
Using solution properties within an

enumerative search to solve a sports league

scheduling problem

J.-P. Hamiez ∗, J.-K. Hao

LERIA, Université d’Angers, UFR Sciences

2, boulevard Lavoisier, 49045 Angers CEDEX 01, France

Abstract

This paper presents an enumerative approach for a particular sports league schedul-
ing problem known as “Prob026” in CSPLib. Despite its exponential-time complex-
ity, this simple method can solve all instances involving a number T of teams up to
50 in a reasonable amount of time while the best known tabu search and constraint
programming algorithms are limited to T ≤ 40 and the direct construction methods
available only solve instances where (T − 1) mod 3 6= 0 or T/2 is odd. Furthermore,
solutions were also found for some T values up to 70. The proposed approach relies
on discovering, by observation, interesting properties from solutions of small prob-
lem instances and then using these properties in the final algorithm to constraint
the search process.

Key words: Sports league scheduling, Prob026 from CSPLib, enumerative search

1 Introduction

Many sports leagues deal with scheduling problems for tournaments. These
problems contain in general many constraints to satisfy and different objectives
to optimize like minimization of traveling distance or minimum number of days
between a home match and its corresponding away match e.g. Sports league
scheduling is therefore a very general and difficult search problem.

∗ Corresponding author. Tel.: (+33) 241 73 53 85. Fax: (+33) 241 73 50 73
Email addresses: Jean-Philippe.Hamiez@univ-angers.fr (J.-P. Hamiez),

Jin-Kao.Hao@univ-angers.fr (J.-K. Hao).
URL: info.univ-angers.fr/pub/hao (J.-K. Hao).

Preprint submitted to Discrete Applied Mathematics 19 July 2007

Manuscript



Many solution approaches have been proposed to solve these problems with
varying degrees of success: Integer linear programming [21], constraint pro-
gramming [16], local search [5,25,28]. Sports scheduling was also investigated
in terms of edge colorings of graphs [6, and references therein].

This paper deals with a specific sports league scheduling problem, namely
“Prob026” from CSPLib [10]. It seems to be first introduced in [9]:

• There are T = 2n teams (i.e. T even). The season lasts W = T − 1 weeks.
Weeks are partitioned into P = T/2 slots called “periods” or “stadiums”.
Each week, one match is scheduled in every period;
• cH constraint: All teams play each other exactly once (Half competition);
• cW constraint: Every team plays exactly one game in every Week of the

season, i.e. all teams are different in a week;
• cP constraint: No team plays more than twice in a Period. This constraint

may be motivated by the equal distribution of stadiums to teams.

The problem then is to schedule a tournament with respect to these definitions
and constraints. Table 1 shows an example of a valid schedule for T = 6.

Table 1
A valid schedule for 6 teams

Periods
Weeks

1 2 3 4 5

1 1,2 5,6 3,4 4,5 3,6

2 3,5 1,4 1,6 2,6 2,4

3 4,6 2,3 2,5 1,3 1,5

Note that solutions exist for all T 6= 4 [24] (see also [17] for a simpler proof).
Furthermore, direct construction methods have already been proposed when
(T −1) mod 3 6= 0 [14,15] or T/2 is odd [1,17,24]. While a construction for the
case where T/2 is even is given in [1], this method uses pairs of orthogonal
Latin squares of even order for which no systematic construction is known
even though their existence has been shown. This leaves open the cases where
T mod 12 = 4.

Prob026 is also known as the “balanced tournament design” problem (BTD)
in combinatorial design theory, see [4, pages 238-241] for a brief survey. Here is
its seminal definition: A BTD of order n, defined on a 2n-set T (teams) is an
arrangement of the n(2n− 1) distinct ordered pairs (matches) of the elements
of T into an n× (2n− 1) array such that:

(1) Every element of T is contained in precisely one cell of each column
(week);

(2) Every element of T is contained in at most two cells in any row (period).

2



In this paper, we present EnASS, an Enumerative Algorithm for Sports Schedu-
ling applied to Prob026. Given T , EnASS starts building a particular conflict-
ing schedule (called s) verifying a set R of properties (or “Requirements”).
The set S of solutions is generated using s in a simple exhaustive way with
chronological backtracks and observed to identify new properties. R is then
updated to solve Prob026 for larger T or to accelerate the resolution. Despite
the exponential-time complexity of EnASS, we manage to build particular R
sets that enable EnASS to find solutions to Prob026 for all T up to 50 in a rea-
sonable amount of time going beyond the state-of-the-art approaches limited
to T ≤ 40 [13,23], (T−1) mod 3 6= 0 [14,15] or T/2 odd [1,17,24]. Furthermore,
solutions were also found for some T values up to 70.

The paper begins with a survey of related work followed by a first basic formu-
lation as a Constraint Satisfaction Problem (CSP). The complexity of Prob026
and its symmetries are discussed in Section 4. Section 5 shows some ways to
reduce the search space size and introduces a tighter CSP model. We present
then the EnASS algorithm and preliminary computational results in Section 6.
Section 7 describes how the T = 70 instance was solved. Concluding remarks
are given in the last section.

2 Related work

With integer programming, McAloon et al. [19] solved the T = 12 case. They
also experimented with constraint programming (ILOG Solver c©), leading to
slightly better results since solutions were found for 14 teams within 45 min-
utes. Finally, with a basic local search algorithm, they produced the same
results as ILOG Solver c© does, but in less computing time (10 minutes).

Gomes et al. [11] obtained better results using constraint programming. They
solved problems involving up to 18 teams in approximately 22 hours with a
randomized version of a deterministic complete search. See also [12].

Béjar and Manyà [3] transformed Prob026 into SAT and used a SAT solver.
They obtained solutions for 18 teams in less than 2 hours. They also solved
Prob026 with 20 teams in about 13 hours. See also [2].

According to [11], results were also obtained for 26 and 28 teams using multiple
threads on a 14 processor Sun system.

Régin [22,23] proposed two approaches with constraint programming. The
first one, using powerful filtering algorithms, produced better results than
those from Béjar and Manyà [3] since he solved the T = 24 case in 12 hours.
In the second approach, Prob026 is transformed into an equivalent problem

3



by adding an implicit constraint. With a new heuristic and specific filtering
algorithms, solutions for 40 teams were found for the first time 1 . See also
[20,27] for approaches similar to those from [23].

Hamiez and Hao [13] developed first a tabu search algorithm including a search
space reduction technique and a restricted neighborhood. The approach pro-
duced results which compared well with those from Régin [23] (the best known
results at that moment). Solutions were found for all T up to 40 except 38.

Hamiez and Hao [14] presented then a repair-based algorithm that solves
Prob026 in linear-time when T is such that (T − 1) mod 3 6= 0. Starting with
s, the algorithm removes the conflicts by exchanging matches. It finds valid
schedules for several thousands of teams in less than a minute. Similar direct
construction approaches for the BTD are given in [1,15,17,24] for particular
T values.

Finally, let us mention the recent work from de Werra et al. [7] who consider a
variant of Prob026: An additional dummy week is introduced and each team
must appear exactly twice in every period. An inductive construction has been
proposed for T = 2n (integer n > 3).

3 A first basic formulation of Prob026

Prob026 can be conveniently formulated as a Constraint Satisfaction Problem
(CSP) [26]. Alternative models include linear programming [12,19], SAT [3]
or edge colorings of graphs [14].

3.1 Constraint Satisfaction Problem

A CSP [26] is defined by a triplet (X, D, C) with:

• A finite set X of M variables: X = {x1, . . . , xM};
• A set D of M associated domains: D = {d1, . . . , dM}. Each domain dm(1 ≤

m ≤M) specifies the finite set of possible values for the xm variable;
• A finite set C of N constraints: C = {c1, . . . , cN}. Each constraint is de-

fined for a set of variables and specifies which combinations of values are
compatible for these variables.

Given such a triplet, the problem is to generate a complete assignment of the
values to the variables which satisfies all the constraints: Such an assignment

1 Surprisingly, the T ∈ {32, 34, 36, 38} instances were not solved.

4



is said to be consistent. Since the set of all assignments, not necessarily con-
sistent, is defined by the Cartesian product d1 × · · · × dM of the M domains,
solving a CSP means to determine a particular assignment (or to prove that
none exists) among a potentially huge number of possible assignments.

The CSP is a powerful and general model. It can be used to conveniently
model some well-known problems such as k-coloring and SAT, as well as many
practical applications related to resource assignment, planning or timetabling.

3.2 A first basic CSP formulation of Prob026

There are two ways to formulate the problem:

(1) Assign matches to slots. More precisely, assign each different (t, t′) couple
of teams (1 ≤ t < t′ ≤ T ) to a (p, w) couple of period and week (1 ≤ p ≤
P , 1 ≤ w ≤ W ). This corresponds to the primal form used in [19] with
linear programming;

(2) Assign slots to matches. More precisely, assign each different (p, w) couple
to a (t, t′) couple. This is the dual form;

A CSP formulation in the dual form can be found in [14]. We describe here a
basic CSP model in primal form. A tighter model will be presented in Section
5.3.

Let x = 〈p, w〉 be any assignment of a match in period p and week w. Values
of this variable type are of (t, t′) pattern, meaning that team t meets team t′

in period p and week w, noted x 7→ (t, t′). The set X of variables (which are
slots) is X = {x = 〈p, w〉, 1 ≤ p ≤ P, 1 ≤ w ≤ W} and all domains dx are
equal to D = {(t, t′), 1 ≤ t < t′ ≤ T} : ∀x ∈ X, dx = D. The constraints set
C = {cW , cP , cH} contains:

• cW constraint: Uniqueness of all teams in each week. For each team t
and each week w, we impose the constraint: cW(t, w) ⇔ |{x = 〈p, w〉 7→
(t, t′), 1 ≤ p ≤ P}| = 1;
• cP constraint: No more than two matches for each team in each period. For

each team t and each period p, we impose the constraint: cP(t, p) ⇔ |{x =
〈p, w〉 7→ (t, t′), 1 ≤ w ≤W}| ≤ 2;
• cH constraint: All matches are different. For each tuple (p, p′, w, w′), with

p 6= p′ or w 6= w′, we impose the constraint: cH(p, p′, w, w′) ⇔ 〈p, w〉 6=
〈p′, w′〉.

5



4 Complexity and symmetries

As shown in Table 1 (see Section 1), a solution is a complete assignment of
D = {(t, t′), 1 ≤ t < t′ ≤ T} items to variables of X = {x = 〈p, w〉, 1 ≤
p ≤ P, 1 ≤ w ≤ W} verifying the constraint set C = {cW , cP , cH}. Thus,
a solution is a W ∗ P sized table, whose items are integer couples (t, t′). For
T = 70 teams, this represents a problem with 2 415 variables and 2 415 values
per variable.

There are T ∗ (T − 1)/2 matches to be scheduled. A valid schedule can be
thought of as a particular permutation of these matches. So, for T teams, the
search space size is [T (T − 1)/2]! In other words, the search space size grows
as the factorial of the square of T/2.

Prob026 does have symmetries [8]. Equivalent solutions can be obtained from
another one just by renumbering some or all teams, see Fig. 1 where teams 1
and 2 are exchanged (changes appear in bold face). Weeks and periods can also
be permuted, see Fig. 2 where matches in the last two weeks are exchanged
and Fig. 3 where periods 1 and 3 are simply swapped. Finally, symmetries can
be combined: See Fig. 4 which includes the three previous symmetries (i.e.
periods and weeks permutations with teams renumbering).

Periods
Weeks

1 2 3 4 5 6 7

1 1,2 5,7 1,6 4,5 4,7 3,8 2,6

2 3,7 1,4 2,5 3,6 2,8 1,5 4,8

3 4,6 6,8 7,8 2,7 1,3 2,4 3,5

4 5,8 2,3 3,4 1,8 5,6 6,7 1,7

Periods
Weeks

1 2 3 4 5 6 7

1 1,2 5,7 2,6 4,5 4,7 3,8 1,6

2 3,7 2,4 1,5 3,6 1,8 2,5 4,8

3 4,6 6,8 7,8 1,7 2,3 1,4 3,5

4 5,8 1,3 3,4 2,8 5,6 6,7 2,7

Fig. 1. Two equivalent tournaments up to a renumbering of the teams (T = 8)

Periods
Weeks

1 2 3 4 5 6 7

1 1,2 5,7 1,6 4,5 4,7 3,8 2,6

2 3,7 1,4 2,5 3,6 2,8 1,5 4,8

3 4,6 6,8 7,8 2,7 1,3 2,4 3,5

4 5,8 2,3 3,4 1,8 5,6 6,7 1,7

Periods
Weeks

1 2 3 4 5 6 7

1 1,2 5,7 1,6 4,5 4,7 2,6 3,8

2 3,7 1,4 2,5 3,6 2,8 4,8 1,5

3 4,6 6,8 7,8 2,7 1,3 3,5 2,4

4 5,8 2,3 3,4 1,8 5,6 1,7 6,7

Fig. 2. Two equivalent tournaments up to a permutation of weeks (T = 8)

6



Periods
Weeks

1 2 3 4 5 6 7

1 1,2 5,7 1,6 4,5 4,7 3,8 2,6

2 3,7 1,4 2,5 3,6 2,8 1,5 4,8

3 4,6 6,8 7,8 2,7 1,3 2,4 3,5

4 5,8 2,3 3,4 1,8 5,6 6,7 1,7

Periods
Weeks

1 2 3 4 5 6 7

1 4,6 6,8 7,8 2,7 1,3 2,4 3,5

2 3,7 1,4 2,5 3,6 2,8 1,5 4,8

3 1,2 5,7 1,6 4,5 4,7 3,8 2,6

4 5,8 2,3 3,4 1,8 5,6 6,7 1,7

Fig. 3. Two equivalent tournaments up to a permutation of periods (T = 8)

Periods
Weeks

1 2 3 4 5 6 7

1 1,2 5,7 1,6 4,5 4,7 3,8 2,6

2 3,7 1,4 2,5 3,6 2,8 1,5 4,8

3 4,6 6,8 7,8 2,7 1,3 2,4 3,5

4 5,8 2,3 3,4 1,8 5,6 6,7 1,7

Periods
Weeks

1 2 3 4 5 6 7

1 4,6 6,8 7,8 1,7 2,3 3,5 1,4

2 3,7 2,4 1,5 3,6 1,8 4,8 2,5

3 1,2 5,7 2,6 4,5 4,7 1,6 3,8

4 5,8 1,3 3,4 2,8 5,6 2,7 6,7

Fig. 4. Two equivalent tournaments up to periods and weeks permutations with
teams renumbering (T = 8)

5 Reducing the search space size

Complete search procedures usually start with an empty assignment s0. Then,
they iteratively choose a free variable x ∈ X in sk (integer k ≥ 0) and a value
v ∈ dx for this variable which does not violate C. Next, a branch of the
search tree is built by assigning v to x. This step leads to a partial valid
assignment sk+1 which is locally consistent. If no value v remains for a free
variable x, the process returns (or “backtracks”) to a previous valid assignment
and tries other values. A solution is found when all variables are assigned a
value. Recall that a CSP has no solution (it is said to be “unsatisfiable”) if
the process backtracks until the root of the search tree and no value remains
for the starting variable.

Our enumerative approach (let us call it EnASS, for “Enumerative Algorithm
for Sports Scheduling”) is different since it starts with a complete s conflicting
assignment. s is built in order to satisfy the cW and cH constraints: At this
stage, the remaining cP constraint is not verified in s.

We detail hereafter an interesting property of all Prob026 solutions, the way
we build s and, finally, a simplified CSP model based on the s properties that
avoids some symmetries identified in the previous section.

7



5.1 An interesting property of all Prob026 solutions

Prob026 solutions verify the following property: In each period, two teams (a
2-set D), called “Deficient” [24], appear exactly once and the other teams are
present exactly twice. Furthermore, if one considers two different periods p
and p′, then the deficient teams of period p appear twice in period p′. More
formally, if cD refers to this implicit constraint and Dp denotes the set of
deficient teams in period p then: cD(p)⇔ ∀p′ 6= p,Dp ∩ Dp′ = ∅, see Table 2.

Table 2
A valid tournament with deficient teams (T = 8)

Periods
Weeks

D
1 2 3 4 5 6 7

1 1,2 5,7 1,6 4,5 4,7 3,8 2,6 3,8

2 3,7 1,4 2,5 3,6 2,8 1,5 4,8 6,7

3 4,6 6,8 7,8 2,7 1,3 2,4 3,5 1,5

4 5,8 2,3 3,4 1,8 5,6 6,7 1,7 2,4

5.2 Starting conflicting tournament

Patterned one-factorization [4, page 662] can be used to verify cH and cW ,
the goal of EnASS being then to satisfy the last constraint cP : Form a regular
polygon with the first T −1 teams. Draw W sets of P −1 parallels connecting
vertices in pairs starting with each w side. Each set, augmented with the pair
of missing teams, corresponds to the matches to place in week w [18].

Let s be the tournament obtained (in linear-time complexity) with this tech-
nique, where s〈p, w〉 is the match scheduled in period p and week w in s. See
[14] for a full detailed description and the formal model used to build s.

Table 3
Initial conflicting s schedule for 8 teams

Periods
Weeks

1 2 3 4 5 6 7

1 1,2 2,3 3,4 4,5 5,6 6,7 1,7

2 3,7 1,4 2,5 3,6 4,7 1,5 2,6

3 4,6 5,7 1,6 2,7 1,3 2,4 3,5

4 5,8 6,8 7,8 1,8 2,8 3,8 4,8

8



Table 3 shows the starting schedule for T = 8. Observe that cH and cW are
satisfied, cP being violated in period 4 (team 8 appears more than twice).

5.3 A tighter CSP model for Prob026

The previous construction scheme leads to a conflicting starting tournament
s which embodies an interesting property: cH and cW are satisfied. Proofs are
not given here since they result from the construction step. The goal of EnASS
is then to satisfy cP . s is really important since it is used to:

• Avoid some symmetries, see Section 4;
• Simplify the basic CSP model presented in Section 3;
• Reduce the size of the search space associated with the basic CSP formula-

tion, see Section 4. This results from the two previous items.

Let s〈p, w〉 be the match scheduled in period p and week w in s. An easy way
to avoid the symmetries due to periods swaps is to force the first week to be the
same as in s: ∀x = 〈p, 1〉 ∈ X, dx = s〈p, 1〉. Symmetries due to weeks swaps and
teams renumberings can also be eliminated in a similar easy way by restricting
the domain of each x = 〈p, w〉 variable (w > 1) to the set of matches in s
appearing in week w: ∀x = 〈p, w〉 ∈ X(w > 1), dx = {s〈p, w〉, 1 ≤ p ≤ P} 2 .
These domains reductions allow us to simplify the C constraints set since cW
and cH are now always satisfied: C = {cP}.

6 EnASS: Overall procedure with preliminary computational results

The fundamentals of EnASS result from observations of Prob026 solutions:
some share particular properties. Considering these properties as additional
requirements (constraints) may help EnASS solving Prob026 faster or tackling
larger instances as it will be shown later on. So, we first describe here the
basic EnASS procedure, variants involving additional requirements are detailed
in Section 7.

6.1 EnASS: Overall procedure

There are two basic ways to build a tournament using the previous table
representation: Columns by columns or rows by rows. We choose the second

2 EnASS does not handle some combinations of symmetries, e.g. teams renumberings
plus weeks swaps.

9



option due to the evident cD property of all Prob026 solutions previously
described in Section 5.1. Indeed, when EnASS has entirely filled a period p and
no valid Dp can be identified with respect to previous Dp′ (p′ < p), backtracks
can be done.

Without loss of generality, let wf and wl be the first (respectively last) week
that EnASS considers when filling any period, with 1 < wf < wl ≤ W . Note
that wf > 1 since the first week is invariant with respect to s (see Section
5.3). So, for the moment, assume that wf = 2, wl = W and R = R0 = {cP ,
cD}. The values of the global variables wf and wl together with the set R of
requirements will be modified later on according to properties of some solutions
found by EnASS.

EnASS is described here in a recursive form for simplicity reasons. It admits
three integer parameters: p and w specify which 〈p, w〉 variable is considered,
p specifies the value assignment tried (see step 5). The function returns TRUE
if a solution has been found or FALSE otherwise. Backtracks are sometimes
performed in the latter case. EnASS is called first, after the s initialization (see
Section 5.2), with p = 1, w = wf and p = 1 meaning that it tries to fill the slot
in the first period of week wf with the s〈1, wf〉 match. Note that we only give
here the pseudo-code of EnASS for finding a first solution since it can easily
be modified to return numerous solutions.

EnASS(p, w, p):

(1) If p = P + 1 then return TRUE: A solution is obtained since all periods
are filled and valid according to R;

(2) If w = wl + 1 then return EnASS(p + 1, wf , 1): Period p is filled and valid
according to R, try to fill next period;

(3) If p = P + 1 then return FALSE: Backtrack since no match from week w
in s can be scheduled in period p of week w without violating R;

(4) If ∃ 1 ≤ p′ < p/〈p′, w〉 = s〈p, w〉 then return EnASS(p, w, p + 1): The
s〈p, w〉 match is already scheduled, try next match;

(5) 〈p, w〉 ← s〈p, w〉: Schedule the s〈p, w〉 match in period p of week w;
(6) IfR is locally verified and EnASS(p, w+1, 1) = TRUE then return TRUE:

The previous assignment and next calls lead to a solution;
(7) Undo step 5 and return EnASS(p, w, p + 1): R is locally violated or next

calls lead to a failure, backtrack and try next value.

Notice that the check for integrity of R (step 6) slightly differs according to
the value of w. If w ≤ wl, cP must be verified. Furthermore, when w = wl, a
valid Dp set (see Section 5) must be identified.

We will refer to this basic EnASS function with EnASS0 since EnASSi>0 variants
will be considered later on according to updates of wf , wl and R.

10



6.2 EnASS: Preliminary computational results

All EnASSi≥0 were coded in C (cc BSD compiler). All computational results
were obtained running EnASSi≥0 on an Intel PIV processor (2 Ghz) Linux
station with 2 Go RAM. A time limit of 3 hours was imposed, mainly because
the solution found for T = 70 required a bit less than this duration.

Table 4 gives results obtained with EnASS0 for T ≥ 6 (the T ∈ {2, 4} cases are
trivial) 3 : Number T of teams, number |S0| of solutions, time (in seconds for
all results tables) and total number |BT| of backtracks to generate S0, time
and number of backtracks to reach a first solution. “-” marks mean that either
EnASS0 found no solution within the time limit (see the T = 24 case) or |BT|
is larger than the maximal integer value authorized by the compiler/system
(i.e. 4 294 967 295) or EnASS0 was halted since it reached the time limit. |S0|
entries like “≥ n” indicate that EnASS0 found n solutions when reaching the
time limit. In this case, |BT| is the total number of backtracks performed to
generate all the n solutions.

Table 4
EnASS0 solves Prob026 for T up to 32 in less than 3 minutes (T 6= 24)

T
All solutions First solution

|S0| Time |BT| Time |BT|

6 5 < 1 110 < 1 3

8 112 < 1 11 996 < 1 129

10 63 504 3.83 25 247 598 < 1 167

12 ≥ 1 332 823 - 2 174 095 859 < 1 3 585

14 ≥ 957 035 - - < 1 1 036

16 ≥ 2 215 884 - - < 1 11 050

18 ≥ 381 753 - - 29.04 137 847 769

20 ≥ 378 646 - - < 1 33 509

22 ≥ 138 256 - - < 1 493 952

24 - - - - -

26 ≥ 41 921 - - 5.97 20 209 362

28 ≥ 19 056 - - 4.21 13 441 627

30 ≥ 4 222 - - 24.66 73 226 314

32 ≥ 5 859 - - 137.22 400 878 192

3 EnASS0 found no solution within the allowed time limit for 34 and 36 teams.

11



EnASS0 is extremely fast to find a first solution for 6 ≤ T ≤ 32 except
for the T = 24 case where it failed to complete within the allowed time
limit 4 . This suggests that some instances may be harder to solve than others.
These preliminary computational results clearly outperform those reported in
[2,3,11,12,19,20,22,27] and compete well with those in [13,23] 5 .

7 Invariants in Prob026

EnASS0 is clearly limited for Prob026 since it can only solve instances where
T ≤ 32 (except T = 24) within a reasonable amount of time. Nevertheless,
EnASS0 has one advantage: Given sufficient time, it can be used to generate
many solutions. Indeed, this was our first objective. So, subsets of solutions
were generated and observed to try to identify some invariants. While we
managed to find more than 20 basic properties, only those used to solve the
T = 70 case are described here.

One general way to solve larger instances or to speed up any complete al-
gorithm is to fix more than one variable when exploring a new branch in
the search tree. This is possible for Prob026 since some solutions verify the
following r⇒ property: assume that a match x has been scheduled in period
p and week w, with wf ≤ w ≤ P , then x and the match scheduled in pe-
riod p and week T − w + 1 appear in the same period in s. More formally,
∀wf ≤ w ≤ P, r⇒(p, w)⇔ 〈p, w〉 = s〈p, w〉 ⇒ 〈p, T −w+1〉 = s〈p, T −w+1〉.

This leads to EnASS1 which comes from EnASS0 by adding the r⇒ requirement
to R0 : R1 = {cP , cD, r⇒}. Step 5 in the EnASS description may be adapted
since one additional variable has now to be fixed. Furthermore, wl has to be
set to P before running EnASS1. Note that the EnASS variants considered in
this section work now on a subset of the EnASS0 solutions space.

Figure 5 shows an example of a solution found by EnASS1 (the meaning of en-
tries in bold or italic typefaces will be explained later): For instance, scheduling
the (5, 6) match from week 2 in period 1 forces the (3, 6) match from week 5
(5 = 6− 2 + 1) to be in period 1.

4 EnASS0 failed to find a solution for T = 24 even after a long run of six days.
A deep analysis showed that for T = 24, EnASS0 makes a wrong assignment for
a match at the beginning of the search (in week 7 of the first period). This bad
choice at the top of the search tree can only be discovered after a huge number of
irrelevant backtracks. This explains the failure of EnASS0 for this particular case.
Indeed, replacing this wrong assignment with a correct one allowed EnASS0 to solve
the T = 24 case in less than a second.
5 Note that, without considering the implicit cD constraint (see Section 5.1), EnASS
only solved Prob026 for T ≤ 12.

12



Periods
Weeks

1 2 3 4 5

1 1,2 2,3 3,4 4,5 1,5

2 3,5 1,4 2,5 1,3 2,4

3 4,6 5,6 1,6 2,6 3,6

Periods
Weeks

1 2 3 4 5

1 1,2 5,6 3,4 4,5 3,6

2 3,5 1,4 1,6 2,6 2,4

3 4,6 2,3 2,5 1,3 1,5

Fig. 5. T = 6: Initial schedule (left) and the solution obtained with EnASSi>0 (right)

Table 5 gives results obtained with EnASS1 (it failed to find a solution within
the time limit for 52 and 54 teams). First of all, note that ∀T ≤ 12, |S1| < |S0|.
This is evident since some solutions found by EnASS0 do not verify the r⇒
requirement imposed in EnASS1.

One can observe that EnASS1 clearly improves the results from EnASS0 for
T ≥ 12: |BT| and execution times are smaller when searching for a first
solution. EnASS1 found more solutions than EnASS0 for T ≥ 18 within the
time limit. Furthermore, EnASS1 solves larger instances. Indeed, it finds a first
solution for all T up to 50. Within the time limit, EnASS1 finds easily a solution
for T = 24 while EnASS0 failed in this case.

These results are thus better than those reported in [13,23]. They also compete
well with [1,14,15,17,24] for T ≤ 50: The direct construction methods proposed
there cannot solve Prob026 instances where (T − 1) mod 3 = 0 or T/2 even
while EnASS1 found solutions for all these special cases.

Table 5
EnASS1 solves all Prob026 instances for T up to 50 in less than 2 hours

T
All solutions First solution

|S1| Time |BT| Time |BT|

6 1 < 1 13 < 1 6

8 4 < 1 155 < 1 16

10 36 < 1 6 541 < 1 715

12 17 162 < 1 3 020 195 < 1 86

14 38 031 026 2 454.82 3 073 872 699 < 1 451

16 ≥ 720 637 - - < 1 557

18 ≥ 51 255 702 - - < 1 1 099

20 ≥ 12 985 829 - - < 1 2 811

22 ≥ 25 617 500 - - < 1 11 615

24 ≥ 16 240 114 - - < 1 12 623

13



Table 6
EnASS1 solves all Prob026 instances for T up to 50 in less than 2 hours (continued)

T
All solutions First solution

|S1| Time |BT| Time |BT|

26 ≥ 11 396 160 - - < 1 37 708

28 ≥ 8 727 287 - - < 1 35 530

30 ≥ 4 296 365 - - < 1 650 811

32 ≥ 3 657 013 - - < 1 332 306

34 ≥ 2 173 500 - - < 1 1 342 216

36 ≥ 1 122 145 - - < 1 2 160 102

38 ≥ 692 284 - - 5.34 13 469 359

40 ≥ 523 804 - - 6.25 16 393 039

42 ≥ 339 383 - - 107.69 256 686 929

44 ≥ 236 614 - - 876.91 1 944 525 360

46 ≥ 119 383 - - 1 573.31 3 565 703 651

48 ≥ 90 009 - - 542.79 1 231 902 706

50 ≥ 19 717 - - 6 418.52 -

Despite the EnASS1 excellent results, other invariants are needed to tackle
larger instances within the time limit. The two additional properties used to
solve some of the T > 50 cases are illustrated in Fig. 5:

(1) rI (see entries in bold typeface): Inverse weeks wf and W . More formally,
∀w ∈ {wf , W}, rI(w)⇔ ∀ 1 ≤ p ≤ P, 〈p, w〉 = s〈P − p + 1, w〉;

(2) rV (italic): matches (t, T ) form a “V” like pattern. More formally, ∀ 1 ≤
p < P, rV (p)⇔ 〈p, p + 1〉 = s〈P, p + 1〉 and 〈p, T − p〉 = s〈P, T − p〉.

This leads to EnASS2 which comes from EnASS1 by adding the previous require-
ments to R1: R2 = {cP , cD, r⇒, rI , rV }. An additional step must be added in
the EnASS description (between steps 1 and 2) due to rV . Furthermore, wf has
to be set to 3 before running EnASS2.

Table 7 gives results obtained with EnASS2 (it failed to find a first solution
within the time limit for 72 ≤ T ≤ 82). Note that, when no solution is found
for some T (i.e. |S2| = 0), the columns labeled “Time” and “|BT|” give,
respectively, the time and numbers of backtracks required to prove |S2| = 0.

No result is reported for T > 16 when T is a multiple of four since EnASS2 finds
no solution within the time limit in this special case. This is clearly shown for

14



small T values: |S2| = 0 ∀T ∈ {8, 12, 16}. So, one may wonder if |S2| = 0 for
all T > 16 such that T is a multiple of four. This suggests that the rI and rV

requirements may be too restrictive when used together.

Note also that EnASS2 found a single solution within the time limit when
T/2 is odd. Here again, this is clearly proved for small T values: |S2| = 1
∀T ∈ {6, 10, 14}. One may wonder if |S2| = 1 for all T > 16 when T/2 is odd.

Table 7
EnASS2 solves Prob026 for T up to 70 in less than 3 hours (T mod 4 6= 0)

T
All solutions First solution

|S2| Time |BT| Time |BT|

6 1 < 1 2 < 1 0

8 0 < 1 5 - -

10 1 < 1 39 < 1 11

12 0 < 1 641 - -

14 1 < 1 34 465 < 1 3 488

16 0 14.95 84 720 639 - -

18 ≥ 1 - 13 280 < 1 13 280

22 ≥ 1 - 16 300 < 1 16 300

26 ≥ 1 - 5 786 < 1 5 786

30 ≥ 1 - 1 031 313 < 1 1 031 313

34 ≥ 1 - 130 149 < 1 130 149

38 ≥ 1 - 2 829 421 < 1 2 829 421

42 ≥ 1 - 7 836 823 2.11 7 836 823

46 ≥ 1 - 1 323 929 < 1 1 323 929

50 ≥ 1 - 47 370 701 13.75 47 370 701

54 ≥ 1 - 29 767 940 10.59 29 767 940

58 ≥ 1 - 827 655 311 269.88 827 655 311

62 ≥ 1 - 494 071 117 279.38 494 071 117

66 ≥ 1 - 1 614 038 658 7 508.51 1 614 038 658

70 ≥ 1 - - 8 985.05 -

15



8 Conclusion

We presented EnASS, an Enumerative Algorithm for Sports Scheduling, applied
to a particular problem known as Prob026 in CSPLib and “balanced tourna-
ment design” in combinatorial design theory.

Based on this basic procedure, we derived two effective enumerative algorithms
to constraint the search process by integrating solutions properties: the r⇒
implied requirement, the rI inversion property and the rV pattern requirement.

Computational results showed that these algorithms clearly outperform the
best known tabu search [13] and constraint programming [23] approaches lim-
ited to T ≤ 40. Indeed, EnASS finds solutions to Prob026 in a reasonable
amount of time for most T up to 70. Furthermore, even if direct construction
methods exist when (T − 1) mod 3 6= 0 [14,15] or T/2 is odd [1,17,24], EnASS
is the first approach solving all problem instances for T up to 50.

EnASS is a simple enumerative algorithm with chronological backtracks. One
possible way to solve Prob026 for larger T or to speed up EnASS could be to
handle the combination of symmetries or to use other elaborated techniques
such as no-good learning or non-chronological backtracking. Also, the interest
of forward checking from constraint programming could be investigated in
particular when a team appears twice in a period.

Acknowledgments

We would like to thank greatly the referees of the paper for their very helpful
suggestions and questions. Special thanks go to Professor J.H. Dinitz from the
University of Vermont (Department of Mathematics and Statistics, Burling-
ton, VT, USA) for having suggested to us the mathematical origins of Prob026
and some important previous works.

References

[1] S. Bauman, The existence of balanced tournament designs and partitioned
balanced tournament designs, Master thesis of Mathematics in Combinatorics
and Optimization. University of Waterloo, Ontario, Canada, available from
http://etd.uwaterloo.ca/etd/sbbauman2001.pdf (2001).

[2] R. Béjar, F. Manyà, Solving combinatorial problems with regular local search
algorithms, in: Proceedings of the Sixth International Conference on Logic

16



Programming and Automated Reasoning, vol. 1705 of Lecture Notes in Artificial
Intelligence, Springer-Verlag, Berlin/Heidelberg, Germany, 1999, pp. 33–43.

[3] R. Béjar, F. Manyà, Solving the round robin problem using propositional
logic, in: Proceedings of the Seventeenth National Conference on Artificial
Intelligence, AAAI Press, Menlo Park (CA) USA, 2000, pp. 262–266.

[4] C. Colbourn, J. Dinitz (eds.), The CRC Handbook of Combinatorial Designs,
vol. 4 of Discrete Mathematics and Its Applications, CRC Press, Boca Raton
(FL) USA, 1996.

[5] D. Costa, An evolutionary tabu search algorithm and the NHL scheduling
problem, INFOR 33 (3) (1995) 161–178.

[6] D. de Werra, On the multiplication of divisions: The use of graphs for sports
scheduling, Networks 15 (1985) 128–138.

[7] D. de Werra, T. Ekim, C. Raess, Construction of sports schedules with multiple
venues, Discrete Applied Mathematics 154 (1) (2006) 47–58.

[8] P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, T. Walsh,
Breaking row and column symmetries in matrix models, in: Proceedings of
the Eight International Conference on Principles and Practice of Constraint
Programming, vol. 2470 of Lecture Notes in Computer Science, Springer-Verlag,
Berlin/Heidelberg, Germany, 2002, pp. 462–476.

[9] E. Gelling, R. Odeh, On 1-factorizations of the complete graph and the
relationship to round-robin schedules, Congressus Numerantium 9 (1974) 213–
221.

[10] I. Gent, T. Walsh, CSPLib: A benchmark library for constraints, in:
Proceedings of the Fifth International Conference on Principles and Practice
of Constraint Programming, vol. 1713 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin/Heidelberg, Germany, 1999, pp. 480–481, see also
http://4c.ucc.ie/∼tw/csplib/.

[11] C. Gomes, B. Selman, H. Kautz, Boosting combinatorial search through
randomization, in: Proceedings of the Fifteenth National Conference on
Artificial Intelligence, AAAI Press, Menlo Park (CA) USA, 1998, pp. 431–437.

[12] C. Gomes, B. Selman, K. McAloon, C. Tretkoff, Randomization in backtrack
search: Exploiting heavy-tailed profiles for solving hard scheduling problems,
in: Proceedings of the Fourth International Conference on Artificial Intelligence
Planning Systems, AAAI Press, Menlo Park (CA) USA, 1998, pp. 208–213.

[13] J.-P. Hamiez, J.-K. Hao, Solving the sports league scheduling problem with
tabu search, in: Local Search for Planning and Scheduling, vol. 2148 of Lecture
Notes in Artificial Intelligence, Springer-Verlag, Berlin/Heidelberg, Germany,
2001, pp. 24–36.

[14] J.-P. Hamiez, J.-K. Hao, A linear-time algorithm to solve the Sports League
Scheduling Problem (prob026 of CSPLib), Discrete Applied Mathematics
143 (1-3) (2004) 252–265.

17



[15] J. Haselgrove, J. Leech, A tournament design problem, American Mathematical
Monthly 84 (3) (1977) 198–201.

[16] M. Henz, Scheduling a major college basketball conference – Revisited,
Operations Research 49 (1) (2001) 163–168.

[17] E. Lamken, S. Vanstone, The existence of factored balanced tournament designs,
Ars Combinatoria 19 (1985) 157–160.

[18] E. Lockwood, American tournaments, The Mathematical Gazette 20 (1936)
333.

[19] K. McAloon, C. Tretkoff, G. Wetzel, Sports league scheduling, Communication
at the Third ILOG Optimization Suite International Users’ Conference
(Paris, France, July 1997), available from http://www.ilog.com/products/

optimization/tech/custpapers/brooklin.pdf (1997).

[20] L. Michel, P. van Hentenryck, OPL++: A modeling layer for constraint
programming libraries, Tech. Rep. CS-00-07, Brown University, Providence
(RI) USA, available from ftp://ftp.cs.brown.edu/pub/techreports/00/

cs00-07.pdf (2000).

[21] G. Nemhauser, M. Trick, Scheduling a major college basketball conference,
Operations Research 46 (1) (1998) 1–8.

[22] J.-C. Régin, Modeling and solving sports league scheduling with constraint
programming, Communication at INFORMS’98 (Montreal, Quebec, Canada,
April 26–29) (1998).

[23] J.-C. Régin, Constraint programming and sports scheduling problems,
Communication at INFORMS’99 (Cincinnati, Ohio, USA, May 2–5) (1999).

[24] P. Schellenberg, G. van Rees, S. Vanstone, The existence of balanced
tournament designs, Ars Combinatoria 3 (1977) 303–318.

[25] B. Terril, R. Willis, Scheduling the Australian state cricket season using
simulated annealing, Journal of the Operational Research Society 45 (3) (1994)
276–280.

[26] E. Tsang, Foundations of Constraint Satisfaction, Academic Press, London
(England) and San Diego (California, USA), 1993.

[27] P. van Hentenryck, L. Michel, L. Perron, J.-C. Régin, Constraint programming
in OPL, in: Proceedings of the International Conference on Principles and
Practice of Declarative Programming, vol. 1702 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin/Heidelberg, Germany, 1999, pp. 98–116.

[28] M. Wright, Timetabling county cricket fixtures using a form of tabu search,
Journal of the Operational Research Society 45 (7) (1994) 758–770.

18




