, replacing their parents in the population for the next generation.

The population is initialized with two random colorings, S; and S;. Two elite
solutions, F; and F», are also created, which are updated by the best solution
found during the search and are used to reintroduce diversity into the population
under specific conditions. Then, each generation of the algorithm performs the
next six steps until the stopping condition is met.

1. A selection phase to select two pairs of operators <crossover, local search> to
be applied during this generation: <o¥,0}> and <o%,0,>. This selection is
made using the function my, which takes as input the two individuals in the
population, with S; as the first input for the selection of <o¥, o} >, then Sy
as the first input for the selection of <o%, 0> (Sect. 2.2).

2. A crossover phase to create two offspring individuals C; and Cy with C; =
07(S1,52) and Cy = 03 (S2, S1) (see Sect. 2.3).

3. An intensification phase to obtain improved offspring solutions with local
search, C] = 0} (C1) and C% = 04(Csq) (Sect. 2.4).

4. An insertion phase to replace S; and Sy by C] and C}, regardless of the
fitness of the offspring solutions compared to the parents.

5. An update phase to adjust the 7y selection policy from the examples collected
over the last few generations (Sect.2.5).

6. As in the original HEAD algorithm [21], each generation ends with a step of
storing the best individual (elite) from the cycle (10 generations). The elite
individual is reintroduced two cycles later (Sect.2.6).
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Fig. 1. General architecture of the Adaptive HEAD (AHEAD) framework.
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2.2 Automatic Operator Selection

To select the crossover and local search operators, a high-level my strategy auto-
matically selects a pair of operators <o®,o'> € 0% x O'. Therefore, there
are |O%| x |0 different <crossover, local search> pairs possible considered as
independent meta-operators. The set of crossover operators OF is presented in
Sect. 2.3 and the set of local search operators O in Sect. 2.4.

In the general case, the my function takes a pair of parents as input. For
example, for (51, S), Ty chooses a pair of operators <o®,o'>, with a crossover
operator 0" to be applied with S; as the first parent and Ss as the second parent.
It will produce a child C7, which will be improved by the local search procedure
o' to obtain a new individual C.

In this work, we examine the effects of six operator selection policies 7y
with varying levels of complexity, including four fitness-based criteria, a neural
network, and a random selector. Note that, except for the Deleter criteria, they
are also used in combination with a Monte Carlo tree search in [13].

— Random performs a uniform selection among all operators.

— Deleter deletes the operator with the worst average result every 5 generations,
until only one remains.

— Roulette (or Adaptive roulette wheel) [9] selects randomly the operator with
a bias induced by the reward r (see Sect. 2.5) obtained by each operator. The
better the reward is, the higher its associated probability of being picked is,
using the same parameters as in [13].

— UCB (Upper Confidence Bound, One-armed bandit strategy) [1] selects the
operator depending on the rewards obtained in previous generations and the
number of times it has been picked using the UCB formula managing the
exploitation-exploration trade-off.

— Pursuit [9] randomly selects the operator with a proportional bias in favor of
the best performing operator. This strategy is among the most elitist, as it
gives more chances to the best strategy applied in previous iterations.

— NN (Neural Network) uses the recommendations of a deep set neural network
architecture [10,13,31]. This neural network gy takes as input a coloring S
as a set of k binary vectors v; of size n, S = {v1,..., vk}, where each v;
indicates the vertices belonging to the color group j. From such an entry the
neural network outputs a vector with |O!| values in R corresponding to the
expected reward of each local search. In order to select a pair of operators
<o, o!> € |0%| x |0, from a pair of parents (57, S), the neural network
selector mg works as follows:

1. Each crossover operator o” € OF creates an individual C* = 0*(S, S2).

2. Each raw solution C* is passed as input to the neural network gy to obtain
a vector of |O!] values in R corresponding to the estimated score that can
be obtained after applying each local search o' € O to C*.

3. The pair <o®, 0> corresponding to the highest output value of the neural
network (for the |O%| evaluations given by gg) is selected. 10% of the time,
the selection is random to encourage diversity.
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2.3 Application of Crossover Operators

In this step, the parent solutions S; and S are combined to create two offspring
solutions C = 0f(S1,52) and Cy = 0%(Ss,S1) from the crossover operators of
and o chosen during the selection phase detailed in the previous section.

For both problems, we use the popular GPX crossover [7] used in the original
HEAD algorithm [21]. It consists of alternately taking the largest color group
from each parent and transmitting it to the offspring solution. Note that GPX
is asymmetrical, applying it with the pair (57,.52) or the pair (S2,S1) does not
produce the same offspring solution. Three variants of this crossover can be
selected in AHEAD: GPX, GPX-3, and GPX-9 taking respectively 1, 3, and 9
groups of color in the first parent for 1 color in the second parent. Therefore the
last two are more conservative than the original GPX as more groups of the first
parent are transmitted to the offspring. This generally results in offspring with
lower (better) fitness, but less different from its parents. The two new solutions
C, and (5 generated during the crossover phase will be improved in the local
search phase detailed in the next subsection.

2.4 Local Searches

In this step, the new individuals C; and Cy are improved by the selected local
search operators o} and ob. These two independent local searches are run in
parallel on two CPUs with a time limit of Tpg seconds. The best solutions Cj
and C% found by o} and ol, with this time budget are returned. For the k-col, two
state-of-the-art local search operators can be chosen: the efficient implementation
of TabuCol [15] proposed in [21] and PartialCol [2]. For the WVCP, the two best
performing algorithms RedLS [29] and ILS-TS [22] can be chosen.

2.5 Operator Selection Strategy Update

At each generation, new learning examples are collected from the results of pairs
of operators to update the selection strategy for future generations.

Learning Examples Memory. Reward scores r1 = —f(C}) and ro = —f(C%)
are associated with the choice of operator pairs <o?, 0! > and <o%, 05>, with f
the fitness function of the k-col or the WVCP. These rewards are negative, as
the fitness f is to be minimized in both problems. Then, two learning examples
(0%, 0},C1,71) and (0%,05, Ca,79) are stored in a database D, specific to the
current execution. D is a queue of the N last examples obtained during previous
generations (IV is set to 50 empirically). This limited queue size enables us to
better adapt to potential variations in operator results, in the event that certain
operators are better at the beginning of the search than at the end.

Online Learning of the Selection Criteria. Every generation, the mg policy is
trained on the database D and all its 6 parameters are updated. For the NN
policy, the training phase occurs every nb = 20 generations. During this training
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phase, each training example (0%, 0!, C,7) from the database D is converted into
a supervised learning example (X,y), with X an input matrix of size k x |V
corresponding to the set of k vectors C' = {v1,..., vk}, and y is a real vector of
size |O!| (number of local search operators), so that y is initialized with go(C),
the output vector of the neural network taking as input C, then its value y[o]
for the chosen operator o! is replaced by the expected reward 7: y[o!] = r. Once
this conversion of the training examples is done, gy is trained to minimize the
mean square error computed over the |O!| outputs (supervised learning) on this
training dataset for 10 epochs with the Adam optimizer [16].

2.6 Insertion and Elite Solutions

Like HEAD [21], offspring solutions systematically replace the parents and elite
solutions are used. Elites, which are high-quality solutions from previous gener-
ations, are added to the population after 10 generations. Thus, every 10 genera-
tions, the best individual encountered from the previous 11 to 20 generations is
reintegrated into the population.

Furthermore, at each generation, the set-theoretic partition distance [24]
between the solutions S and S5 is evaluated. This distance is defined as the least
number of one-move operator changes for transforming S; to Ss. If the distance
is 0, meaning that the two individuals are the same solution, the individuals of
the population are randomly reinitialized. Note that when this happens, we do
not reset the 6 weights of the learning strategy in order to benefit from what the
operator selector has learned since the start of the search.

3 Computational Experiments

This section is dedicated to a computational assessment of the proposed AHEAD
algorithm for solving the k-coloring and the weighted vertex coloring prob-
lems, by making comparisons with state-of-the-art methods. We also discuss
the impact of the different operator selection strategies on the results.

3.1 Experimental Settings

In these experiments, we consider 31 instances for the k-col and 48 instances
for the WVCP, among the most challenging DIMACS benchmark instances and
widely used in the experiments of many recent papers [21,22,28]. 20 independent
runs per method and per instance are carried out for one hour with two CPU
for the HEAD and AHEAD methods (four hours for the WVCP) and two hours
with one CPU for the local search algorithms for the k-col (eight hours for the
WVCP). For each k-col instance, and for each independent run, the smallest
value of k for which the method is able to find a legal solution is reported.

The time spent, in seconds, in the local search during each generation in
HEAD and AHEAD is 0.001%|V| for the k-col and 0.04x|V| for the WVCP, with
|V| being the number of vertices in the graph. These values were chosen following
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tests on a range of values for each problem, which will not be presented here. To
erase the impact of the training time of the neural network, for the versions with
AHEAD, the methods perform as many generations in the memetic algorithm
as the HEAD versions.

The experiments are run on a computer equipped with an Intel Xeon ES
2630, 2.66 GHz processor. All algorithms are coded in C++, compiled and opti-
mized with the g++ 12.1 compiler. For the neural network implementation,
the Pytorch 1.13 C++ library was used. The source code and complete tables
of detailed results are available at https://github.com/Cyril-Grelier/gcp_ahead
and https://github.com/Cyril-Grelier /wvep_ahead.

3.2 Experimental Results for the k-Coloring Problem

In this section, we first analyze the general results obtained for the k-coloring
problem. The different methods tested can be regrouped into three categories:

— The standalone local searches PartialCol (PC) [2] and TabuCol (TC) [15]
(with optimizations from [21]).

— The memetic algorithm HEAD [21] combined with local search operators
PartialCol (version HEAD + PC) and TabuCol (version HEAD + TC).

— The different proposed AHEAD versions with the 6 different operator selec-
tion strategies presented in Sect. 2.2. These versions are called AHEAD + the
name of the selection strategy.

We first present a general comparison between all these methods, followed
by detailed results on the different benchmark instances.

General Comparisons. Tablel displays general performance comparisons
between each pair of methods on the benchmark instances considered in this
work for the k-col. Whenever the mean score of a method in the row for an
instance is better than the mean score of a method in the column, and this
difference is significant (non-parametric Wilcoxon signed rank test with p-value
< 0.001) the method in the row obtains one point. If the method in the row is
better on more instances than the method in the column than the opposite, then
the number of instances is in bold. As an example, we observe in Table 1 that
TabuCol is significantly better on 14 instances when compared with PartialCol,
while PartialCol is only better on 2 instances when compared with TabuCol.
The last three columns of Table 1 gives the number of times a Best Known Score
(BKS) from the literature is found by the method and the number of times the
method reaches the best score and the best mean among the presented methods.

We observe in Table 1 that using the memetic framework HEAD with Partial-
Col or TabuCol (version HEAD + TC, and HEAD + PC) improves the results
over the methods using the corresponding local search alone.

Overall, TabuCol is more effective than PartialCol, that is why HEAD+TC
keeps good results against some versions of AHEAD with less elitist operator
selection such as Random, Roulette or UCB. However, the other versions of
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Table 1. Comparison of each method for the k-col, the value is the number of instances
where the method in the row is significantly better than the method in the column.
The last three columns are a summary of the number of best scores.

EEx =

Sg Eme
/31 %ng—H:dr:dE—i—&chc%E
Instances Eg%@ééo@m<m'§§
SANGE EEELEL (ol
e e

< << <
PartialCol - 213 21212225 811
TabuCol 14 - 112|121 0201||8 14 7
HEAD+PC 8 6/- 10010006 10 7
HEAD+TC 1812120 -(4 21 2 2 2||7 17 15
AHEAD+Random|1711(19 1|- 0 1 1 0 0}|9 17 9
AHEAD+Roulette[17 11{19 1|0 - 0 0 0 0|11 19 12
AHEAD+Deleter (19 15(20 5|8 3 - 5 1 1|(13 24 20
AHEAD+UCB |1911120 1|1 0 0 - 0 0|{10 18 10
AHEAD+Pursuit (19 13|20 3|5 2 0 1 - 0|11 20 14
AHEAD+NN (191220 2({4 0 0 0 0 -||12 23 16

AHEAD, using Deleter, Pursuit and the neural network (NN), obtained overall
better results than the memetic algorithm HEAD+TC without operator selec-
tion. It highlights the interest of dynamically choosing the best operator to apply
for each given instance.

The Random selection policy is less effective in comparison with the other
operator selection strategies, especially against Deleter, Pursuit and NN, which
have a stronger bias on selecting the best operators. Surprisingly, the simplest
but most elitist selection strategy, Deleter, achieves the best results, indicating
that for this problem, once the best operator has been identified for each specific
instance, there is generally no need to change it for the rest of the search.

Detailed Results. Table2 shows, for each instance, the Best Known Score
(BKS) in the literature! with a star if it is optimal, then, for each method,
the best score, the mean score and the average time to reach the best scores
over the 20 executions. Bold values indicate the best scores among the studied
methods. The average score is not shown if equal to the best score. Due to space
limitations, only a selection of methods is shown in the various tables, and not
all instances studied are shown. Complete tables are available on the github
repository.

First, those results confirm that the TabuCol local search is more often
better than PartialCol, but that the latter can give better results for some

! Achieving these BKS for k-col, especially for the largest instances, is a very difficult
task. Some have only been found by few algorithms under particular conditions
(hyperparameter tuning, extended execution times of several days to a month).
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Table 2. Results of the main methods for the GCP.

instance BKS | PartialCol TabuCol HEAD+TC AHEAD+Random | AHEAD+Deleter
best | mean | time | best | mean | time | best | mean | time | best | mean | time | best | mean | time
C2000.5 145 164 |165.2 5313|162 | 162.8 | 4628 | 148 | 149.2| 3330 | 150 | 150.7 | 3101 | 149 | 150.7 | 3152
C2000.9 408 420 |420.8 | 5171 |411 |412.5 4786 405 |406.4 |2328 405 |407.7 2956 | 404 |405.6 2988
C4000.5 259 304 |305.6 | 6690 | 303 | 304.2 | 5567 | 278 | 279.6 | 3580 | 280 |281.6 | 3651 | 279 |280.8 | 3404
DSJC500.1 12 12 128 |12 75 12 86 12 80 12 56
DSJC500.5 47 |50 |50.1 |2227|49 460 |48 819 |48 1258 | 48 850
DSJC500.9 126 | 128 975 126 | 126.3 | 2988 | 126 10271126 | 126.1 | 1379 | 126 632
DSJC1000.1 20 21 1 21 0 21 0 21 1 20 20.9 2391
DSJC1000.5 82 |90 |90.5 |3516|88 1760 |83 |83.3 2290 |83 |83.5 |2372 |83 |83.5 |2511

DSJC1000.9 222 227 228.4 3630|224 |224.9|3345 223 | 224 1616 | 223 | 224.2 | 2734 | 223 | 223.8 | 1589
DSJR500.5 122% 1125 | 126.2 | 1666 | 124 | 127 | 1155|123 |124 1766 | 123 | 124.2 | 2245 | 123 | 123.8 2289

flat300-28_0 28% |28 896 |28 |29.5 322030 |30.8 |1916|28 |28.5 |702 28 304 |5
flat1000_50.0 | 50* |50 44 |50 69 |50 28 |50 8 50 8
flat1000_60.0 | 60* |60 213 |60 233 |60 54 |60 28 60 29

flat1000-76.0 | 76* |89 |89.1 | 2845 86 |87 3096 |82 |82.3 |1905|82 |82.8 |2775 |82 |82.8 |1969
latin_square_10 | 97 | 107 |110.2 | 4875|100 |100.8 | 4377102 |103.7 |93 | 103 |103.8 1996 |99 | 100.7 1729

le450 25¢ 25% |27 69 |26 0 |26 0 |25 (259 1407 |25 |25.3 1022
le450_25d 25% |27 50 |26 0 |26 0 |26 0 25 |25.3 1537
queenll_11 11* |11 |11.9 | 1303 |12 0 12 0 12 0 12 0
queenl1212 | 12*% |13 4 |13 0 |13 0 |13 0 13 1
queen13 13 | 13* |14 20 |14 0 |14 1 |14 1 14 1
queenld 14 | 14% |15 585 |15 20 |15 9 |15 18 |15 16
1250.5 65% |67 134 |66 |67.2 462 65 |66 | 3378/65 |66 | 1638 |66 549
r1000.1¢ 98 |141 [149.1 |61 |134 |155.2|77 |100 101.6 |264 |100 | 101.6|1674 | 100 |101.6 |1621
r1000.5 234|247 |248.1 | 5638 | 244 | 245.6 | 3622 | 246 | 247.6 | 1479 | 246 | 247.4 | 2134 | 245 | 245.5 | 2009
wap0la 41% 42 1088 42 |43 2160 42 137 |42 143 |41 |42 | 1958
wap02a. 40% |41 |41.7 427540 |41.1 |6499 41 15 |41 15 40 |40.8 |1634
wap03a. 43 |44 91 |44 (459 |4342 45 261 | 45 87 43 |443 2387
wap0da. 41 |43 61 |42 |43.1 |4869 43 880 |43 1186 |43 293
wap06a. 40% |41 98 |40 |41.3 |4248 40 909 |40 |40.8 1549 |40 246
wap07a 41 |44 41 |41 423 5046 |42 |42.1 |1771|42 |43 |2526 |42 |42.1 |494
wap08a 40% |43 |43.2 2750 41 |41.5 | 2967 |42 48 42 365 |41 |41.9 | 2146
#BKS 5/31 8/31 7/31 9/31 13/31

#Best 8/31 14/31 17/31 17/31 24/31

#Best Avg 11/31 7/31 15/31 9/31 20/31

instances such as queenl1_11 and can be faster for solving other instances such
as flat300-28_0 or wap03a. It shows to some extent that these two local searches
can be complementary.

Second, we obviously confirm that when TabuCol is integrated within the
HEAD memetic framework and combined with the GPX crossover (version
HEAD +TC), it can generally improve the results significantly, but it does not
improve the results for all instances. For example, for the instances flat300-28_0,
r1000.5, and some wap, it is actually better to use the local search alone for
better intensification. Using crossovers for these instances can actually disrupt
the search too early, preventing the local search from significantly improving its
results. Note that the results of HEAD in [21] can differ from our results with
HEAD+TabuCol using exactly the same operators, because we did not perform
a fine-tuning of the number of iterations spent in local search for each given
instance, unlike it was done in the original article.
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Third, the algorithm AHEAD + Random can find the best results for more
instances than the HEAD+TabuCol version whose choice of operators does not
change during the search. For example, AHEAD + Random finds the optimal
coloring with 28 colors for the instance flat300-28_0. This is due to the fact
that TabuCol is not able to reach the chromatic number of the graph in a short
amount time compared to PartialCol which can reach it systematically more
than three times faster. Therefore, AHEAD 4 Random benefits from having a
chance at each generation to select the right local search for each given instance.

Fourth, from Table 2, we observe that using an elitist strategy in local search
and crossover selection can significantly improve the results compared to the
random selection strategy. In particular, as shown in this table, the version
AHEAD + Deleter can find a new best coloring with k& = 404 for the instance
C2000.9 that has never been reported in the literature. This new best score is
also found by the versions AHEAD + Pursuit and AHEAD + NN. In general,
these versions of AHEAD with elitist operator selection strategies obtain the
best results for a wide variety of instances of different types.

Figure 2 shows the average cumulative selections for each pair of operators,
performed by the different selection criteria for the DSJC500.1 and queen12_12
instances. In the plots, TabuCol and PartialCol selections are indicated by red
and blue lines, respectively, and a higher contrast indicates a more conservative
crossover. When we look at the frequencies of the local search operators selected
by AHEAD, we see that TabuCol is selected most often in comparison with
PartialCol, which is no surprise, as TabuCol is already better on its own for a
greater number of instances. However, when it comes to crossovers, we observe
a balanced choice between the three GPX variants, with a bias toward the more
conservative crossover GPX-9 for geometric graphs (e.g., DSJR500.5) and sparse
graphs (e.g., wap instances), for which local optima are very distant in the search
space, while the GPX crossover is more often preferred for random and dense
graphs (e.g., DSJC1000.9), for which there is often larger backbones of solutions
shared by the high-quality solutions (as shown in [10]).

DSJC500.1 - Random DSJC500.1 - Roulette DSJC500.1 - Deleter DSJC500.1 - UCB o DSIC500.1 - Pursuit DSJC500.1 - NN

4000

cl |
800 — GPX9 + TabuCol 3000

9 + TabuCol
—— GPX9 + PartialCol
500

2000

1000

0 0 ) o L 0
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Iterations Iterations terations terations terations

queen12_12 - Roulette queenl2 12 -Deleter = queenl2 12-UCB queen12 12 - Pursuit queen12_12 - NN

0 o o L 0 0 o
0 1000 2000 3000 0 100 2000 3000 o 1m0 2000 3000 o 1000 2000 3000 o w00 2000 3000 0 1000 2000 3000
terations terations terations terations iterations terations

Fig. 2. Average cumulative selections, along with error bars, for each pair of operators
based on different criteria on the DSJC500.1 and queenl12_12 instances.
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3.3 Experimental Results for WVCP

Now, we analyze the general results obtained for the WVCP. We first present
a general comparison between the methods, followed by detailed results on the
different benchmark instances. The studied methods are the following:

— The local searches, RedLS [29] and ILS-TS [22] (8h runs on 1 CPU).

— The memetic algorithm HEAD [21] with RedLS or ILS-TS (HEAD + RedLS
JILS-TS) and the crossover GPX (4h runs on 2 CPUs).

— The different proposed AHEAD versions with the 6 different operator selec-
tion strategies presented in Sect. 2.2 with the two local searches (RedLS and
ILS-TS) and the three variants of GPX crossovers (4h runs on 2 CPUs).

General Comparisons. As seen in Table 3, using HEAD with RedL.S (HEAD
+ RedLS) improves the results for 26 instances but the standalone local search
RedLsS stays better in 9 instances. On the other hand, for ILS-TS, using the
HEAD framework is better only for 6 instances, while ILS-TS remains better
for 19 instances. We observe that the use of crossovers in combination with the
ILS-TS local search procedure does not improve the results of ILS-TS. This can
be explained by the fact that ILS-T'S is already a method incorporating a strong
perturbation strategy for search diversification, making the use of crossovers
somewhat superfluous. Regarding the results of AHEAD, we confirm what we
have observed for the k-col, even if it’s less pronounced. The AHEAD versions
are more often better than the other methods, and the most elitist operator
selection strategies (Deleter and Pursuit) obtain the best results.

Table 3. Comparison of each method for the WVCP, the value is the number of
instances where the method in the row is significantly better than the method in the
column.

g8 =
RL2E38%z o g
wn|T Bh|EEEDEA], § 8
/48 DB BEeR Rt @ =
Tl T LA E ¢ %
Instances ﬁqQQQQQ<ﬂQm s 8
Sl Sl <SESE|*Te A
SEEEEEES) s

TEEL T2
RedLS 2 10(9 14[9 9 9 9 9 9[[15 24 11
ILS-TS 27 -8 19(36 5 4 1 3|/23 25 21
HEAD+RedLS [2615|- 25/1 100 1 0[[19 19 11
HEAD+ILS-TS |20 6|5 -|0 0000 0/[18 19 13
AHEAD+Random|27 20(10 25/- 0 0 0 0 0]|21 22 19
AHEAD+Roulette|26 20/ 9 26/0 - 0 0 0 0/[22 22 17
AHEAD-Deleter [26 19/ 9 26/3 0 - 0 0 0[/24 28 19
AHEAD+UCB [2620[/9 26/1 10 - 0 0[/23 23 19
AHEAD+Pursuit [26 2311 26(1 0 0 0 - 0|24 26 22
AHEAD+NN [2721(1027/0 1 0 0 0 -|[21 23 19
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Table 4. Results of the best methods for the WVCP.
instance BKS | RedLS ILS-TS HEAD+RedLS AHEAD+Random | AHEAD+Deleter
best |mean |time |best mean |time |best mean |time |best mean |time |best | mean |time

€2000.5 2144|2131 | 2155.7 | 18367 | 2244 | 2264.4 | 6423 | 2244 | 2257.9 | 7453 | 2220 | 2236.8 | 12962 | 2218 | 2236.3 | 1782
C2000.9 5477 | 5439 | 5455.1 | 23137 | 5847 | 5910.1 | 23014 | 5732 | 5748.2 | 12980 | 5732 | 5783.9 | 12491 | 5717 | 5758.8 | 12327
DSJC1000.1 300 303 |306.9 5839 305 |306.2 5819 304 |305.6 |7380 |302 |303.8 9348 |300 |302.2 | 12874
DSJC1000.5 1185|1190 | 1206.9 | 12204 | 1241 | 1267.7 | 21935 | 1225 | 1229.7 | 7011 |1222|1228.2 | 5371 | 1224 |1230.5 | 1476
DSJC1000.9 2836 | 2828 | 2841.8 | 22796 | 3004 | 3035.9 | 25345 | 2909 | 2926.5 | 820 2911 | 2928.7 | 12633 | 2907 | 2926.8 | 2379
DSJC500.1 184 | 187 | 194 702 185 |187.3 | 7107 186 |186.9 6594 |185 |186.5 |10290|184 |185.9 |8022
DSJC500.5 685 | 707 | 7125 27147711 |721.2 (9150 (709 |712.6 (2534 706 |711.5|12516|709 |713.5 |5838
DSJC500.9 1662|1667 | 1671 | 9925 | 1709 1725.3 | 24351 | 1680 | 1683.5 | 4053 | 1678 | 1684.2 | 12644 | 1676 | 1682.8 | 8149
DSJC250.1 127 129 |131.4 56 127 |127.1 |11901 | 127 4516 | 127 3729 | 127 |127.2 |3235
DSJC250.5 392 399 [400.8 2602 392 |393.9 10722395 |396.2 8349 393 395.2 |9592 |392 |396.6 |6028
DSJC250.9 934* 1934 | 935 9679 | 934 935.1 |14740|934 |935.1 |6741 |934 |934.2 | 8097 |934 |935 5011
DSJC125.5gb 240 |243 |252.7 0 240 132 240 |240.9 |4098 |240 222 240 152
DSJC125.5g 71 72 1063 |71 64 71 1609 |71 86 71 104
DSJC125.9¢b | 604* | 604 2 604 125 604 4 604 13 604 12
DSJC125.9g 169* | 169 0 169 320 169 0 169 6 169 9
flat1000_50_0 924 |1152|1165.7 | 6259 |1213|1230.5|570 1181 | 1187.7 | 7544 1179 | 1186.3 | 4428 | 1180 | 1186.8 | 2952
flat1000-60_0 1162 | 1196 | 1204.8 | 1877 | 1247 | 1263.8 | 25765 | 1216 | 1227.2 | 10824 | 1213 | 1223.7 | 11726 | 1217 | 1224.5 | 9840
flat1000-76_0 | 1165 | 1163 |1183.2 | 28084 | 1228 | 1242.2 | 16513 | 1192|1204 |2214 |1187|1203 |10742|1196 1204 | 8938
latin_square_10 | 1480 | 1505 | 1515.3 | 14189 | 1555 | 1575 | 18924 | 1523 | 1532.5 | 11286 | 1510 | 1526.2 | 13987 | 1517 | 1527.8 | 8732
le450_15a 212 213 |215.4 |54 211 [213.6 11684 |212 | 212.8 |6777 |212 |212.8 |8819 |211 | 212.4 |10557
1e450_15b 216 218 [219.9 41 217 |217.1 |10346 | 216 |217 3204 |216 |217.1 |2736 |215 |216.5 11124
1le450-15¢ 275 282 2854 |82 279 |281.7 |16288|277 |279.4 |8360 |277 |278.8 |7220 |278 |279.4 |4788
1le450_15d 272 1277 |280.6 325 275 |277.6 |8456 |274 |276.1 |6004 |274 |275.6 |8759 |273 |275.2 |13299
le450-25a 306 | 306 |306.6 |2881 |306 142 306 161 306 169 306 131
1e450_25b 307*| 307 | 307.6 |95 307 23 307 53 307 28 307 19
1le450_25¢ 342 | 348 |352.8 583 348 | 349.1 |16413|347 |348.1 | 180 346 | 347.8 | 5652 | 346 | 348 588
1le450-25d 330 335 [339.4 232 337 |338.7 14212333 |334.4 5904 |333 |334.2 |6282 |333 |334.2 |9648
queenl0_10 162 | 162 |164.8 865 162 20 162 51 162 32 162 27
queenl0_-10gb |164 | 165 |168.7 4790 | 164 172 164 |164.4 |4850 |164 227 164 314
queenl0_-10g 43*% 143 43.1 12 43 7 43 11 43 7 43 9
queenll_11 172|174 | 178 28766 | 172 6983 | 172 | 172.7 | 5668 |172 |172.1 |3108 |172 2207
queenll_llgb |176 |177 |178.6 |1329 |176 187 176 1583 |176 436 176 396
queenll_1lg 47 47 47.9 669 47 154 47 276 47 144 47 151
queenl2_12 185 | 188 |189.9 |61 185 |185.2 | 13770 |186 |186.3 |6201 |185 |185.6 | 5997 | 185 |185.4 | 7066
queenl2_12gb [191 |192 |197.8 150 191 5019 |191 |191.3 |5174 | 191 1521 191 191.1 | 3380
queenl2_12g 50 50 51.5 986 50 1214 |50 1464 |50 1533 | 50 865
queenl3_13 194 [194 1999 |8 194 |194.8 11188194 |194.2 | 5243 |194 1560 | 194 |194.1 | 1480
queenl4_14 215 218 [223.8 568 215 |216.4 |9862 |216 |216.6 |7956 |215 |216.2 6384 | 214 |215.3 8624
queenl5_15 223 1228 [229.7 5806 |225 |226.5 |15730 224 225.5 |13260 224 |225.1 |10180|224 |225.7 |7200
queenl6_16 234 237 |240.8 17 237 |238.3 |15114|235 |236.4 |913 235 | 236 5610 |235 |236.4 |11836
wap0Ola 545 | 557 | 577 995 547 | 550.1 | 20531 | 552 |559.1 |8178 |549 |553.6 | 14094 549 |552.8 8874
wap02a 538 | 554 |572.1 16183536 |541 21912 | 550 |557.1 |13884|541 |546.1 |7654 |541 |545.5 |12994
wap03a 562 | 569 |575.5 17878 572 |575.5 (22637 577 |579.7 6992 573 |576.3 | 8096 |573 |575.9 | 2944
wap04a 563 | 567 |578.9 13939 567 |570.5 7346 | 573 |575.6 |3152 |570 |573.2 | 1970 |569 |572.5 |13790
wap05a 541 | 542 |543.8 7719 | 542 |542.2 | 11809 | 542 |542.9 |4471 |542 | 543 12056 | 542 | 543.2 | 2772
wap06a 516 | 519 |526.1 1575 | 516 |519.5 | 6264 |519 |520.7 |12180 518 |521 9100 |520 |521.2 |5978
wap07a 555 | 554 | 573 8460 | 565 |569.2 |16299|557 |559.4 |3360 58 |559.8 | 12040 | 557 |559.2 | 12460
wap08a 529 | 536 |543.7 |19557|543 |546.9 |19271|539 |540.8 |7452 |539 | 541.2 | 1800 |538 |540.1 | 10608
#BKS 15/48 23/48 19/48 21/48 24/48

#Best 24/48 25/48 19/48 22/48 28/48

#Best Avg 11/48 21/48 11/48 19/48 19/48

Detailed Results. First, we see in Table 4 that with the help of the eight hours
of computation, RedLS is capable of finding five new scores (underlined score).
ILS-TS is also able to find two new upper bounds with this longer execution time.



Author Proof

14 C. Grelier et al.

The RedLS local search alone remains better on large instances (e.g., C2000,
latin_square and flat) than the different memetic versions using this local search
procedure (HEAD + RedLS, and all AHEAD variants). Contrary to what was
observed for the k-col, this shows that for very large WVCP instances, using
the GPX crossover is not very beneficial. This can be explained by the fact
that for the WVCP, only the maximum weight of each color group affects the
score. Thus, for large instances, many different groupings of vertices are possible
without impacting the score, which generally results in a very high distance
between the two solutions S; and Sy of the population. However, as observed in
[21], the solution quality of an offspring built with the GPX crossover is poorer
(higher fitness) if the individuals are too distant in the search space.

However, for medium-sized instances, such as le450_15a/b and queenl4_14,
the AHEAD memetic framework with an elitist operator selection (AHEAD +
Deleter) significantly improves results and yields three new best upper bounds.

Regarding the operators selected by AHEAD, the two local search operators
RedLS and ILS-TS are almost equally preferred, with a choice depending on the
type of instance. On the other hand, unlike the k-col, the choice of crossover
is almost exclusively oriented towards the most conservative crossover, GPX-9,
particularly in combination with the local search ILS-TS. As mentioned above,
this is due to the large distance between individuals in the population in the
case of the WVCP.

4 Conclusion

The proposed AHEAD (Adaptive HEAD) framework is based on a population
of two individuals and uses learning-driven operator selectors to determine a
pair of local search and crossover to apply during the search process for solv-
ing a given instance of the k-coloring and weight vertex coloring problems. For
both problems, the proposed approach shows advantages over versions without
automatic selection of low-level operators. In the course of these experiments,
we obtained three new best scores for the WVCP with the proposed AHEAD
method, as well as a new best coloring with 404 colors for the very large and
dense graph C2000.9.

The work could be extended by considering a wider variety of complementary
crossover procedures and local searches to be chosen by the high level operator
selection strategy. Future work could also involve coupling the choice of operators
with the setting of critical hyperparameters involved in these operators, such as
the number of local search iterations to be performed at each generation, or the
size of the tabu list.
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