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Abstract. This work presents the first study of using the popular Monte
Carlo Tree Search (MCTS) method combined with dedicated heuristics
for solving the Weighted Vertex Coloring Problem. Starting with the
basic MCTS algorithm, we gradually introduce a number of algorith-
mic variants where MCTS is extended by various simulation strategies
including greedy and local search heuristics. We conduct experiments
on well-known benchmark instances to assess the value of each studied
combination. We also provide empirical evidence to shed light on the
advantages and limits of each strategy.
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1 Introduction

The well-known Graph Coloring Problem (GCP) is to color the vertices of a
graph using as few colors as possible such that no adjacent vertices share the same
color (legal or feasible solution). The GCP can also be considered as partitioning
the vertex set of the graph into a minimum number of color groups such that
no vertices in each color group are adjacent. The GCP has numerous practical
applications in various domains [14] and has been studied for a long time.

A variant of the GCP called the Weighted Vertex Coloring Problem (WVCP)
has recently attracted a lot of interest in the literature [9,16,20,22]. In this prob-
lem, each vertex of the graph has a weight and the objective is to find a legal
solution such that the sum of the weights of the heaviest vertex of each color
group is minimized. Formally, given a weighted graph G = (V,E) with vertex
set V and edge set E, and let W be the set of weights w(v) associated to each
vertex v in V , the WVCP consists in finding a partition of the vertices in V into
k color groups S = {V1, . . . , Vk} (1 ≤ k ≤ |V |) such that no adjacent vertices

belong to the same color group and such that the score
∑k

i=1 maxv∈Vi w(v) is
minimized. One can notice that when all the weights w(v) (v ∈ V ) are equal to
one, finding an optimal solution of this problem with a minimum score corre-
sponds to solving the GCP. Therefore, the WVCP can be seen as a more general
problem than the GCP and is NP-hard. This extension of the GCP is useful for a
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number of applications in multiple fields such as matrix decomposition problem
[18], buffer size management, scheduling of jobs in a multiprocessor environment
[17] or partitioning a set of jobs into batches [11].

Different methods have been proposed in the literature to solve the WVCP.
First, this problem has been tackled with exact methods: a branch-and-price
algorithm [7] and two ILP models proposed in [15] and [5], which transforms the
WVCP into a maximum weight independent set problem. These exact methods
are able to prove the optimality on small instances, but fail on large instances.

To handle large graphs, several heuristics have been introduced to solve the
problem approximately [16,18,20,22]. The first category of heuristics is local
search algorithms, which iteratively make transitions from the current solution to
a neighbor solution. Three different approaches have been considered to explore
the search space: legal, partial legal, or penalty strategies. The legal strategy
starts from a legal solution and minimizes the score by performing only legal
moves so that no color conflict is created in the new solution [18]. The partial
legal strategy allows only legal coloring and keeps a set of uncolored vertices
to avoid conflicts [16]. The penalty strategy considers both legal and illegal
solutions in the search space [20,22], and uses a weighted evaluation function
to minimize both the WVCP objective function and the number of conflicts in
the illegal solutions. To escape local optima traps, these local search algorithms
incorporate different mechanisms such as perturbation strategies [18,20], tabu
list [16,20] and constraint reweighting schemes [22].

The second category of existing heuristics for the WVCP relies on the population-
based memetic framework that combines local search with crossovers. A recent
algorithm [9] of this category uses a deep neural network to learn an invari-
ant by color permutation regression model, useful to select the most promising
crossovers at each generation.

Research on combining such learning techniques and heuristics has received
increasing attention in the past years [23,24]. In these new frameworks, useful
information (e.g., relevant patterns) is learned from past search trajectories and
used to guide a local search algorithm.

This study continues on this path and investigates the potential benefits of
Monte Carlo Tree Search (MCTS) to improve the results of sequential coloring
and local search algorithms. MCTS is a heuristic search algorithm that generated
considerable interest due to its spectacular success for the game of Go [8], and in
other domains (see a survey of [2] on this topic). It has been recently revisited in
combination with modern deep learning techniques for difficult two-player games
(cf. AlphaGo [19]). MCTS has also been applied to combinatorial optimization
problems seen as a one-player game such as the traveling salesman problem [6]
or the knapsack problem [10]. An algorithm based on MCTS has recently been
implemented with some success for the GCP in [3]. In this work, we investigate
for the first time the MCTS approach for solving the WVCP.

In MCTS, a tree is built incrementally and asymmetrically. For each iteration,
a tree policy balancing exploration and exploitation is used to find the most
critical node to expand. A simulation is then run from the expanded node and
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the search tree is updated with the result of this simulation. Its incremental
and asymmetric properties make MCTS a promising candidate for the WVCP
because in this problem only the heaviest vertex of each color group has an
impact on the objective score. Therefore learning to color the heaviest vertices
of the graph before coloring the rest of the graph seems particularly relevant for
this problem. The contributions of this work are summarized as follows.

First, we present a new MCTS algorithm dedicated to the WVCP, which
considers the problem from the perspective of a sequential coloring with a pre-
defined vertex order. The exploration of the tree is accelerated with the use of
specific pruning rules, which offer the possibility to explore the whole tree in a
reasonable amount of time for small instances and to obtain optimality proofs.
Secondly, for large instances, when obtaining an exact result is impossible in a
reasonable time, we study how this MCTS algorithm can be tightly coupled with
other heuristics. Specifically, we investigate the integration of different greedy
coloring strategies and a local search procedure with the MCTS algorithm.

The rest of the paper is organized as follows. Section 2 introduces the weighted
vertex coloring problem and the constructive approach with a tree. Section 3 de-
scribes the MCTS algorithm devised to tackle the problem. Section 4 presents
the coupling of MCTS with a local search algorithm. Section 5 reports results
of the different versions of MCTS. Section 6 discusses the contributions and
presents research perspectives.

2 Constructive approach with a tree for the weighted
graph coloring problem

This section presents a tree-based approach for the WVCP, which aims to explore
the partial and legal search space of this problem.

2.1 Partial and legal search space

The search space Ω studied in our algorithm concerns legal, but potentially
partial, k-colorings. A partial legal k-coloring S is a partition of the set of vertices
V into k disjoint independent sets Vi (1 ≤ i ≤ k), and a set of uncolored vertices

U = V \
⋃k

i=1 Vi. A independent set Vi is a set of mutually non adjacent vertices
of the graph: ∀u, v ∈ Vi, (u, v) /∈ E. For the WVCP, the number of colors k
that can be used is not known in advance. Nevertheless, it is not lower than the
chromatic number of the graph χ(G) and not greater than the number of vertices
|V | of the graph. A solution of the WVCP is denoted as partial if U 6= ∅ and
complete otherwise. The objective of the WVCP is to find a complete solution
S with a minimum score f(S) given by: f(S) =

∑k
i=1 maxv∈Vi w(v).

2.2 Tree search for weighted vertex coloring

Backtracking based tree search is a popular approach for the graph coloring
problem [1,12,14]. In our case, a tree search algorithm can be used to explore
the partial and legal search space of the WVCP previously defined.
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Starting from a solution where no vertex is colored (i.e., U = V ) and that
corresponds to the root node R of the tree, child nodes C are successively selected
in the tree, consisting of coloring one new vertex at a time. This process is
repeated until a terminal node T is reached (all the vertices are colored). A
complete solution (i.e., a legal coloring) corresponds thus to a branch from the
root node to a terminal node.

The selection of each child node corresponds to applying a move to the current
partial solution being constructed. A move consists of assigning a particular color
i to an uncolored vertex u ∈ U , denoted as < u,U, Vi >. Applying a move to the
current partial solution S, results in a new solution S ⊕ < u,U, Vi >. This tree
search algorithm only considers legal moves to stay in the partial legal space.
For a partial solution S = {V1, ..., Vk, U}, a move < u,U, Vi > is said legal if no
vertex of Vi is adjacent to the vertex u. At each level of the tree, there is at least
one possible legal move that applies to a vertex a new color that has never been
used before (or putting this vertex in a new empty set Vi, with k+ 1 ≤ i ≤ |V |).

Applying a succession of |V | legal moves from the initial solution results in
a legal coloring of the WVCP and reaches a terminal node of the tree. During
this process, at the level t of the tree (0 ≤ t < |V |), the current legal and partial
solution S = {V1, ..., Vk, U} has already used k colors and t vertices have already
received a color. Therefore |U | = |V | − t.

At this level, a first naive approach could be to consider all the possible
legal moves, corresponding to choosing a vertex in the set U and assigning to
the vertex a color i, with 1 ≤ i ≤ |V |. This kind of choice can work with
small graphs but with large graphs, the number of possible legal moves becomes
huge. Indeed, at each level t, the number of possible legal moves can go up to
(|V |− t)×|V |. To reduce the set of move possibilities, we consider the vertices of
the graph in a predefined order (v1, . . . , v|V |). Moreover, to choose a color for the
incoming vertex, we consider only the colors already used in the partial solution
plus one color (creation of a new independent set). Thus for a current legal and
partial solution S = {V1, ..., Vk, U}, at most k+ 1 moves are considered. The set
of legal moves is:

L(S) = {< u,U, Vi >, 1 ≤ i ≤ k, ∀v ∈ Vi, (u, v) /∈ E} ∪ < u,U, Vk+1 > (1)

This decision cuts the symmetries in the tree while reducing the number of
branching factors at each level of the tree.

2.3 Predefined vertex order

We propose to consider a predefined ordering of the vertices, sorted by weight
then by degree. Vertices with higher weights are placed first. If two vertices have
the same weight, then the vertex with the higher degree is placed first. This order
is intuitively relevant for the WVCP, because it is more important to place first
the vertices with heavy weights which have the most impact on the score as well
as the vertices with the highest degree because they are the most constrained
decision variables. Such ordering has already been shown to be effective with
greedy constructive approaches for the GCP [1] and the WVCP [16].
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Moreover, this vertex ordering allows a simple score calculation while building
the tree. Indeed, as the vertices are sorted by descending order of their weights,
and the score of the WVCP only counts the maximum weight of each color group,
with this vertex ordering, the score only increases by the value w(v) when a new
color group is created for the vertex v.

3 Monte Carlo Tree Search for weighted vertex coloring

The search tree presented in the last subsection can be huge, in particular for
large instances. Therefore, in practice, it is often impossible to perform an ex-
haustive search of this tree, due to expensive computing time and memory
requirements. We turn now to an adaptation of the MCTS algorithm for the
WVCP to explore this search tree. MCTS keeps in memory a tree (hereinafter
referred to as the MCTS tree) which only corresponds to the already explored
nodes of the search tree presented in the last subsection. In the MCTS tree,
a leaf is a node whose children have not yet all been explored while a terminal
node corresponds to a complete solution. MCTS can guide the search toward the
most promising branches of the tree, by balancing exploitation and exploration
and continuously learning at each iteration.

3.1 General framework

The MCTS algorithm for the WVCP is shown in Algorithm 1. The algorithm
takes a weighted graph as input and tries to find a legal coloring S with the
minimum score f(S). The algorithm starts with an initial solution where the first
vertex is placed in the first color group. This is the root node of the MCTS tree.
Then, the algorithm repeats a number of iterations until a stopping criterion is
met. At every iteration, one legal solution is completely built, which corresponds
to walking along a path from the root node to a leaf node of the MCTS tree and
performing a simulation (or playout/rollout) until a terminal node of the search
tree is reached (when all vertices are colored).

Each iteration of the MCTS algorithm involves the execution of 5 steps to
explore the search tree with legal moves (cf. Section 2):

1. Selection From the root node of the MCTS tree, successive child nodes
are selected until a leaf node is reached. The selection process balances the
exploration-exploitation trade-off. The exploitation score is linked to the
average score obtained after having selected this child node and is used to
guide the algorithm to a part of the tree where the scores are the lowest (the
WVCP is a minimization problem). The exploration score is linked to the
number of visits to the child node and will incite the algorithm to explore
new parts of the tree, which have not yet been explored.

2. Expansion The MCTS tree grows by adding a new child node to the leaf
node reached during the selection phase.

3. Simulation From the newly added node, the current partial solution is
completed with legal moves, randomly or by using heuristics.
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Algorithm 1 MCTS algorithm for the WVCP

1: Input: Weighted graph G = (V,W,E)
2: Output: The best legal coloring S∗ found
3: S∗ = ∅ and f(S∗) = MaxInt
4: while stop condition is not met do
5: C ← R . Current node corresponding to the root node of the tree
6: S ← {V1, U} with V1 = {v1} and U = V \V1 . Current solution initialized with

the first vertex in the first color group
7: /* Selection */ . Section 3.2
8: while C is not a leaf do
9: C ← select best child(C) with legal move < u,U, Vi >

10: S ← S ⊕ < u,U, Vi >
11: end while
12: /* Expansion */ . Section 3.3
13: if C has a potential child, not yet open then
14: C ← open first child not open(C) with legal move < u,U, Vi >
15: S ← S ⊕ < u,U, Vi >
16: end if
17: /* Simulation */ . Section 3.4
18: complete partial solution(S)
19: /* Update */ . Section 3.5
20: while C 6= R do
21: update(C,f(S))
22: C ← parent(C)
23: end while
24: if f(S) < f(S∗) then
25: S∗ ← S
26: /* Pruning */ . Section 3.6
27: apply pruning rules
28: end if
29: end while
30: return S∗

4. Update After the simulation, the average score and the number of visits of
each node on the explored branch are updated.

5. Pruning If a new best score is found, some branches of the MCTS tree may
be pruned if it is not possible to improve the best current score with it.

The algorithm continues until one of the following conditions is reached:

– there are no more child nodes to expand, meaning the search tree has been
fully explored. In this case, the best score found is proven to be optimal.

– a cutoff time is attained. The minimum score found so far is returned. It
corresponds to an upper bound of the score for the given instance.



MCTS for weighted vertex coloring 7

3.2 Selection

The selection starts from the root node of the MCTS tree and selects children
nodes until a leaf node is reached. At every level t of the MCTS tree, if the
current node Ct is corresponds to a partial solution S = {V1, ..., Vk, U} with t
vertices already colored and k colors used, there are l possible legal moves, with
1 ≤ l ≤ k + 1. Therefore, from the node Ct, l potential children C1

t+1, . . . , C
l
t+1

can be selected.
If l > 1, the selection of the most promising child node can be seen as a

multi-armed bandit problem [13] with l levers. This problem of choosing the
next node can be solved with the UCT algorithm for Monte Carlo tree search
by selecting the child with the maximum value of the following expression [10]:

normalized score(Ci
t+1) + c×

√
2 ∗ ln(nb visits(Ct))

nb visits(Ci
t+1)

, for 1 ≤ i ≤ l. (2)

Here, nb visits(C) corresponds to the number of times the node C has been
chosen to build a solution. c is a real positive coefficient allowing to balance
the compromise between exploitation and exploration. It is set by default to the
value of one. normalized score(Ci

t+1) corresponds to a normalized score of the
child node Ci

t+1 (1 ≤ i ≤ l) given by:

normalized score(Ci
t+1) =

rank(Ci
t+1)∑l

i=1 rank(Ci
t+1)

,

where rank(Ci
t+1) is defined as the rank between 1 and l of the nodes Ci

t+1 ob-
tained by sorting from bad to good according their average values avg score(Ci

t+1)
(nodes that seem more promising get a higher score). avg score(Ci

t+1) is the
mean score on the sub-branch with the node Ci

t+1 selected obtained after all
previous simulations.

3.3 Expansion

From the node C of the MCTS tree reached during the selection procedure, one
new child of C is open and its corresponding legal move is applied to the current
solution. Among the unopened children, we select the node associated with the
lowest color number i. Therefore the child node needing the creation of a new
color (and increasing the score) will be selected last.

3.4 Simulation

The simulation takes the current partial and legal solution found after the expan-
sion phase and colors the remaining vertices. In the original MCTS algorithm,
the simulation consists in choosing random moves in the set of all legal moves
L(S) defined by equation (1) until the solution is completed. We call this first
version random-MCTS. As shown in the experimental section, this version is not
very efficient as the number of colors grows rapidly. Therefore, we propose two
other simulation procedures:
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– a constrained greedy algorithm that chooses a legal move prioritizing the
moves which do not locally increase the score of the current partial solution
S = {V1, ..., Vk, U}:

Lg(S) = {< u,U, Vi >, 1 ≤ i ≤ k, ∀v ∈ Vi, (u, v) /∈ E} (3)

It only chooses the move < u,U, Vk+1 >, consisting in opening a new color
group and increasing the current score by w(u), only if Lg(S) = ∅. We call
this version greedy-random-MCTS.

– a greedy deterministic procedure which always chooses a legal move in L(S)
with the first available color i. We call this version greedy-MCTS.

3.5 Update

Once the simulation is over, a complete solution of the WVCP is obtained. If
this solution is better than the best recorded solution found so far S∗ (i.e.,
f(S) < f(S∗)), S becomes the new global best solution S∗.

Then, a backpropagation procedure updates each node C of the whole branch
of the MCTS tree which has led to this solution:

– the running average score of each node C of the branch is updated with the
score f(S):

avg score(C)← avg score(C)× nb visits(C) + f(S)

nb visits(C) + 1
(4)

– the counter of visits nb visits(C) of each node of the branch is increased by
one.

3.6 Pruning

During an iteration of MCTS, three pruning rules are applied:

1. during expansion: if the score f(S) of the partial solution associated with a
node visited during this iteration of MCTS is equal or higher to the current
best-found score f(S∗), then the node is deleted as the score of a partial
solution cannot decrease when more vertices are colored.

2. when the best score f(S∗) is found, the tree is cleaned. A heuristic goes
through the whole tree and deletes children and possible children associated
with a partial score f(S) equal or superior to the best score f(S∗).

3. if a node is completely explored, it is deleted and will not be explored in the
MCTS tree anymore. A node is said completely explored if it is a leaf node
without children, or if all of its children have already been opened once and
have all been deleted. Note that this third pruning step is recursive as a node
deletion can result in the deletion of its parent if it has no more children,
and so on.
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These three pruning rules and the fact that the symmetries are cut in the
tree by restricting the set of legal moves considered at each step (see Section 2.2)
offer the possibility to explore the whole tree in a reasonable amount of time for
small instances. This peculiarity of the algorithm makes it possible to obtain an
optimality proof for such instances.

4 Improving MCTS with Local Search

We now explore the possibility of improving the MCTS algorithm with local
search. Coupling MCTS with a local search algorithm is motivated by the fact
that after the simulation phase, the complete solution obtained can be close to a
still better solution in the search space that could be discovered by local search.

For this purpose, we propose a strong integration between the MCTS frame-
work and a local search procedure regarding two aspects:

– first, to stay consistent with the search tree learned by MCTS, we allow the
local search procedure to only move the vertices of the complete solution S
which are still uncolored after the selection and expansion phases. This set
of free vertices is called FV .

– secondly, the best score obtained by the local search procedure is used to
update all the nodes of the branch which has led to the simulation initiation.

When coupling MCTS with a local search algorithm, the resulting heuristic
can be seen as an algorithm that attempts to learn a good starting point for the
local search procedure, by selecting a different path in every iteration during the
selection phase.

In this work, we present the coupling of MCTS with an iterated tabu search
(ITS) that searches in the same legal and partial search space presented in
Section 2. We call this variant MCTS+ITS. The ITS algorithm is an adaptation
of the ILS-TS algorithm [16], which is one of the best performing local search
algorithms for the WVCP.

From a complete solution, the ITS algorithm iteratively performs 2 steps:

– first it deletes the heaviest vertices in FV from 1 to 3 color groups Vi and
places them in the set of uncolored vertices U .

– then, it improves the solution (i.e., minimizes the score f(S)) by applying
the one move operator (consisting in moving a vertex from one color group
to another) and the so-called grenade operator until the set of uncolored
vertices U becomes empty.

The grenade operator grenade(u, Vi) consists in moving a vertex u to Vi, but
first, each adjacent vertice of u in Vi is relocated to other color groups or in U
to keep a legal solution. In our algorithm, as we restrict the vertices allowed to
move to the set of free vertices FV , the neighborhood of a solution S associated
with this grenade operator is given by: N(S) = {S ⊕ grenade(u, Vi) : u ∈
FV , u /∈ Vi, 1 ≤ i ≤ k, ∀v ∈ Vi, ((u, v) /∈ E or v ∈ FV )}.
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5 Experimentation

This section aims to experimentally verify the impacts of the different greedy
coloring strategies used during the MCTS simulation phase, and the interest of
coupling MCTS with local search.

5.1 Experimental settings and benchmark instances

A total of 161 instances in the literature were used for the experimental studies:
30 rxx graphs and 35 pxx graphs from matrix decomposition [18] and 46 small
and 50 large graphs from the DIMACS and COLOR competitions.

Two preprocessing procedures were applied to reduce the graphs of the dif-
ferent instances. The first one comes from [22]: if the weight of a vertex of degree
d is lower than the weight of the d+ 1th heaviest vertex from any clique of the
graph, then the vertex can be deleted without changing the optimal WVCP score
of this instance. The second one comes from [4] and is adapted to our problem:
if all neighbors of a vertex v1 are all neighbors with a vertex v2 and the weight
of v2 is greater or equal to the weight of v1, then v1 can be deleted as it can
take the color of v2 without impacting the score.

The MCTS algorithms of Section 3 were coded in C++ and compiled with
the g++ 8.3 compiler and the -O3 optimization flag using GNU Parallel [21].
To solve each instance, 20 independent runs were performed on a computer
equipped with an Intel Xeon E7-4850 v4 CPU with a time limit of one hour.
Running the DIMACS Machine Benchmark procedure dfmax1 on our computer
took 9 seconds to solve the instance r500.5 using gcc 8.3 without optimization
flag. The source code of our algorithm is available at https://github.com/

Cyril-Grelier/gc_wvcp_mcts.

For our experimental studies, we report the following statistics in the tables
of results. Column BKS (Best-Known Score) reports the best scores from all
methods reported in the literature which have been obtained using different
computing tools, CPU or GPU (Graphics Processing Units), sometimes under
relaxed conditions (specific fine-tuning of the hyperparameters, large run time
up to several days). The scores of the different methods equal to this best-known
score are marked in bold in the tables. The optimal results obtained with the
exact algorithm MWSS [5] and reported in [16] (launched with a time limit of
ten hours for each instance) are indicated with a star. Column ”best” shows the
best results for a method, ”Avg” the average score on the 20 runs, and ”t(s)”
the average time in seconds to reach the best scores.

Due to space limitations, we only present the results for 25 out of the 161
instances tested. These 25 instances can be considered to be among the most
difficult ones.

1 http://archive.dimacs.rutgers.edu/pub/dsj/clique/

https://github.com/Cyril-Grelier/gc_wvcp_mcts
https://github.com/Cyril-Grelier/gc_wvcp_mcts
http://archive.dimacs.rutgers.edu/pub/dsj/clique/
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5.2 Monte Carlo Tree Search with greedy strategies

Table 1 shows the results of MCTS with the greedy heuristics for its simulation
(cf. Section 3.4). Column 2 gives the number of vertices of the graph. Column 3
shows the best-known score ever reported in the literature for each instance. Col-
umn 4 corresponds to the baseline greedy algorithm: using the predefined vertex
ordering presented in Section 2.3, each vertex is placed in the first color group
available without creating conflicts (if no color is available, a new color group is
created). Columns 5-13 show the results of the three greedy strategies used in
the simulation phase of MCTS (cf. Section 3.4): random-MCTS, greedy-random-
MCTS, and greedy-MCTS. Column 14 presents the gap between the mean score
of the greedy-random-MCTS and the greedy-MCTS variants. Significant gaps
(t-test with a p-value below 0.001) are underlined.

Table 1. Comparison between the random-MCTS, greedy-random-MCTS and greedy-
MCTS variants (best known, proven optimum*, significant gap)

BKS greedy random-MCTS (1) greedy-random-MCTS (2) greedy-MCTS (3) gap
instance |V | best best best avg t(s) best avg t(s) best avg t(s) (3) - (2)

C2000.5 2000 2151 2470 3262 3281.5 3150 2584 2603.6 2524 2386 2387.7 3462 -215.9
C2000.9 2000 5486 6449 7300 7334.4 1128 6420 6452.3 3403 6249 6249 382.6 -203.3

DSJC500.1 500 184 224 240 247.6 1243 205 208.15 358 209 209 480.6 0.85
DSJC500.5 500 686 840 815 827.7 1336 760 766.5 606 757 757 1037.1 -9.5
DSJC500.9 500 1662 1916 1830 1857.5 680 1766 1788.3 496 1788 1788 1354.65 -0.3

DSJR500.1 500 169 187 179 184.9 656 169 169.05 496.05 177 177 4.6 7.95
flat1000 50 0 1000 924 1350 1572 1639.7 3211 1284 1304.9 3566 1273 1273.6 3516 -31.3
flat1000 60 0 1000 1162 1388 1666 1700.9 3571 1330 1346.75 3416 1303 1303.15 3265.26 -43.6
GEOM120b 120 35* 40 38 38.55 42.69 36 36.95 4 38 38 0 1.05

inithx.i.1 864 569 569 571 574.35 3584 569 569 0 569 569 0 0

latin square 10 900 1483 1876 2178 2288.15 3575 1729 1766.25 3444 1766 1766 2746.85 -0.25
le450 25a 450 306 321 313 318.35 2311 308 313.45 3380 312 312 18.7 -1.45
le450 25b 450 307 312 310 312.7 2217.5 309 309.4 1797.85 309 309 0 -0.4
miles1500 128 797* 799 797 797 1.3 797 797 0 797 797 0 0

p41 116 2688* 2724 2688 2709.55 446.17 2688 2688 0.15 2688 2688 0 0

p42 138 2466* 2517 2489 2514.05 35 2466 2466.45 10 2466 2466 0.95 -0.45
queen10 10 100 162 190 173 178.2 691.5 164 168.55 1 169 169 7.35 0.45
queen16 16 256 234 264 269 274.6 854 248 252.65 116 244 244 70.25 -8.65

r28 288 9407* 9409 9439 9560.8 543 9407 9411.9 2413.8 9407 9407 0 -4.9
r29 281 8693* 8973 8875 9054 1519 8693 8698.05 1723.5 8694 8694 0.2 -4.05

r30 301 9816* 9831 9826 9881.4 770 9816 9819.6 27.75 9818 9818 0 -1.6
R50 5gb 50 135* 158 135* 135 727 135* 135 652.45 135* 135 384.4 0
R75 1gb 70 70* 91 74 78.4 170 70* 74.05 1150 72 72 1291.1 -2.05
wap01a 2368 545 628 1050 1071.95 3530 659 663.05 2278 603 603 1385.9 -60.05
wap02a 2464 538 619 1034 1051.2 3505 651 653.6 1268.67 591 591 1586.05 -62.6

1/25 3/25 10/25 6/25

First, we observe that the version random-MCTS (Columns 5-7) performs
badly even in comparison with the baseline greedy algorithm (Column 4). This
is particularly true for the largest instances such as C2000.5 and C2000.9. Indeed,
for large instances, choosing random moves in the set of all legal moves is not
very efficient as the number of color groups grows rapidly.

The greedy-random-MCTS variant (Columns 8-10) is equipped with a sim-
ulation procedure that chooses a legal move in priority in the set of all possible
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legal moves which does not locally increase the WVCP score. We observe that
this simulation strategy really improves the scores of MCTS in comparison with
the random-MCTS version (Columns 5-7) and can reach 10 out of the 25 best-
known results. This better heuristic used during the simulation phase helped
also to prove the optimality for the instance R75 1gb (indicated with a star)
because the best score of 70 was found during the search which led to a pruning
of the tree that allowed the tree to be fully explored earlier.

The greedy-MCTS variant (Columns 11-13) always dominates the baseline
greedy algorithm (Column 3) for all the instances as it always starts with a sim-
ulation using the greedy algorithm at the root node of the tree (first simulation).
It only finds 6 over 25 best-known results but is better for the largest instance
when we compare the average results with those obtained by the greedy-random-
MCTS variant ((Column 14). This is probably due to the fact that forcing the
heaviest vertices to be grouped together in the first colors enables a better or-
ganization of the color groups. This greedy variant used during the simulation
leads to a better intensification which is beneficial for large instances, for which
the search tree cannot be sufficiently explored due to the time limit of one hour.

However, with the deterministic simulation of this greedy-MCTS variant, we
lose the sampling part with the random legal moves used in the greedy-random-
MCTS allowing greater exploration of the search space and a better estimation
of the most promising branches of the search tree. This particularity of the
greedy-random-MCTS allows finding the best-known score for DSJR500.1, r29,
or R75 1gb for example.

To confirm this intuition, we varied the coefficient c balancing the compromise
between exploration and exploitation in equation 2 from 0 (no exploration) to 2
(encourage exploration) for different instances. For each value of the coefficient,
we performed 20 runs of greedy-random-MCTS per instance during 1h per run.
Figure 1 displays 4 box plots showing the distribution of the best scores for the
instances queen10 10, le450 25c, latin square 10 and C2000.5 for the different
values of c. We observe 3 typical patterns also seen for the other instances.

The pattern observed for the instance queen10 10 is typical for easy instances
or medium instances. For these instances, having no exploration performs badly,
then the results get better when the coefficient rises to approximately 1 where
it starts to stagnate. For these instances, having no exploration rapidly leads to
a local minimum trap and it seems better to secure a minimum of diversity to
reach a better score.

Conversely, for very large instances such as C2000.5, we observe a pattern
completely different with a best solution when c = 0. Indeed, for very large
instances, as the search tree is huge and cannot be sufficiently explored due to the
time limit, it seems more beneficial for the algorithm to favor more intensification
to better search for a good solution in a small part of the tree.

An intermediate pattern appears for medium/hard instances such as le450 25c
or latin square 10 with a U-shaped curve. For these instances, an optimal value
of the coefficient c is around the value of 1, with a good balance between ex-
ploitation and exploration.
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Fig. 1. Boxplots of the distribution of the scores for different values of the coefficient c
between 0 and 2, for the instances queen10 10, le450 25c, latin square 10 and C2000.5.
For each configuration, 20 runs are launched with the greedy-random-MCTS variant.

5.3 Monte Carlo Tree Search with local search

Table 2 reports the results of the greedy-MCTS variant (Columns 4-6), the
state-of-the art local search ILS-TS algorithm [16] (Columns 7-9) and the MCTS
algorithm combined with ITS (MCTS+ITS) with 500 iterations per simulation
(Columns 10-12). Column 13 shows the gap between the mean scores of greedy-
MCTS and MCTS+ITS. Column 14 shows the gap between the mean scores
of ILS-TS and MCTS+ITS. Statistically significant gaps (t-test with a p-value
below 0.001) are underlined.

As shown in Table 2, the combination MCTS+ITS significantly improves
the results of the greedy-MCTS version (without local search). However, the
advantage of this coupling is less convincing compared with the results of the ILS-
TS algorithm alone. In fact it degrades the results significantly for 2 instances
DSJC500.9 and C2000.9 on average. Still, it greatly improves the average results
for the flat1000 60 0 instance.

This may be due to the size of the tree that grows too fast for large instances
with a high edge density such as DSJC500.9 and C2000.9. The algorithm does
not allow to intensify the search enough with a timeout of 1h. This method
would probably require a much longer time to learn more information on the
higher part of the tree to reach better results, in particular for large instances.

We also studied combinations of MCTS with other local searches recently
proposed in the literature for this problem such as AFISA [20] or RedLS [22]
(these results are available at https://github.com/Cyril-Grelier/gc_wvcp_

https://github.com/Cyril-Grelier/gc_wvcp_mcts
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mcts). The combination of MCTS with these methods significantly improves
the results compared to the local search alone. In general, we observe that the
weaker the local search, the greater the interest of combining it with MCTS.
ILS-TS [16] being a powerful local search algorithm, the utility of combining it
with the MCTS is actually less obvious.

Table 2. Comparison between the greedy-MCTS variant, ILS-TS [16], and MCTS +
ITS. (best known, proven optimal*, significant gap)

BKS greedy-MCTS (1) ILS-TS (2) MCTS+ITS (3) gap gap
instance |V | best best avg t(s) best avg t(s) best avg t(s) (3) - (1) (3) – (2)

C2000.5 2000 2151 2386 2387.7 3462 2256 2278.52 3438.27 2251 2273.45 3658 -114.25 -5.07
C2000.9 2000 5486 6249 6249 382.6 5944 5996.76 3579.44 6056 6105.4 3611 -143.6 108.64

DSJC500.1 500 184 209 209 480.6 185 188.52 3226.7 189 189.35 1485.08 -19.65 0.83
DSJC500.5 500 686 757 757 1037.1 719 735.76 320.75 721 737.9 2124 -19.1 2.14
DSJC500.9 500 1662 1788 1788 1354.65 1711 1726.1 2178.08 1728 1755.45 2900 -32.55 29.35

DSJR500.1 500 169 177 177 4.6 169 169 0.34 169 169 31.75 -8 0
flat1000 50 0 1000 924 1273 1273.6 3516 1220 1235 192.4 1211 1228.7 2555 -44.9 -6.3
flat1000 60 0 1000 1162 1303 1303.15 3265.26 1252 1271.86 283.38 1248 1261.05 2787 -42.1 -10.81
GEOM120b 120 35* 38 38 0 35 35 1.06 35 35 7.05 -3 0

inithx.i.1 864 569 569 569 0 569 569 0 569 569 59.45 0 0

latin square 10 900 1483 1766 1766 2746.85 1547 1577.14 2508.73 1566 1591.1 3613 -174.9 13.96
le450 25a 450 306 312 312 18.7 306 306.29 679.64 306 306.4 1382.58 -5.6 0.11
le450 25b 450 307 309 309 0 307 307 51.43 307 307 81.25 -2 0
miles1500 128 797* 797 797 0 797 797 2.04 797 797 5.1 0 0

p41 116 2688* 2688 2688 0 2688 2688 0.42 2688 2688 4.2 0 0

p42 138 2466* 2466 2466 0.95 2466 2466 6.73 2466 2466 26.3 0 0
queen10 10 100 162 169 169 7.35 162 162 20.91 162 162 29.35 -7 0
queen16 16 256 234 244 244 70.25 240 241.86 873.87 241 241.85 1411 -2.15 -0.01

r28 288 9407* 9407 9407 0 9407 9407 0.31 9407 9407 23.2 0 0
r29 281 8693* 8694 8694 0.2 8693 8693 5.51 8693 8693 20.85 -1 0

r30 301 9816* 9818 9818 0 9816 9816 1.31 9816 9816 31 -2 0
R50 5gb 50 135* 135* 135 384.4 135 135 0.21 135 135 1.35 0 0
R75 1gb 70 70* 72 72 1291.1 70 70 0.31 70 70 1.6 -2 0
wap01a 2368 545 603 603 1385.9 552 555.14 2499.01 550 554.7 1512 -48.3 -0.44
wap02a 2464 538 591 591 1586.05 544 546.14 1739.2 545 547.25 2867.33 -43.75 1.11

6/25 14/25 14/25

6 Conclusions and discussion

In this work, we investigated Monte Carlo Tree Search applied to the weighted
vertex coloring problem. We studied different greedy strategies and local searches
used for the simulation phase. Our experimental results lead to three conclusions.

When the instance is large, and when a time limit is imposed, MCTS does not
have the time to learn promising areas in the search space and it seems more ben-
eficial to favor more intensification, which can be done in three different ways: (i)
by lowering the coefficient which balances the compromise between exploitation
and exploration during the selection phase, (ii) by using a dedicated heuristic
exploiting the specificity of the problem (grouping in priority the heaviest ver-
tices in the first groups of colors), (iii) and by using a local search procedure to
improve the complete solution. For very large instances, we also observed that

https://github.com/Cyril-Grelier/gc_wvcp_mcts
https://github.com/Cyril-Grelier/gc_wvcp_mcts
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it may be better to use the local search alone, to avoid too early restarts with
the MCTS algorithm, which prevents the local search from improving its score.

Conversely, for small instances, it seems more beneficial to encourage more
exploration, to avoid getting stuck in local optima. It can be done, by increasing
the coefficient, which balances the compromise between exploitation and explo-
ration, and by using a simulation strategy with more randomness, which favors
more exploration of the search tree and also allows a better evaluation of the
most promising branches of the MCTS tree. For these small instances, the MCTS
algorithm can provide some optimality proofs.

For medium instances, it seems important to find a good compromise between
exploration and exploitation. For such instances, coupling the MCTS algorithm
with a local search procedure allows finding better solutions, which cannot be
reached by the MCTS algorithm or the local search alone.

Other future works could be envisaged. For instance, it could be interesting
to use a more adaptive approach to trigger the local search, or to use a machine-
learning algorithm to guide the search toward more promising branches of the
search tree.
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