
An extraction and expansion approach for

graph coloring

Qinghua Wu and Jin-Kao Hao∗

LERIA, Université d’Angers
2 Bd Lavoisier, 49045 Angers, France
Email: {wu,hao}@info.univ-angers.fr

Accepted to Asian-Pacific Journal of Operational Research

May 1, 2011

Abstract

This paper presents an extraction and expansion approach for the
graph coloring problem. The extraction phase transforms a large
graph into a sequence of progressively smaller graphs by removing
large independent sets from the graph. The expansion phase starts
by generating an approximate coloring for the smallest graph in the
sequence. Then it expands the smallest graph by progressively adding
back the extracted independent sets and determine a coloring for each
intermediate graph. To color each graph, a simple perturbation based
tabu search algorithm is used. The proposed approach is evaluated
on the DIMACS challenge benchmarks showing competitive results in
comparison with the state-of-the-art methods.
Keywords: graph coloring, independent set, tabu search, progressive
optimization.

1 Introduction

Let G = (V,E) be an undirected graph with vertex set V and edge set E.
A subset I of V is an independent set if no two adjacent vertices belong to
I. A legal k-coloring of G is a partition of V into k independent sets (color
classes). The graph k-coloring problem is to find a legal k-coloring of G for

∗Corresponding author

1

a given k. The graph coloring problem is to determine the smallest integer k

(its chromatic number χ(G)) such that there exists a legal k-coloring of G.
The graph coloring problem is a well-known NP-hard problem [17] with

real-word applications in many engineering fields, including scheduling [23],
register allocation [7], timetabling [4, 30], and frequency assignment [29].
Exact solution methods are useful to solve problems of relatively small size
whereas heuristics and metaheuristics are usually preferred to handle larger
graphs.

There are a large number of heuristic algorithms for graph coloring includ-
ing the following approaches: greedy construction (DSATUR [3], RLF[23]),
tabu search [2, 8, 19, 27], iterated local search [6], variable neighborhood
search [1], simulated annealing [5, 21], variable space search [20], multia-
gent fusion search [32] and evolutionary hybrid or population based search
[9, 13, 15, 24, 25, 28]. A comprehensive survey of the most significant heuris-
tic methods can be found in [14].

Another approach for dealing with large graphs is based on a general prin-
ciple of “reduce-and-solve”. This approach consists in applying, prior to the
phase of graph coloring, a preprocessing procedure to extract large indepen-
dent sets from the original graph until the remaining graph (called residual
graph) becomes sufficiently small and then coloring the residual graph. The
resulting color classes of the residual graph plus the extracted independent
sets form a solution for the initial graph. Typically, the preprocessing pro-
cedure reduces the initial graph by removing one independent set at a time.
Such an approach was described for example in early studies [11, 19, 21, 26].

This paper presents an extraction-and-expansion approach (denoted by
E2COL) to handle large and very large graphs. The proposed approach
also extracts independent sets to create a sequence of progressively smaller
graphs to reduce the initial graph. However, E2COL goes beyond the ba-
sic preprocessing approach by introducing an advanced extraction strategy.
More importantly, E2COL reconsiders the extracted independent sets dur-
ing its expansion phase in order to improve the colorings of the intermediate
graphs. This is motivated by the fact that not all vertices of an extracted
independent set necessarily get the same color in the final coloring.

Experiments on a set of large DIMACS challenge benchmark graphs show
that the proposed approach is very competitive. Indeed, E2COL is able to
match most of the best-known solutions and for two large instances (C2000.5
and C4000.5), it even finds improved solutions with 1 and 9 fewer colors.
E2COL also competes favorably with the currently top-performing hybrid
evolutionary methods.

The rest of this paper is organized as follows. Section 2 describes the gen-
eral framework and the main components of the proposed E2COL algorithm.

2

In Section 3, computational results are presented and compared. Section 4
investigates the role of the expansion phase, followed by the concluding sec-
tion.

2 The extraction and expansion approach for

graph coloring

2.1 Problem description

Given an integer k and a graph G = (V,E) with vertex set V and edge
set E, a k-coloring of G is a partition of V into k distinct color classes
{C1, C2, ..., Ck} such that each color class Ci (i = 1, 2, ..., k) contains all the
vertices that are colored with color i.

If two adjacent vertices u and v are in the same color class, u and v are
called conflicting vertices and the edge linking u and v is called a conflict-
ing edge. A color class without conflicting vertices is an independent set.
A k -coloring without conflicting edges is said to be a legal k -coloring and
corresponds to a partition of the vertices of V into k independent sets. A
k -coloring with conflicting edges is said to be an illegal k -coloring.

For a given k -coloring s = {C1, C2, ..., Ck} (legal or illegal), let the evalu-
ation function f(s) denote the number of conflicting edges induced by s such
that:

f(s) =| {{u, v} ∈ E : ∃Ci ∈ s, u ∈ Ci, v ∈ Ci} | (1)

Then the k -coloring problem can be solved by minimizing the function
f(s); f(s) = 0 implies that all the color classes Ci of s are independent sets,
i.e. s is a legal k -coloring. The chromatic number of G can be approximated
by solving a series of k-coloring problems with decreasing values of k until
no legal k -coloring can be obtained. In Section 2.4, we describe the coloring
algorithm used in this work.

2.2 General procedure

As observed in [5, 19, 21], it is difficult to color a large graph by using pure
local search algorithms. One possible approach to improve the situation is to
first extract several large independent sets from the original graph and then
color the reduced residual graph.

The proposed approach in this paper reinforces this basic idea of extract-
ing independent sets by two improvements. First, we develop an advanced

3

method for the extraction phase which identifies and extracts as many pair-
wise disjoint independent sets as possible. Second, we introduce an expansion
phase which optimizes the colorings of a series of intermediate graphs by re-
considering the extracted independent sets. The general procedure of the
proposed E2COL approach can be summarized by the following steps.

1 2

3 4

5

6

7

8 9

10

11

1

3 4

6

8

10

11

3 4

6

10

G0 G1 G2

Figure 1: The extraction phase

3 4

6

10

1

3 4

6

8

10

11

1

3 4

6

8

10

11

1 2

3 4

5
6

7

8 9

10

11

G2 G1 G
′

1
G0

Figure 2: The expansion phase

1. Extraction phase: The initial graph G0 = G is transformed into a
sequence of progressively smaller graphs G1, G2, ..., Gm by removing
large independent sets from the original graph. More precisely, each
Gi = {Vi, Ei} (i = 1, ...,m) is created by removing a large independent
set Ii−1 from its upper level graph Gi−1 (see Fig. 1). Obviously, Gi is
a subgraph of Gi−1 and Vi = Vi−1 − Ii−1. This phase stops when the
size of Vm reaches a fixed threshold q. We will present the method for
constructing I0, ..., Im−1 in Section 2.3.

2. Initial coloring phase: A coloring algorithm is applied to the small-
est graph Gm = (Vm, Em) to determine a coloring with k −m colors.
Let s′m = {C1, ..., Ck−m} be this coloring. If s′m is a legal (k − m)-
coloring (i.e. f(s′m) = 0), s′m plus the m extracted independent sets
(i.e. {C1, ..., Ck−m, Im−1, ..., I0}) gives a legal k-coloring for the ini-
tial graph G0, the initial k-coloring problem is solved. Otherwise (i.e.
f(s′m) > 0), s′m is used to construct an initial (k −m + 1)-coloring for
the immediate upper graph Gm−1 by the expansion phase.

4

3. Expansion phase: This phase carries out the inverse of the extraction
phase and traverses the sequence of intermediate graphs in the reverse
order. At the first step, the solution s′m = {C1, ..., Ck−m} of Gm is
transformed into an initial (k − m + 1)-coloring sm−1 of Gm−1 such
that sm−1 = {C1, ..., Ck−m, Im−1} (i.e. all vertices in Im−1 form a new
color class in sm−1, see Fig. 2 from G2 to G1). Obviously, f(sm−1) =
f(s′m). sm−1 is then improved by the coloring algorithm (Section 2.4)
and let s′m−1 be the resulting coloring of Gm−1. If s′m−1 is a legal
(k−m+1)-coloring for Gm−1, then a legal k-coloring of G0 is obtained
by joining s′m−1 and the independent sets I0, I1...Im−2. Otherwise, s′m−1

is transformed into an initial solution sm−2 for coloring the immediate
upper level graph Gm−1. The same operations are performed on the
intermediate graphs Gm−3, Gm−4, ... in the sequence until a legal (k−i)-
coloring of a graph Gi is found or the uppermost graph G0 in the
sequence is colored.

Figures 1 and 2 illustrate how our proposed approach works. In this
example, we want to color the initial graph G0 with k = 4 colors. In Fig. 1, we
obtain two smaller graphs G1, G2 by successively extracting two independent
sets I1 = {2, 5, 7, 9} and I2 = {1, 8, 11} from G0. The smallest graph G2

is then colored with 2 colors and we get an initial (and illegal) 2-coloring
solution s′2 of G2 (Fig. 2, G2). Using s′2, we construct an initial (and illegal)
3-coloring solution s1 of G1. s1 is then improved by the coloring algorithm
and a legal 3-coloring s′1 of G1 is obtained (Fig. 2, from G1 to G

′

1). At last,
we use the legal 3-coloring s′1 to construct a legal 4-coloring of G0 (Fig. 2,
from G

′

1 to G0).
The proposed extraction and expansion approach is described in Al-

gorithm 1. The expansion process thus leads to a sequence of colorings
s′m, s′m−1, s

′

m−2,...with progressively smaller (thus improved) f values (i.e.
f(s′m) ≥ f(s′m−1) ≥ f(s′m−2) ≥...). As the expansion-coloring process pro-
ceeds, the coloring quality s′i−1 of graph Gi−1 is usually better than that of
Gi because there is a greater degree of freedom to improve the coloring.

The computational complexity of the proposed E2COL algorithm de-
pends essentially on the tasks of extracting independent sets (see Section
2.3) and coloring the residual and intermediate graphs (see Section 2.4). For
each of these tasks, a tabu search algorithm is employed whose complexity
is bounded by the allowed maximum computing time or iterations.

5

Algorithm 1 The Extraction-Expansion algorithm for k-coloring
1: Input: An undirected graph G0 = (V0, E0), An integer k

2: Output: A legal k-coloring of G0 or report failure
3: {Extraction phase}
4: Use the extracting procedure to get a sequence of independent sets I0, ..., It (Section

2.3)
5: i := 0
6: while (|Vi| > q) do

7: Gi+1 = Remove(Gi, Ii) {Remove all vertices of Ii from Gi}
8: i = i + 1
9: end while

10: {Initial coloring phase}
11: s′i = Tabu Search(Gi, k − i) {Use tabu search to color the smallest graph Gi with

k − i colors (Section 2.4), s′i is the best coloring found in terms of the function f}
12: if (s′i is a legal (k − i)-coloring, i.e. f(s′i) = 0) then

13: Use s′i to construct a legal k-coloring s0 = {s′i, Ii−1, ..., I0} of G0

14: Return s0 and Stop
15: end if

16: {Expansion phase}
17: while (i > 0) do

18: i = i− 1
19: si = {s′i+1, Ii} {Construct a (k − i)-coloring of Gi from s′i+1 = {C1, ..., Ck−i−1} }
20: s′i = Perturbation Tabu Search(si, Gi){Section 2.4}
21: if (s′i is a legal (k − i)-coloring, i.e. f(s′i) = 0) then

22: Use s′i to construct a legal k-coloring s0 = {s′i, Ii−1, ..., I0} of G0

23: Return s0 and Stop
24: end if

25: Return (No legal k-coloring found)
26: end while

6

2.3 The procedure for extracting independent sets

As stated previously, in order to create a sequence of progressively smaller
graphs G0 = G,G1, ..., Gm (which are kept in a stack), we identify from the
initial graph m pairwise disjoint independent sets I0, ..., Im−1. We explain in
this section how this is achieved.

2.3.1 The extraction procedure

Conventional extraction procedures identify only one large independent set
at each preprocessing step (see for example [19, 11, 21, 26]). With our in-
dependent set extraction procedure, each time a large independent set I is
identified from a given graph, we try to find as many pairwise disjoint inde-
pendent sets of the same size |I| as possible before moving to the next step.
This process is repeated until there are no more than q vertices left in the
residual graph.

A

B
C

D

E

F

G

H

I

J

A

B
C

D

E

F

G

H

I

J

A

B
C

D

E

F

G

H

I

J

A

B
C

D

E

F

G

H

I

J

A

B
C

D

E

F

G

H

I

J

A

B
C

D

E

F

G

H

I

J

A

B
C

D

E

F

G

H

I

J

A

B
C

D

E

F

G

H

I

J

A

B
C

D

E

F

G

H

I

J

A

B
C

D

E

F

G

H

I

J

A

B
C

D

E

F

G

H

I

J

A

B
C

D

E

F

G

H

I

J

Figure 3: An illustration of the extraction procedure

Figure 3 illustrates how the extraction procedure works on a graph with
10 vertices. At the first step, we find a maximum independent set of size
3 (e.g. {A,D,H}). Then we identify as many independent sets of size
3 as possible from the graph (say 8). Finally, we determine from them 3
disjoint independent sets {A,B, F}, {C,E,H}, {D,G, I} and remove these 3
independent sets from the graph. Since there is only one vertex left (vertex
J) after removing these independent sets, the procedure stops.

Our extracting procedure iterates basically the following 4 steps.

1. Identify a maximal independent set I in the graph G = (V,E) and
initialize set M with I. Identification of I can be achieved by applying
any maximum independent set algorithm (or equivalently any maxi-
mum clique algorithm). In our case, we employ the Adaptive Tabu
Search (ATS) algorithm described in [33].

7

2. Apply repeatedly the ATS algorithm to generate as many independent
sets of size |I| as possible and add them in set M . The search for
new independent sets of size |I| stops when the number of independent
sets contained in M reaches a desired threshold (Mmax) or when no new
independent set of that size can be found. According to our experiments
we set Mmax equal to |V | ∗ ρ, where ρ is the density of the graph.

3. Identify as many pairwise disjoint independent sets I
′

0, ..., I
′

l−1 as pos-
sible from M (i.e. ∀I ′

x, I
′

y ∈ {I
′

0, ..., I
′

l−1}, x 6= y → I ′

x

⋂

I ′

y = ∅ and
l is as large as possible. We explain how this is achieved below) and
record them in H. Remove the disjoint independent sets of H from G

and record each resulting intermediate residual graph in R. (H and
R will be used when the intermediate graphs are colored during the
expansion phase).

4. Repeat steps 1–3 until the residual graph G contains no more than q

vertices.

Step (3) aims at finding a maximum number of disjoint independent sets
from M . This problem, called the maximum set packing problem, is equiv-
alent to the maximum clique (thus the maximum independent set) problem
[17]. Let M = {I1, ..., In} be the given set of independent sets, we define a
new graph G′ = (V ′, E ′) where V ′ = {1, ..., n} and the edge matrix is given
by:

eij =

{

0, if Ii ∩ Ij = ∅, i, j ∈ {1, ..., n}
1, otherwise.

One observes that if {i1, ..., ir} ⊂ V ′ is an independent set in G′, {Ii1 , ..., Iir}
is a pairwise disjoint set in M . Consequently, to obtain a maximum pairwise
disjoint set in M , we can determine a maximum independent set in G′. For
this purpose, we apply again the ATS algorithm from [33].

2.4 Graph coloring by perturbation based tabu search

2.4.1 The tabu search for the k-coloring problem

In this paper, we employ the tabu search coloring algorithm described in
[13] which itself is based on the seminal tabucol algorithm presented in [19].
This algorithm uses a search space which is defined by the set of all possible
k-colorings for the given graph and integer k. For a given k-coloring s,
its quality is assessed by the evaluation function f defined by formula (1)
which measures the total number of conflicting edges (see Section 2.1). A
neighboring solution of a given k-coloring is obtained by moving a conflicting

8

vertex u from its original color class Ci to another color class Cj (i 6= j).
When a vertex u is moved from color class Ci to color class Cj, color class
Ci is declared tabu to vertex u for the next l iterations (called tabu tenure).

At each iteration, our tabu search determines the best neighbor s′ of the
current solution s (ties are broken randomly) such that either s′ is a non-
tabu solution, or s′ leads to a solution better than the best solution found
so far (aspiration criterion). The tabu tenure is dynamically determined by
f(s) + r(10), where r(10) returns a random number in {1, 2, ..., 10}.

The tabu search returns the most recent best solution found during the
search. Hence, if a solution is encountered with the same f value as the
current best solution, then the current best solution is replaced by the new
one. The stop condition of our tabu search is just the allowed number of
iterations with which the best solution has not been improved. We call this
number depth of tabu search, denoted by α.

Algorithm 2 The perturbation based tabu search algorithm
Require: Graph G = (V,E), initial coloring s, integers max-tries and max-runs

Ensure: the best coloring s∗ found so far
1: Begin

2: i := 0
3: s∗ := s {s∗ records the best coloring found so far}
4: while (i < max-tries) do

5: sp ← Perturb(s∗, t)
6: i = i + 1
7: j = 0
8: while (j < max-runs) do

9: s′ ← Tabu Search(sp, t)
10: if (f(s′) ≤ f(s∗)) then

11: s∗ = s′

12: end if

13: if (f(s∗) = 0) then

14: Return s∗ and Stop
15: end if

16: j = j + 1
17: end while

18: end while

19: End

2.4.2 The perturbation based tabu search algorithm

To reinforce the search capacity of this basic tabu search algorithm, we em-
ploy a perturbation strategy. Basically, the tabu search ensures the intensi-
fication, while the perturbation mechanism brings controlled diversification

9

into the search. The general procedure of the perturbation based tabu search
is summarized in Algorithm 2.

The perturbation to a given solution s∗ (i.e. a conflicting coloring using
a certain number k of colors, line 5 of Algorithm 2) operates as follows: 1)
select t ∈ {1, 2, 3} color classes C ′

1, ..., C
′

t from s∗, 2) empty C ′

1, ..., C
′

t by
moving all vertices in C ′

1, ..., C
′

t into the other k − t color classes of s∗ and
3) run the tabu search algorithm to obtain an improved (k − t)-coloring sp.
After this perturbation operation, we add back the t empty color classes to
sp from which we run again tabu search to try to find a conflict-free coloring
with k colors (lines 8-17 of Algorithm 2). The value of t is determined as
follows: if k < 40, t is set equal to 1, if 40 ≤ k < 80, t is set equal to
2, otherwise t is set to 3. Notice that after each perturbation, a long tabu
search instead of the multiple restart of tabu search (inner while loop of
Algorithm 2) can be applied to improve the perturbed solution. However,
our experiments showed that the multiple restart strategy performs globally
better.

3 Experimental Results

In this section, we report intensive experimental results of our E2COL algo-
rithm on the well-known DIMACS coloring benchmarks. We also compare
the results with some state-of-the-art coloring algorithms from the literature.

3.1 Problem Instances and Experimental Protocol

As our E2COL algorithm is devised for coloring large and very large graphs,
we evaluate our algorithm on 17 large graphs with at least 400 vertices from
the DIMACS Challenge [22]. We select those graphs because they are known
to be among the most challenging ones. The considered graphs are described
below.

1. Six classical random graphs (dsjcA.B, A = 500 and 1000, B = 0.1, 0.5
and 0.9) with unknown chromatic numbers.

2. Four Leighton graphs (le450 15x, le450 25x, x = c and d) with known
chromatic numbers.

3. Three flat graphs (flatn χ 0, n = 1000 and χ = 50, 60 and 76) with
known chromatic numbers.

4. Two random geometric graphs (DSJR500.1c and DSJR500.5) with
unknown chromatic numbers.

10

Table 1: Settings of important parameters for E2COL
Parameters Section Description Values
q 2.2 the size threshold for Gm 300
max−tries 2.4.2 the maximum number of perturbations 10
max−runs 2.4.2 the maximum number of tabu search runs after one perturbation 10
α 2.4.1 depth of tabu search 100,000

5. Two huge random graphs (C2000.5 and C4000.5) with unknown chro-
matic numbers.

All experiments for this study were performed on a dedicated PC with 2.8
GHz CPU and 2G RAM. For all the tested graphs, the same parameter values
(see Table 1) are used which are determined within a preliminary experiment.
To obtain our computational results, for each instance, 10 independent trials
were performed with different random seeds. The algorithm stops if one of
the following conditions is verified:

1. A legal k-coloring is found.

2. The processing time reaches its timeout limit. The timeout limit is set
to be 5 CPU hours except for four large graphs DSJC1000.5, DSJC1000.9,
C2000.5 and C4000.5. For DSJC1000.5 and DSJC1000.9 a limit of 10
hours is allowed while for the two largest graphs C2000.5 and C4000.5,
the limit is set equal to 5 days. Notice that these timeout limits are
comparable with those reported in the latest papers on large graph
coloring like [24, 25, 28, 32].

3. The uppermost level graph G0 in the sequence of the graphs is reached,
in this case, we repeat using the perturbation based TS to optimize s′0
until the timeout limit is reached or a legal k-coloring is found.

3.2 Computational Results

Table 2 summarizes the computational statistics of our E2COL algorithm on
the large DIMACS challenge instances. Columns 2-4 indicate the features of
the tested instances: the number of vertices Node, the number of edges Edge

and the density of the graph Density. Column 5 displays the best known
results k∗ reported in the literature. In columns 6-9, the computational
statistics of our E2COL algorithm are presented, including the number of
colors obtained k, the success rate (hit) and the average computation time
in minutes for reaching the given k. The last column shows the average
number of iterations for the successful runs.

11

Table 2: Computational results of E2COL on the set of difficult DIMACS
challenge benchmarks.

Instance Node Edge Density k∗ E2COL

k hit time(m) Iterations

DSJC500.1 500 12458 0.1 12 12 10/10 15 2.2 × 107

DSJC500.5 500 62624 0.5 48 48 10/10 55 4.2 × 107

DSJC500.9 500 224874 0.9 126 126 10/10 136 1.8 × 108

DSJC1000.1 1000 49629 0.1 20 20 10/10 45 5.2 × 107

DSJC1000.5 1000 249826 0.5 83 83 4/10 316 7.2 × 108

84 10/10 26 5.3 × 107

DSJC1000.9 1000 449449 0.9 223a 224(223) 6/10 356 6.7 × 108

225 10/10 76 1.8 × 108

DSJR500.1c 500 121275 0.97 85 85 8/10 238 1.8 × 108

86 10/10 56 5.5 × 107

DSJR500.5 500 58862 0.47 122 123 1/10 287 2.1 × 108

124 10/10 197 1.5 × 108

flat1000 50 0 1000 245000 0.49 50 50 10/10 25 1.2 × 106

flat1000 60 0 1000 245830 0.49 60 60 10/10 25 1.7 × 106

flat1000 76 0 1000 246708 0.49 82 82 10/10 176 3.5 × 108

le450 15c 450 16680 0.16 15 15 10/10 15 1.5 × 107

le450 15d 450 16750 0.17 15 15 10/10 16 1.8 × 107

le450 25c 450 17343 0.17 25 25 10/10 88 8.5 × 107

le450 25d 450 17425 0.17 25 25 10/10 94 9.1 × 107

C2000.5 2000 999836 0.5 148b
147 10/10 720 1.1 × 109

C4000.5 4000 4000268 0.5 271b
262 10/10 1520 1.8 × 109

Note a: For DSJC1000.9, 222-colorings were independently reported very recently in [31, 34].
Note b: For C2000.5 and C4000.5, 146-colorings and 260-colorings were reported very recently in [34].

From Table 2, we observe that the results obtained by E2COL are com-
petitive when comparing to the previous best known results reported in the
literature (column 5 in Table 2). For the two huge random graphs C2000.5
and C4000.5, colorings with respectively k = 148 and 271 were reported re-
cently in [28] by a hybrid evolutionary algorithm using a time limit of 120
hours. It is interesting to observe that E2COL is able to obtains colorings
with k = 147 and 262 respectively, leading to a gain of 1 and 9 colors.

For the six standard random graphs (DSJC), our E2COL algorithm can
reach the previous best known results except for DSJC1000.9, for which
E2COL needs 224 colors within the allowed time limit while the best known
result requires 223 colors, which was reported recently in [24, 27, 28, 32].
Yet, E2COl is able to reach a 223-coloring when the timeout limit is set to 5
days.

For the three flat graphs (flat) and the four Leighton graphs (le450),
E2COL finds a k-coloring on every run, with k equal to the smallest known
value. However, for the graph DSJR500.5, our coloring requires one more
color than the current best coloring.

12

Table 3: Comparisons between E2COl and 13 state of the art coloring algo-
rithms.

Graph k∗ kbest local search algorithms hybrid algorithms

[20] [2] [6] [8] [24] [28] [25] [32] [12] [10] [26] [15] [13]
DSJC500.1 12 12 12 12 12 13 12 12 12 - 12 - - 12 -
DSJC500.5 48 48 48 48 49 50 48 48 48 48 49 49 49 48 48
DSJC500.9 126 126 126 127 126 127 126 126 127 - 127 - - 126 -
DSJC1000.1 20 20 20 20 - 21 20 20 20 - 21 - - 20 20
DSJC1000.5 83 83 86 89 89 90 83 83 83 84 88 84 89 84 83
DSJC1000.9 223 224(223)224 226 - 226 223 223 225 223 228 - 226 224 224
DSJR500.1c 85 85 85 85 - - 85 85 85 85 85 85 85 86 -
DSJR500.5 122 123 125 125 124 - 122 122 122 - 122 130 123 127 -

flat1000 50 0 50 50 50 50 - 50 50 50 50 50 50 84 50 50 -
flat1000 60 0 60 60 60 60 - 60 60 60 60 60 60 84 60 60 -
flat1000 76 0 82 82 85 87 - 89 82 82 82 83 87 84 89 84 83

le450 15c 15 15 15 15 15 - 15 15 15 15 15 16 15 15 15
le450 15d 15 15 15 15 15 - 15 15 15 - 15 16 15 15 -
le450 25c 25 25 25 25 26 - 25 25 25 27 26 - 25 26 26
le450 25d 25 25 25 25 26 - 25 25 25 - 26 - 25 26 -
C2000.5 148 147 - - - - 148 148 - 150 162 153 151 - -
C4000.5 271 262 - - - - 272 271 - - 301 280 - - -

3.3 Comparison with other algorithm

In this section, we compare the results of our E2COL algorithm with 13
well-known coloring algorithms from the literature, including four local search
algorithms and nine hybrid algorithms. For this experiment, we are interested
in the quality criterion, i.e. the lowest value of k for which a k-coloring can
be found. Table 3 presents the comparative results. Columns 2 and 3 recall
the best known results (k∗) and the best results found by E2COL (kbest).
Columns 4-16 give the best results reported by these reference algorithms.

From Table 3, we observe that the coloring algorithms based on local
search can hardly compete with the hybrid evolutionary algorithms in terms
of solution quality. However, it is interesting and remarkable to note that our
E2COL algorithm which uses tabu search as its coloring algorithm competes
very favorably with the top-performing hybrid evolutionary algorithms such
as [13, 15, 24, 25, 28, 32]. Indeed, for very hard graphs such as DSJC1000.5
and flat1000 76 0, only some very recently proposed hybrid algorithms can
reach the best known results. Yet our E2COL algorithm performs quite
well on these instances, and it performs even better than the top-performing
hybrid algorithms on the two huge instances C2000.5 and C4000.5.

13

Table 4: Effect of the expansion phase. CEACOL uses the same strategy
as E2COL to remove disjoint independent sets, but disables the expansion
phase.

Graph Den k∗ E2COL CEACOL

k hit k hit

DSJC500.5 0.5 48 48 10/10 48 7/10
DSJC1000.5 0.5 83 83 4/10 84 10/10
DSJC1000.9 0.9 223 224 8/10 227 2/10
DSJR500.1c 0.97 85 85 8/10 88 3/10
flat1000 76 0 0.49 82 82 10/10 82 5/10

4 Discussions

4.1 Effect of the expansion phase

As explained previously, one conventional approach for handling large graphs
is to first extract several large independent sets from the original graph and
then color the residual graph. This approach is used for instance in [19, 11,
21, 26]. However, for some difficult instances, even if we extract m large
independent sets from the original graph, it is still difficult to find a legal
(k − m)-coloring for the residual graph with k set close to χ(G). This is
essentially due to the separation between the extraction phase and coloring
phase. Indeed, if an independent set is wrongly extracted during the first
phase, i.e. if the extracted independent set is not part of any legal k-coloring,
the error can never be repaired.

Contrary to this conventional approach, with our proposed approach, the
extracted independent sets participate in the coloring process of interme-
diate graphs. As such, a wrongly extracted independent set has a chance
to be corrected during the expansion-coloring phase. To show the effect
of the expansion phase, we carry out additional experiments on five in-
stances (DSJC1000.5, DSJC1000.9, DSJC500.5, DSJC500.1c, flat1000 76 0)
and show a comparison between E2COL and the conventional extraction
based coloring approach (CEACOL).

To solve each instance, we run both E2COL and CEACOL 10 times,
each run being given the same amount of computation time (10 hours). For
CEACOL, the extraction procedure described in Section 2.3 is applied to
extract large independent sets until there are at most q (q = 300) vertices
left in the residual graph. Then we repeatedly apply the tabu search to the
residual graph until the timeout limit is reached. More precisely, each time we

14

Table 5: Effect of the strategy for independent set removal. SE2COL removes
at a time one (large) independent set.

Graph Den k∗ E2COL SE2COL

k hit k hit

DSJC500.5 0.5 48 48 10/10 48 2/10
DSJC1000.5 0.5 83 83 4/10 85 10/10
DSJC1000.9 0.9 223 224 8/10 226 1/10
DSJR500.1c 0.97 85 85 8/10 85 7/10
flat1000 76 0 0.49 82 82 10/10 83 2/10

observe that the best solution is not improved for α consecutive iterations (see
Section 2.4.1), we restart the tabu search if the timeout limit is not reached.
Table 4 shows the comparative results between E2COL and CEACOL for
the chosen graphs. For both algorithms, we indicate the smallest k that are
reached and the number of successful runs for reaching these smallest k.

From Table 4, we observe that, the conventional extraction based algo-
rithm manages to reach the best known coloring on the two medium–density
instances(DSJC500.5 and flat1000 76 0) with a success rate of 70% and 50%
respectively. However, on the two high–density instances (DSJC1000.9 and
DSJR500.1c), CEACOL produces bad results, which are far behind the best
known results. In fact, for many other high–density instances, we observe
from experiments that CEACOL obtains poor results. While considering the
results obtained by our E2COL algorithm, one easily observes that E2COL
dominates the conventional algorithm. This shows that the expansion phase
does play an important role on the performance of our E2COL algorithm.

4.2 Effect of the disjoint independent set removal

We now turn our attention to an additional study to justify steps 2 and 3 of
the process described in Section 2.3. More precisely, we create from E2COL
a simplified version (called SE2COL) where the extraction phase removes
one large independent set after the other (and not a collection of pairwise
disjoint independent sets) until the residual graph reaches the threshold q;
at this point, we apply the expansion phase like in E2COL. Thus SE2COL
differs from E2COL only by the way it extracts the independent sets.

We run SE2COL on the five selected instances and report in Table 5 the
computational statistics of E2COL and SE2COL. We observe that E2COL
dominates SE2COL in terms of number of colors used or number of hits
when the two algorithms use the same number of colors. In particular, the

15

Table 6: Influence of the size of residual graph (parameter q) on the perfor-
mance of E2COL
Graph k∗ q = 200 q = 300 q = 400

k hit Iterations k hit Iterations k hit Iterations

DSJC500.5 48 48 10/10 5.5× 107 48 10/10 4.2× 107 48 5/10 3.8× 107

DSJC1000.5 83 83 5/10 6.4× 108 83 4/10 7.2× 108 83 1/10 6.3× 108

DSJC1000.9 223 224 7/10 7.1× 108 224 6/10 6.7× 108 224 7/10 5.5× 108

DSJR500.1c 85 85 7/10 2.3× 108 85 8/10 1.8× 108 85 9/10 1.6× 108

flat1000 76 0 82 82 10/10 4.4× 108 82 10/10 3.5× 108 82 5/10 4.7× 108

dominance is more pronounced on the three large and hard instances with
1000 vertices. Indeed, compared to E2COL, SE2COL requires 1 or 2 more
colors to find a legal coloring. This experiment confirms clearly the advantage
of the independent set extraction strategy of E2COL over the conventional
strategy.

4.3 Effect of the size of residual graph

With E2COL, its extraction phase stops when no more than q vertices are
left in the residual graph from which the initial coloring and expansion phases
are launched. It is then interesting to know whether different values of q have
a strong impact on the performance of E2COL. To this end, we run E2COL
10 times on each of the five selected instances with q ∈ {200, 400} and show
in Table 6 the computational results together with those of q = 300 used
in the previous experiments. In addition to k and hit, we also indicate the
average iterations needed to find a k-coloring.

From Table 6, we observe that these q values do not change the number
of used colors. Nevertheless, E2COL with q = 200 and q = 300 reaches
more stable results (higher hits), but may require more iterations than with
q = 400. Therefore, it seems that a smaller q makes the algorithm more
robust but also slower. This implies that there may not be an absolute best
value for this parameter and that a compromise between robustness and
speed could be possible.

4.4 Possible improvements

The E2COL algorithm could be further improved by following two directions.
First, E2COL currently uses a somewhat basic coloring procedure (which is
based on tabu search) to color each intermediate graph (Section 2.4). The

16

main advantage of this tabu based algorithm is its simplicity. However,
it is less effective than most of the recent coloring algorithms. the E2COL
algorithm could obtain a better performance if it uses a more powerful recent
coloring algorithm.

Second, E2COL generates the sequence of graphs G1, ..., Gm by removing
one independent set at a time (Section 2.2). By doing this, E2COL tends to
generate a large number of intermediate graphs and consequently needs to
apply the coloring procedure many times. To reduce the number of interme-
diate graphs, one could generate one intermediate graph by removing all the
pairwise disjoint independent sets of a given size obtained at Step 3 of the
extraction procedure (Section 2.3.1). Similarly, during the expansion phase,
instead of adding back one color class (independent set) at a time, one can
add a set of color classes to generate each upper level graph.

5 Conclusion

In this paper, we have presented E2COL, an original extraction and expan-
sion approach for graph coloring. The extraction phase transforms a large
graph into a sequence of progressively smaller graphs by extracting large in-
dependent sets from the graph, while the expansion phase colors the interme-
diate graphs in the reverse order by reconsidering the extracted independent
sets.

We have shown that even using a basic tabu search coloring algorithm, the
proposed approach obtains highly competitive results on a set of DIMACS
challenge benchmark graphs. Indeed, our E2COL algorithm is able to find
the best known results for most of the tested graphs. Moreover, it is even able
to find improved results for the two largest graphs (C2000.5 and C4000.5)
using respectively 1 and 9 fewer colors. The comparison with 13 reference
algorithms allows us to better appreciate the performance of the proposed
approach.

We have also presented an analysis on the role of the expansion phase
which confirms clearly the interest of reconsidering the extracted independent
sets for coloring the intermediate graph.

Most of the current top-performing algorithms for the graph coloring
problem are hybrid algorithms that combine a local search with a population
based method. The proposed extraction and expansion approach constitutes
an interesting alternative approach.

17

Acknowledgment

We are grateful to the referees for their comments and questions which helped
us to improve the paper. The work is partially supported by the ”Pays de la
Loire” Region (France) within the RaDaPop (2009-2013) and LigeRO (2010-
2013) projects.

References

[1] C. Avanthay, A. Hertz, N. Zufferey, A variable neighborhood search for
graph coloring. European Journal of Operational Research 151(2) (2003)
379–388.

[2] I. Blöchliger, N. Zufferey, A graph coloring heuristic using partial solu-
tions and a reactive tabu scheme. Computers and Operations Research
35(3) (2008) 960–975.

[3] D. Brélaz, New methods to color the vertices of a graph. Communications
of the ACM 22(4) (1979) 251–256.

[4] E.K. Burke, B. McCollum, A. Meisels, S. Petrovic, R. Qu, A graph-based
hyper heuristic for timetabling problems. European Journal of Opera-
tional Research 176 (2007) 177–192.

[5] M. Chams, A. Hertz, D. de Werra, Some experiments with simulated
annealing for coloring graphs. European Journal of Operational Research
32 (1987) 260–266.

[6] M. Chiarandini, T. Stützle, An application of iterated local search to
graph coloring. In: D.S. Johnson, A. Mehrotra, M. Trick, editors, Proc.
of the Computational Symposium on Graph Coloring and its Generaliza-
tions, Ithaca, New York, USA, 112–125, 2002.

[7] D. de Werra, C. Eisenbeis, S. Lelait, B. Marmol, On a graph-theoretical
model for cyclic register allocation. Discrete Applied Mathematics 93(2-3)
(1999) 191–203.

[8] R. Dorne, J.K. Hao, Tabu search for graph coloring, T-colorings and
set T-colorings. Meta-Heuristics: Advances and Trends in Local Search
Paradigms for Optimization, 77–92, 1998.

[9] R. Dorne, J.K. Hao, A new genetic local search algorithm for graph col-
oring. Lecture Notes in Computer Science 1498 (1998) 745–754.

18

[10] C. Fleurent, J.A. Ferland, Genetic and hybrid algorithms for graph col-
oring. Annals of Operations Research 63 (1996) 437–461.

[11] C. Fleurent, J.A. Ferland, Object-oriented implementation of heuristic
search methods for graph coloring, maximum clique, and satisfiability. In:
[22], (1996) 619–652.

[12] N. Funabiki, T. Higashino, A minimal-state processing search algorithm
for graph coloring problems. IEICE Transaction Fundamentals E83-A
(2000) 1420–1430.

[13] P. Galinier, J.K. Hao, Hybrid evolutionary algorithms for graph coloring.
Journal of Combinatorial Optimization 3(4) (1999) 379–397.

[14] P. Galinier, A. Hertz, A survey of local search methods for graph color-
ing. Computers and Operations Research 33(9) (2006) 2547–2562.

[15] P. Galinier, A. Hertz, N. Zufferey, An adaptive memory algorithm for
the K-colouring problem. Discrete Applied Mathematics 156(2) (2008)
267–279.

[16] M.R. Garey, D.S. Johnson, H.C. So, An application of graph coloring
to printed circuit testing. IEEE Transactions on Circuits and Systems 23
(1976) 591–599.

[17] M.R Garey, D.S. Johnson, Computers and intractability: A guide to the
theory of NP-completeness. W.H. Freeman and Company, San Francisco
1979.

[18] J.P. Hamiez, J.K. Hao, Scatter search for graph coloring. Lecture Notes
in Computer Science 2310 (2002) 168–179, Springer-Verlag.

[19] A. Hertz, D. de Werra, Using tabu search techniques for graph coloring,
Computing 39 (1987) 345–351.

[20] A. Hertz, M. Plumettaz, N. Zufferey, Variable space search for graph
coloring. Discrete Applied Mathematics 156(13) (2008) 2551–2560.

[21] D.S. Johnson, C.R. Aragon, L.A. McGeoch, C. Schevon, Optimization
by simulated annealing: an experimental evaluation; part II, graph color-
ing and number partitioning. Operations Research 39(3) (1991) 378–406.

[22] D.S. Johnson, M. Trick (Eds.), Cliques, coloring, and satisfiability: Sec-
ond DIMACS implementation challenge, Volume 26 of Dimacs Series in
Discrete Mathematics and Theoretical Computer Science (1996).

19

[23] F.T. Leighton, A graph coloring algorithm for large scheduling problems.
Journal of Research of the National Bureau of Standards 84(6) (1979)
489–506.

[24] Z. Lü and J.K. Hao, A memetic algorithm for graph coloring. European
Journal of Operational Research 200(1) (2010) 235–244.

[25] E. Malaguti, M. Monaci, P. Toth, A metaheuristic approach for the
vertex coloring problem. INFORMS Journal on Computing 20(2) (2008)
302–316.

[26] C. Morgenstern, Distributed coloration neighborhood search. In [22],
(1996) 335–357.

[27] D.C. Porumbel, J.K. Hao, P. Kuntz, A search space cartography for
guiding graph coloring heuristics. Computers and Operations Research
37(4) (2010) 769–778.

[28] D.C. Porumbel, J.K. Hao, P. Kuntz, An evolutionary approach with
diversity guarantee and well-informed grouping recombination for graph
coloring. Computers and Operations Research 37(10) (2010) 1822–1832.

[29] D.H. Smith, S. Hurley, S.U. Thiel, Improving heuristics for the frequency
assignment problem. European Journal of Operational Research 107(1)
(1998) 76–86.

[30] B.T. Tesfaldet, Automated lecture timetabling using a memetic algo-
rithm. Asia - Pacific Journal of Operational Research 25(4) (2008) 451–
475.

[31] O. Titiloye, A. Crispin, Quantum annealing of the graph coloring prob-
lem. Discrete Optimization (2011), doi:10.1016/j.disopt.2010.12.001.

[32] X.F. Xie, J. Liu, Graph coloring by multiagent fusion search. Journal of
Combinatorial Optimization 18(2) (2009) 99–123.

[33] Q. Wu, J.K. Hao, Adaptive multistart tabu search for the maximum
clique problem. Technical Report, University of Angers. June (2010).

[34] Q. Wu, J.K. Hao, Coloring large graphs based on indepen-
dent set extraction. Computers and Operations Research (2011),
doi:10.1016/j.cor.2011.04.002.

20

