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Abstract

The quadratic assignment problem (QAP) is one of the most studied combinatorial
optimization problems with various practical applications. In this paper, we present
Breakout Local Search (BLS) for solving QAP. BLS explores the search space by a
joint use of local search and adaptive perturbation strategies. Experimental evalua-
tions on the set of QAPLIB benchmark instances show that the proposed approach
is able to attain current best-known results for all but two instances with an average
computing time of less than 4.5 hours. Comparisons are also provided to show the
competitiveness of the proposed approach with respect to the best-performing QAP
algorithms from the literature.

Keywords: Quadratic assignment; breakout local search; adaptive diversifica-
tion; landscape analysis.

1 Introduction

The quadratic assignment problem (QAP) is a classical combinatorial opti-
mization problem that is well known for its various applications. QAP can
be considered as the problem of assigning at minimal cost a set of n loca-
tions to a given set of n facilities, given a flow fij from facility i to facil-
ity j for all i, j ∈ {1, ..., n} and a distance dab between locations a and b
for all a, b ∈ {1, ..., n}. Let Π denote the set of the permutation functions
π : {1, ..., n} → {1, ..., n}, QAP can mathematically be formulated as follows:
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minπ∈ΠC(π) =
n∑
i=1

n∑
j=1

fijdπiπj , (1)

where f and d are the flow and distance matrices respectively, and π ∈ Π is
a solution where πi represents the location assigned to facility i. The problem
objective is then to find a permutation π∗ in Π that minimizes the sum of the
products of the flow and distance matrices, i.e., C(π∗) ≤ C(π), ∀π ∈ Π.

QAP is notable for its ability to formulate a great number of practical prob-
lems such as the backboard wiring in electronics, the design of typewriter
keyboards, campus planning, analysis of chemical reactions for organic com-
pounds, balancing turbine runners, and many others. Reviews on some signif-
icant applications of QAP can be found in [8,13,26,32].

QAP is known to be one of the hardest combinatorial optimization problems.
Indeed, the computational complexity of QAP is such that even instances of
size 20 ≤ n ≤ 30 represent a real challenge for the current exact approaches
([14,19]). Approximate methods are thus often indispensable to handle larger
instances. In recent years, many efforts have been made in developing effective
heuristic algorithms, which can find high quality solutions in reasonable com-
putation time. Representative examples include simulated annealing [40], tabu
search [2,17,20,21,30,34,37], (hybrid) genetic algorithms [1,11,12,16,29,39], ant
colony algorithms [36,38], scatter search [10], iterated local search [35], etc. For
a comprehensive survey of different solution methods, the reader is referred to
[9,23,32].

In this work, we propose a new heuristic approach for QAP, called the Break-
out Local Search (BLS), which has been applied successfully to several hard
combinatorial problems including maximum clique (both weighted and un-
weighted cases) [4], maximum cut [5], and minimum sum coloring [6]. Based
on the framework of Iterated Local Search (ILS) [25], BLS uses local search
(i.e., the steepest descent) to discover local optima and employes adaptive
perturbations to continually move from one local optimum to another in the
search space. The continual exploration of new search areas is achieved by dy-
namically determining the number of perturbation moves, and by adaptively
choosing between three types of perturbation moves of different intensities,
depending on the current search state. Despite its simplicity, BLS shows ex-
cellent performance on the set of well-known benchmark instances from the
QAPLIB and is very competitive with the current best QAP approaches.

In the next section, we review some of the most popular heuristic approaches
for solving QAP. In Section 3, we present our BLS approach and describe
in detail its main components. Section 4 shows extensive computational re-
sults and comparisons on the QAPLIB benchmark instances. In Section 5,
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we perform a landscape analysis on different QAP instances and relate this
analysis to the performance of BLS. Moreover, we investigate the importance
of the adaptive perturbation strategy to the overall algorithm performance.
Conclusions are provided in the last section.

2 State-of-art heuristic approaches for the QAP

This section provides a brief summary of some of the best-performing and
most representative metaheuristic adaptations for solving QAP. We later use
these as reference algorithms for our comparative study, except the popular
robust tabu search [37] which is nowadays outperformed by much more re-
cent approaches. It is important to mention that none of the existing QAP
approaches can be considered as the most effective for all the different types
of QAP instances, due to significant differences in structures of these instance
(see Section 5).

The robust tabu search (Ro-TS) proposed by Taillard [37] is probably the
best-known heuristic and the simplest to implement. Ro-TS uses the swap
move which exchanges two elements of a solution. The tabu list forbids the
reverse exchange of a swap move during the next h iterations, where the tabu
tenure h varies randomly within a given interval. In addition to the classical
aspiration criterion that overrides the tabu status of a move leading to an
improved solution, a second criterion is also introduced. A move that has never
been selected during a large number of iterations is performed regardless of
the tabu status and its contribution to the objective function value. However,
the most important new feature introduced in Ro-TS is that a complete swap
neighborhood is explored in O(n2) instead of O(n3) as in previous algorithms.
As many later QAP algorithms, we adopt this technique to speed up the
performance of our BLS approach.

Cooperative parallel tabu search algorithm (CPTS), proposed by James et
al. [20], executes in parallel several tabu search (TS) operators on multiple
processors. The TS operator is a modified version of Taillard’s Ro-TS [37] ob-
tained by changing the stopping criterion and the tabu tenure parameters for
each processor participating in the algorithm. In order to accomplish coopera-
tion between TS processes, CPTS maintains a global reference set which uses
information exchange to promote both intensification and diversification in a
parallel environment. CPTS globally obtains excellent results on the whole
set of QAP instances and is used as a reference algorithm in our comparative
study.

In [30], Misevicius presents an enhanced tabu search algorithm (ETS) which
employs a modified version of Taillard’s Ro-TS as an intensification procedure,
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and applies mutations to the best solution found so far to diversify the search.
ETS can thus be considered as an adaptation of the ILS metaheuristic. To add
more robustness to the mutation process, the number of mutation moves is
varied in some interval during the execution of the algorithm. Beside a “mild
mutation” which serves as a basic mutation, three additional mutation oper-
ators (called alternative mutation procedures) are used to add more diversity
once a long-lasting stagnation is detected. Depending on the alternative mu-
tation procedure implemented, these ETS variants are called ETS-1, ETS-2
and ETS-3. At the time it was issued, ETS appeared to be superior to other
powerful QAP heuristics. Moreover, it improved the best known solutions for
several hard QAP instances. We thus use all the three ETS versions for our
experimental comparisons.

Misevicius later proposed in [31] another iterated tabu search (ITS) which is
quite similar to its ETS approach. It as well employs a traditional tabu search
to reach local optima and triggers a perturbation (reconstruction) phase in
order to escape the attained local optimum. The “ruined” solution becomes
a new starting point for the basic TS procedure. ITS uses a perturbation
mechanism which varies adaptively the number of random perturbation moves
in some interval. It obtains excellent results on the unstructured instances and
the real-life like instances, and outperforms to some extent the ETS algorithm.
We thus use it as another reference in our comparison.

In [12], Drezner performs extensive computational experiments on QAP using
various variants of a memetic algorithm. The author compares the modified
robust tabu search (MRT) and the simple tabu search as local optimization
algorithms combined with a crossover operator. Moreover, different parent se-
lection (distance modification, gender modification) and pool updating strate-
gies are tested. The best version of the memetic algorithm is MRT60 which
integrates the modified robust tabu search MRT for offspring improvement.
MRT is identical to Ro-TS [37] except that the tabu tenure is generated in
[0.2n, 1.8n] rather than in [0.9n, 1.1n]. MRT60 is the best-performing algo-
rithm for the grid-based instances and is used as another reference algorithm
in our comparative study.

The improved hybrid genetic algorithm (IHGA) is proposed by Misevicius in
[29]. It incorporates a robust local improvement procedure as well as an effec-
tive restart mechanism based on shift mutations. The author slightly improved
the classic scheme of a uniform like crossover (ULX) to get a new optimized
crossover (OX). The optimized crossover is a crossover that (a) is ULX and
(b) produces a child that has the best fitness value among the children cre-
ated by M runs of ULX. The offspring is then improved with a local search
mechanism which consists of a tabu search procedure and a solution recon-
struction procedure. The reconstruction is achieved by performing a number
µ of random swaps, where µ is varied according to the instance size. Once
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convergence of the algorithm is observed, all the individuals but the best un-
dergo the shift mutation, which simply consists in shifting all the items in a
wrap-around fashion by a predefined number of positions. IHGA is one of the
best algorithms for the unstructured instances and the real-life like instances
and is thus used as one of the references in our comparative study.

A popular approach for QAP is a particular population-based iterated lo-
cal search (PILS) proposed by Stützle [35]. The underlying iterated local
search (ILS) algorithm starts from a random assignment, and applies a first-
improvement local search procedure based on the swap neighborhood. To
speed up the search process, the algorithm uses the don’t look bit strategy,
previously proposed to accelerate local search algorithms for TSP. Once a lo-
cal optimum is reached, ILS applies a perturbation that consists of exchanging
k randomly chosen items, where k is varied between kmin and kmax. Stützle
extends the described ILS to a population-based algorithm where no inter-
action between solutions takes place, and each single solution is improved
by the standard ILS. In the proposed PILS, the population consists of µ solu-
tions and in each iteration λ new solutions are generated. A selection strategy,
based both on distance and quality of solutions, is then employed to form a
new population of µ solutions from the set of µ+ λ solutions. This algorithm
showed excellent performance at the time it was published, though it is now
outperformed by other more recent algorithms.

3 The Breakout Local Search

3.1 General procedure

Our Breakout Local Search (BLS) approach is conceptually rather simple.
Following the general scheme of iterated local search (ILS) [25], it alternates
iteratively between a local search phase (to reach local optima) and a dedi-
cated perturbation phase (to discover new promising regions). More precisely,
starting from an initial solution π0, BLS applies to it the steepest descent
procedure (see Section 3.2) to reach a local optimum π. Each iteration of the
steepest descent procedure scans the whole neighborhood and selects the best
improving neighboring solution. If such a solution does not exist in the neigh-
borhood, local optimality is reached. At this point, BLS tries to escape from
the current local optimum π by applying a suitable number L of dedicated
perturbation moves to π (we say that π is perturbed). This perturbed solution
becomes a new starting point for the next phase of the descent.

The success of any local search approach depends on the right degree of diversi-
fication introduced into search. Moreover, the optimal degree of diversification
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at a certain stage of the search is not necessarily optimal at another stage.
The degree of diversification introduced by a perturbation mechanism depends
both on the number of perturbation moves (also called “jump magnitude”)
and the type of moves used for perturbation. If the diversification is too weak,
the local search has greater chances to end up cycling between two or more lo-
cally optimal solutions leading to search stagnation. On the other hand, a too
strong diversification has the same effect as a random restart, which usually
results in a low probability of finding better solutions in the following local
search phase. The basic idea of the perturbation mechanism employed by BLS
is to introduce the most suitable degree of diversification required at a certain
stage of the search by dynamically determining the number L of perturbation
moves, and by adaptively choosing between three types of perturbation moves
of different intensities.

Algorithm 1 presents the BLS algorithm for QAP, whose components are
detailed in the following sections. Starting from an initial random solution,
BLS uses the descent procedure to reach a local optimum π (lines 10–16).
The jump magnitude L is then determined depending on whether the search
escaped or returned to the immediate previous local optimum, and whether
the search is stagnating in a non-promising region (lines 24-34). BLS then
applies L perturbation moves to π in order to get a new starting point for the
descent procedure (line 37).

3.2 The neighborhood relation and its exploitation

As previously explained, a candidate QAP solution can be encoded as a per-
mutation π of {1, ..., n}, such that πi denotes the location assigned to facility
i ∈ {1, ..., n}. Like many existing local search methods for QAP, we employ
the swap move to π which consists in exchanging locations of two facilities.

The neighborhood N(π) of a solution π is then defined as the set of all the
permutations that can be obtained by exchanging any two values πu and πv,
i.e., N(π) = {π′|π′u = πv, π

′
v = πu, u 6= v and π′i = πi,∀i 6= u, v}. The size of

N(π) is thus equal to n(n− 1)/2.

BLS uses the steepest descent to explore the whole neighborhood N(π). In
other words, each iteration of the steepest descent identifies the best swap
and applies it to π to obtain a new solution. This descent process is repeated
until a local optimum is reached (see lines 10–16 of Alg. 1). Note that the cost
of a solution obtained with a swap move can be computed in time O(n2) based
on the objective function given in Eq. 1, leading to a total time of O(n4) for
evaluating all the solutions from N(π). Obviously, such an explicit calculation
becomes very expensive as the instance size increases. In [37], Taillard suggests
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Algorithm 1 Breakout Local Search for QAP
Require: Distance and flow matrices d and f of size n x n.
Ensure: A permutation π over a set of facility locations.
1: π ← random permutation of{1, ..., n}
2: c← C(π) /* c records the objective value of the current solution */
3: Compute the initial n x n matrix δ of move gains /* Section 3.3 */
4: πbest ← π /* πbest records the best solution found so far */
5: cbest ← c /* cbest records the best objective value reached so far */
6: cp ← c /* cp records the best objective value of the last descent */
7: ω ← 0 /* ω is the counter for consecutive non-improving local optima */
8: L← L0 /* set the number of perturb. moves L to its default value L0 */
9: while stopping condition not reached do

10: while ∃ swap(u, v) such that (c+ δ(π, u, v)) < c do
11: π ← π ⊕ swap(u, v) /* Perform the best-improving move */
12: c← c+ δ(π, u, v)
13: Huv ← Iter /* Update iter. number when move uv was last performed */
14: Update matrix δ
15: Iter ← Iter + 1
16: end while
17: if c < cbest then
18: πbest ← π; cbest ← c /* Update the recorded best solution */
19: ω ← 0 /* Reset counter for consecutive non-improv. local optima */
20: else if c 6= cp then
21: ω ← ω + 1
22: end if
23: /* Determine the perturbation strength L to be applied to π */
24: if ω > T then
25: /* Search seems to be stagnating, set L to a large value */
26: L← LMax

27: ω ← 0
28: else if c = cp then
29: /* Search returned to the previous local optimum, increase jump magnitude

by one */
30: L← L+ 1
31: else
32: /* Search escaped from the previous local optimum, reinitialize jump mag-

nitude */
33: L← L0

34: end if
35: /* Perturb the current local optimum π with L perturb. moves */
36: cp ← c /* Uptade the objective value of the previous local optimum */
37: π ← Perturbation(π, L,H, Iter, δ, ω) /* Section 3.4 */
38: end while

a very effective way to incrementally update the objective variation of each
move. In the next section, we examine this idea which we adopt in our BLS
algorithm.
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3.3 Fast computation and update of move gains

Let π be a solution, swap(r, s) a move, and π′ = π⊕swap(r, s) the neighboring
solution of π obtained by applying swap(r, s) to π. Then the cost variation
between the two solutions δ(π, r, s) = C(π′)−C(π), also called the move gain
of swap(r, s), can be efficiently calculated as follows [37].

δ(π, r, s) = frr(dπsπs − dπrπr) + frs(dπsπr − dπrπs)+
fsr(dπrπs − dπsπr) + fss(dπrπr − dπsπs)+

n∑
i=1,i 6=r,s

(fir(dπiπs − dπiπr) + fis(dπiπr − dπiπs)+

fri(dπsπi − dπrπi) + fsi(dπrπi − dπsπi)).

(2)

Computing δ(π, r, s) with Eq. 2 thus requires only O(n) time instead of O(n2)
when calculated with Eq. 1. Furthermore, if µ is the solution obtained after
swapping locations of facilities r and s in the solution π, it is possible to com-
pute the value δ(µ, u, v) even faster if the pairs {r, s} and {u, v} are mutually
exclusive {r, s} ∪ {u, v} = Ø. Indeed, the formula given in Eq. 3 computes
the change in the value of the objective function δ(µ, u, v) in time O(1), given
that the value δ(π, u, v) from the previous permutation π is known.

δ(µ, u, v) = (fru − frv + fsv − fsu)(dµsµu − dµsµv + dµrµv − dµrµu)+

(fur − fvr + fvs − fus)(dµuµs − dµvµs + dµvµr − dµuµr)+

δ(π, u, v)

(3)

Note that only 2n − 3 pairs are not mutually exclusive and Eq. 2 is then
used to evaluate δ(µ, u, v). Therefore, calculating the change in the evaluation
function C for all the n(n− 1)/2 possible moves from the swap neighborhood
requires O(n2) instead of O(n4) when the calculation of each C is done directly
with Eq. 1, or O(n3) when using Eq. 2.

3.4 Adaptive perturbation mechanism

The perturbation mechanism plays a crucial role within BLS since the steepest
descent alone cannot escape from a local optimum. As described in the follow-
ing sections, BLS thus tries to move to the next local optimum by varying the
number of perturbation moves (Section 3.4.1) and the type of perturbation
moves (Section 3.4.2) depending on the search state. The pseudo-code of this
adaptive perturbation-based diversification procedure is given in Algorithms
2 and 3.

8



Fig. 1. The search trajectory of the BLS algorithm.

3.4.1 Jump magnitude

The idea of BLS is to first explore neighboring local optima, and move to a
new distant area only if the search seems to be stagnating. Therefore, after
each local search phase, BLS performs most of the time a small number L
of directed or random moves (see Section 3.4.2) that is hopefully just strong
enough to escape the attraction of the current local optimum and to fall under
the influence of a neighboring local optimum. If the jump was not sufficient
to escape the current local optimum, the jump magnitude L is incremented
and the perturbation is applied again to the current local optimum (see lines
28–30 of Alg. 1). Otherwise, the number of perturbation moves is set to its
default value, i.e., L = L0 (see lines 31–33 of Alg. 1). A strong perturbation
(with a large number LMax of moves) is carried out only after consecutively
visiting a certain number T of local optima without any improvement on the
quality of the best solution found (see lines 24–27 of Alg. 1). This ensures
that the search trajectory is not confined in a localized portion of the search
space. The described process of moving from one local optimum to another is
illustrated in Fig. 1.

3.4.2 Three types of perturbation moves

Instead of making random jumps all the time, BLS alternates between three
types of perturbations: directed, recency-based, and random.

The directed perturbation is based on the tabu search principles [18]. It uses
a selection rule that favors swap moves that minimize the cost degradation,
under the constraint that the move has not been applied during the last γ
iterations (γ is the tabu tenure that takes a random value from a given range).
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Algorithm 2 Adaptive perturbation procedure
Perturbation(π, L,H, Iter, δ, ω)
Require: Local optimum π, perturbation strength L, matrix H, global iteration

counter Iter, move gain matrix δ, number of consecutive non-improving local
optima visited ω

Ensure: A perturbed solution π.
1: Determine probability P according to Formula (4) /* Section 3.4.2 */
2: With probability P , π ← Perburb(π, L,H, Iter, δ, ω,A)

/* Directed perturbation */
3: With probability (1− P ) ·Q, π ← Perturb(π, L,H, Iter, δ, ω,B)

/* Recency perturbation */
4: With probability (1− P ) · (1−Q), π ← Perturb(π, L,H, Iter, δ, ω, C)

/* Random perturbation */
5: Return π

Algorithm 3 Perturbation operator Perburb(π, L,H, Iter, δ, ω,M)

Require: Identical to Perturbation(π, L,H, Iter, δ, ω) of Algorithm 2, together
with the set of perturbation moves M

Ensure: A perturbed solution π.
1: for i := 1 to L do
2: Take swap(u, v) ∈M
3: π ← π ⊕ swap(u, v)
4: c← c+ δ(π, u, v)
5: Huv ← Iter
6: Update the move gain matrix δ and M
7: Iter ← Iter + 1
8: if c < cbest then
9: πbest ← π; cbest ← c /* Update the recorded best solution */

10: ω ← 0 /* Reset counter for consecutive non-improv. local optima */
11: end if
12: end for
13: Return π

The tabu status of a move is neglected only if the move leads to a new solution
better than the best solution found so far. The directed perturbation relies thus
both on 1) history information which keeps track, for each move, of the last
iteration (time) when it was performed and 2) the quality of the moves to be
applied for perturbation in order not to deteriorate too much the perturbed
solution. The eligible moves for the directed perturbation are identified by the
set A such that:

A = {swap(u, v)|min{δ(π, u, v)}, (Huv + γ) < Iter or
(δ(π, u, v) + c) < cbest, u 6= v and 1 ≤ u, v ≤ n}

where H is the matrix that keeps track of the iteration number when a move
was last performed, Iter the current iteration number, c the cost of the current
solution, and cbest the cost of the best solution discovered so far. A larger value
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of γ implies a stronger diversification.

The recency-based perturbation relies only on the piece of history informa-
tion provided by the H matrix. It favors the least recently performed moves
regardless of the cost degradation caused by the move. More formally, these
moves are identified by the set B such that:

B = {swap(u, v)|min{Huv}, u 6= v and 1 ≤ u, v ≤ n}

Finally, the random perturbation simply performs moves that are selected
uniformly at random. Those moves are identified as follows.

C = {swap(u, v)|u 6= v and 1 ≤ u, v ≤ n}

It should be clear that these perturbation types have an increasingly stronger
diversification effect.

In order to insure the best balance as possible between an intensified and a di-
versified search, BLS takes turns probabilistically between these three types of
perturbations. The probability of applying a particular perturbation is deter-
mined dynamically depending on the search state, i.e., the current number ω
of consecutive non-improving local optima visited. ω is reset to zero each time
the best solution found during the search is improved, or when the number of
consecutive non-improving local optima exceeds a given threshold T . The idea
is to apply more often the directed perturbation (with a higher probability)
at the beginning of the search, i.e., as the search progresses towards improved
new local optima (ω is small). With the increase of ω, the probability of us-
ing the directed perturbation progressively decreases while the probability of
applying the random and the recency-based moves increases for the purpose
of a stronger diversification.

Additionally, it has been observed from an experimental analysis that it is
useful to guarantee a minimum of applications of the directed perturbation.
Therefore, we constrain the probability P of applying the directed perturba-
tion to take values no smaller than a threshold P0:

P =

{
e−ω/T if e−ω/T > P0

P0 otherwise
(4)

where T is the maximum number of non-improving local optima visited before
triggering a stronger perturbation.

Given probability P of applying the directed perturbation, the probability
of applying the recency-based and the random perturbation is determined
respectively by (1− P ) ·Q and (1− P ) · (1−Q) where Q is a constant from
[0, 1] (see Algorithm 2).
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Once the type of perturbation is determined, we apply accordingly the cor-
responding moves identified by the sets A, B or C to the current solution L
times (see Algorithm 3). The resulting solution is used by the next round of
the steepest descent local search as its new starting point.

An analysis on the impact of different perturbation types is presented in Sec-
tion 5.

3.5 Discussion

BLS combines some features from several well-established metaheuristics: it-
erated local search (ILS) [25], tabu search (TA) [18] and simulated annealing
(SA) [22]. We briefly discuss the similarities and differences between our BLS
approach and these methods.

Like ILS, BLS uses local search to discover local optima and perturbation to
diversify the search. However, BLS has a particular focus on the importance of
perturbation, and uses an adaptive and multi-type perturbation mechanism.
The three types of perturbations are triggered according to the search status,
leading to variable levels of diversification. The directed perturbation of BLS is
based on the notion of tabu list that is borrowed from TS. The recency-based
perturbation also finds its sources in TS where recency related information
may be used for the purpose of both intensification and diversification. Nev-
ertheless, BLS does not consider the tabu list during its descent phases while
each iteration of TS is constrained by the tabu list. As such, BLS and TS may
explore different trajectories during their respective search, leading to different
local optima. Since the local search phase of BLS is a simple descent proce-
dure which bases its moves only on the quality criterion, the diversification
is completely eliminated during this phase, unlike TS and SA for which the
intensification and diversification are always intertwined. In fact, we strongly
believe that this constitutes one of the keys to BLS effectiveness.

A further distinction of BLS is the way an appropriate perturbation type is
selected at a certain stage of the search. As explained in Section 3.4.2, BLS
adaptively changes the probability of applying a weak perturbation according
to the current state of search. The idea for this adaptive change of proba-
bility finds its inspiration from SA, and enables a better balance between an
intensified and diversified search.

As we will see in the next section, BLS is able to attain highly competitive
results on the set of well-known QAP benchmarks.
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4 Experimental results

4.1 Experimental protocol

This section is dedicated to an extensive experimental evaluation of the pro-
posed BLS algorithm on a wide range of benchmark instances from the QAPLIB 1 .
The instance size n varies from 12 to 150, and is indicated in the instance name.
The QAPLIB archive comprises 135 instances that can roughly be classified
into four types:

I. Real-life instances obtained from practical applications of QAP;
II. Unstructured, randomly generated instances for which the distance and

flow matrices are randomly generated based on a uniform distribution;
III. Randomly generated instances with structure that is similar to that of

real-life instances;
IV. Instances in which distances are based on the Manhattan distance on a

grid.

Among the 135 instances, 101 instances (including all the real-life instance)
can be considered as easy since BLS (and many other state-of-art QAP meth-
ods) can solve them to optimality in every single trial within a very short
computation time (often less than a second). Since these easy instances do
not represent any challenge for BLS, they are not considered in our experi-
mentation.

Our BLS algorithm 2 is programmed in C++, and compiled with GNU gcc
on a Xeon E5440 with 2.83GHz and 8GB.

Except for the initial jump magnitude L0, we apply the same setting of param-
eters to all the tested problem instances. Parameter L0 is particularly sensitive
to the different structures of QAP instances. Therefore, for unstructured in-
stances (type II) L0 = 0.05n, while for other types L0 = 0.15n. A justification
for these values of L0 is provided in Section 5.2. The setting of all the pa-
rameters is determined by a preliminary experiment and is given in Table 1.
The stopping condition is the elapsed time which we set to 2 hours for all the
instance of size n ≤ 100, and to 10 hours for the two largest instances (tai150b
and tho150) of size n = 150. As shown below, the best-known solutions are
very often attained long before these time limits.

1 http://www.seas.upenn.edu/qaplib/inst.html
2 The source code of the BLS algorithm will be available online at:
http://www.info.univ-angers.fr/pub/hao/BLS code.cpp
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Table 1
Settings of important parameters.
Para. Description Value

L0 initial jump magnitude 0.05n (II), 0.15n (I, III, IV)

LMax maximal jump magnitude rand[0.4n, 0.6n]

T max. number of non-improving attractors visited before strong
perturb.

2500

γ tabu tenure rand[0.9n, 1.1n]

P0 smallest probability for applying directed perturbation 0.75

Q probability for applying random over recency-based perturb. 0.7

According to the literature [12,29,35], we employ several criteria for evaluation
and comparison of BLS with other QAP approaches.

(1) The number of instances for which an optimal or best-known solution is
reached within a reasonable computing time;

(2) The success rate of reaching an optimal or best-known solution;
(3) The percentage deviation δ̄avg of the average solution from the published

best-known result over a certain number of runs. The percentage devi-
ation between solutions is computed as δ̄ = 100(z − z̄)/z̄[%], where z
is the best or average solution over a given number of runs and z̄ the
best-known objective value.

Beside the aforementioned criteria, computing times are also mentioned for
indicative purposes.

4.2 Computational results and comparisons

We compare our BLS approach to some of the leading algorithms from the
literature. The following algorithms are considered (see Section 2 for a short
description):

(1) Cooperative parallel tabu search (CPTS) algorithm [20];
(2) Three tabu search variants (ETS1, ETS2, ETS3)[30];
(3) Iterated tabu search (ITS) [31];
(4) Improved hybrid genetic algorithm (IHGA) [29];
(5) Population-based iterated local search (PILS) [35];
(6) A variant of a hybrid genetic tabu search algorithm (MRT60) [12].

The results of the reference algorithms are extracted from the corresponding
papers. A comparative analysis of such results is not a straightforward task
because of the differences in computing hardware, result reporting methodol-
ogy and termination criterion. Indeed, some papers only report the maximum
time limit per execution (e.g., [29–31,12]) while others (e.g., [20,35]) report
the average time needed to reach the best results over a number of trials.
Moreover, some algorithms terminate after a fixed number of iterations, while
others terminate after a fixed amount of CPU time. This comparison is thus
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presented only for indicative purposes and should be interpreted with caution.
Nevertheless, this experimental study shows to some extent the performance
of the proposed algorithm relative to these state-of-art algorithms.

Table 2 reports comparative results with CPTS, ETS-1, ETS-2, ETS-3, ITS,
PILS and IHGA for unstructured instances (type II) and real-life like instances
(type III). Note that MRT60 is not used in this comparison because it only
reports results for instances of type IV. The second column ‘BKS’ shows for
each instance the best-known objective value ever reported in the literature.
For each algorithm, column δ̄avg indicates the percentage deviation of the
average solution, obtained with the given approach over a certain number of
trials, from the best-known solution. If known, the success rate for reaching
the best-known solution over 10 trials is given in parentheses next to the value
of δ̄avg. The CPU time (in minutes) is only given for indicative purposes. The
last line shows the averaged information. From the results in Table 2, we can
make the following observations.

For the unstructured instances (type II), BLS finds the best-known solution
for 7 out of the 9 instances, with an average deviation δ̄avg of 0.153 over the
9 instances. For three hard instances tai40a, tai50a and tai60a, it reaches the
best-known solution in 70%, 20% and 10% of the trials respectively. BLS thus
outperforms ITS which is probably the current most effective approach for
this type of instances. Indeed, ITS is able to attain the best-known result for
6 out of the 9 instances with an average deviation δ̄avg of 0.210 over the 9
instances. For instances tai40a and tai60a, ITS reaches the best-known result
with a success rate of 10% but is unable to find the best-known solution for
tai50a as it is the case with the five other reference QAP approaches.

For the real-life like instances (type III), BLS is able to attain the best-known
solution for all the instances in every single trial, except for the largest instance
tai150b where the success rate is 10%. BLS reports an average deviation δ̄avg
of 0.008 over the 10 instances. Two reference approaches, ITS and IHGA, are
also able to attain the best-known result for all the 10 real-life like instances
with an average deviation δ̄avg of 0.010 and 0.111 respectively. Notice that
the average deviations of ETS cannot be used for comparisons since the ETS
algorithms do not report results for the hardest real-life like instance tai150b
of this type. In summary, BLS is very competitive with the best performing
QAP approaches for real-life like instances.

Table 3 reports comparative results of BLS with CPTS, PILS and MRT60
for instances with grid distances (type IV). The other reference approaches
are not included in this comparison since they do not report results for these
instances. From the results in Table 3, we observe that BLS is able to reach
the best-known results at each trial for 12 out of 15 instances. It is even ca-
pable of attaining the best-known solution for the hardest grid-based instance
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tho150 with a success rate of 10%. The current best algorithm on instances of
type IV is MRT60. Indeed, MRT60 attains the best-known result for instance
tho150 in 30% of the trials and reports an average deviation δ̄avg of approx-
imately 0 (against 0.002 for BLS) over the 15 instances. Beside MRT60 and
BLS, the other reference algorithms are unable to reach the best-known result
for tho150 although CPTS attains a low average deviation of 0.001. Notice
that the performance of this genetic tabu hybrid MRT60 is unknown for the
instances of types II and III.

Finally, as to the computing times, BLS requires on average 27.9 minutes to
reach its best solution. Although it is impossible to make a precise compar-
ison of computing times, our BLS algorithm does not seem to require more
computing time than some other reference approaches (e.g., [12,20,30]).

5 Experimental analysis and discussion

It is well known that the performance of any heuristic algorithm depends on
the balance between intensification and diversification. However, the desired
balance is influenced by the structure of the given instance, such as the distri-
bution of local optima, the correlation between solutions, the number of global
optima, etc. An analysis of correlation between solution quality and distance
to global optimum has shown to provide useful indications about the prob-
lem hardness and the distribution of local optima in the search space. Such an
analysis on QAP instances has already been performed in [27] and [35] but us-
ing different local search procedures to sample candidate solutions and global
optima which later turned out to be only locally optimal solutions. Therefore,
for the sake of greater accuracy, we carry out the same analysis based on so-
lutions sampled with our BLS approach and the current best-known solutions
(global optima). In addition, we analyze the distribution of local optima in
search space by investigating minimal distances between two medium or high
quality local optima. These solutions may be viewed as ‘strong’ attractors
since they may be more likely visited during the search than a low quality
local optimum. Based on the observations made from these analyses, we jus-
tify our choice for the used parameter settings. Moreover, we investigate the
impact of the proposed multi-type perturbation strategy on BLS performance.
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Table 3
Comparative results between BLS and some of the best performing QAP approaches
on grid-based (type IV) instances. The times are given in minutes. The success rate
of reaching the best-known result over 10 executions is indicated between parenthe-
ses.

Problem BKS BLS CPTS [20] PILS [35] MRT60 [12]

% δ̄avg t(m) % δ̄avg t(m) % δ̄avg t(m) % δ̄avg t(m)

sko42 15812 0.000(10) 1.7 0.000(10) 5.3 0.000(10) 2.8 – –

sko49 23386 0.000(10) 0.5 0.000(10) 11.4 0.000(10) 0.8 0.000(10) 4.3

sko56 34458 0.000(10) 1.1 0.000(10) 21.0 0.000(10) 0.5 0.000(10) 7.2

sko64 48498 0.000(10) 1.3 0.000(10) 42.9 0.000(10) 0.2 0.000(10) 12.4

sko72 66256 0.000(10) 4.1 0.000(10) 69.6 0.001(8) 6.7 0.000(10) 19.9

sko81 90998 0.000(10) 13.9 0.000(10) 121.4 0.007(5) 9.6 0.000(10) 31.9

sko90 115534 0.000(10) 16.6 0.000(10) 193.7 0.006(4) 10.6 0.000(10) 48.5

sko100a 152002 0.001(9) 20.8 0.000(10) 304.8 0.012(3) 7.9 0.000(10) 73.6

sko100b 153890 0.000(10) 10.8 0.000(10) 309.6 0.007(5) 7.3 0.000(10) 73.6

sko100c 147862 0.000(10) 15.5 0.000(10) 316.1 0.002(6) 11.5 0.000(10) 73.6

sko100d 149576 0.001(5) 38.9 0.000(10) 309.8 0.021(0) 11.8 0.000(10) 73.6

sko100e 149150 0.000(10) 42.5 0.000(10) 309.1 0.001(7) 6.8 0.000(10) 73.6

sko100f 149036 0.000(10) 17.3 0.003(4) 310.3 0.037(0) 11.7 0.000(9) 43.5

wil100 273038 0.000(10) 18.9 0.000(10) 316.6 0.004(1) 6.3 0.000(10) 73.6

tho150 8133398 0.023(1) 268.8 0.013(0) 1991.7 0.068(0) 36.2 0.003(3) 1223.6

Average 0.002 31.5 0.001 308.8 0.011 8.7 0.000 130.9

5.1 Landscape analysis

5.1.1 Analysis protocol

We perform the landscape analysis on 16 QAPLIB instances, based on a set
of distinct solutions obtained after 2000 independent runs of the BLS ap-
proach. The number of iterations per run is set to 200000. As the distance
between solutions, we calculate the number of locations that are allocated
to distinct facilities in two solutions π and π′, i.e., d(π, π′) = |{i|πi 6= π′i}|.
Since global optima for the analysed instances are not known, we use instead
the best-known local optima to compute fitness-distance correlation and refer
to them as global optima. We take into account for this analysis that some
QAP instances have multiple global optima. This is the case with grid-based
instances (type IV) and one random instance tai60a for which we have found
two different global optima (i.e., best-known solutions).

5.1.2 FDC and distribution of local optima

The fitness-distance correlation (FDC) coefficient ρ [24] captures the corre-
lation between the fitness (i.e., quality) of a solution and its distance to the
nearest global optimum (or best-known solution if global optimum is not avail-
able). A value of ρ = 1 indicates perfect correlation between fitness and dis-
tance to the optimum, implying that the better the fitness of a solution the
closer the solution is to the optimum. For correlation of ρ = −1, the evaluation
function is completely misleading. FDC can also be visualized with a FD plot,
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where the same data used for estimating ρ is displayed graphically. Such plots
have been used to estimate the distribution of local optima for a number of
problems including for instance TSP [7], graph partitioning [3,28], flow-shop
scheduling problem [33], and QAP [27,35].
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Fig. 2. Distance of local optima to the best-known solution based on solutions
sampled by the BLS algorithm for instances tai100a (type II), tai100b (type III)
and sko100a (type IV).

The results of our analysis on the 16 QAP instances are presented in Table
4. In column ‘ρ’ of Table 4, we report FDC coefficients for these instances.
For illustrative purposes, FD plots for three instances (tai100a, sko100a and
tai100b) are given in Figure 2. As it can be seen from the FDC coefficients
in Table 4, there is a clear difference in correlation among instances of dif-
ferent types. For unstructured instances (type II), the FDC coefficient ρ is
negative except in one case (tai50a) where ρ is close to zero. Indeed, from the
FD plots in Figure 2 it is clear that there is no correlation between fitness
and distance for tai100a, which implies that these instances are hard for any
heuristic algorithm.

For grid-based instances (type IV), significant FDC exists except in one case
(sko81, ρ < 0), while for two real-life like instances tai80b and tai100b the FDC
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Fig. 3. Distribution of medium and high quality local optima (i.e., ‘strong’ attrac-
tors) for tai100a (type II), tai100b (type III) and sko100a (type IV) instances.

Table 4
Analytical results for 16 QAP instances. Column ‘#dlo’ indicates the number of
distinct local optima over 2000 independent runs of BLS; Columns ‘avg dlo’, ‘avg
dgo’ and ‘avg dhq’ report respectively the average distance between local optima, the
average distance between local and global optima, and the average distance between
the highest quality local optima; Column ‘ρ’ shows the value of the fitness-distance
correlation coefficient.

Instance #dlo avg dlo avg dgo avg dhq ρ

tai40a 349 38.5 39.2 38.4 -0.028

tai50a 1760 48.6 49.1 48.7 0.029

tai60a 1995 58.6 59.2 58.6 -0.024

tai80a 2000 78.8 79.0 78.8 -0.058

tai100a 2000 98.8 99.0 98.9 -0.012

tai80b 730 61.7 78.7 68.7 0.040

tai100b 1007 80.7 97.7 89.1 0.11

sko72 228 66.8 68.3 65.7 0.287

sko81 388 75.4 74.5 76.5 -0.048

sko90 487 85.08 85.7 82.8 0.348

sko100a 968 95.4 94.2 95.4 0.366

sko100b 628 95.9 92.5 95.5 0.280

sko100c 559 91.0 91.3 93.9 0.233

sko100d 1212 96.3 93.9 96.3 0.433

sko100e 545 94.3 92.4 96.2 0.569

sko100f 1230 96.6 93.5 97.2 0.317
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is also low ρ < 0.15 but higher than for the unstructured instances. The FD
plots in Figure 2 for instances sko100a and tai100b confirm this observation.

Table 4 additionally reports the average distance between local optima avg dlo,
the average distance between local optima and the nearest global optimum avg
dgo, and the average distance between the highest quality local optima avg dhq.
It can be observed that, regardless of the instance type, the values of avg dlo,
avg dgo, and avg dhq are very large, close to the maximal possible value n.
This implies that local optima are scattered all over the search space. Even
high quality local optima are distant from each other and share no common
structure.

To gain an even better insight in the distribution of local optima in the search
space, we investigate minimal distances between two medium or high quality
local optima (i.e., ‘strong’ attractors). Such analysis, previously applied to the
maximum clique problem [4], has shown to provide some useful indications on
the influence of different diversification strengths to algorithm performance.
More precisely, given a set of medium or high quality local optima S, for all
loi ∈ S we determine the distance dmin between loi and some other solution
loj ∈ S which is the closest to loi, i.e., dmin = minloj∈S,loj 6=loid(loi, loj). For
each possible distance di ∈ [0, n], we then count the number of time that
di is the distance between lo ∈ S and another solution in S which is the
closest to lo. The results of this study on three instances (tai100a, tai100b
and sko100a) are given in Figure 3. The x-axis shows the minimal distance
between two ‘strong’ attractors, while the y-axis shows the number of pairs of
‘strong’ attractors separated by the given distance.

Figure 3 indicates that there exists a significant difference in the distribu-
tion of medium and high quality local optima for QAP instances. For tai100b
and sko100a, the minimal distances between two ‘strong’ attractors are sig-
nificantly smaller than in the case of the unstructured instance tai100a. Intu-
itively, a weaker diversification introduced into the search for such instances
may cause the search to cycle between two or more ‘strong’ attractors that
are not necessarily globally optimal solutions. For an effective solving of these
instances, strong diversifications are needed as illustrated in the next sections.

5.2 Justification for parameter settings

While the intensification mechanism of BLS is parameter-free, the diversifica-
tion is controlled by the following parameters: the initial number of pertur-
bation moves L0, the number of perturbation moves for the strongest pertur-
bation LMax, the maximal number of non-improving attractors visited before
strong perturbation T , the tabu tenure γ, and the smallest probability for
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applying directed perturbation P0. The optimal setting of these parameters
depends on landscape properties which, as seen from the landscape analy-
sis, significantly differ for QAP instances. As a result, some state-of-art QAP
approaches (e.g., [11,12,29–31]) report results only for a specific type of QAP
instances. Despite the fact that all the BLS parameters have a role in establish-
ing the right balance between intensification and diversification, experimental
evaluations have shown that they are not equally sensitive to different struc-
tures of instances. While parameters LMax and T show no particular sensitiv-
ity, the most sensitive seems to be the initial perturbation strength parameter
L0. For that reason, the reported results (for all the types of QAP instances)
were obtained with the same setting of parameters, except for parameter L0

whose value is varied according to the type of instance (see Table 1).

To illustrate the influence of the initial jump magnitude L0 on solution quality,
we run our BLS algorithm on three QAP instances (tai60a [type II], tai100b
[type III], sko90 [type IV]) with a small and large value of L0 which is set
to 0.05n and 0.15n respectively, where n is the instance size. The results for
each instance are plotted in Fig. 4, where the x-axis indicates the execution
number and y-axis the percentage deviation from the best-known solution ever
reported in the literature. The plots indicate that jumps of small magnitude,
which induce less diversification, provide significantly better results for the
unstructured instance tai60a than when larger jumps are performed. On the
other hand, considerably better results are obtained when performing jumps
of larger magnitude on instances of types III and IV. Although we do not
present results of this analysis for other QAP instances, they generally exhibit
the same behaviour.

An explanation for such results can be found in the landscape analysis. Figure
3 indicates that the minimal distances between two high quality local optima
are generally very large for the unstructured instances (type II), and are close
to the maximal possible value. Intuitively, such distribution of local optima
prevents the search from cycling even if a weak diversification is introduced
into the search. For this reason it may be worthwhile to perform a more
intensive search.

On the other hand, Figure 3 shows that the situation for instances tai100b
(type III) and sko90 (type IV) is quite the opposite. Indeed, the minimal
distances between any two high quality solutions are generally rather small
for these two types of instances. Introducing a weaker form of diversification
may thus cause the search to cycle between two or more local optima which
are not necessarily the optimal solutions.
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Fig. 4. Influence of different jump magnitudes on solution quality for instances
tai60a (type II), tai100b (type III) and sko90 (type IV).

5.3 Importance of adaptive perturbation

BLS jointly uses three types of perturbations (directed, recency-based and ran-
dom) and applies them in an adaptive way. We use the term “undirected per-
turbation” to group both recency-based and random perturbation. We show
in this section that if directed and undirected perturbations are applied sepa-
rately, the performance of BLS is affected.

We perform three experiments to examine the impact of the directed and the
undirected perturbation, as well as the importance of the adaptive perturba-
tion strategy adopted in BLS. For the first experiment, the three perturbation
types are jointly used by BLS (as presented in Alg. 2). In the second exper-
iment, only the directed perturbation is used, while for the third experiment
only the undirected perturbation is employed. The plotted results of this anal-
ysis are presented in Fig. 5. The x-axis indicates the execution number, while
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Fig. 5. Influence of different perturbation types on instances tai60a (type II), sko90
(type III) and tai100b (type IV).

the y-axis shows the percentage deviation from the best-known solution ever
reported in the literature.

We observe that the directed perturbation, which introduces less diversifica-
tion into the search, provides much better results than the undirected per-
turbation for instances of type II. However, the results are quite opposite for
instances of types III and IV where the undirected perturbation seems to be
more effective. This coincides with our observation that weaker diversification
is more effective on unstructured instances (type II), while stronger diversifi-
cation works better on other QAP instances.

On the other hand, a combined use of directed and undirected perturbation
provides quality solutions independent of the instance type. This confirms the
interest of an adaptive combination of guided and random perturbation within
a diversification mechanism.
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6 Conclusion

In this paper, we presented the Breakout Local Search approach for QAP.
BLS alternates between a local search phase (to find local optima) and a
perturbation-based diversification phase (to jump from a local optimum to
another local optimum). To be effective, the local search procedure uses the
steepest descent strategy combined with a very fast neighborhood evaluation
technique from the literature. To visit local optima of high quality, the jumps
toward new local optima are adaptively controlled according to the state of
search. This is achieved by varying the magnitude of a jump and selecting the
most suitable perturbation for each diversification phase.

Experimental evaluations on the collection of benchmark instances from the
QAPLIB showed that the proposed approach competes very favorably with the
current most effective (often more complex) QAP algorithms. In particular,
BLS is able to reach the current best solution for all the benchmark instances
except for 2 cases in reasonable computing times. To the best of our knowledge,
this is the best overall result obtained by a single QAP approach. BLS performs
particularly well on unstructured instances (type II) which are considered to
be the hardest for many current QAP approaches. For the instances with grid
distances (type III) and the real-life like instances (type IV), BLS also remains
very competitive with respect to the best performing approaches.
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