
Monte Carlo Tree Search with Adaptive
Simulation: a Case Study on Weighted Vertex

Coloring

Cyril Grelier, Olivier Goudet, and Jin-Kao Hao?

LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France
{cyril.grelier,olivier.goudet,jin-kao.hao}@univ-angers.fr

Abstract. This work presents a hyper-heuristic approach with online
learning, which combines Monte Carlo Tree Search with multiple local
search operators selected on the fly during the search. The impacts of dif-
ferent operator policies, including proportional bias, one-armed bandit,
and deep learning methods, are investigated. Experiments on well-known
benchmarks of the Weighted Vertex Coloring Problem are conducted to
highlight the advantages and limitations of each dynamic selection strat-
egy.

Keywords: Monte Carlo Tree Search · Local Search · Hyper-heuristic ·

Weighted Vertex Coloring · Learning-driven optimization.

1 Introduction

Given a graph G = (V,E,w) with vertex set V , edge set E = {{u, v}, u, v ∈ V },
and a weight function w : V → R+, assigning a positive weight w(v) to each
node in V , the goal of the Weighted Vertex Coloring Problem (WVCP) is to find
a partition S = {V1, . . . , Vk} of the vertex set V , into k independent subsets Vi
(also called color classes or groups) such that the following function is minimized:

f(S) =

k∑
i=1

max
v∈Vi

w(v). (1)

A set Vi is an independent set if and only if ∀u, v ∈ Vi, {u, v} /∈ E.
The WVCP generalizes the popular NP-hard graph coloring problem, which

corresponds to solving this problem when all weights w(v) are equal for v ∈ V ,
and is therefore itself NP-hard. The WVCP belongs to the larger family of group-
ing problems whose main task is to partition a set of elements into mutually
disjoint subsets such that additional constraints and/or optimization objectives
are satisfied. The WVCP has many practical applications such as matrix decom-
position [23] and batch job scheduling in a multiprocessor environment [22].

In addition to the exact methods for the WVCP, such as [19,10,5], dedicated
heuristics have been proposed in the literature recently, including local search

? Corresponding author

2 Grelier, Goudet and Hao

algorithms [20,23,26,28], and memetic algorithms [12]. These heuristics can pro-
vide approximate solutions of good quality for medium and large instances, which
cannot be solved in a reasonable time by exact methods. However, given the dif-
ficulty of the WVCP, no simple heuristic is able to obtain the best-known results
for all instances of the literature. This can be explained by the fact that these in-
stances have different characteristics (average degree, degree distribution, weight
distribution). Even by fine-tuning the hyperparameters or using an adaptive se-
lection of these parameters (e.g. the algorithm AFISA [26]), it is difficult for a
single heuristic to provide enough flexibility to solve all instances successfully.

One possible way to overcome this difficulty is to find on the fly the best
heuristic to use during the search for a given instance, hyper-heuristics have
been proposed in the literature for this purpose. Hyper-heuristics are search
methods that explore the space formed by low-level heuristics, instead of the
space of direct solutions [3]. We refer the reader to [21,3,7] for an overview of
existing hyper-heuristics proposed in the literature to solve various combinatorial
optimization problems. Specifically, hyper-heuristics have already been used to
solve grouping problems, with applications to scheduling and graph coloring
[24,9], but never to the WVCP to our knowledge.

Most hyper-heuristics used for grouping problems are single-point hyper-
heuristics in the sense that they apply a chosen low-level heuristic to the current
solution at each step of the search before deciding to accept or reject the newly
created solution [9]. However, these iterative hyper-heuristics are prone to get
stuck in local optima, especially when tackling graph coloring problems that are
generally characterized by a rough fitness landscape [2]. This occurs when the
hyper-heuristic does not incorporate efficient low-level components that can be
chosen to diversify the search into another area of the search space. Moreover,
most of the hyper-heuristics proposed in the literature use a high-level strategy
taking into account the gain in fitness obtained by the different low-level compo-
nents (e.g. [11]) but do not take into account the current state of the iteratively
improved solution.

To overcome these two limitations, we propose a hyper-heuristic approach
with online learning, which combines the Monte Carlo tree search (MCTS)
framework proposed in [13] and a high-level learning heuristic selector that
takes into account the raw state of the current solution to be improved dur-
ing the simulation phase of MCTS. This MCTS framework can continuously
learn new promising starting points for a local search heuristic, which could help
an iterative hyper-heuristic to avoid local minima traps.

Note that two previous works [25,1] have also used an MCTS in a hyper-
heuristic for combinatorial optimization problems. In [25], the search space of
low-level heuristics is explored by an MCTS, which searches for the best se-
quence of low-level heuristics to apply to a given solution, but without guaran-
tee of optimality. Unlike this approach, the MCTS used in this work is directly
constructed to explore the tree of legal solutions. Therefore, it has the property
of being able to provide a theoretical guarantee that an optimal solution can
be found if enough time is given to the algorithm. In [1], an MCTS was used

MCTS with adaptive simulation strategy for WVCP 3

to create initial sequences, which are improved in a separate second step by a
hyper-heuristic using a wide variety of local moves, selected by a high-level strat-
egy. In this work, we aim to push further the coupling between the selection by
the MCTS and the choice of the low-level heuristic.

We summarize the contributions of the present paper as follows. First, we
propose a continuous integration between the MCTS, which is used to discover
new starting points and the high-level operator selection strategy, which takes
as input this starting point to make its choice. The score obtained by a given
low-level heuristic is used to update both the MCTS learning strategy and the
operator selector. Secondly, we investigate the impact of different online learning
strategies, including a neural network taking into account not only the past scores
of the low-level components as in [6], but also the raw state of the initiating
solution to be improved by a local search heuristic. This deep neural network
is made invariant by permuting the color groups with the deep set architecture
[29], which is a desirable property for handling the WVCP.

2 Related works on the WVCP

Most of the best heuristics for the WVCP are local search procedures and con-
structive algorithms. This section presents a review of these methods.

2.1 Local search algorithms

We described the four most effective local search heuristics for the WVCP: TW
[13], AFISA [26], RedLS [28] and ILS-TS [20]. These four heuristics will consti-
tute the set of low-level heuristics that we will manipulate in the hyper-heuristic
proposed in this paper.

Legal tabu search. TabuWeight (TW) [13] is inspired by the classical TabuCol
algorithm for the GCP [14]. TW explores the space of legal colorings. It uses
the one-move operator (which displaces a vertex from its color group to another
color group) without creating conflicts. The best move not forbidden by the tabu
list is applied at each iteration. The move is then added to the tabu list and is
forbidden for the next tt iterations, tt being a parameter called tabu tenure.

Adaptive feasible and infeasible tabu search. AFISA [26] is a tabu search algo-
rithm using the one-move operator and explores both the legal and illegal search
spaces. 1 AFISA uses an adaptive coefficient to oscillate between legal and illegal
solutions during the search.

Local search with selection rules. RedLS [28] explores both the illegal and legal
search spaces. It uses the configuration checking strategy [4] to avoid cycling in
neighborhoods solutions with the one-move operator. When the solution is legal,
RedLS moves all the heaviest vertices from a color group to other colors to lower
the WVCP score. Then it resolves the conflicts with different selection rules.
1 A solution is said illegal if two adjacent vertices share the same color.

4 Grelier, Goudet and Hao

Iterated local search with tabu search. ILSTS [20] explores both the legal and
partial search spaces. From a complete solution, ILSTS iteratively performs two
steps: (i) it removes the heaviest vertices from the several color groups and places
them in the set of uncolored vertices; (ii) it minimizes the score f(S) by applying
different variants of the one-move operator and a grenade operator until the set
of uncolored vertices becomes empty.

2.2 Constructive heuristics

Two constructive heuristics have been proposed for the WVCP. These heuristics
start with an empty or a partial solution and then color the nodes one by one
until a complete legal solution is obtained. They have been used in combination
with local search heuristics.

Reactive Greedy Randomized Adaptive Search Procedure. RGRASP [23] is an
algorithm that iterates over two steps. First, it initializes a solution with a greedy
algorithm. Secondly, it improves the solution with a local search procedure. At
each iteration, it randomly removes the color of a part of the vertices and starts
again at the first step. The choice of the vertices to recolor is managed by an
adaptive parameter that evolves according to the quality of the solution.

Monte Carlo Tree Search Algorithm. The MCTS algorithm proposed in [13] is
a constructive heuristic for the WVCP, where a search tree is built to explore
the partial and legal search space. The search tree is built incrementally and
asymmetrically. For each iteration of the MCTS, a selection strategy balancing
exploration and exploitation is used to construct a partial solution that is further
completed and improved by a simulation strategy. To build this partial solution,
the vertices of the graph are considered in a predefined order (they are sorted
by decreasing order of their weight, then by degree) and each uncolored vertex
u ∈ U is assigned a particular color i. Such a move is denoted as < u,U, Vi > and
applying this move to a partial solution S being constructed gives a new solution
S ⊕ < u,U, Vi >. After the simulation phase, a legal solution is obtained and
the search tree is updated with the WVCP score of this solution. In [13], the
authors investigated the impact of various local search procedures used during
this simulation phase of this MCTS algorithm, instead of the classical random
simulation which performs badly for this problem. It appears from this study
that the choice of the local search procedure has an important impact which
depends on the type of instance considered.

To avoid catastrophic failure and to make the algorithm more robust to
each specific instance, we propose to use this same MCTS framework, but to
select dynamically the local search procedure during the search in a set O =
{o1, . . . , od} of d different local search heuristics. In the proposed framework, the
choice of the local search strategy may depend on the raw state of the initiating
solution built by the MCTS at each iteration of the algorithm.

MCTS with adaptive simulation strategy for WVCP 5

3 MCTS with adaptive simulation strategy

This section presents the general framework of the adaptive selection of local
search operators combined with the MCTS algorithm presented in [13].

3.1 Main scheme

The proposed hyper-heuristic approach is detailed in Algorithm 1. It takes as
input a weighted graph G = (V,E,w), a set of local search operators O =
{o1, . . . , od} and a high-level selection strategy πθ : Ω → O taking as input a
complete and legal solution S in the feasible space Ω (Ω n’est pas defini, dont
on precise ici sa nature.) and giving in output a local search operator o ∈ O to
apply to S.

The selection strategy πθ is parametrized by a vector of parameters θ ini-
tialized at random at the beginning of the search. Then the algorithm repeats
a loop (iteration) until a cutoff time limit is met. Each iteration of the MCTS
involves the execution of five steps:2

1. Selection: starting from the root node of the tree, the most promising chil-
dren nodes are iteratively selected until a leaf node is reached. The selection
of a child node at each level corresponds to the choice of a color for the
next vertex of the graph3. The most promising node is selected based on
an exploitation/exploration trade-off UCT (Upper Confidence bounds for
Trees).

2. Expansion: the MCTS tree grows by adding a new child node to the leaf
node reached during the selection phase.

3. Adaptive Simulation: the current partial solution is completed with greedy
legal moves to obtain a complete solution S. Then the selected operator
o = πθ(S) is applied to the current solution S to improve it. This leads
to a new solution S′ and a new learning example (S, o, r), and the reward
r = −f(S′) is stored in a database D. Every nb iterations, the selection
strategy is learned online on this database D.

4. Update: after the simulation, the average score and the number of visits of
each node on the explored branch are updated.

5. Pruning: if a new best score is found, some branches of the MCTS tree may
be pruned if it is not possible to improve the best current score with it.

The fact that symmetries are cut in the search tree by restricting the set
of legal moves considered during each step 1 and 2, and that pruning rules are
applied in step 5, allows the whole tree to be explored in a reasonable time for
small instances. This particularity of the algorithm allows to provide proof of
optimality for such instances. We refer the reader to [13] for more details on

2 One notices that compared to the MCTS method from [13], only the simulation
phase (step 3) changes.

3 The vertices are considered in the decreasing order of their weight then of their
degree.

6 Grelier, Goudet and Hao

Algorithm 1 MCTS with adaptive simulation strategy

1: Input: Weighted graph G = (V,E,w), O a set of local search operators and πθ a
selection strategy.

2: Output: The best legal coloring S∗ found
3: S∗ = ∅ and f(S∗) = MaxInt
4: D = ∅.
5:
6: while stop condition is not met do
7: C ← R . Current node corresponding to the root node of the tree
8: S ← {V1, U} with V1 = {v1} and U = V \V1 . first vertex in first color group
9:

10: /* Step 1 - Selection */
11: while C is not a leaf do
12: C ← select best child(C) with legal move < u,U, Vi >
13: S ← S ⊕ < u,U, Vi >
14: end while
15:
16: /* Step 2 - Expansion */
17: if C has a potential child, not yet open then
18: C ← open first child not open(C) with legal move < u,U, Vi >
19: S ← S ⊕ < u,U, Vi >
20: end if
21:
22: /* Step 3 - Adaptive simulation strategy */
23: S ← greedy(S) . Complete current solution with a greedy algorithm
24: o = πθ(S) . Select a local search operator
25: S′ ← o(S) . Improve the solution with the selected operator.
26: D ← D ∪ (S, o,−f(S′)) . Store a learning example in the database.
27: θ ← learning(D, θ) . Online learning of the adaptive selection strategy
28:
29: /* Step 4 - Update */
30: while C 6= R do
31: update(C,f(S’))
32: C ← parent(C)
33: end while
34: if f(S′) < f(S∗) then
35: S∗ ← S′

36: end if
37:
38: /* Step 5 - Pruning */
39: apply pruning rules
40:
41: end while
42: return S∗

the different steps 1, 2, 4, and 5 of this algorithm. In what follows, only step
3, with the adaptive simulation strategy written in bold in Algorithm 1, will be

MCTS with adaptive simulation strategy for WVCP 7

described in detail. The source code of the algorithm presented in this paper will
be made publicly available at the url https://github.com/xxxx.

3.2 Adaptive simulation strategy framework

As shown in [13], no simulation strategy dominates the others for the WVCP,
and some operators are more successful for some types of instances than others.

Dynamic operator selection. To choose the best possible local search operator
during the search, a high-level strategy πθ automatically selects an operator
o = πθ(S) in O to be applied to the current solution S. Note that the choice of
this operator may depend on the solution S to be improved. The set O of low-
level heuristic components considered for the simulation strategy are the four
local search procedures presented in Section 2.1, namely TW, AFISA, RedLS,
and ILS-TS. The different high-level strategies πθ used in this work will be
presented in Section 4.

Collecting learning examples. Even if some of these local search operators o
make transitions between different search spaces, it always returns the best legal
solution (with the smallest WVCP score) encountered during the search denoted
as S′ = o(S). According to this new solution found, a new learning example
(S, o, r), associated with the reward r = −f(S′), is stored in a database D.
The reward r is negative because the WVCP is a minimization problem. One
notices that in the literature on hyper-heuristics, the reward of a given operator
is often proportional to f(S)− f(S′) (for a minimization problem), namely the
difference between the score before and after the search (see for example [11]
and [6]). However, in our algorithm, we experimentally found that is is better
that this reward does not depend on the score of the solution S from which
the local search starts as it may introduce some noise in the learning process.
Indeed, the MCTS can produce solutions of different quality at each iteration
and if the score of the solution S from which the local search starts is taken into
account in the evaluation of the reward, operators starting from an already good
solution (low f(S) value) will be at a disadvantage compared to those starting
from a bad solution (high f(S) value), as it is comparatively easier to improve
a solution of poor quality than a solution that is already of good quality.

Online learning of the high level operator selector. Every nb iterations of the
MCTS, the policy πθ is trained on the database D and the set of its parameters
θ is updated. The database D is modeled as a queue of size N corresponding to
the last N examples obtained during the past iterations. This queue of limited
size avoids overloading the memory of the device, but also allows to better adapt
to the potential variations of the operators’ results, in case some operators are
better at the beginning of the search than at the end.

https://github.com/xxxx

8 Grelier, Goudet and Hao

4 Operator selectors

We investigate the impact of five different operator selection policies πθ of differ-
ent level of complexity: a deep neural network, three fitness-based criteria and
one baseline random selector, where each operator has 1

|O| chance to be selected.

4.1 Neural network selector

In this case, the function πθ : Ω → O, is modeled by a deep neural network,
parametrized by a vector θ (initialized at random at the beginning).

This neural network πθ takes as input a coloring S as a set of k binary vectors
vj of size n, S = {v1, . . . ,vk}, where each vj indicates the vertices belonging to
the color group j. From such an entry the neural network outputs a vector with
|O| values in R corresponding to the expected reward of each operator o ∈ O.
Then, with a 90% chance, the operator associated with the maximum expected
reward is selected. We still keep a 10% chance to select an operator at random,
to ensure a minimum of diversity in the operator selection (exploration).

Using the deep set architecture [29,18,12], the output of this neural network
is made invariant by the permutation of the color groups in S, so that the neural
network selector will take the same decision for two input colors S and Sσ which
are equivalent up to color group permutation σ. Specifically, for any permutation
σ of the input color groups we have

πθ(vσ(1), . . . ,vσ(k)) = πθ(v1, . . . ,vk). (2)

For a coloring S = {v1, . . . ,vk}, the color group invariant network πθ is
defined as

πθ(S) =
1

k

k∑
i=1

(φθP ◦ φθP−1
◦ · · · ◦ φθ0(S))i, (3)

where each φθj is a permutation invariant function from Rk×lj−1 to Rk×lj with
lj being the layer sizes. Note that we have lj−1 = |V | for the first layer and
lj−1 = |V | and lj = |O| for the last layer. See [18] for more details on the
permutation invariant function φθj .

In this work, we use a neural network with two hidden layers of size h1 =

|V | and h2 = |V |+|O|
2 , and a non-linear activation function defined as µ(x) =

max(0.2× x, x) (LeakyReLU).
During this training phase, each learning example (S, o, r) of the database D

is converted into a supervised learning example (X, y), with X an input matrix
of size k × |V | corresponding to the set of k vectors S = {v1, . . . ,vk}, and
y is a real vector of size |O| (number of candidate operators), such that y is
initialized to the value πθ(X) for each operator and then its value y[o] for the
chosen operator o is replaced by the expected reward r: y[o] = r.

Every nb = 10 iterations, this neural network is trained with the average
mean square error loss on the |O| outputs (supervised learning) on the dataset
D during 15 epochs with Adam optimizer [16] and learning rate 0.001.

MCTS with adaptive simulation strategy for WVCP 9

4.2 Classic fitness-based selectors

We compare the neural network selector above with three basic selectors, which
do not take as input the raw solution to make their choice. These three selectors
are two criteria based on a proportional bias (roulette wheel and pursuit) and
one criteria based on the one-arm bandit method. These three criteria have
extensively been used in the literature of hyperheuristics (e.g. [27,17,15,8,11]).

For these three operators, the reward r of each training example (S, o, r) is
normalized between 0 and 1 over the sliding window consisting of the last N
examples stored in the database D, 0 being the worst value obtained during the
N last iterations (corresponding to the highest value of the fitness f(S′)) and 1
being the best value. This normalized average reward computed on this sliding
window and associated to an operator o is written ro. no denotes the number of
times the operator o have been selected during the last N iterations.

Adaptive roulette wheel and pursuit For these two probability based strate-
gies inspired from [11], πθ is a random procedure driven by a vector of |O| pa-
rameters θ = [p1, . . . , p|O|], such that pi corresponds to the probability that the

operator i is chosen this turn. We have
∑|O|
i=1 pi = 1. In the beginning, all the

probabilities are set to equal value. Therefore, pi = 1
|O| , for i = 1, . . . , |O|.

The more an operator o achieves good rewards ro, the more its associated
probability pi increases and the more it is chosen in the following iterations.

Adaptive roulette wheel. In this strategy, the probabilities po for o = 1, . . . , |O|
are updated at each iteration according to the formula

po = pmin + (1− |O| ∗ pmin) ∗ ro∑|O|
o′ ro′

,

where pmin is the minimum selection probability for each operator (which is set
to a strictly positive value to ensure a minimum level of exploration). It is a
hyperparameter of the methods set to the value of 1

5×|O| in this work.

Pursuit. In this strategy, the probabilities are updated during the learning
process as {

po∗ = po∗ + β(pmax − po∗)
po = po + β(pmin − po),

(4)

where o∗ is the index of the best operator on the sliding window, pmin = 1
5×|O| ,

pmax = 1 − (|O| − 1) ∗ pmin and β = 0.7 is a coefficient introduced to control
this winner-take-all strategy.

Note that unlike the adaptive roulette strategy, which gives more balanced
chances to all low-level operators, the Pursuit strategy is more elitist as it gives
more chances to the best strategy applied in the previous iterations.

10 Grelier, Goudet and Hao

One-arm bandit This policy πθ is based on the one-arm bandit method. At
each iteration, according to the UCB (Upper Confidence Bound) formula, the

operator with the highest score so = ro + c ∗
√

2∗log |D|
no+1 is selected, where c is a

hyperparameter set to the value of 1.

5 Experimentation

This section presents experiments to assess the different adaptive simulation
strategies.

5.1 Experimental settings and benchmark instances

We consider the 188 WVCP benchmark instances in the literature. These in-
stances come from various problems, 35 pxx instances and 30 rxx instances from
matrix decomposition [23] and 123 from DIMACS/COLOR competitions [26].

Among these instances, 124 have a known optimal score. Therefore, when
evaluating a given method on such an instance, we stop it when the optimal
score is reached. We perform 20 independent runs of each method to solve each
instance on a computer equipped with Intel Xeon ES 2630, 2,66 GHz CPU.
The time limit for each local search algorithm was one hour. For the combined
methods, MCTS with local search, with and without adaptive selection, a time
limit of one hour was set for local search, in order to compare all methods with
the same overall time spent in the local search solvers. At each iteration of
the MCTS algorithm, the time allowed in a local search (during the simulation
phase) is set to |V | ∗ 0.02 seconds.

The algorithm is coded in C++, compiled and optimized with a g++ 12.1
compiler. The source code is available at https://github.com/xxx.

In the following, when a method is said to be better than another on a given
instance, it means that the difference between the average scores computed over
20 runs is in favor of the first method, and that this difference is significant
(t-test with a p-value of 0.001).

5.2 Adaptive operator selection during the search

Figure 1 shows the mean of the cumulative selection of each operator with error
bars during the 20 runs on four difficult instances for each criterion: Random,
Roulette wheel, Pursuit, One-armed Bandit (UCB), and Neural network. The
four local search algorithms that can be selected at each iteration of the MCTS
(see Section 2.1) are TW (dash-dotted line in light blue), ILST-TS (solid line in
red), RedLS (dashed line in green) and AFISA (dotted line in purple).

We first observe that during the first 20 iterations of the algorithm the choices
made by the various high-level strategies are almost random. It corresponds to
the time spent collecting enough examples to learn.

Figure 1 shows that it is not always the same strategy that is favored for the
different instances. For example, the method TW is preferred for the instance

https://github.com/xxx

MCTS with adaptive simulation strategy for WVCP 11

Fig. 1. Each plot represents the mean of the cumulative selection of operators for one
criterion based on the 20 runs on one instance, with error bar. One line per instance
(4 different instances), one column per adaptive method.

C2000.5, RedLS for DSJC1000.5 and ILSTS for le450 25b. The small error bars
show that the selection is generally consistent over the different runs, except for
wap08a for which the different strategies oscillate a lot between the ReldLS and
ILSTS methods (which are the two best performing methods for this instance
[28,20]) and thus for this instance the cumulative selection can vary a lot from
one run to another. These curves highlight that the different operator selectors
(except the Random selector) are in general able to identify the best performing
method for each given instance.

One can observe different trends in the selection of operators depending on
the policy. First, the random selection proceeds as expected and we observe that

12 Grelier, Goudet and Hao

the average cumulative selection numbers are almost equal for all operators at
different time steps. Roulette Wheel still keeps a lot of diversity in the selection
of the different operators but learns a bias toward the best methods during the
search. The UCB strategy behaves much like the Roulette wheel strategy. Note
that a lower exploration vs. exploitation coefficient would reduce the number of
times the worst operators are selected. The Pursuit and Neural network strate-
gies have similar behaviors: in general the best operators for a given instance are
selected in priority, the other ones are picked randomly. These two criteria are
more elitists than the others.

5.3 Performance comparisons on the different benchmark instances

Table 1 displays performance comparisons between each pair of methods on
the 188 benchmark instances considered in this work. The different types of
methods are (i) the four standalone local search solvers AFISA, TW, RedLS,
and ILSTS; (ii) the MCTS versions with a fixed local search solver used for
simulation: MCTS+AFISA, MCTS+TW, MCTS+RedLS, and MCTS+ILSTS;
(iii) the MCTS versions with adaptive simulation strategies: Random, Roulette
Wheel, Pursuit, UCB, and Neural network.

The MCTS combined with a local search solver improves the results of the
local search alone except for ILSTS. Among the different MCTS+LS versions,
MCTS+RedLS is the most efficient.

Looking at the adaptive selection strategy, we observe that the random strat-
egy always performed the worst compared to the other adaptive strategies. This
highlights the relevance of dynamically learning the best strategy for each given
instance during the search.

When comparing the different adaptive strategies, it appears that the meth-
ods Roulette wheel and UCB obtained almost the same results, and are signifi-
cantly better than the random strategy. The best performing strategies among
all the compared strategies are Pursuit and Neural network. These methods are
the most elitist. This indicates that it is beneficial to identify rapidly which
method is efficient for each given instance and thus favor more intensification in
the choice of the low-level heuristics to use at each iteration of the algorithm.

In general, although adaptive selection with the neural network performs well,
a comparative advantage over the more basic Pursuit method does not appear
in these experiments. There seems to be no obvious advantage to choosing an
operator depending on the raw state of the solution from which the search begins.
A simple fitness-based selection strategy can be just as effective as with more
information in this context.

Table 5.3 displays more detailed results for several methods tested in this
work. Column 1 indicates the name of the instance. Due to space limitation,
we show here the results for a set of 20 instances (over 188) of different types:
size of the graph |V | ranging from 125 (instance DSJC125.5gb) to 2000 (in-
stance C2000.5), degree ranging from 0.1 (instance DSJC250.1) to 0.9 (instance
DSJC250.9), as well as different weight and degree distributions. Column 2 shows
the best-known score (BKS) for each given instance reported in the literature.

MCTS with adaptive simulation strategy for WVCP 13

Table 1. Comparison of all local search solvers and MCTS variants with and with-
out adaptive selection. Each value corresponds to the number of instances where the
row method is significantly better than the column method over the 188 benchmark
instances considered (t-test with a p-value of 0.001). A number is written in bold if the
number of instances is higher for the method in the row.

A
F

IS
A

M
C

T
S
+

A
F

IS
A

T
W

M
C

T
S
+

T
W

R
ed

L
S

M
C

T
S
+

R
ed

L
S

IL
S
T

S

M
C

T
S
+

IL
S
T

S

R
a
n
d
o
m

R
o
u
le

tt
e

W
h
ee

l

P
u
rs

u
it

U
C

B

N
eu

ra
l

n
et

w
o
rk

AFISA - 38 45 16 39 0 9 14 0 0 0 0 0
MCTS+AFISA 45 - 59 8 55 0 0 0 0 0 0 0 0

TabuWeight 43 41 - 25 31 2 18 22 2 2 2 2 2
MCTS+TabuWeight 73 73 86 - 71 5 10 19 0 0 0 0 0

RedLS 46 43 52 30 - 14 22 25 15 15 15 15 15
MCTS+RedLS 104 84 111 72 95 - 38 42 20 4 2 4 4

ILSTS 90 83 93 60 82 15 - 31 3 4 4 2 3
MCTS+ILSTS 84 82 90 52 78 13 0 - 1 1 0 0 0

Random 105 84 109 76 93 13 35 40 - 0 0 0 1
Roulette Wheel 105 84 112 79 95 14 38 41 5 - 0 0 0

Pursuit 105 84 112 79 95 16 38 41 12 0 - 1 0
UCB 105 84 112 79 94 14 37 42 5 0 1 - 0

Neural network 105 84 112 79 95 15 38 41 12 2 0 0 -

A score in bold in this column indicates that the score has been proven optimal.
Note that some of these best-known scores have been obtained under specific
and relax conditions (computation time of more than one day and parallel com-
putation on GPU device), while the results reported here are reached on a single
CPU and with a time limit of one hour of local search. Column 3-26 display the
results for one part of the different methods compared in this work. For the sake
of space, the results of the versions AFISA, TW, MCTS+AFISA, MCTS+TW,
and MCTS+ILSTS are not reported here. For each method are displayed the
best and the average scores obtained over 20 runs, and the time spent in seconds
to obtain the best scores.

The detailed results for all the 188 instances reached by all the different
methods will be available at https://github.com/xxx. The last lines of this
Table 5.3 summarize the results obtained by all methods for all the 188 instances:
(1) ”# BKS” is the number of times a method finds the best know score of the
literature on each given instance, (2) ”# best average” is the number of times
the method gets the best average score compared to the other methods. We first
observe that the two best local search solvers RedLS and ILSTS perform well
but not for the same type of instance. More specifically, the RedLS algorithm
is better for large instances such as DSJC1000.5 and C2000.5, while ILSTS is
better for smaller instances (DSJC250.1, DSJC250.5, and rxx instances). This

https://github.com/xxx

14 Grelier, Goudet and Hao

shows that these methods can be complementary and that it may be beneficial
to choose the right one on the fly for a given instance.

Secondly, we observe that the combination of the MCTS framework with
e.g. the RedLS method (MCTS + RedLS version) improves the average results
comparison to the RedLS solver alone for many instances, but not for the largest
ones like DSJC1000.5 and C2000.5. This can be explained by the fact that the
search space is very large for these two instances, and in this case it seems more
advantageous to favor intensification in a limited area of the search space to get
good results, rather than favoring more diversity with multiple restarts but with
less time spent in different areas of the search space.

Thirdly, it appears that the two MCTS versions with adaptive simulation,
such as Pursuit and Neural network, reach the largest number of BKS over the
whole set of 188 instances, with good results for a wide variety of instances (such
as DSJC250 X, DSJC500 X, le450 xx, and rxx instances).

instance BKS
RedLS MCTS+RedLS ILSTS Random Roulette Wheel Pursuit UCB Neural network

best avg t(s) best avg t(s) best avg t(s) best avg t(s) best avg t(s) best avg t(s) best avg t(s) best avg t(s)

DSJC125.5gb 240 245 260.5 0 241 241 906.8 240 241 1160 240 240.9 2477 240 240.7 2042.1 240 240.6 2073.4 240 240.9 1666.5 240 240.6 2120.1
DSJC250.1 127 130 131.6 4.2 127 127.8 2187 130 131.9 1361.3 127 128.5 1494 127 128 2154 127 128 1830 127 128.2 1598 127 127.8 2418.8
DSJC250.5 392 398 401.4 248 396 398.5 1980 398 408.4 3591 398 400.2 2046 397 399.1 4050 397 399.2 894 396 399.1 822 397 398.7 1238
DSJC250.9 934 934 935.8 1039 935 936.8 144 936 944.9 3214 937 938.4 2988 935 937.9 3234 936 937.2 822 937 937.9 1932 936 937.4 2728
DSJC500.1 184 187 202.2 1448 188 188.9 777.3 199 202.2 2174 189 189.7 1133 187 188.9 3124 188 188.8 1727 187 189.1 539 188 188.8 2672.6
DSJR500.1 169 171 184.5 0 169 169 222 169 169 0.9 169 169 19.2 169 169 18.8 169 169 13.8 169 169 21 169 169 15.9
DSJC1000.5 1185 1201 1215.7 709 1275 1283 924 1349 1377.1 2922 1280 1292.8 2457 1276 1286 3171 1272 1283.6 903 1276 1285.7 2688 1275 1282.7 3671

C2000.5 2144 2175 2196.7 1624 2494 2508.8 2665 2459 2501.6 3365 2456 2463.8 1640 2439 2453.3 3567 2439 2453.1 1148 2438 2450.8 574 2441 2452.1 4529.5
GEOM120 72 72 75.2 0 72 72 12.4 72 72 0.1 72 72 5.5 72 72 4.2 72 72 4.5 72 72 4.3 72 72 3.7
le450 15a 212 214 236.3 604 213 214 2578.5 222 225.9 967 214 214.8 1188 213 214.4 126 213 214 1278 213 214.4 2043 213 214 1095.7
le450 15b 216 218 225.6 105 217 217.9 2700 225 227.7 2341.5 218 218.1 967.3 217 217.9 1395 217 217.8 2106 217 217.9 1953 217 217.8 1743.3
le450 25a 306 306 307.4 223.2 306 306 220.2 306 307.6 1743.7 306 306.3 771.2 306 306.1 663.5 306 306 590.1 306 306 710.1 306 306 1012.8
le450 25b 307 307 313.4 130.3 307 307 235.6 307 307.1 1444.1 307 307.1 688.9 307 307 610.8 307 307.1 609.4 307 307 988 307 307 771.5

p42 2466 2466 2522.5 0 2466 2466 109.5 2466 2466 16.2 2466 2466 111.5 2466 2466 76.2 2466 2466 62 2466 2466 55 2466 2466 63
queen15 15 223 227 229.9 1110 225 226.6 460 233 237.1 2493 225 227.4 480 226 226.9 2241 225 226.4 2196.2 226 227.2 1812.5 226 226.9 2203.8

r28 9407 9410 9563 126 9407 9427 1917.5 9407 9407 55.8 9407 9407 172.9 9407 9407 155.9 9407 9407 101.5 9407 9407 133.4 9407 9407 223.4
r29 8693 8696 8817.6 2 8693 8693 972.9 8693 8693 206.8 8693 8693.2 585.5 8693 8693 714 8693 8693 403.1 8693 8693 459.4 8693 8693 590.4
r30 9816 9836 9988.2 4 9816 9823 2827 9816 9816 20.1 9816 9816 79.6 9816 9816 78.8 9816 9816 82.2 9816 9816 90.5 9816 9816 112.5

wap07a 555 729 745.7 0 574 644.9 175 627 636.8 1942 574 629.8 1575 640 644 3290 637 643.2 1435 584 640 490 578 639.2 1129
wap08a 529 537 614 2257 549 551.3 2376 600 614.2 2563 551 554.2 432 551 553.3 1332 551 556.6 756 551 553.8 2124 551 553.5 3956.2

BKS 112/188 153/188 151/188 154/188 155/188 156/188 156/188 157/188
best average 46/188 144/188 141/188 139/188 142/188 155/188 146/188 152/188

Table 2. Part of the table reporting detailed results of the different methods for each
instance of the benchmarks. For the sake of space, the results of the methods AFISA,
TW, MCTS+AFISA, MCTS+TabuWeight, and MCTS+ILSTS are not reported here,
and only the results for 20 instances over 188 are shown.

6 Conclusions

A Monte Carlo Tree Search framework with adaptive simulation strategy was
presented and tested on the Weighted Graph Coloring Problem. Different high-
level operator selectors have been introduced in this work.

The results show that the MCTS versions with adaptive operator selection
reach the highest number of best-known scores for the set of 188 benchmark
instances of the literature compared to the state-of-the-art methods in one hour
of computation time on a CPU (except compared to the DLMCOL algorithm
[12] which uses a GPU and was run with an extended computation time).

Analysis of the operator selections during the search for each particular in-
stance shows that, in general, the choice of operators does not change during

MCTS with adaptive simulation strategy for WVCP 15

the search. In fact, once the best solver for each instance has been identified, it
is usually still chosen for the rest of the search. This lack of variation during the
search may be explained by the fact that for a given instance, there is usually
a dominant solver and we do not observe complementarity in the use of the dif-
ferent operators during the search for this problem. This may explain why the
neural network selector taking into account the raw state of the current solution
does not bring better results than a more basic fitness-based selector such as the
Pursuit strategy.

A future work would be to introduce this new neural network operator selec-
tion strategy into a memetic algorithm for graph coloring problems where the
different operators selected can be more complementary during the search (e.g.
local search and crossover operators).

Acknowledgment

We would like to thank Dr. Wen Sun [26], Dr. Yiyuan Wang, [28] and Pr.
Bruno Nogueira [20] for sharing their codes. This work was granted access to
the HPC resources of IDRIS (Grant No. 2020-A0090611887, 2022-A0130611887)
from GENCI and the Centre Régional de Calcul Intensif des Pays de la Loire
(CCIPL).

References

1. Asta, S., Karapetyan, D., Kheiri, A., Özcan, E., Parkes, A.J.: Combining monte-
carlo and hyper-heuristic methods for the multi-mode resource-constrained multi-
project scheduling problem. Information Sciences 373, 476–498 (2016)

2. Bouziri, H., Mellouli, K., Talbi, E.G.: The k-coloring fitness landscape. Journal of
Combinatorial Optimization 21(3), 306–329 (2011)

3. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu,
R.: Hyper-heuristics: A survey of the state of the art. Journal of the Operational
Research Society 64(12), 1695–1724 (2013)

4. Cai, S., Su, K., Sattar, A.: Local search with edge weighting and configuration
checking heuristics for minimum vertex cover. Artificial Intelligence 175(9), 1672–
1696 (2011)

5. Cornaz, D., Furini, F., Malaguti, E.: Solving vertex coloring problems as maximum
weight stable set problems. Discrete Applied Mathematics 217, 151–162 (Jan 2017)

6. Dantas, A., Rego, A.F.d., Pozo, A.: Using deep q-network for selection hyper-
heuristics. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence Companion. pp. 1488–1492 (2021)

7. Drake, J.H., Kheiri, A., Özcan, E., Burke, E.K.: Recent advances in selection hyper-
heuristics. European Journal of Operational Research 285(2), 405–428 (2020)

8. Eiben, A.E., Smit, S.K.: Evolutionary algorithm parameters and methods to tune
them. In: Autonomous Search, pp. 15–36. Springer

9. Elhag, A., Özcan, E.: A grouping hyper-heuristic framework: Application on graph
colouring. Expert Systems with Applications 42(13), 5491–5507 (2015)

10. Furini, F., Malaguti, E.: Exact weighted vertex coloring via branch-and-price. Dis-
crete Optimization 9(2), 130–136 (2012)

16 Grelier, Goudet and Hao

11. Goëffon, A., Lardeux, F., Saubion, F.: Simulating non-stationary operators in
search algorithms. Applied Soft Computing 38, 257–268 (Jan 2016)

12. Goudet, O., Grelier, C., Hao, J.K.: A deep learning guided memetic framework for
graph coloring problems. Knowledge-Based Systems 258, 109986 (2022)

13. Grelier, C., Goudet, O., Hao, J.K.: On monte carlo tree search for weighted ver-
tex coloring. In: Evolutionary Computation in Combinatorial Optimization. p.
1–16. Lecture Notes in Computer Science, Springer International Publishing, Cham
(2022)

14. Hertz, A., Werra, D.: Werra, d.: Using tabu search techniques for graph coloring.
computing 39, 345-351. Computing 39 (Dec 1987)

15. Hoos, H.H.: Automated algorithm configuration and parameter tuning. In: Au-
tonomous Search, pp. 37–71. Springer

16. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

17. Lobo, F., Lima, C.F., Michalewicz, Z.: Parameter setting in evolutionary algo-
rithms, vol. 54. Springer Science & Business Media (2007)

18. Lucas, T., Tallec, C., Ollivier, Y., Verbeek, J.: Mixed batches and symmetric dis-
criminators for gan training. In: International Conference on Machine Learning.
pp. 2844–2853 (2018)

19. Malaguti, E., Monaci, M., Toth, P.: Models and heuristic algorithms for a weighted
vertex coloring problem. Journal of Heuristics 15(5), 503–526 (2009)

20. Nogueira, B., Tavares, E., Maciel, P.: Iterated local search with tabu search for the
weighted vertex coloring problem. Computers & Operations Research 125, 105087
(Jan 2021)

21. Özcan, E., Bilgin, B., Korkmaz, E.E.: A comprehensive analysis of hyper-heuristics.
Intelligent data analysis 12(1), 3–23 (2008)

22. Pemmaraju, S.V., Raman, R.: Approximation algorithms for the max-coloring
problem. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M.
(eds.) Automata, Languages and Programming. p. 1064–1075. Lecture Notes in
Computer Science (2005)

23. Prais, M., Ribeiro, C.C.: Reactive grasp: An application to a matrix decomposi-
tion problem in tdma traffic assignment. INFORMS Journal on Computing 12(3),
164–176 (Aug 2000)

24. Sabar, N.R., Ayob, M., Qu, R., Kendall, G.: A graph coloring constructive hyper-
heuristic for examination timetabling problems. Applied Intelligence 37(1), 1–11
(2012)

25. Sabar, N.R., Kendall, G.: Population based monte carlo tree search hyper-heuristic
for combinatorial optimization problems. Information Sciences 314, 225–239 (2015)

26. Sun, W., Hao, J.K., Lai, X., Wu, Q.: Adaptive feasible and infeasible tabu search
for weighted vertex coloring. Information Sciences 466, 203–219 (Oct 2018)

27. Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities.
In: Proceedings of the 7th annual conference on Genetic and evolutionary compu-
tation. pp. 1539–1546 (2005)

28. Wang, Y., Cai, S., Pan, S., Li, X., Yin, M.: Reduction and local search for weighted
graph coloring problem. Proceedings of the AAAI Conference on Artificial Intelli-
gence 34(0303), 2433–2441 (2020)

29. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola,
A.J.: Deep sets. Advances in neural information processing systems 30 (2017)

	Monte Carlo Tree Search with Adaptive Simulation: a Case Study on Weighted Vertex Coloring

