Scatter Search for Graph Coloring*

Jean-Philippe Hamiez' and Jin-Kao Hao?

1 LGI2P, Ecole des Mines d’Alés, EERIE
Parc Scientifique Georges Besse
F-30035 Nimes Cedex 01, France

hamiez@site-eerie.ema.fr
2 LERIA, Université d’Angers
2, Bd. Lavoisier
F-49045 Angers Cedex 01, France

Jin-Kao.HaoQuniv-angers.fr

Abstract. In this paper, we present a first scatter search approach for
the Graph Coloring Problem (GCP). The evolutionary strategy scatter
search operates on a set of configurations by combining two or more
elements. New configurations are improved before replacing others ac-
cording to their quality (fitness), and sometimes, to their diversity. Scat-
ter search has been applied recently to some combinatorial optimization
problems with promising results. Nevertheless, it seems that no attempt
of scatter search has been published for the GCP. This paper presents
such an investigation and reports experimental results on some well-
studied DIMACS graphs.

1 Introduction

Scatter search [13,14] is an evolutionary approach related to the tabu search
metaheuristic [12]. It is based on strategies proposed in the 1960s for combining
decision rules and constraints. This approach has only been applied recently to
a few optimization problems. Applications of this method include, e.g., vehicle
routing [27] and unconstrained optimization [23]; see also [13] for more references.
Like other population-based methods, scatter search uses combination of con-
figurations to generate new configurations which can replace others in the pop-
ulation. But the way combinations and replacements are made differs from the
traditional strategies used in genetic algorithms. Combinations operate on mul-
tiple parents, and replacements rely on the improvement of a fitness function
as well as the improvement of the population diversity. Furthermore, scatter
search generally works with a small set of configurations and uses deterministic
heuristics as much as possible in place of randomization to make a decision.
Graph k-coloring can be stated as follows: given an undirected graph G
with a set V of vertices and a set F of edges connecting vertices, k-coloring

* This work was partially supported by the Sino-French Joint Laboratory in Computer
Science, Control and Applied Mathematics (LIAMA) and the Sino-French Advanced
Research Programme (PRA).

G means finding a partition of V' into k classes Vi, ..., V}, called color classes,
such that no couple of vertices (u,v) € E belongs to the same color class. For-
mally, {V1,..., Vi } is a valid k-coloring of the graph G = (V, E) if Vi € [1..k] and
Yu € V;,Bv € V;/(u,v) € E. The graph coloring problem (GCP for short) is the
optimization problem associated with k-coloring. It aims at searching for the
minimal k£ such that a proper k-coloring exists. This minimum is the chromatic
number x(G) of graph G.

k-coloring and the GCP are well-known NP-hard problems [20] and only
small problem instances can be solved exactly within a reasonable amount of
time in the general case [5]. It is also hard even to approximate the chromatic
number of a graph. In [25], it is proved that for some € > 0, approximating
the chromatic number within a factor of n¢ is NP-hard. Indeed, one of the best
known approximation algorithm [15] provides an extremely poor performance
guarantee! of O(n(loglogn)?/(logn)?) for a graph with n vertices.

Graph coloring has many real applications, e.g., timetable construction [24] or
frequency assignment [9]. There are many resolution methods for this problem:
greedy constructive approaches, e.g., DSATUR [1] and the Recursive Largest
First algorithm [24], hybrid strategies like HCA [4, 8] and those proposed in [6,
26], local search meta-heuristics, e.g., simulated annealing [18] or tabu search [3,
16], neural network attempts [17], ... See [2] for a more extensive list of other
references about the GCP.

Despite the fact that the literature on graph coloring is always growing,
there exists, to our knowledge, no approach relying on scatter search for the
GCP. The goal of our study is then to provide an experimental investigation of
scatter search applied to the GCP. The paper is organized as follows: Sect. 2
recalls the general template of scatter search; Sect. 3 presents our first scatter
search algorithm for graph coloring; next section gives the results we obtained
on some of the well-known DIMACS benchmark graphs [19], before concluding.

2 General Design of Scatter Search

We briefly recall here the components of scatter search; fundamental concepts
and motivations are described in [13]. See also [14] for an exhaustive illustration
of these components on a non-linear optimization problem.

1. Diversification Generation Method. This step is used first to initialize
the population and, eventually, to rebuild a subset of the population during
the search. Configurations are built in order to respect a maximal diver-
sity?. See [21], e.g., for an illustration of an appropriate generator for a 0-1
knapsack problem;

! The performance guarantee is the maximum ratio, taken over all inputs, of the color
size over the chromatic number.

% One of the lessons provided in [22] suggests to “consider the use of frequency memory
to develop effective diversification”.

2. Improvement Method. New configurations, obtained in step 1 or by com-
bination, are improved in quality;

3. Reference Set Update Method. Improved configurations are checked
for replacing others in a reference set (RefSet for short) according to their
quality (line 2 in Algorithm 1) or their diversity (line 3)®. RefSet consists of
b best evaluated configurations (BestSet) and d most diverse configurations
(DivSet). See [23] for other update methods;

4. Subset Generation Method. This step produces subsets of configurations
(with two elements or more) from the reference set to be combined;

5. Configuration Combination Method. Subsets of configurations built
in step 4 are combined, generally using a problem-dependent combination
operator. Laguna and Armentano [22] also suggest that “the use of multiple
combination methods can be effective”.

Algorithm 1: Scatter search outline

begin

P + (/* Start with an empty population P */

while P is not full do
Build a new configuration ¢ with the Diversification generation method
Apply the Improvement method to ¢ to obtain c*
ifc* ¢ Pthen P+ PU{c"}

Build BestSet by selecting / removing in P the b best evaluated configurations
Build DivSet by selecting in P the d most diverse configurations
RefSet «+ BestSet U DivSet
[1] while RefSet contains new elements do
for each subset ¢ built by applying the Subset generation method on RefSet
do
Use the Configuration combination method with 7 to obtain ¢;
Apply the Improvement method on ¢; to obtain ¢}
[2] if ¢; ¢ RefSet and evaluation of c; is better than the worst evaluated
element cyorst in BestSet then
L BestSet < BestSet U {cj }; BestSet < BestSet — {cworst }

[3] else if ¢; ¢ DivSet and ¢; add diversity to DivSet then
DivSet «+ DivSet U {c; }
Remove the element with minimal diversity in DivSet

end

Algorithm 1 gives an overall view of one single iteration of a generic scatter
search procedure, and thus, the way the components are linked*. The main loop 1
controls the termination of the procedure: the process stops when the population
evolves no more in quality. Note that some scatter search procedures also use

3 Note that some scatter search procedures only use the quality criterion to update
RefSet. In this case, remove line 3.
4 See [10] for helpful information on practical implementation.

the evolution of the RefSet diversity as a stop criterion. More iterations can be
done by restarting loop 1 with a new set of configurations composed of the b
best evaluated configurations found by the previous iteration and d new diverse
configurations built using the diversification generation method.

3 Scatter Search for Graph Coloring

In this section we describe the five components of our scatter search procedure
dedicated to the graph coloring problem. These components are organized in the
same way as in Algorithm 1. Let us first describe some concepts useful for the
understanding of the overall procedure and its composing elements.

Configuration: a configuration c¢ is any partition {V1,...,V;} of V into k sub-
sets. Vi(i € [1..k]) is an independent set if Yu,v € V;, (u,v) ¢ E. cis a
proper k-coloring if each V; € cis an independent set. We will refer to partial
coloring for configurations in which some vertices are not assigned a color.

Evaluation Function: two configurations can be compared in terms of quality
using an evaluation (or a fitness) function f: f(c) = |{(u,v) € Vi(V; €
¢,i € [1..k])/(u,v) € E}|. In other words, f counts the edges having both
endpoints in the same color class. Solving a k-coloring instance means finding
a particular configuration ¢* such as f(c¢*) = 0.

General Resolution Strategy for Graph Coloring: k-coloring aims at find-
ing a complete assignment of k colors to the vertices that satisfies all the
constraints. Such an assignment is said consistent (proper k-coloring). The
generalized GCP can then be stated as solving successive k-colorings with
decreasing values of k£ until no proper k-coloring can be obtained.

3.1 Diversification Generation Method

We generate conflicting configurations with k& colors by means of random inde-
pendent sets built using Algorithm 2.

Algorithm 2: A diversification generation method for the GCP

begin
for i=1to k, by 1 do
A0V <0
while V # 0 do
1] Choose (randomly) a vertex v € V
V<V —{v}; Vi Viu{v}
for each u € V/(u,v) € E do
| A AU{u}; V<V —{u}
L VA
Put each v € V in a color class such as it minimizes the conflicts over the graph
end

Randomization is used here (line 1) only to insure diversity. Other meaningful
choice rules can easily replace it. For instance, the vertices can be selected in
decreasing order of their saturation degree, like in DSATUR [1].

3.2 Improvement Method

We use a tabu search algorithm to improve new configurations. This algorithm
iteratively makes best I-moves, changing the current color of a conflicting ver-
tex® to another one, until achieving a proper coloring. “Best moves” are those,
which minimize the difference between the fitness of the configuration before the
move is made and the fitness of the configuration after the move is performed.
In case of multiple best 1-moves, choose one randomly. A tabu move leading
to a configuration better than the best configuration found so far, within the
same execution of the improvement method or within the overall scatter search
procedure, is always accepted (aspiration criterion).

The tabu tenure ! is dynamically computed by the formula proposed in [3]:

l = a x |E.| + random(g) (1)

where E. is the set of conflicting edges in configuration c. random(g) is a function
which returns an integer value uniformly chosen in [1..g]. a weights the number
of conflicting edges.

A move m can be characterized by a triplet (u, Viid, View), 4 € V, Vo
and V¢ being, respectively, the previous and the new colors of the conflicting
vertex u. S0, when a move m is performed, assigning u to the color class V4
is forbidden for the next [iterations by introducing the (u,V,i4) couple in the
tabu list.

The algorithm stops when a solution is obtained or when a maximum number
of moves have been carried out without finding a solution. Algorithm 3 gives an
outline of the procedure, which is extracted from an effective generic tabu search
[3] designed for various coloring problems (k-coloring, GCP, T-coloring and set
T-coloring).

Algorithm 3: A tabu search for graph coloring

begin
Let ¢ be the configuration to improve
TL < (/* Initialize the tabu list TL to empty */
¢ +c
while f(c*) > 0 and not Stop condition do
Update ¢ by performing a best 1-move m(u, Void, Vnew)
TL <+ TLU (u, Voiq)
if f(c) < f(c*) then
Le ¢

end

5 A vertex u € V; is said conflicting if Jv € V;/(u,v) € E.

3.3 Reference Set Update Method

We use the same reference set update method as the one described in Algorithm
1 (Sect. 2):

1. An improved configuration ¢, replaces another one in BestSet if its eval-
uation is better than the worst evaluated configuration cyerst in BestSet.

2. If cpew is not kept due to its quality (step 1), it is checked for diversity. cpew
replaces the configuration with lowest diversity cyorst in DivSet if ¢ has
a higher diversity than cyerst-

To compute the diversity D(c1,c2) between two configurations ¢; and ¢z, we
use the distance measure introduced in [8]. The distance between ¢; and cp is
the minimum number of 1-moves necessary to transform c¢; into ¢;. Let us call
it the move distance (Dyr).

Note that the Hamming distance Dg(c1, ¢2) is not well adapted to compare,
in terms of diversity, two configurations ¢; and cs of the GCP. This is due to
the definition itself of this distance. For two strings (configurations) ¢; and co
of the same length, Dg(cq,c2) is the number of different positions in the two
strings. To illustrate the difference between these two distances, let us consider
the example of Fig. 1.

Left drawing gives a representation of the traditional assignment strategy in
which colors are assigned to vertices. In Fig. 1(a), and according to the defini-
tion of the Hamming distance, Dg(c1,c2) = 10. So, ¢; is quite far from ¢,. Right
drawing shows a representation of the partition approach for the same configu-
rations. In this case, the labeling of the colors is indifferent. In Fig. 1(b), moving
the vertex 7 from the class V5 to V3 in ¢; leads to ¢2 (up to a permutation of the
colors). Then, Dys(c1,c2) = 1.

Vetices 1 2 3 4 5 6 7 8 9 10 Vi Vo V3 V4
Coors[1]1]1]1]2]2]2]3]3]4] 9 [234]567[69[10]
Difference? Yesoo. Yes -ooiiiniinn Yes Vi Vo V3 VW

Colors[2[2[2[2[1[1[4[4[4[3] ¢ [56][L234[10][7,809]

(a) Assignment approach (b) Partition approach

Fig. 1. Comparing Hamming and move distances

Note that the diversity is a measure over all the configurations in RefSet.
So, it is updated each time a new configuration is added to RefSet.

3.4 Subset Generation Method

The smallest subsets (denoted by 2-subsets) consist of all the couples of con-
figurations in RefSet. Intermediate subsets (a-subsets, a € {3,4}) are built by

augmenting each (a-1)-subset with the best evaluated configuration not included
in the subset. Finally, c-subsets (c € [5..|RefSet|]) contain the best ¢ elements.
In the scatter search template, each subset is generated only once, while, in the
context of genetic algorithms, combinations based on the same subset are al-
lowed. See [10], from which this description is extracted, for motivations about
this method.

3.5 Configuration Combination Method

Combination may be viewed as a generalization upon multiple parents of classical
crossovers which usually operate with only two parents. We used a generaliza-
tion of the powerful greedy partition crossover (GPX), proposed in [8] within an
evolutionary algorithm. GPX has been especially developed for the graph color-
ing problem with results reaching, and sometimes improving, those of the best
known algorithms for the GCP.

Given a subset p generated by the subset generation method, the generalized
combination operator builds the & color classes of the offspring one by one. First,
choose arbitrarily (and temporarily remove) a configuration ¢ € p. Temporarily
remove from ¢ a minimal set A, of conflicting vertices such as ¢ becomes a partial
proper k-coloring. Next, fill in a free color class V;(i € [1..k]) of the offspring with
all conflict-free vertices of the color class V¢ € ¢ having maximum cardinality
(break ties randomly) and remove these vertices from all configurations in p.
Then, make A. available for ¢ and repeat these steps until the & color classes of
the offspring contain at least one vertex. Finally, to complete the new configu-
ration if necessary, assign to each free vertex in the offspring a color such that
it minimizes the conflicts over the graph.

The chosen configuration ¢ is temporarily removed from p to balance the
origins of the color classes of the new configuration; all removed configurations
become enable when p is empty. Fig. 2 summarizes the combination mechanism.
See also [8] for an illustration of GPX on two parents.

..... V. Y 2
—) — TR
““““ | | Repeat until i = k z L—-1 -

| IR | | New configuration (offspring)

Subset p of configurations to be combined

Fill in the color clas\{
Choose (arbitrarily) a inthe offspring with\, © ®
configurationcin p

Remove aminimal set A
——————— | ~ — — — — — — of conflicting vertices fromc CT T o T T

=[XXX |- R
_______ | | @ C_AC x|

Configuration ¢ (temporarily removed from p)

Fig. 2. Generalization of GPX

We used randomization to give each configuration the same chance to be
selected when building the color class V; of the new configuration. Note that,
if we choose configurations following the order of two different permutations m;
and 72 issued from the same subset p, this may lead to two different offsprings.
Another possible way of choosing configurations could be to consider their costs.

4 Preliminary Results

We give in this section some preliminary results obtained with our scatter search
algorithm (called SSGC hereafter). Results of SSGC are reported for some of
the DIMACS benchmark graphs [19]® together with those of the best-known
algorithms and those of a generic tabu search algorithm:

— Morgenstern [26], two local search algorithms based on particular neighbor-
hoods (denoted by 3a and 3b in Table 1), and a distributed population-based
algorithm (3c);

— Funabiki and Higashino [7], a descent algorithm with various heuristics mixed
with a greedy construction stage and the search for a maximum clique (de-
noted by MIPS_CLR);

— Dorne and Hao [3], a generic tabu search (GTS for short) which solves suc-
cessive k-colorings, k decreasing as long as a proper k-coloring is found.

Columns 5-7 in Table 1 summarize the best-known results given in the
above papers for some DIMACS graphs: the smallest coloring ever obtained,
the method which produced such a coloring, and the best computing time re-
quired. Columns 1-4 recall the characteristics of each graph: its name, number
of vertices and edges, and its chromatic number (or its best known lower bound
when unknown).

Results of GTS are reported in Table 2 (columns 3-5), including mean number
of moves. The last four columns give the results of our scatter search algorithm?.
Time entries and number of moves and combinations are averaged over five to ten
runs. A maximum of 100000 moves were allowed for the improvement method.
We only make, for each execution, one iteration of scatter search, i.e., main loop
1in Algorithm 1 was performed on a single reference set. The o and g parameters
(Sect. 3.2) used in computing the dynamic tabu tenure ! (1) were empirically
determined, respectively 2 and 10 at most. The size of the starting population
was no more than 20 configurations and the b and d parameters (Sect. 2) were
both empirically fixed to 10 at most. For the flat300_20_0 and dsjc125.5 graphs,
the improvement method was allowed to perform 1% of random walks, i.e.:
moving a random vertex into a random color class. Information about computing
time (in seconds) in Table 1 and 2 is only for indicative purpose because results
were obtained on different machines. “~” marks signal that no result is available.

6 Available via FTP from: dimacs.rutgers.edu/pub/challenge/graph/benchmarks/.
7 §SGC is implemented in C (CC compiler with -O5 flag) and runs on a Sun Ultra 1
(256 RAM, 143 MHz).

Table 1. Best known results for some instances of the 2nd DIMACS challenge

Graph name| |V| | |E]| X | k| Method |Time (sec.)
schooll 38519095 | 14 |14 MIPS_CLR <1
schooll _nsh | 352 | 14612 | 14 |14 [MIPS_CLR <1
dsjr500.1c | 500 |121275| 84 |85 3¢ 1240
r125.5 125 | 3838 | 36 |36 3c <1
r250.1c 250 | 30227 | 64 |64 3¢ 60
r250.5 250 | 14849 | 65 |65 3c 181
r1000.1c |1000(485090| > 90 | 98 3c 1240
r1000.5 |1000(238267|> 234|237|MIPS_CLR| 3266
le450_15a | 450 | 8168 | 15 |15 3b < 60
le450_15b | 450 | 8169 | 15 |15 3b < 60
le450_15¢ | 450 | 16680 | 15 |15 3b 126
le450_15d | 450 | 16750 | 15 |15 3b 80
flat300-20_0 | 300 | 21375 | 20 |20 3a 1
dsjc125.5 | 125| 3891 | > 10|17 3c 14

Table 2. Results of GTS and SSGC

Graph name| x GTS. SS(.;C - -
k | Moves |Time (sec.)| k | Moves |Combinations|Time (sec.)
schooll 14 | - - - 14 14 4 25
schooll_nsh| 14 | - - - 14 18 9 31
dsjr500.1c | 84 |85 | 21000 70 85| 103349 2 97
r125.5 36 | 36| 147000 65 36 52 43 9
r250.1c 64 | 64| 462 1 64 | 15497 146 349
r250.5 65 | 66| 7800 6 65 | 180617 3604 3864
r1000.1c | > 90| 98 |1623000 4500 98 150395691 484 -
r1000.5 |> 234|242(6027000) 18758 |240{20800000 189 -
le450_15a 15 |15 | 103000 25 15| 1064916 69 216
le450_15b 15 |15 | 33000 8 15| 677910 43 128
le450_15¢ 15 |16 - - 15 | 2135839 68 1091
le450_15d 15 |16 - - 15 | 8507576 280 3980
flat300.20.0| 20 |20 | 33000 17 20 | 732618 130 1849
dsjc125.5 | > 10|17 | 348000 136 17 | 6805080 1352 805

From Table 1 and 2 we can make several remarks. First, SSGC manages to
reach the results of the best-known algorithms (column k&), except on the r1000.5
graph for which a 237-coloring has been published recently. The sophisticated
algorithm used to reach this coloring includes, among other components, the
search for a maximum clique. Nevertheless, SSGC obtains here a better coloring
than GTS. Note that the previous best result for this graph was reported in [26]
with 241 colors. Our scatter search approach also improves in quality on the
results obtained with tabu search (GTS) on four graphs. This means that tabu
search, the improvement method we used, surely benefits from the other general
components of scatter search (Sect. 2).

Nevertheless, SSGC seems to be quite slow (regarding the number of moves)
to reach the same results as those of GTS. This can partially be explained by the
time spent in building the initial reference set, which include the improvement
of all the configurations in the population. Furthermore, the generation method
used in SSGC (random independent sets, see Sect. 3.1) differs from the one per-
formed by GTS which is based on DSATUR [1]. It would certainly be interesting
to follow the approach used in GTS to build the initial reference set. Another
reason to the slowness of SSGC may be allotted with the diversity update step
which occurs each time a new configuration ¢, is inserted in RefSet. One
possible way to speed up this step could be to regulate it according to a minimal
diversity Dq (fixed parameter or dynamically computed). In other words, cpeqy
will be added to DivSet only if its minimal diversity is greater than Dy.

Table 3. Results of SSGC using a descent improvement method

Graph name| x | k¥ [Moves|Combinations|Time (sec.)
schooll (14|14| 900 1 6

schooll_nsh (14(14| 408 2 7
rl25.5 36|36 7 66 7
r250.1c (64|64 83600 37499 —
r250.5 65|65 25 580 452

We also experimented scatter search with a less elaborated improvement
method, the simplest descent heuristic, which makes best 1-moves until achieving
no improvement. This approach was only able to solve a few “easy” instances (see
Table 3) implying that the global efficiency of scatter search is greatly dependent
on the particular efficiency of its improvement algorithm.

5 Conclusions and Perspectives

We have developed a first adaptation of the scatter search method to the graph
coloring problem. The preliminary results we obtained on some well-studied
DIMACS graphs using this technique show that scatter search may be effective

for some of them since SSGC reached most of the results of the best-known
approaches. SSGC obtains also better results than those of a generic tabu search
on some graphs.

At the same time, we observed that scatter search is quite slow due, essen-
tially, to the numerous components it uses. Efforts must then be made to develop
effective procedures to make the scatter search quicker. Another difficulty is to
identify meaningful rules when choices are needed.

We are now working on replacing some random choices made in SSGC by de-
terministic rules. A first modification have been carried out in the diversification
generation method (Sect. 3.1) by selecting vertices to be included in the same
independent set according to Brélaz heuristics [1]. Vertices are inserted in color
classes in decreasing order of their saturation degrees. Ties are broken using the
connection degree and, only if needed, randomness. Few results are available
since tests are currently running. However, the modified procedure was able to
solve the schooll, schooll nsh, and r125.5 graphs even while the improvement
method was left out. In other words, solutions were found only by combining
sets of configurations. This suggests that the generalization of the effective greedy
partition crossover may be a suitable combination operator.

This research has highlighted the need for further investigation to make scat-
ter search more effective for graph coloring. By using the generic tabu search in
the initialization step for building the reference set, one may speed up the overall
procedure. Another possible way could be to use maximal independent sets in
place of selecting vertices at random to identify independent sets. Indeed, this
later way shares the same objective as the greedy partition crossover. Lessons
provided in [22] could also be useful for further attempts. Finally, some choice
rules proposed in [11] may be used as fast heuristics either to generate the initial
population or to color free vertices after each combination.

References

1. Brélaz., D.: New methods to color the vertices of a graph. Commun. ACM 22(4)
(1979) 251-256

2. Culberson, J.: Bibliography on graph coloring. Available on the wold wide web at
http://liinwww.ira.uka.de/bibliography/Theory/graph.coloring.html (2000)

3. Dorne, R., Hao, J.K.: Tabu search for graph coloring, T-colorings and set T-
colorings. In Voss, S., Martello, S., Osman, L.H., Roucairol, C. (editors) Meta-
heuristics: advances and trends in local search paradigms for optimization Kluwer
Academic Publishers (1998) 77-92

4. Dorne, R., Hao, J.K.: A new genetic local search algorithm for graph coloring.
Lecture Notes in Computer Science 1498 Springer-Verlag (1998) 745-754

5. Dubois, N.; de Werra, D.: EPCOT: an efficient procedure for coloring optimally
with tabu search. Computers Math. Appl. 25(10/11) (1993) 35-45

6. Ferland, J.A., Fleurent, C.: Object-oriented implementation of heuristic search
methods for graph coloring, maximum clique, and satisfiability. In [19] (1996) 619—
652

7. Funabiki, N., Higashino, T.: A minimal-state processing search algorithm for graph
colorings problems. IEICE Trans. Fundamentals E83—A(7) (2000) 1420-1430

8. Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. J. Com-
bin. Optim. 3(4) (1999) 379-397

9. Gamst, A.: Some lower bounds for a class of frequency assignment problems. IEEE
Trans. Veh. Tech. 35(1) (1986) 8-14

10. Glover, F.: A template for scatter search and path relinking. In Hao, J.K., Lutton,
E., Ronald, E., Schoenauer, M., Snyers, D. (editors) Artificial evolution. Lecture
Notes in Computer Science 1363 Springer-Verlag (1998) 13-54

11. Glover, F.: Tutorial on surrogate constraint approaches for optimization in graphs.
Tech. Report (February 2001)

12. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers (1997)

13. Glover, F., Laguna, M., Mart{, R.: Fundamentals of scatter search and path relink-
ing. Control and Cybernetics 39(3) (2000) 653684

14. Glover, F., Laguna, M., Marti, R.: Scatter search. In Ghosh, A., Tsutsui, S. (edi-
tors) Theory and applications of evolutionary computation: recent trends Springer-
Verlag (to appear)

15. Halld6rsson, M.M.: A still better performance guarantee for approximate graph
coloring. Inform. Process. Lett. 45 (1993) 19-23

16. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Comput-
ing 39 (1987) 345-351

17. Jagota, A.: An adaptive, multiple restarts neural network algorithm for graph
coloring. European J. Oper. Res. 93 (1996) 257-270

18. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simu-
lated annealing: an experimental evaluation. II. Graph coloring and number parti-
tioning. Oper. Res. 39(3) (1991) 378-406

19. Johnson, D.S., Trick., M.A. (editors): Cliques, coloring, and satisfiability: 2nd DI-
MACS implementation challenge, 1993. DIMACS Series in Discr. Math. and The-
oretical Comput. Sci. 26 American Math. Soc. (1996)

20. Karp, R.M.: Reducibility among combinatorial problems. In Miller, R.E., Thatcher,
J.W. (editors) Complezity of computer computations Plenum Press, New York
(1972) 85-103

21. Laguna, M.: Scatter search. In Pardalos, P.M., Resende, M.G.C. (editors) Handbook
of applied optimization Oxford Academic Press (to appear)

22. Laguna, M., Armento, V.A.: Lessons from applying and experimenting with scatter
search. Tech. Report (March 2001)

23. Laguna, M., Marti, R.: Experimental testing of advanced scatter search designs for
global optimization of multimodal functions. Tech. Report (August 2000)

24. Leighton, F.T.: A graph coloring algorithm for large scheduling problems. J. Res.
Nat. Bur. Stand. 84 (1979) 489-506

25. Lund, C., Yannakakis, M.: On the hardness of approximating minimization prob-
lems. Proc. 25th Annual ACM Symp. Theory of Comput. (1993) 286-293

26. Morgenstern, C.A.: Distributed coloration neighborhood search. In [19] (1996) 335—
357

27. Rego, C.: Integrating advanced principles of tabu search for the vehicle routing
problem. Working paper, Faculty of Sciences, University of Lisbon (1999)

