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We present a highly effective dynamic programming driven memetic algorithm for the Steiner tree problem

with revenues, budget and hop constraints (STPRBH), which aims at determining a subtree of an undirected

graph, so as to maximize the collected revenue, subject to both budget and hop constraints. The main fea-

tures of the proposed algorithm include a probabilistic constructive procedure to generate initial solutions, a

neighborhood search procedure using dynamic programming to significantly speed up neighborhood explo-

ration, a backbone-based crossover operator to generate offspring solutions, as well as a quality-and-distance

updating strategy to manage the population. Computational results based on four groups of 384 well-known

benchmarks demonstrate the value of the proposed algorithm, compared to the state of the art approaches.

In particular, for the 56 most challenging instances with unknown optima, our algorithm succeeds in provid-

ing 45 improved best known solutions within a short computing time. We additionally provide results for a

group of 30 challenging instances that are introduced in the paper. We provide a complexity analysis of the

proposed algorithm and study the impact of some ingredients on the performance of the algorithm.

Key words : Constrained Steiner trees; Evolutionary computation; Heuristics; Dynamic programming;

Content distribution networks.

1. Introduction

Network design is an extremely challenging task in numerous resource distribution systems

(e.g., electricity, telecommunication, heating, transportation, computer networks, etc.) (4,

8, 10, 32). These systems can conveniently be modeled as some variants of the Steiner

(or spanning) tree problem (STP) (6, 27, 28). Given a graph G= (V,E) with vertex set

V = {1, . . . , n} composed of two subsets V t (called terminal vertices) and V s (called Steiner

vertices) and edge set E = {{i, j} | i, j ∈ V, i ̸= j} where each edge {i, j} ∈E is associated
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with a cost cij ≥ 0, the classic Steiner tree problem consists of determining a subtree

spanning all the vertices of V t and possibly some vertices of V s, so as to minimize the

total cost of the obtained tree. As one of Karp’s 21 famous NP-complete problems (19),

the Steiner tree problem is theoretically important and computationally challenging (16).

Notice that the conventional spanning tree problem is a special case of the Steiner tree

problem with V s = ∅ which is polynomially solvable.

By considering different objectives or constraints, various variants of the Steiner or span-

ning tree problems can be defined. On the one hand, representative Steiner tree variants

include the metric Steiner tree problem (MSTP) (7), the Steiner tree problem with prof-

its (STPP) (11), the Steiner tree problem with hop-constraints (STPH) (29, 31). On the

other hand, examples of interesting spanning tree variants are the degree-constrained span-

ning tree problem (DCSTP) (5), the quadratic minimum spanning tree problem (QMSTP)

(9, 24), and the generalized minimum spanning tree problem (GMSTP) (14, 17).

In recent years, the so-called Steiner tree problem with revenues, budget and hop con-

straints (STPRBH) has received much attention (10, 12, 13, 15, 21, 30). Let G= (V,E) be

an undirected graph with vertex set V = {1, . . . , n} and edge set E = {{i, j} | i, j ∈ V, i ̸= j}.

Each vertex i∈ V has an associated revenue ri ≥ 0 (a vertex with ri > 0 is called a profitable

vertex, otherwise, it is a non-profitable vertex ), and each edge {i, j} ∈E has an associated

cost cij ≥ 0. Let B ∈N be the allowed budget and H ∈N be the hop limit. Given a root

vertex denoted by root, the STPRBH is to determine a rooted subtree T (with vertex set

v(T ) and edge set e(T )) that maximizes the collected revenue, while guaranteeing that the

total cost of the tree does not exceed B, i.e.,
∑

{i,j}∈e(T ) cij ≤B, and the number of edges

between root and any vertex i∈ v(T ) never surpasses H. According to this definition, only

the root vertex is a terminal vertex (V t = {root}) that must be included in any feasible

solution, while the other vertices are Steiner vertices (V s = V \ {root}).

As a generalization of both the STPP and the STPH, the STPRBH can be used to model

a number of relevant real-life systems where the objective is to maximize the collected

revenue within a given budget, while guaranteeing the reliability of the system. Since 2006,

a number of exact or heuristic approaches have been proposed for the STPRBH. Exact

algorithms like exemplified in (13, 21, 30) are applicable to solve small or mid-sized problem

instances (with up to 500 vertices and 625 edges). For large instances, heuristics or meta-

heuristics are naturally preferred. For instance, the greedy, destroy-and-repair and tabu
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search (TS) algorithms described in (10, 12) have found high quality suboptimal solutions

for many STPRBH benchmark instances while the very recent breakout local search (BLS)

algorithm (15) has improved a number of previous best known solutions.

In this study, we introduce a highly effective dynamic programming driven memetic

algorithm for the STPRBH. The proposed algorithm is based on the general memetic search

framework for discrete optimization (18, 23) and integrates a number of distinguished

features. The main contributions of the work can be summarized as follows.

From the perspective of the algorithm, the proposed approach incorporates several specif-

ically designed and original ingredients. First, we introduce two move operators for gener-

ating neighboring solutions, which are related to, but different from the existing operators.

Second, we develop an original dynamic programming driven estimation criterion based on

a related 0-1 knapsack problem, which is able to identify and discard a large number of use-

less neighboring solutions, so as to significantly speed up the local optimization procedure.

Third, we devise a backbone-based tree crossover operator for generating offspring solu-

tions. Fourth, we define a quality-and-distance based strategy for a healthy management

of the solutions pool. Finally, we provide a complexity analysis of the proposed algorithm

and study the impact of some ingredients on the performance of the algorithm. To our

knowledge, this is the first evolutionary algorithm proposed for the STPRBH, whose main

ideas could be helpful to design effective heuristics for other STP variants.

From the perspective of the computational results, we show 45 improved solutions (new

lower bounds, obtained within a short time ranging from several seconds to several minutes)

out of 56 most challenging STPRBH benchmarks with unknown optima, and report very

competitive results on the remaining 328 benchmarks with known optima compared to

the best reference STPRBH algorithms. Additionally, we define a new group of 30 difficult

instances and use them to further evaluate the performance of our memetic algorithm.

Both the improved solutions reported in the paper and the new problem instances can be

used for the purpose of evaluating new STPRBH methods.

The remainder of this paper is organized as follows: After providing some preliminary

definitions in Section 2, Section 3 presents the details of the proposed memetic approach.

Section 4 is dedicated to computational results and comparisons. Section 5 investigates

two key elements of the proposed algorithm, before concluding the paper in Section 6. The

online supplement provides a worst case complexity analysis and additional results.
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2. Preliminary Definitions

We provide at first some preliminary definitions that are useful for the description of the

proposed memetic algorithm.

Definition 1. A budget and hop constrained Steiner tree (BHS-tree) is a rooted subtree of

graph G meeting both the budget and hop constraints. A BHS-tree is also called a feasible

solution of the problem.

Comment: Following the compact solution representation method used in (15), we

uniquely represent each BHS-tree by a one-dimensional vector T = {ti, i ∈ V }, where ti

denotes the parent vertex of vertex i if i ∈ v(T ) (excluding the root vertex, v(T ) denotes

the vertex set of T ), or ti =Null otherwise.

Definition 2. Given a BHS-tree T , a feasible candidate path with respect to T is a path

originating at a vertex i ∈ v(T ) and connecting to an uncollected profitable vertex j (j /∈

v(T ), rj > 0), such that even after inserting this path into T , the obtained solution is still

a BHS-tree, i.e., satisfying both the budget and hop constraints.

Definition 3. A saturated BHS-tree is a BHS-tree for which no feasible candidate path

exists. Otherwise, the BHS-tree is an unsaturated (or partial) BHS-tree.

Definition 4. The constrained search space Ω is composed of all BHS-trees (including

saturated and unsaturated ones). The saturated constrained search space Ω⊂Ω is composed

of all saturated BHS-trees.

Comment: As detailed below, our memetic algorithm restricts its search within the

saturated constrained search space Ω, thus focusing on the most promising candidate

solutions.

Definition 5. Let L(i, j, l) represent the cost of the hop-constrained shortest path between

vertex i and vertex j, containing at most l edges, then vertex i is said to be a reachable

vertex if L(root, i,H) <∞, and an unreachable vertex otherwise. Following (15), all the

needed values of L(i, j, l), i, j ∈ V, rj > 0,1≤ l ≤H are pre-calculated by a pre-processing

procedure using dynamic programming (20) and stored for a fast access of these values.

The unreachable vertices will never be considered during the search process.

Comment: If all the reachable profitable vertices are connected by a BHS-tree T , i.e.,∑
i∈v(T ) ri =

∑
L(root,i,H)<∞ ri, T corresponds to an optimal solution. This criterion is used

as one of the termination criteria of our algorithm (see Section 3).
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3. Memetic Algorithm for the STPRBH

Population-based evolutionary algorithms have been successfully applied to many graph

and network design problems, including several STPs (3, 6, 8, 26). In this paper, we present

a novel dynamic programming driven memetic algorithm (as outlined in Algorithm 1) for

solving the STPRBH. To the best of our knowledge, this is the first population-based

evolutionary algorithm designed to solve the STPRBH.

Algorithm 1 Dynamic programming driven memetic search algorithm for the STPRBH
1: REQUIRE: Graph G(V,E), limited budget B, limited hops H, population size Q, maximum number M of

non-improving consecutive generations

2: RETURN: The best solution T ∗ found meeting both the budget and hop constraints

3: /* Initialize the population with a sample of Q diversified individuals (saturated BHS-trees ∈Ω), Section 3.1*/

4: Pop= {T 1, ..., TQ}← Init Population()

5: for Each solution T i belongs to Pop do

6: /* Apply a dynamic programming based neighborhood search procedure to improve T i to a local optimum,

Section 3.2 */

7: T i←Local Search(T i)

8: end for

9: /* T ∗ denotes the best solution (collecting the highest revenue) found so far */

10: T ∗←Get Best(Pop)

11: ω← 0

12: /* Iterate the search until all the reachable profitable vertices are connected, or the best found solution cannot

be further improved after M consecutive generations, or the allowed maximum time has been elapsed */

13: while
∑

i∈v(T∗) ri <
∑

L(root,i,H)<∞ ri and ω <M and the allowed time is not elapsed do

14: Randomly select two solutions T i and T j from Pop

15: /* Apply a backbone based crossover operator to generate an offspring T 0, Section 3.3 */

16: T 0←Crossover(T i, T j)

17: /* Improve T 0 to a local optimum, Section 3.2 */

18: T 0←Local Search(T 0)

19: /* If T 0 dominates T ∗, update T ∗ and reset ω to 0 */

20: if
∑

i∈v(T0) ri >
∑

i∈v(T∗) ri then

21: T ∗← T 0

22: ω← 0

23: else

24: /* Otherwise, increase ω by 1 */

25: ω← ω+1

26: end if

27: /*Update Pop with T 0 by a quality-and-distance criterion, Section 3.4 */

28: Pop←Update Pool(Pop,T 0)

29: end while
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Our memetic algorithm operates within the saturated constrained search space Ω. It

starts with a population Pop⊂Ω composed of Q saturated BHS-trees. Each initial solution

of Pop is generated by the probabilistic greedy constructive procedure introduced in (15)

and further improved by the local optimization procedure which is explained in Section 3.2.

Then the algorithm enters into the main optimization process which is mainly driven by

the solution recombination operator (backbone based tree crossover, Section 3.3) and local

improvement (dynamic programming driven neighborhood search procedure, Section 3.2).

At each generation of the memetic algorithm, two parents (randomly chosen) are mated

to generate a new offspring solution which is further improved by the local optimization

procedure. Finally, a quality-and-distance based criterion is applied to possibly update the

population with the improved offspring solution (Section 3.4).

The evolution process terminates if (1) all the reachable profitable vertices are connected

by the incumbent solution tree, meaning that an optimal solution is obtained, or (2) the

best found solution T ∗ cannot be further improved for a certain number M of consecutive

generations, or (3) the maximum allowed time is elapsed. The first condition depends

only on the problem instance to solve, while the other two conditions can influence the

quality of the solution found and the running time of the algorithm. Intuitively, a larger

M or a longer allowed time imply more generations (thus more computational efforts), but

may help discover better solutions. One can possibly set these two conditions to reach the

desired trade-off between the solution quality and the computational time.

3.1. Construction of Saturated BHS-trees for Population Initialization

To initialize the population Pop with a given number Q of feasible solutions of reasonable

quality, we employ the probabilistic constructive procedure introduced in (15) to generate

Q saturated BHS-trees, and then improve each of these Q solutions to a local optimum

by a dynamic programming driven neighborhood search procedure (detailed in the next

subsection). These Q local optima form the first generation of Pop.

3.2. Dynamic Programming Based Fast Neighborhood Search

For local optimization, we devise a neighborhood search (NS) procedure (Algorithm

2) based on two specifically designed move operators (Move 1(T, i) and Move 2(T, i, j))

to explore neighboring saturated BHS-trees. To accelerate the neighborhood exploration

by the NS procedure, we develop a dynamic programming based estimation criterion to

identify and discard a large number of hopeless neighboring solutions.
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Algorithm 2 Dynamic programming based neighborhood search for local optimization
REQUIRE: An initial saturated BHS-tree T

RETURN: A local optimal saturated BHS-tree

Step 1: Create a closely related 0-1 knapsack problem

Let Vurp denote the set containing all the reachable profitable vertices uncollected by T

for Each each vertex j ∈ Vurp do

Create a knapsack item with item index k, gain vk and weight wk

vk← rj /* The item gain vk is the revenue of vertex j */

wk←min(L(i, j,H−hi),∀i∈ v(T ) /* wk is the cost of the hop-constrained shortest path from vertex j to the

BHS-tree T , where hi being the number of edges between a vertex i∈ v(T ) and the root vertex */

end for

Set the knapsack capacity of the 0-1 knapsack problem to Wmax, which is the maximum available budget after

deleting any two paths connecting some leaf vertices

Step 2: Solve the 0-1 knapsack problem by dynamic programming

Let Opt[k,W ] be the optimal value of the knapsack problem with capacity W , using items up to index k

Calculate, by the dynamic programming procedure of Eq. (2), all the values of Opt[k,W ],1≤ k ≤ |Vurp|,1≤W ≤

Wmax, and store these values in a |Vurp| ×Wmax table.

Step 3: Local optimization within neighborhood N(T,1)

for Each leaf vertex i∈ v(T ) (examined in random order) do

Let Wi be the available budget after deleting the path connecting vertex i

if ri <Opt[|Vurp|,Wi] then

T ♯← T
⊕

Move 1(T, i)

if
∑

k∈v(T ♯) rk >
∑

k∈v(T ) rk then

T ← T ♯ and goto Step 1

end if

end if

end for

Step 4: Local optimization within neighborhood N(T,2)

for Each pair of leaf vertices i, j ∈ v(T ), i < j (examined in random order) do

Let Wij denote the available budget after deleting the paths connecting i and j

if ri + rj <Opt[|Vurp|,Wij ] then

T ♯← T
⊕

Move 2(T, i, j)

if
∑

k∈v(T ♯) rk >
∑

k∈v(T ) rk then

T ← T ♯ and goto Step 1

end if

end if

end for

return T
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Basically, given the incumbent solution T , the operator Move 1(T, i) (respectively,

Move 2(T, i, j)) works as follows: delete the path(s) connecting leaf vertex i (respectively,

leaf vertices i and j) from T (see (15) for how to delete a path connecting a leaf vertex),

and then insert a certain number of new feasible candidate paths into T (determined by

a dynamic programming subroutine, as detailed in subsection 3.2.3) to obtain a neighbor-

ing saturated BHS-tree. Let lv(T ) be the set containing all the leaf vertices of T and let

T⊕Move k (k= 1,2) be the neighboring tree obtained by applying operator Move k to T ,

then we define two neighborhoods of T corresponding to these two move operators.

N(T,1) = {T ⊕Move 1(T, i), i∈ lv(T )},

N(T,2) = {T ⊕Move 2(T, i, j), i, j ∈ lv(T ), i < j}.
(1)

At each iteration of the neighborhood search procedure, the algorithm first examines in

random order the neighboring solutions belonging to N(T,1) and replaces the incumbent

solution with the first met improving neighboring solution (i.e., first improvement strategy).

If no improving solution exists in N(T,1), the search continues with N(T,2) until no

improving solution is found in N(T,1) and N(T,2), meaning that a local optimum is

reached.

To accelerate the neighborhood examination and avoid useless computation, we try

to identify and discard the neighboring solutions that are considered irrelevant. For this

purpose, we introduce below an original and effective pre-examination technique based on

solving a closely related 0-1 knapsack problem.

3.2.1. Estimation Criterion for Pre-examination of Neighboring Solutions For a

given solution, there are usually a large number of possible candidate neighboring solutions.

However, it is unnecessary to actually generate at each iteration all candidate neighboring

solutions, since many of them are (or are highly likely to be) irrelevant to the improve-

ment of the incumbent solution (collecting more revenue). To explore this observation, we

implement the following estimation criterion, with the help of solving a closely related 0-1

knapsack problem, to identify and discard these irrelevant neighboring solutions.

a) Given a saturated BHS-tree T , there are usually some reachable and profitable ver-

tices uncollected by T (otherwise T can be returned as an optimal solution). Let Vurp

denote the set containing all the uncollected reachable profitable vertices, i.e., for each

vertex j ∈ Vurp, we have j /∈ v(T ), L(root, j,H) <∞, and rj > 0. Now, we consider the
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following sub-problem: if we delete one or two paths connecting some leaf vertices from

T (to release some occupied budget), and then further insert some new paths connecting

some vertices j ∈ Vurp to T , which vertices should be chosen for insertion, so that the extra

collected revenue would be maximized, subject to both the budget and hop constraints?

b) We transform this sub-problem to a 0-1 knapsack problem as follows: for each vertex

j ∈ Vurp, we know its revenue rj, as well as the cost of the hop-constrained shortest path

between vertex j and the tree T , i.e., min(L(i, j,H−hi), i∈ v(T )), where hi is the number

of edges between vertex i∈ v(T ) and the root vertex. Now consider each vertex j ∈ Vurp as

an item of a 0-1 knapsack problem (for convenience, each item is assigned an individual

index k ∈ [1, |Vurp|]) with a weight wk =min(L(i, j,H − hi), i ∈ v(T )) and a gain vk = rj.

Furthermore, let W denote the available budget after path deletion (up to two paths are

allowed to be deleted), corresponding to the knapsack capacity, we get our 0-1 knapsack

problem which requires to determine the items to add to the knapsack, so as to maximize

the total gain (additionally collected revenue), while guaranteeing that the total weight

(increased cost) does not exceed the given capacity W (available budget after deletion, in

our case, W is always a positive integer). Relative to this transformed knapsack problem,

we also need to consider some special cases which are discussed in Section 3.2.2.

c) We solve the transformed 0-1 knapsack problem to optimality by the following

dynamic programming procedure (1). Let Opt[k,W ] be the optimal value that can be

attained with total weight less than or equal toW , using items up to index k (k ∈ [1, |Vurp|]),

then Opt[k,W ] can be calculated recursively as follows:

Opt[0,W ] = 0,

Opt[k,0] = 0,

Opt[k,W ] =Opt[k− 1,W ], if wk >W,

Opt[k,W ] =max(Opt[k− 1,W ],Opt[k− 1,W −wk] + vk), if wk ≤W.

(2)

Now, for each iteration of our NS procedure, before actually generating any neighboring

solution, we first run the above dynamic programming procedure to obtain all the possible

values of Opt[k,W ],1 ≤ k ≤ |Vurp|,1 ≤ W ≤ Wmax, with a computational complexity of

O(|Vurp| ×Wmax), where Wmax denotes the maximum available budget after deleting any

two paths (since only up to two paths are allowed to be deleted, hence Wmax is generally

quite small). Then, these values of Opt[k,W ] are stored into a |Vurp| ×Wmax table, which
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can be fetched directly during the current iteration of NS, instead of recalculating them

repeatedly.

Inversely, after calculating and storing all the needed values of Opt[k,W ], given a capac-

ity W of the knapsack, it is easy to determine the items belonging to the optimal solution

of the corresponding 0-1 knapsack problem, by applying a backtrack procedure, within a

computational complexity of O(|Vurp|).

d) Based on the above preliminaries, before actually generating any candidate neigh-

boring solution, we use the following criterion to estimate its prospect. Take a neighboring

solution corresponding to deleting the path connecting leaf vertex i for example (the case

is similar for deleting two paths). With the released budget Wi (corresponding to the lost

revenue ri), Opt[|Vurp|,Wi] calculated by dynamic programming is the maximum extra

revenue that can be expected. Thus if ri ≥ Opt[|Vurp|,Wi], it is useless to generate the

neighboring solution corresponding to deleting vertex i (only with few exceptions discussed

below).

3.2.2. Special Cases While generating a neighboring solution of the incumbent solution

T , we first delete one or two paths connecting some leaf vertices, and then attempt to

insert a number of feasible candidate paths connecting some vertices belonging to Vurp,

until T becomes saturated. During this process, the following three special cases (see Fig.

1 for some examples) may occur.

• Case 1: While inserting a path connecting vertex j ∈ Vurp, the pre-calculated (used

in dynamic programming) originating at vertex i ∈ v(T ), with minimum L(i, j,H − hi),

may have already been deleted. In this case, we need to re-calculate a hop-constrained

shortest path between vertex j and the incumbent solution, whose cost is at least the

pre-calculated cost. Here the values of Opt[|Vurp|,W ] obtained by dynamic programming

may be overestimated.

• Case 2: If more than one path can be inserted sequentially using the released budget,

for example, paths connecting vertices j1 and j2, then, when inserting the path connecting

j2, there may exist a shorter hop-constrained path than the pre-calculated one, between

j2 and a recently inserted vertex. Naturally, in this case, it is preferable to choose the

shorter path in order to save budget, leading to a possible underestimation of the values

of Opt[|Vurp|,W ].
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• Case 3: As explained in (12), due to the hop-constraints, cycles may occur after insert-

ing a path. In this case, we need to detect cycles and eliminate the edges causing cycles.

Obviously, the budget saved by the eliminated edges could be used for further insertion,

meaning that the values of Opt[|Vurp|,W ] may be somewhat underestimated.

These three special cases lead to possible wrong estimations, i.e., generating useless (non-

improving) neighboring solutions in case 1, or rejecting improving neighboring solutions in

cases 2 and 3. In the next subsection, we describe the technique to handle these special cases

and present the acceptance criterion to ensure that the generated neighboring solutions

are always saturated BHS-trees (to guarantee feasibility even in the worst case) and only

the improving neighboring solutions have a chance to be accepted.

3.2.3. Generation of Neighboring Solutions Using the stored information obtained

by dynamic programming, we implement as follows our Move 1(T, i) and Move 2(T, i, j)

operators for generating promising neighboring solutions of the incumbent solution T .

Step1: Delete the path connecting leaf vertex i from T (for Move 1(T, i)), or delete the

paths connecting leaf vertices i and j from T (for Move 2(T, i, j)).

Step 2: Denote by Wi (for Move 1(T, i)) or Wij (for Move 2(T, i, j)) the available budget

after deletion. Then, for each item k belonging to the optimal solution of the transformed

0-1 knapsack problem with capacity Wi or Wij, we attempt to insert the path connecting

the corresponding vertex k ∈ Vurp into the incumbent solution. These items are identified

by backtrack technique of 0-1 knapsack problem and sorted in an increasing order by the

item index. Note that before insertion, we should update the hop-constrained shortest

path between vertex k and the incumbent solution T (to ensure that the hop constraint is

always satisfied), and then examine again if it violates the budget constraints, to guarantee

feasibility even in the worst case like special case 1. If there is no budget constraint violation,

we insert the selected path into the incumbent solution, with the renewed hop-constrained

shortest path. Otherwise, we discard it and skip to the next item belonging to the optimal

solution of the corresponding 0-1 knapsack problem, until no such item exists.

Step 3: Examine again whether the obtained solution is saturated. If this is not the case,

we use the probabilistic construction procedure (15) to insert some extra paths into the

incumbent solution, until the obtained tree is saturated in order to fully utilize the budget

saved if special case two and/or three occurred.
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We point out that the above two move operators are related to, but essentially different

from the operators developed in (15). Indeed, in (15), after a path deletion, the new feasible

candidate paths are probabilistically selected for insertion. By contrast, in this work, the

new paths chosen for insertion are determined by dynamic programming, guided by the

optimal solution of the corresponding 0-1 knapsack problem (step 2).
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Figure 1 The detailed process for generating a neighboring solution, corresponding to deleting two paths and

inserting three new paths, taking into account the special cases

Fig. 1 illustrates the process for generating a neighboring solution (with hop limit H=5),

where the profitable vertices with ri > 0 are drawn in boxes (i.e., vertices 1, 3, 4, 7, 8, 9,

10, 12, 14), and the others are drawn in circles (i.e., vertices 2, 5, 6, 11, 13). From the

original solution Fig. 1a, the paths connecting leaf vertices 9 and 7 are deleted sequently,

to obtain Fig. 1b and Fig. 1c. Subsequently, three new paths, respectively connecting

profitable vertices 10, 12, 14, are inserted into Fig. 1c. Specifically, when inserting the path

connecting vertex 10, the pre-calculated hop-constrained shortest path, originating at an

already deleted vertex 6, is no longer available (special case 1, see Fig. 1d), hence we re-

calculate a new path (2→ 11→ 10) for insertion (see Fig. 1e). Furthermore, while inserting
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the path connecting vertex 12, a new path (10→ 12) shorter than the pre-calculated one,

is detected and chosen for insertion (special case 2, see Fig. 1f). Finally, after inserting the

hop-constrained path connecting vertex 14 (11→ 8→ 13→ 14, see Fig. 1g), a cycle occurs

(special case 3). To destroy this cycle, we identify the vertex with two incoming edges, i.e.,

vertex 8, and eliminate the previously inserted incoming edge, i.e., edge 5→ 8, to get a

feasible and saturated neighboring solution (a saturated BHS-tree) of the original solution

(see Fig. 1h).

3.2.4. Acceptance Criterion After applying Move 1(T, i) or Move 2(T, i, j) to the

incumbent solution T , a neighboring solution denoted by T ♯ is generated, which is always

a feasible saturated BHS-tree and a possibly improved solution over T . Due to the possible

wrong estimations of special case 1, we use the following criterion to decide whether T ♯ is

accepted (see Algorithm 2, step 3 and step 4): if T ♯ collects a higher revenue than T , we

accept T ♯ to replace T . Otherwise, we discard T ♯ and search another improving neighbor-

ing solution within the current neighborhood. When no improving solution can be found

in N(T,1) and N(T,2), a local optimum is reached. At this point, the search turns to a

recombination phase, as detailed in Section 3.3.

Generally, with the help of the dynamic programming driven estimation technique, each

iteration of the neighborhood search procedure only generates very few neighboring solu-

tions (in many cases only one, unless misjudgment of special case 1) instead of all the

O(|lv(T )|2) candidates. As we show in Section 5.1, this technique drastically improves the

efficiency of local optimization.

3.3. Backbone Based Crossover Operator

In addition to the neighborhood search procedure for local optimization, our memetic

algorithm relies on a dedicated crossover operator to generate new solutions. The proposed

crossover operator recombines two parent trees selected (at random) from the current

population to generate one offspring solution (a saturated BHS-tree). It is based on the

idea of transmitting the shared subtree (backbone) of parent trees to the offspring and

using the probabilistic constructive procedure to obtain a saturated BHS-tree.

Definition 6 : Given two parent trees T 1 and T 2, let T s denote the subtree shared by

both T 1 and T 2. The backbone T b of T 1 and T 2 is the subtree of T s such that each leaf

vertex of T b is necessarily a profitable vertex.
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One notices that the backbone definition excludes non-profitable leaf vertices even if

they are shared by both parents. The reason is that these vertices contribute nothing to

the objective function while wasting some cost.

Fig. 2 shows an example where tree Fig. 2c is the backbone of trees Fig. 2a and Fig. 2b.

One notices that each path in the backbone is shared by both parents, and every vertex

of the backbone not only belongs to both parent trees, but also is connected to the root

vertex by the same path in the two parents. In addition, note that although edge {5,10}

belongs to the subtree shared by both parents, it is excluded from the backbone since

vertex 10 is a non-profitable vertex.
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Figure 2 Backbone based crossover operator for generating an offspring solution which is a saturated BHS-tree

Based on the notion of backbone, our backbone-based crossover operator applies the

following two steps to generate an offspring solution (i.e., a saturated BHS-tree).

Step 1: Identify the backbone T b of the two selected parent trees at first. This can be

done by examining all the profitable vertices and retaining the ones (associated with the

corresponding paths) that not only belong to both the parents, but also are connected to

the root vertex by the same path.

Step 2: Apply the probabilistic constructive procedure in (15) to iteratively add feasible

candidate paths to T b until it becomes saturated, leading to the offspring solution T 0.
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In the example of Fig. 2, after the identification of the backbone Fig. 2c, applying the

probabilistic constructive procedure leads to the offspring solution Fig. 2d (a saturated

BHS-tree) including five newly inserted feasible paths.

For each new offspring solution, we apply again the NS procedure described above to

improve its quality, and then use it to update the population by the quality-and-distance

strategy described in the next subsection.

3.4. Pool Updating Strategy

To update the population with a given offspring solution, we apply the quality-and-distance

procedure shown in Algorithm 3 which is inspired from the studies reported in (22, 25).

Algorithm 3 Quality-and-distance pool updating strategy
1: REQUIRE: Population Pop= {T 1, . . . , TQ} and offspring solution T 0

2: RETURN: Updated population Pop

3: Insert T 0 into the population: Pop← Pop∪{T 0}

4: for each solution T a ∈ Pop do

5: Calculate the distance between T a and the population according to Eq. (5)

6: Calculate the goodness score g(T a) of T a according to Eq. (6)

7: end for

8: Identify the worst solution Tw with the lowest goodness score in Pop:

Tw = arg min{g(T a)|T a ∈ Pop}

9: Remove the worst solution Tw from the population: Pop← Pop\{Tw}

Definition 7. Given two candidate solutions, coded by two one-dimensional vectors T a =

{ta1, . . . , tan} and T b = {tb1, . . . , tbn}, the distance D(T a, T b) between T a and T b is defined as:

D(T a, T b) =

n∑
i=1

d(tai , t
b
i), (3)

where d(tai , t
b
i) denotes the difference between the ith element of T a and T b such that:

d(tai , t
b
i) =

0, if tai = tbi ,

1, otherwise.
(4)

Definition 8. Given a population Pop= {T 1, ..., TQ}, as well as the distance D(T a, T b)

between any two solutions T a and T b (T a, T b ∈ Pop,a ̸= b), then the distance between

a solution T a ∈ Pop and the population Pop, denoted by D(T a,Pop), is defined as the

minimum distance between T a and any other solution in the population, i.e.:

D(T a, Pop) =min{D(T a, T b)|T b ∈ Pop, b ̸= a}. (5)
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As shown in Algorithm 3, for population updating, the offspring T 0 is first inserted

into the population (Pop← Pop
∪
{T 0}). Then, we use the following quality-and-distance

goodness scoring function g(T a) from (22) to identify the worst solution Tw and remove it

from Pop:

g(T a) = β× Ã(f(T a))+ (1−β)× Ã(D(T a,Pop)), (6)

where f(T a) is the objective value, i.e., the collected revenue and β ∈ [0,1] is a parameter

used to balance the relative importance of the quality criterion and the distance criterion.

Ã(.) is the following normalized function:

Ã(y) =
y− ymin

ymax− ymin+1
. (7)

Here ymin and ymax are respectively the minimum and maximum value of y, correspond-

ing to all the solutions in the population. The term ”+1” is used to avoid the possibility of

a 0 denominator. With these definitions, the worst solution Tw is the one with the lowest

quality-and-distance score g(Tw). Tw is removed from Pop to make sure that Pop always

contains Q (the population size) diversified solutions.

Notice the above quality-and-distance updating strategy ensures that an overall best

solution (better than all the existing solutions in Pop) will always be added into Pop to

replace some existing solution, since there is at least one solution in Pop (e.g., the solution

closest to the overall best solution) with a lower quality-and-distance goodness score.

4. Computation Results and Comparisons

The proposed memetic algorithm is coded in C++. In order to assess its performance, we

test it on a large set of STPRBH benchmark instances and compare the obtained results

with the best known results published in the literature.

Typically, for each instance, we use the objective function, i.e., the collected revenue,

as the main evaluation criterion, while including the CPU time for indicative purposes.

Since the CPU times reported in the literature are based on different platforms, like in

(15), we use the tool of the Standard Performance Evaluation Cooperation (SPEC, see

www.spec.org) to harmonize the computing times. Our memetic algorithm is executed on

the same platform as (15), i.e., an Intel Xeon E5440 2.83GHz processor (with a peak value

of 25.5, according to the SPEC) and 2GB RAM, while an AMD Opteron machine with

2.39GHz CPU (with a peak value of 18.7) and 2GB RAM was used in (10, 12, 13), and
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an Intel Xeon E5540 2.53GHz processor (with a peak value of 29.4) and 3GB RAM was

used in (30). Respectively, in the following subsections, we multiply the CPU times of

(10, 12, 13) by 0.73 (18.7
25.5

) and the CPU times of (30) by 1.15 (29.4
25.5

), while the CPU times

of our computer serve as a baseline.

4.1. Benchmark Instances and Experimental Protocol

For our experiments, we use 384 well-known STPRBH instances (10, 12, 13, 15, 21, 30)

and 30 newly generated challenging instances1. The 384 existing instances correspond to

58 adapted Steiner graphs from the series B and C of the OR-Library (2). For the sake of

clarity, we classify the 384 existing instances into four groups G1-G4 as follows, and use

our 30 new instances to form group G5.

• Group G1 contains 144 small or mid-sized instances, corresponding to the 18 graphs

of series B, which have all been solved to optimality by previous exact algorithms (13, 30).

A subset (54 out of 144) of these instances are also solved to optimality by (21).

• Group G2 contains 60 larger instances, corresponding to the first 10 graphs of series

C (steinc1 10, . . ., steinc5 10, steinc1 100, . . ., steinc5 100, hereafter, we rename steinci j

by Ci j), which have also been solved to optimality by exact algorithms (13, 30). A small

subset (10 out of 60) of these instances are solved to optimality by (21). Note that the

existing exact algorithms can only solve the above two groups of instances to optimality. For

the following two groups of larger instances, only solutions from heuristics (lower bounds)

are available.

• Group G3 contains 124 instances of series C, which have all been solved to optimality

(with all the reachable profitable vertices collected) by previous heuristics (10, 12, 15), due

to their large enough allowed budget.

• Group G4 contains the remaining 56 instances of series C, for which the optimal

solutions remain unknown, due to their large problem size (thus previous exact algorithms

cannot terminate within reasonable time) and restrict budget constraint (thus it is difficult

for heuristics to collect all the reachable profitable vertices). They are the most challenging

instances among all the 384 existing instances.

1 The adapted STPRBH graphs as well as the best results found in this paper on all these five groups of 414 instances
are available at http://www.info.univ-angers.fr/pub/hao/stprbh-memetic.html, while the initial Steiner graphs
are available at http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html



Fu and Hao: Dynamic Programming Driven Memetic Search for the STPRBH
18 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2013-10-OA-191

• Group G5 contains the new set of 30 challenging instances that we gener-

ated. Among the 40 graphs of series C of the OR-Library, the 10 largest ones

(C16 10,. . .,C20 10,C16 100,. . .,C20 100) with 500 vertices and 12500 edges have been used

to create instances of group G3. However, these instances are easy due to their large allowed

budget. To make these instances difficult, we can reduce the allowed budget. Based on this

idea, from each of these 10 graphs, we generate three new instances by reducing the allowed

budget and imposing different hop limits (H=5, 15, 25). Given that the allowed budget B

is represented as
∑

{i,j}∈E cij

b
, for graphs C16 10 and C16 100, we set b=10000; For graphs

C17 10 and C17 100, we set b=5000; For the remaining six graphs (C18 10, C18 100,

C19 10, C19 100, C20 10, C20 100), we set b=1000. Given that these new instances are of

large size and have strict budget constraints, we believe that their optima are difficult to

prove.

In the following subsections, we first summarize the results obtained by our memetic

algorithm on the 328 instances with known optimal solutions (Groups G1-G3), and then

report the detailed results on the 56 instances of group G4 with unknown optimal solutions.

Subsequently, we provide the detailed results of our memetic algorithm with respect to

the latest heuristic BLS (15) on the 30 new instances of group G5. Finally, we summarize

the results of all the five groups of instances in a graphical way, in order to highlight the

competitiveness of our memetic algorithm with respect to previous heuristics.

For the 384 instances of G1-G4, the reference algorithms (TS(2000) and TS(10000) in

(10, 12), BLS in (15)) report their results on a basis of ten independent runs per instance.

For a fair comparison, we also independently run our memetic algorithm ten times for these

instances even though more runs offer more opportunity to find better solutions. Moreover,

like (15), each run of our memetic algorithm is limited to a maximum of 12 minutes, thus

at most two hours is allowed for solving each instance. Whenever we show computing times

for our memetic algorithm, we give the accumulated total time (in seconds) of the ten

independent runs. In (10, 12), the computing time of one run (more precisely, the average

computing time over ten runs) of TS(2000) and TS(10000) was reported (confirmed by

the author of (10)), thus we multiply their corresponding times by ten in our comparative

studies.
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Table 1 Statistical results based on 20 sample instances corresponding to different parameter values
Parameter Q Parameter M Parameter β

Parameter
Value

Mean
Rank

Mean
Time(s)

Parameter
Value

Mean
Rank

Mean
Time(s)

Parameter
Value

Mean
Rank

Mean
Time(s)

10 6.5 70.37 10 9.9 9.69 0.1 5.9 80.38
20 4.2 69.66 20 8.8 10.38 0.2 5.6 69.57
30 6.7 49.38 30 7.85 11.30 0.3 5.9 70.66
40 5.5 49.44 50 7.15 12.81 0.4 4.5 67.46
50 5.9 50.71 100 5.7 20.69 0.5 4.75 71.50
60 4.45 51.46 200 4.55 31.05 0.6 3.2 69.66
70 5.05 77.16 300 4.5 44.88 0.7 5.05 84.11
80 4.9 98.16 500 2.6 69.66 0.8 6.1 78.51
90 5.95 97.28 1000 2 73.53 0.9 4.85 83.07
100 4.4 87.48 2000 1.5 138.92 1.0 6.2 78.84

4.2. Parameter Setting

Our memetic algorithm requires three parameters: Q - the population size (Section 3.1),

M - served as one of the termination criteria (the search terminates once the best found

solution cannot be further improved after M consecutive generations), and β - the coeffi-

cient used in the goodness function of Eq. (6) for pool management. These parameters are

independent from each other, thus we study them separately.

For each parameter, we implement ten different scenarios of our memetic algorithm

by varying the chosen parameter within a reasonable range, while fixing the other two

parameters with their default values (Q=20, M=500, β=0.6 by default). Then we compare

their statistical performances based on a sample of 20 instances randomly taken from the 56

most challenging instances. Specifically, we independently run each scenario (e.g., scenario

i) ten times to solve each sample instance (e.g., instance j), and then record the average

collected revenue associated with the accumulated CPU time (in seconds). After that we

calculate the rank λij = χ+ 1 of scenario i for solving instance j, where χ denotes the

number of scenarios (among the ten compared scenarios of a particular parameter) which

perform better than scenario i, in terms of average collected revenue. Based on this, the

mean rank of scenario i for solving all the 20 sample instances is defined as λi =
∑20

j=1 λij

20
.

Intuitively, a lower value of λi indicates a better statistical performance of scenario i for

solving the 20 sample instances, with respect to other compared scenarios. Table 1 gives

the mean rank of each test scenario (classified into three groups corresponding to each

parameter), as well as the average accumulated CPU time for each instance, based on

which we determine a proper value for each parameter.

Parameter Q: We vary Q within the range [10,100] with a step of 10 and statistic the

mean rank and mean CPU time of each scenario in Table 1 (columns 1-3). Although it is

not easy to draw a definitive conclusion from these comparisons, we observe that Q= 20
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yields a good mean rank within a reasonable mean computing time, thus we adopt a

population with 20 solutions.

Parameter M : We vary M within the range [10,2000] with variable steps and compare

their performances. In general, a larger value of M could lead to a better result, but would

require a high computing time. As shown in Table 1 (columns 4-6), there is no value of

parameter M which completely dominates other values in terms of both solution quality

and computing speed. To exploit a good trade-off between quality and efficiency, we set

M=500 as the default value in our memetic algorithm, which leads to results of good

quality, and requires competitive computational times for each group of instances. We

also tested M=1000 during preliminary experiments and obtained slightly better results.

However, the average computational time on group G1 became a little more than the latest

heuristic BLS (executed on the same platform).

Parameter β: We vary β within the range [0.1,1] with a step of 0.1 to get ten test

scenarios. Table 1 (columns 7-9) discloses that the scenarios with mid values of β (β ∈
[0.4,0.6]) perform statistically better than those with large (β ∈ [0.7,1.0]) or small (β ∈
[0.1,0.3]) values. This indicates that both criteria (i.e., quality and distance) are important

to maintain a health population. Following this observation, we choose 0.6 as the default

value of β, which yields the best mean rank within a comparative mean CPU time.

4.3. Summarized Results of Groups G1-G3 with Known Optima

For the first three groups of 328 instances with known optima, we summarize in Table 2

the results of our memetic algorithm together with the results of six exact algorithms (S1,

S3, S5 (13), BP1, BP2, BP3 (30)) and four heuristics (destroy-and-repair (D&R for short),

TS(2000), TS(10000) (10, 12) and BLS (15)) in the literature. In Table 2. For each group

of instances, column ’Match’ indicates the number of cases for which the optimal value is

reached by each method, and column ’Miss’ indicates the number of cases where an exact

approach cannot terminate within the allowed time, i.e., 7200× 18.7
25.5
≈ 5256 seconds (after

harmonizing by SPEC) in (13) and 10000× 29.4
25.5
≈ 11529 seconds in (30), or a heuristic

approach fails to reach the optimal value. Columns ’Mean Gap’ and ’Mean Time’ list the

mean gaps (only for the instances missing optimality) between the optimal solutions and

the best solutions of a heuristic algorithm (exact algorithms can always reach an optimal

solution, unless they fail to terminate within the time limit) and the mean times in sec-

onds used by a method (for all the test instances). The objective values of the reference
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Table 2 Summarized comparative results for groups G1-G3 with known optimal solutions
Group G1 (144 instances) Group G2 (60 instances) Group G3 (124 instances)

Method Match Miss Mean
Gap

Mean
Time(s)

Match Miss Mean
Gap

Mean
Time(s)

Match Miss Mean
Gap

Mean
Time(s)

S1 144 0 - 1.12 59 1 - 190.38 - - - -
S3 144 0 - 1.05 59 1 - 250.26 - - - -
S5 117 27 - 1093.95 36 24 - 2164.78 - - - -
BP1 144 0 - 2.63 58 2 - 766.33 - - - -
BP2 144 0 - 1.44 59 1 - 443.01 - - - -
BP3 144 0 - 1.41 59 1 - 376.65 - - - -
D&R 91 53 3.07% 0.06 34 26 8.09% 2.26 124 0 - 434.88

TS(2000) 97 47 1.59% 2.11 29 31 5.36% 30.05 122 2 6.24% 599.11
TS(10000) 108 36 0.96% 9.82 30 30 4.26% 145.55 122 2 6.24% 3180.89

BLS 133 11 1.00% 1.71 43 17 1.48% 79.51 124 0 - 113.53
Memetic 144 0 - 1.27 50 10 1.57% 14.46 124 0 - 4.73

algorithms are extracted from the corresponding papers (after some transformation corre-

sponding to TS(2000) and TS(10000)), while the computation times are harmonized using

SPEC. The unavailable items are marked as ’-’ in Table 2.

As shown in Table 2, the 144 small or mid-sized instances of group G1 can all be solved

to optimality by the previous exact approaches (only except S5), with a short mean time

ranging from 1.05s to 2.63s (excluding the mean time of S5). Meanwhile, the previous

best heuristic BLS 2 misses 11 optimal solutions, with a mean gap of 1.00% and a mean

time of 1.71s. For comparison, our memetic algorithm can solve all these 144 instances to

optimality, with a competitive mean time of 1.27s.

For the 60 larger instances of group G2, the previous best exact approach S1 can solve 59

instances to optimality with a best mean time of 190.38s, while the current best heuristic

BLS misses 17 optimal solutions, with a mean gap of 1.48% and a mean time of 79.51s. For

comparison, our memetic algorithm misses ten optimal results out of these 60 instances,

with a mean gap of 1.57% and a short mean time of 14.46s.

For the 124 instances of group G3, one observes that they cannot be solved by existing

exact algorithms (marked as ’-’ in the top-right part of Table 2), due to their large size.

However, these instances are not difficult for heuristics to reach optimality, due to their

large allowed budget. The previous heuristics D&R and BLS can both reach all the optimal

values, with a mean time of 434.88s and 113.53s respectively. For comparison, our memetic

algorithm can also solve them to optimality, with a much shorter mean time of 4.73s.

Finally, we mention that the authors of (21) recently developed three MIP formulations

(MTZ, MTZ-L, RLT) and tested them on a subset of group G1 (54 out of 144 instances)

and G2 (10 out of 60 instances). Experiments based on an Intel core 2 Duo processor with

2 In (15), the results of BLS for these 144 easy instances are omitted. For the sake of comparison, we produced the
shown results using the source code available at http://www.info.univ-angers.fr/pub/hao/stprbh.html
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3.0 GB RAM show that, their approach can solve the selected 64 instances to optimality,

with an average CPU time of 5.78s for the 54 instances of G1 (using the RLT formulation),

and 52.13s for the 10 instances of G2 (using the MTZ-L formulation).

4.4. Detailed Results of the 56 Challenging Instances of Group G4

We now turn our attention to group G4 which contains 56 most challenging instances

with unknown optima. The obtained results are shown in Table 3, where the first five

columns respectively indicate the graph name, the number of vertices |V | and edges |E|,
the budget limit B =

∑
{i,j}∈E cij

b
(given the b values) and the hop limit H, while the fol-

lowing eight columns list the results reported by the previous heuristics. Respectively,

columns 6-7 indicate the collected revenue R and the consumed CPU time t(s) of D&R.

Columns 8-13 indicate the best collected revenue Rbest among ten independent runs and

the accumulated CPU time t(s) of three other heuristics: TS(2000), TS(10000) and BLS.

As mentioned above, the CPU times of D&R, TS(2000) and TS(10000) in (10, 12) have

all been harmonized by SPEC (i.e., multiplied by 18.7
25.5
≈ 0.73). The last 5 columns show

the results of our memetic algorithm, including the best (Rbest) and the average (Ravg) of

the collected revenue among ten independent runs, the times that our memetic algorithm

improves (column
√
) or matches (column =) the best known result among the ten runs

(in terms of best collected revenue), and the total accumulated CPU time t(s) for the ten

runs. The values in bold indicate the best results among all the results, while the values

in italic indicate that our memetic approach matches the best known results.

As shown in Table 3, for these 56 challenging instances, our memetic algorithm succeeds

in improving 45 and matching four best known results (reported by all the compared

heuristics), while missing seven best known results. The mean improvement over the best

known results is 1.36%. On the other hand, the mean CPU time consumed by our memetic

algorithm is 63.04s, while the CPU times of D&R, TS(2000), TS(10000) are 12.37s, 48.52s,

232.12s respectively (after harmonizing by SPEC), and the mean CPU time of BLS is

369.99s. Additionally, one can observe from Table 3 (column 16) that for 22 out of 56

instances, our memetic algorithm finds an improved solution during each of the ten inde-

pendent runs. This indicates that for these 22 instances, one single run (i.e., with one tenth

of the reported time) of our algorithm suffices to find an improved best known result.

Furthermore, we use the Friedman test to assess the observed differences between

the memetic algorithm and the compared heuristics. The Friedman test reveals a p-

value=7.24×10−14, 1.21×10−13, 8.90×10−13, 2.91×10−8 between the best results from our
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Table 3 Detailed results of the memetic algorithm on the 56 most challenging instances with unknown optima

Instance D&R TS(2000) TS(10000) BLS Memetic
Graph |V | |E| b H R t(s) Rbest t(s) Rbest t(s) Rbest t(s) Rbest Ravg

√
= t(s)

C8 10 500 1000 20 5 208 1.32 ≤228 14.2 ≤229 65.4 228 81.69 230 230.0 10 0 19.06
C8 10 500 1000 50 5 104 0.12 ≤116 13.6 ≤116 65.2 116 30.95 116 116.0 0 10 10.80
C8 10 500 1000 20 15 303 9.51 ≤308 42.0 ≤319 206.2 326 172.04 330 327.8 8 1 42.37
C8 10 500 1000 50 15 152 1.91 ≤161 41.6 ≤166 199.1 167 34.63 171 168.5 7 3 23.03
C8 10 500 1000 20 25 311 16.23 ≤310 65.6 ≤319 324.0 328 150.98 330 329.0 7 3 35.60
C8 10 500 1000 50 25 151 3.19 ≤160 63.7 ≤166 311.6 171 42.21 172 171.6 6 4 31.50
C8 100 500 1000 20 5 2261 1.28 ≤2365 13.5 ≤2368 70.3 2341 100.73 2380 2374.0 6 0 24.37
C8 100 500 1000 50 5 1151 0.23 ≤1204 13.5 ≤1220 66.4 1201 31.26 1216 1216.0 0 0 12.30
C8 100 500 1000 20 15 3269 9.24 ≤3237 43.1 ≤3306 202.8 3378 204.17 3418 3407.6 10 0 47.39
C8 100 500 1000 50 15 1696 1.88 ≤1675 41.8 ≤1705 199.9 1763 41.04 1774 1759.6 6 0 26.46
C8 100 500 1000 20 25 3310 16.87 ≤3337 66.8 ≤3340 315.3 3392 187.76 3443 3426.5 10 0 48.16
C8 100 500 1000 50 25 1735 1.79 ≤1742 64.3 ≤1755 311.0 1780 42.24 1792 1784.2 7 2 33.34
C9 10 500 1000 20 5 274 2.26 ≤279 16.0 ≤283 78.5 284 229.10 302 299.3 10 0 29.31
C9 10 500 1000 50 5 143 0.26 ≤145 16.1 ≤146 76.9 147 32.67 149 149.0 10 0 16.04
C9 10 500 1000 20 15 354 11.35 ≤349 42.4 ≤354 195.7 376 162.46 376 372.4 0 1 42.45
C9 10 500 1000 50 15 172 2.36 ≤165 39.3 ≤169 192.9 181 49.24 183 180.8 4 1 34.77
C9 10 500 1000 20 25 353 9.45 353 63.0 353 309.3 379 164.72 377 374.7 0 0 54.65
C9 10 500 1000 50 25 168 3.70 ≤167 59.1 ≤172 301.2 183 47.65 186 184.8 8 2 43.77
C9 100 500 1000 20 5 2864 2.24 ≤2933 16.4 ≤2954 77.8 2921 225.13 3112 3092.8 10 0 38.16
C9 100 500 1000 50 5 1514 0.50 ≤1509 15.8 ≤1533 83.9 1536 42.98 1563 1563.0 10 0 17.57
C9 100 500 1000 20 15 3642 11.15 ≤3588 41.5 ≤3631 194.3 3904 188.66 3873 3854.5 0 0 56.49
C9 100 500 1000 50 15 1675 2.13 ≤1742 38.6 ≤1732 192.7 1883 54.23 1879 1863.5 0 0 36.32
C9 100 500 1000 20 25 3602 17.26 ≤3644 62.1 ≤3673 309.2 3926 212.18 3906 3881.4 0 0 71.83
C9 100 500 1000 50 25 1674 3.35 ≤1745 59.4 ≤1753 296.7 1892 51.18 1909 1898.6 7 1 50.11
C10 10 500 1000 20 5 341 2.07 ≤371 14.4 ≤372 68.6 385 458.71 388 387.4 10 0 57.24
C10 10 500 1000 50 5 156 0.39 ≤173 13.9 ≤175 67.7 184 62.49 185 184.1 1 9 26.66
C10 10 500 1000 20 15 505 13.07 ≤505 41.4 ≤509 203.0 545 134.52 553 545.2 6 0 113.51
C10 10 500 1000 50 15 211 2.54 ≤221 40.4 ≤226 198.8 245 71.89 247 247.0 10 0 61.70
C10 10 500 1000 20 25 482 19.86 ≤501 67.2 ≤513 313.8 547 102.18 561 555.4 10 0 133.69
C10 10 500 1000 50 25 219 3.83 ≤218 62.9 ≤229 311.2 254 80.70 254 249.6 0 1 78.51
C10 100 500 1000 20 5 3530 1.88 ≤3811 15.5 ≤3863 68.3 4027 463.66 4069 4047.9 8 0 67.42
C10 100 500 1000 50 5 1513 0.32 ≤1836 14.0 ≤1858 67.9 1937 84.66 1940 1939.3 10 0 34.83
C10 100 500 1000 20 15 5163 13.30 ≤5227 45.5 ≤5253 202.0 5687 138.55 5686 5620.0 0 0 130.25
C10 100 500 1000 50 15 2415 2.88 ≤2365 39.7 2356 198.4 2555 67.17 2601 2552.1 1 0 71.46
C10 100 500 1000 20 25 5287 22.97 ≤5286 64.9 ≤5331 321.3 5642 131.01 5773 5694.6 9 0 139.72
C10 100 500 1000 50 25 2472 4.66 ≤2432 63.8 2422 311.9 2511 86.82 2632 2576.1 10 0 92.41
C13 10 500 2500 100 5 242 2.67 ≤243 26.6 ≤246 124.7 248 135.87 253 251.1 10 0 22.97
C13 10 500 2500 100 15 303 12.57 ≤296 72.8 ≤302 327.4 308 56.55 316 312.0 10 0 33.71
C13 10 500 2500 100 25 302 22.19 ≤298 107.3 ≤302 520.3 307 46.47 314 311.6 10 0 37.38
C13 100 500 2500 100 5 2507 2.48 ≤2526 25.9 ≤2544 134.4 2558 168.50 2622 2593.0 9 1 29.87
C13 100 500 2500 100 15 3064 11.64 ≤3029 70.4 ≤3111 326.4 3236 59.53 3255 3242.7 7 0 41.05
C13 100 500 2500 100 25 3064 22.72 ≤3057 109.8 ≤3136 521.3 3248 64.68 3260 3241.2 1 0 42.62
C14 10 500 2500 100 5 344 5.33 339 26.8 ≤341 130.3 367 144.91 370 366.0 3 2 29.95
C14 10 500 2500 100 15 377 17.72 ≤370 71.4 ≤371 312.7 399 47.99 398 394.7 0 0 55.08
C14 10 500 2500 100 25 377 28.02 369 101.8 ≤373 493.2 397 58.78 397 393.8 0 2 53.99
C14 100 500 2500 100 5 3485 5.02 ≤3416 26.3 ≤3503 124.2 3824 158.45 3847 3823.7 3 0 36.42
C14 100 500 2500 100 15 3846 17.32 ≤3872 71.5 ≤3929 312.9 4122 68.00 4172 4150.2 9 0 72.46
C14 100 500 2500 100 25 3846 27.43 ≤3856 102.2 ≤3897 495.3 4120 72.65 4150 4121.6 4 0 76.56
C15 10 500 2500 20 5 1174 79.48 ≤1192 28.9 ≤1211 130.0 1213 7295.82 1221 1218.2 10 0 188.94
C15 10 500 2500 100 5 401 4.94 ≤427 26.2 ≤435 126.4 451 196.81 462 456.0 8 1 71.42
C15 10 500 2500 100 15 515 23.48 ≤501 71.0 ≤502 324.1 548 93.39 558 557.5 10 0 92.59
C15 10 500 2500 100 25 520 38.60 510 107.7 510 506.6 546 77.24 558 556.4 10 0 99.20
C15 100 500 2500 20 5 12078 83.31 ≤12198 28.5 ≤12306 131.5 12213 7023.82 12392 12366.5 10 0 359.13
C15 100 500 2500 100 5 4180 5.17 ≤4358 27.1 ≤4379 125.9 4378 271.20 4807 4758.0 10 0 97.01
C15 100 500 2500 100 15 5355 24.04 ≤5177 70.8 ≤5159 326.6 5770 106.43 5807 5793.8 10 0 109.24
C15 100 500 2500 100 25 5393 41.07 5243 106.7 ≤5274 524.9 5703 110.16 5822 5795.7 10 0 127.45

memetic algorithm and those reported by D&R, TS(2000), TS(10000), BLS respectively,

meaning that the differences are statistically significant. Precisely, our memetic algorithm

dominates BLS (the latest and best performing heuristic) and TS(10000), in terms of both
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Table 4 Detailed results of the memetic algorithm compared to BLS for the 30 newly generated instances

Instance BLS Memetic Instance BLS Memetic
Graph b H Rbest Ravg t(s) Rbest Ravg t(s) Graph b H Rbest Ravg t(s) Rbest Ravg t(s)
C16 10 10000 5 19 16.80 24.32 19 19.00 15.22 C16 100 10000 5 203 179.48 28.88 203 203.00 15.18
C16 10 1000015 19 17.00 24.47 19 19.00 15.35 C16 100 1000015 203 180.90 35.15 203 203.00 15.30
C16 10 1000025 19 16.70 26.97 19 19.00 15.50 C16 100 1000025 203 175.15 32.22 203 203.00 15.48
C17 10 5000 5 47 47.00 42.60 47 47.00 22.69 C17 100 5000 5 481 481.00 46.09 481 481.00 24.18
C17 10 5000 15 50 47.37 37.06 50 49.25 23.06 C17 100 5000 15 513 484.43 38.84 513 491.24 23.09
C17 10 5000 25 50 47.55 37.43 50 49.28 23.54 C17 100 5000 25 513 484.66 39.04 513 495.08 23.75
C18 10 1000 5 311 295.32 1430.08 312 307.90 196.02 C18 100 1000 5 3245 3042.33 1489.26 3252 3229.20 215.36
C18 10 1000 15 334 323.27 357.29 338 335.57 151.70 C18 100 1000 15 3478 3383.57 384.12 3526 3499.54 202.73
C18 10 1000 25 334 324.00 362.98 338 335.90 160.55 C18 100 1000 25 3506 3379.53 382.05 3526 3496.48 191.35
C19 10 1000 5 390 372.44 1242.58 392 386.80 208.06 C19 100 1000 5 4021 3865.49 1403.18 4080 4011.77 286.92
C19 10 1000 15 412 395.48 433.09 417 412.08 209.10 C19 100 1000 15 4265 4131.19 562.51 4355 4291.64 296.54
C19 10 1000 25 407 395.07 416.19 418 412.04 204.13 C19 100 1000 25 4265 4129.64 570.23 4337 4288.82 283.50
C20 10 1000 5 441 431.29 2156.18 436 429.70 364.05 C20 100 1000 5 4527 4412.83 2530.84 4565 4518.63 503.57
C20 10 1000 15 486 465.85 590.30 479 473.33 397.09 C20 100 1000 15 5124 4878.30 827.61 5019 4970.74 487.43
C20 10 1000 25 487 467.75 604.34 481 472.75 390.01 C20 100 1000 25 5045 4882.87 767.82 5054 4975.50 497.47

solution quality and runtime. The memetic algorithm achieves solutions of much better

quality than TS(2000) and D&R, while consuming some more average computation time.

In order to check whether our memetic algorithm can still achieve competitive results

with a reduced computing effort, we re-run our memetic algorithm with M = 50 (instead

of M=500). Experimental results 3 shown in Table 1 of the online supplement indicate

that the memetic algorithm with M = 50 still yields results better than or equal to both

TS(2000) and D&R on each of these 56 instances, with a mean improvement of 6.47% and

8.25% respectively and a mean CPU time of 11.88s, being less than the mean times of

TS(2000) and D&R. This confirms that our memetic algorithm dominates TS(2000) and

D&R, not only in terms of solution quality, but also in terms of computation time.

4.5. Computational Results of the 30 New Benchmark Instances of Group G5

For each of the 30 newly generated instances of group G5, we run our memetic algorithm

(with its default parameters) and the current best heuristic BLS (using the source code

available at http://www.info.univ-angers.fr/pub/hao/stprbh.html) 100 times, and

then compare their performances in Table 4, including the best (Rbest) and average (Ravg)

collected revenues as well as the computing time t(s). As shown in Table 4, the memetic

algorithm respectively improves, matches, misses 14, 12, 4 best results obtained by BLS,

with a mean improvement of 0.32%, while the Friedman test reveals a p-value=1.84×10−2

(indicating a significant statistical difference). Second, for the average results, the memetic

algorithm respectively improves, matches, misses 27, 2, 1 average results compared to

BLS, with a significant mean improvement of 4.94% and a p-value of 8.94× 10−7 (again

3 Available online at http://www.info.univ-angers.fr/pub/hao/stprbh-memetic.html
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a statistically significant difference is detected). On the other hand, the mean computing

time consumed by the memetic algorithm (182.60s) is much less than the computing time

of BLS (564.12s). Thus we conclude that for these 30 new instances, the memetic algorithm

performs much better than BLS both in terms of solution quality and computing time.

4.6. Overall Comparison with Respect to the Previous Heuristics
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Figure 3 For each compared heuristic, we show the percentage of instances for which the optimal solutions

(groups G1-G3) or the best known results (including those updated by the memetic algorithm) are

reached (groups G4 and G5). A higher percentage corresponds to a better performance.
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Figure 4 For each compared heuristic, we show the average CPU time X in seconds (expressed as ln(100X))

for solving each group of instances. A lower value of ln(100X) corresponds to a better performance.
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In this section, we try to provide an overall comparison between our memetic algorithm

and the existing heuristics. For this purpose, we illustrate in a graphical way the overall

performances (based on all the five groups of instances) of our memetic algorithm with

respect to the previous heuristics D&R, TS(2000), TS(10000) and BLS. Respectively, Fig.

3 gives the percentage of instances for which each heuristic can reach the optimal solutions

(for groups G1-G3) or the overall best known results (including those updated by the

memetic algorithm) (for groups G4 and G5). Fig. 4 gives the average CPU time X in

seconds (in logarithmic scale, expressed as ln(100X)) of each heuristic for solving each

group of instances. The logarithmic scale ln(100X) is used to convert the mean CPU times

from a large range (from 0.06s to 3180.89s) to a reasonable range (from 1.79 to 12.67).

Note that for group G5, only results of BLS and the memetic algorithm are available.

Fig. 3 and Fig. 4 show that our algorithm reaches the highest percentage of optimal or

best known results on each group and thus outperforms the compared heuristics in terms of

solution quality. Moreover, our algorithm consumes statistically much shorter mean CPU

time than BLS and TS(10000) on each group, while requiring slightly more time than D&R

and TS(2000) on groups G1, G2 and G4. As shown in Section 4.4, running the memetic

algorithm with M=50 outperforms D&R and TS(2000) both in terms of solution quality

and run time on the most challenging group G4. These comparisons clearly indicate the

competitiveness of our memetic algorithm with respect to the existing heuristics.

5. Discussions
5.1. Impact of the Dynamic Programming Driven Estimation Criterion

To assess the impact of the dynamic programming driven estimation criterion, we cre-

ate a variant of our memetic algorithm by disabling this technique (call this variant

Memetic/DP). In Memetic/DP, we use a basic neighborhood search procedure which, at

each iteration, may actually generate all the candidate neighboring solutions (O(|lv(T )|2)

in total) to seek an improving neighboring solution. We compare Memetic/DP and our

standard memetic algorithm on the base of the 56 most challenging instances of group G4

(each instance is solved ten times by each algorithm using the same parameters and under

the same termination condition, i.e. with Q=20, M=500, β=0.6 and a time limit of 12

minutes per run). The detailed results are provided in Table 2 of the online supplement,

where the meanings of the columns are the same as in Table 4.
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The results show that Memetic/DP yields globally similar or slightly worse results in

terms of solution quality compared to the standard memetic algorithm (without significant

statistical difference according to the Friedman test). However, to achieve these results,

Memetic/DP needs much more computing time than the standard memetic algorithm. In

fact, for these 56 instances, the mean computing time consumed by Memetic/DP (903.36s)

is about 14 times higher than the time of the standard memetic algorithm (63.04s). This

experiment clearly demonstrates that the dynamic programming driven estimation crite-

rion is extremely important to speed up the search process (by discarding a large number

of non-promising candidate solutions), without sacrificing solution quality.

5.2. Impact of the Memetic Framework

We now analyze the impact of the memetic framework by disabling its crossover operator

and removing its population mechanism. Precisely, we compare the memetic algorithm

with an iterated local search (ILS) approach, which uses the same probabilistic constructive

procedure for solution initialization, and the same neighborhood search procedure (includ-

ing the dynamic programming driven estimation criterion) for local optimization. In order

to run ILS under the same condition as our memetic algorithm, we reinforce ILS with a

multi-start strategy: each time ILS reaches a local optimum, it is restarted from a newly

generated initial solution and calls the neighborhood search procedure to reach another

local optimum. This process is repeated until an optimal solution is reached (all the reach-

able profitable vertices are collected) or the best found solution cannot be improved after

500 consecutive restarts or the cutoff time (up to 12 minutes) is reached (being equivalent

to the termination criteria of the memetic algorithm with M=500). We independently run

ILS ten times to solve each of the 56 most challenging instances and compare the best and

average results as well as the computing time with those of our memetic algorithm. The

detailed results of this experiment are provided in Table 3 of the online supplement.

In terms of the best results, the memetic algorithm respectively improves, matches,

misses 35, 13, 8 best results compared to ILS, with a mean improvement of 0.43% and

a p-value=3.83 × 10−5, indicating a statistically significant difference. Furthermore, the

memetic algorithm respectively improves, matches, misses 45, 3, 8 average results compared

to ILS, with a mean improvement of 0.35% and a p-value=3.73 × 10−7 indicating that

the difference in terms of average quality is even larger. The mean time consumed by the

memetic algorithm is 65.04s, which is a little more than the mean time required by ILS
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(46.91s). This comparison provides thus evidences that the memetic framework is relevant

to the performance of the whole algorithm.

6. Conclusion

The Steiner tree problem with revenues, budget and hop constraints (STPRBH) is a rele-

vant model able to formulate a number of network design problems. The proposed memetic

approach for the STPRBH relies on a probabilistic constructive procedure for initialization,

a neighborhood search subroutine based on a dynamic programming procedure for local

optimization, a backbone based crossover operator for generating offspring solutions and a

quality-and-distance pool updating strategy for managing the solutions pool. Although all

these components are indispensable for the proposed algorithm, we have shown the par-

ticular importance of the dynamic programming pre-examination technique for speeding

up the neighborhood exploitation and the advantages of the population-based memetic

framework compared to an iterated local search procedure for solving the STPRBH.

Experiments based on four groups of 384 STPRBH benchmarks from the literature

demonstrate that the proposed algorithm is highly competitive, compared to the currently

available methods. For the 328 cases with a known optimum, the memetic algorithm can

attain the optimal result for 318 cases (96.95%) within a short computing time (from

several seconds to several minutes). More importantly, for the 56 most challenging instances

with unknown optimal solutions, our algorithm consistently finds improved solutions (new

lower bounds) for 45 cases. Additionally, we have generated a new group of 30 benchmark

instances and reported computational results which can serve as a basis for comparing new

solution methods for the STPRBH. Finally, we hope that the main ideas of this research

(i.e., pre-examination for neighborhood exploration, backbone based crossover, quality-

and-distance pool updating criterion) could be useful for designing effective heuristics for

other STP variants, including those encountered in real-life applications.
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