
A Recombination-Based Tabu Search Algorithm

for the Winner Determination Problem

Ines Sghir1,2, Jin-Kao Hao1, Ines Ben Jaafar2, and Khaled Ghédira2

1 LERIA, Université d’Angers, 2 Bd Lavoisier, 49045 Angers Cedex 01, France
2 SOIE, ISG, Université de Tunis, Cité Bouchoucha 2000 Le Bardo, Tunis, Tunisie

Abstract. We propose a dedicated tabu search algorithm (TSX_WDP)
for the winner determination problem (WDP) in combinatorial auctions.
TSX_WDP integrates two complementary neighborhoods designed re-
spectively for intensification and diversification. To escape deep local
optima, TSX_WDP employs a backbone-based recombination opera-
tor to generate new starting points for tabu search and to displace the
search into unexplored promising regions. The recombination operator
operates on elite solutions previously found which are recorded in an
global archive. The performance of our algorithm is assessed on a set of
500 well-known WDP benchmark instances. Comparisons with five state
of the art algorithms demonstrate the effectiveness of our approach.

Keywords: Winner determination problem; Tabu Search; Solution re-
combination; Combinatorial optimization; Heuristics.

1 Introduction

An auction involves an auctioneer wishing to maximize his/her selling revenue
and a set of bidders wishing to minimize their cost according to their valuations
of the items that they want to acquire. Examples of the most widely known
auctions are the English auction, the Holland’s auction, the Sealed envelope
auction, and the Vickrey auction [12]. These auctions typically handle one item
per sell.

Combinatorial auctions are multi-item auctions, which allow bids on items
combinations [5, 11]. In a combinatorial auction, we are given a set of items
exposed to buyers. Buyers offers different bids, each bid being defined by a
subset of items with a price (bidder’s valuation). Two bids are conflicting if
they share at least one item. The Winners Determination Problem (WDP) is
to determine a conflict-free allocation of items to bidders (the auctioneer can
keep some of the items) that maximizes the auctioneer’s revenue defined as the
sum of the valuations of the winning bids. The WDP is known to be a NP-hard
problem with a number of practical applications like e-commerce, games theory
and resources allocation in multi-agents systems [21, 11].

Formally, given a set of items M = {1, 2, ...,m} and a set of n bids N =
{1, 2, ...n}. Each bid j is a tuple < Sj , Pj > where Sj is a subset of items
covered by bid j, and Pj , the price of bid j. Let B be a m × n binary matrix

such that Bij = 1 if object i ∈ Sj , Bij = 0 otherwise. Furthermore, define
a decision variable xj for each bid j such that xj = 1 if bid j is a winning
bid, 0 otherwise. Then, the WDP can be stated as the following binary integer
optimization problem.

Maximize f(x) =
∑

j∈N

Pjxj (1)

subject to ∑

j∈N

Bijxj ≤ 1, i ∈ M (2)

The objective function (1) allows to maximize auctioneer’s gain calculated by
the sum of prices of the winning bids while the constraints expressed by formula
(2) ensure that an item appears at most in one winning bid.

The computational challenge of the WDP and its practical applications have
motivated a number of solution approaches including exact methods [18] and
metaheuristic methods. Representative examples of exact methods include: Branch-
on-Items (BoI), Branch-on-Bids (BoB) [19], Combinatorial Auctions BoB (CABoB)
[20], Combinatorial Auction Structural Search (CASS) [6] and Combinatorial
Auctions Multi-unit Search (CAMUS) [15]. A dynamic programming approach
is introduced in [17] while a linear programming method is investigated in [16].
An algorithm based on integer programming is shown in [1], a constraint pro-
gramming approach is used to solve a particular combinatorial Vickrey auction
[9]. On the other hand, several stochastic methods were proposed for the WDP.
They include a local search method named Casanova [10], a hybrid algorithm
combining simulated annealing with Branch-and-Bound (SAGII) [8], and more
recently a tabu search method [3] and a memetic algorithm [4].

The rest of the paper is organized as follows. Section 2 describes the proposed
algorithm which is based on two complementary neighborhoods and a recombi-
nation operator. Experimental results are reported in section 3 and compared
with five representative algorithms for the WDP. Finally, section 4 concludes the
paper.

2 Recombination-Based Tabu Search for the WDP

TSX_WDP uses two complimentary move operators to explore effectively the
search space and a recombination operator as an additional means to escape
deep local optima. In this section, we presents in detail these key components.

2.1 The solution representation

A candidate solution is represented by an allocation A (a dynamic vector). Each
element of this allocation A receives the winning bid. Each bid is an object
composed of the list of items and the associated prices.

2

2.2 The evaluation function

The objective function defined in equation (1) is used to measure the quality
of a candidate solution. So if an allocation A contains k bids {B1, B2, ..., Bk},

(Bi =< Si, Pi >, 1 ≤ i ≤ k, k ≤ n), its quality is just equal to f(A) =
∑k

i=1
Pi,

i.e., the sum of the valuations of the winning bids. Given two candidate solutions,
the one with a higher objective value is considered to be better. This relation is
used to compare neighboring solutions which are developed below.

2.3 The basic move operators and the neighborhoods

Our TSX_WDP algorithm explores the search space by using two complemen-
tary neighborhood relations which are defined by an intensification move oper-
ator and a perturbation move operator.

Intensification move The intensification move operator chooses bids among
candidate bids to be inserted in the current allocation A. During one iteration of
the algorithm, several bids can be selected if they improve the current allocation.
To create a neighboring allocation, the following steps are followed:

– The initial candidate bids are sorted according to their utility prices;
– For each candidate bid Bx, a binary gain function is used to verify if the bid

can increase the revenue of the current allocation when the bid is inserted;
– Let Q be the set of winning bids that are in conflict with the current can-

didate bid Bx, Let f(Q) be the revenue of the set of winning bids Q, and
f(Bx) the price of the candidate bid Bx. The gain function returns true if
f(Q) < f(Bx) and returns false otherwise;

– Based on the function f , a candidate bid Bx can be added to the current
allocation only if its price f(Bx) is higher than the revenue of other winning
bids which are conflicting with Bx in the current allocation (i.e., the gain
function is true);

– The gain of Bx, when it is selected to be added in the current allocation, is
calculated by: Gain(Bx) = f(A)− f(Q) + f(Bx);

– When a bid Bx is inserted in the current allocation A, the bids of Q which
are conflicting with Bx are removed from A;

– The steps mentioned previously are iterated until all the initial candidate
bids are visited and possibly added in the current allocation A.

Perturbation move The perturbation move operator chooses randomly one
candidate bid from the available ones. This move is activated only if no bid among
the candidate bids can improve the current solution. In fact, the application of
the intensification move can make the search to be trapped into local optima
during the search process, when no more bid can be found that improves the
revenue of the current allocation. Notice that this move operator can decrease
temporarily the revenue of the solution, but hopefully, it helps the search to
escape local optima by displacing the search to new zones of the search space.
This move operator plays thus a diversification role.

3

2.4 Tabu list and tabu tenure management

Tabu search uses a tabu list to forbid recently visited solutions from being re-
visited. The TSX_WDP algorithm considers the following general prohibition
rule: a bid that is chosen to be inserted in the current allocation A (by an inten-
sification move or a perturbation move) is forbidden to be removed for the next
tt iterations (called tabu tenure). tt is calculated dynamically by the function
proposed in [7]: tt = L+⋋+ f(A) where L is randomly chosen from the interval
[0, 9] and ⋋ is empirically fixed to 0.6. Experimentations show this dynamic tabu
tenure is robust and allows TSX_WDP to reach high quality solutions. Notice
that we permit a move to be accepted in spite of being tabu if the move leads to
a solution better than any found so far. This is called the aspiration criterion.

2.5 Elite solution archive

The proposed algorithm also relies on a solution recombination operator (see
next section) which aims to blend elite solutions (high-quality local optima).
This technique is based on an archive P which is built as follows. During the
search, if the current best solution A∗ is not improved within a fixed number
p of consecutive iterations, A∗ is considered as a good local optimum and is
added into the archive P . At the same time, this allocation corresponds to a
deep local optimum which is difficult to escape. For this purpose, we trigger
a recombination operation to create a new starting point for the tabu search
procedure, which is explained in the next selection.

2.6 Recombination operator

The recombination operator aims to transfer good properties of parents to their
descendants. The recombination pseudo-code is given in Algorithm 1.

Algorithm 1 The recombination operator

Require: two parent solutions I1 and I2
Ensure: An offspring solution I0
1: I0 ← ∅, D1 ← ∅, D2 ← ∅

2: Sort the bids in each parent according to their prices
3: while I1 and I2 are not empty do

4: D1 ← first_element(I1)
5: D2 ← first_element(I2)
6: if D1 and/or D2 are not conflicting with the bids in I0, add D1 and/or D2 to I0
7: remove D1 from I1
8: remove D2 from I2
9: end while

10: Return Child I0

Given two parent allocations I1 and I2 from the elite solution archive which
share the highest number of bids, the recombination operator constructs the

4

offspring I0 in k steps until all the bids of the two parents are visited. Our
recombination operator is inspired by the idea of backbone used in [2, 22]. In
the first step, the set of bids shared by the parents are identified and directly
transfered to I0. Then the following steps are performed:

– Choose the bid with the lowest price from each parent (lines 4 and 5, Algo-
rithm 1).

– The two selected bids are candidate bids that can be inserted in the offspring,
if they are not conflicting bids. This is done by conserving the best bids with
the highest revenue (lines 6 and 7, Algorithm 1).

– Remove the selected bids from their parents, even if they are not inserted in
the offspring (lines 9 and 10, Algorithm 1).

– Repeat the previous steps until all the bids of the parents are examined and
removed.

An example of this recombination operation is provided in Fig. 1.

2 7 5 8 11I1

2 4 116I2

7 5 8

4 6

I1

I2

5 8

6

I1

I2

8I1

I2

2 11I0 2 11 7 4 2 11 7 4 6 2 11 7 4 6 8I0 I0 I0

II1={7}
II2={4}
I0={2, 11, 7, 4}
Iteration2 { the fort bids 2, 11, 7
and 4 are not conflicted bids,
so they are assigned to I0}

II1={5}
II2={6}
I0={2, 11, 7, 4, 6}
Iteration 3 { the bid 5 is a conflicted
bid, so it is discarded from I0}

II1={8}
II2={}
I0={2, 11, 7, 4, 6, 8}
Iteration 4

A simple example of WDP that contains 11 bids and 16 items:
Bid 1={{1, 2, 3}; 50}, Bid 2={{1, 2, 4}; 100}, Bid 3={{2, 4}; 200}, Bid 4={{3, 5, 6}; 200}, Bid 5={{6, 7, 8}; 300}, Bid 6={{7, 8}; 200}, Bid 7={{9, 10, 11}; 150},
Bid 8={{12, 13, 14}; 400}, Bid 9={{7, 9}; 200}, Bid 10={{9, 10, 11}; 250}, Bid 11={{15,16}; 450}.

I0=I1 and I2={2, 11}
Iteration 1

Fig. 1. An example of the recombination operator

2.7 The TSX_WDP algorithm

The general TSX_WDP algorithm is formalized in Algorithm 2. The algorithm
starts with an empty allocation in which no bid is chosen and tries to improve it
by looking for a better solution in the current neighborhood. In each iteration,
the best authorized bids are selected among the candidate bids to be included

5

in the current allocation. This is achieved with the intensification move (lines
7-9 of Algorithm 2). When no bid can be found to increase the revenue with the
intensification move, TSX_WDP switches to the perturbation move by choosing
a random bid from the candidate bids (line 11 of Algorithm 2). In both cases,
the choice of the bids depends on the status of the tabu list which is updated
after each move. Any conflicting bids in the current allocation, when new bids
are considered, are removed (lines 13 and 14 of Algorithm 2). The search process
is repeated for a fixed number Itermax of iterations. During these Itermax it-
erations, if the current best solution cannot be updated for consecutive p (fixed
experimentally) moves, the best local optimum found so far is inserted into the
archive P and the recombination operator is activated to generate a new starting
point for a new round of the tabu search procedure (lines 20-25 of Algorithm 2).

2.8 Discussion

The proposed TSX_WDP algorithm distinguished itself from the existing heuris-
tic approaches by several features. First, its tabu search procedure is based on
two complementary move operators to generate neighboring solutions. In partic-
ular, the intensification move can add several bids (instead of a single bid like in
most local search based heuristics). The tabu search procedure adopts a dynamic
tabu tenure which is missing in the existing methods. Second, the recombination
operator is based on the idea of backbone which proves to be quite useful for the
WDP.

3 Experimentation

This section gives experimental results of the proposed algorithm which is im-
plemented in Java. The program is run on a computer with a Core I5 2.5GHz,
8GB of RAM. To assess our TSX_WDP algorithm, we run TSX_WDP on var-
ious benchmarks of diverse sizes defined in [13]. Theses benchmarks take into
account several factors like the prices, bidders preferences and object distribu-
tion on bids. They can be divided into five groups where each group contains
100 instances.

-REL 500-1000: From in101 to in200: m = 500, n = 1000

-REL 1000-1000: From in201 to in300: m = 1000, n = 1000

-REL 1000-500: From in401 to in 500: m = 1000, n = 500

-REL 1000-1500: From in501 to in 600: m = 1000, n = 1500

-REL 1500-1500: From in601 to in 700: m = 1500, n = 1500

We calibrated the parameters of the proposed algorithms by an experimental
study: The maximum number of iterations (itermax) is fixed to 200 and the
parameter responsible for the tabu tenure ⋋ is fixed to 0.00006. Each of the 500
instance is solved 40 times independently by the TSX_WDP algorithm with
different random seeds.

6

Algorithm 2 TSX_WDP for the Winners Determination Problem

Require: A matrix M , a parameter Itermax, Vector of bids B, Parameter p

Ensure: A vector of winning bids A∗ and its revenue f(A∗)
1: Iter← 0 {Iteration counter}, Initiate tabu_list

2: A∗
← A← ∅

3: opt← 0 {An counter that is incremented if the current solution does not improve
in two consecutive iterations; opt returns to 0, when it exceeds the value p, after
activating the recombination operator}

4: initialize tabu_list

5: P ← ∅ {Archive of the best local optima encountered A∗}
6: while (Iter < Itermax) do

7: Construct neighborhoods from A based on the intensification move
8: if There exists an intensification move then

9: Choose an overall best allowed neighbor A′ according to max gain criterion
and by considering M {to remove from A′ any conflicting bid) {Section 2.3}

10: else

11: Apply the perturbation move {Section 2.3} by choosing a random bid from
B to create a neighbor A′

12: end if

13: A← A′ (Move to the selected neighboring solution A′)
14: Update tabu_list {Section 2.4} and B {delete the winner bids from B and add

the looser bids in it}
15: if f(A) > f(A∗) then

16: A∗
← A

17: else

18: opt← opt+ 1
19: end if

20: if opt = p then

21: Add A∗ to the Archive P

22: I1, I2 ← Parent_Selection(P) {Section 2.5}
23: I0 ← Recombination_Operator(I1, I2) {Section 2.6}
24: A← I0
25: opt← 0
26: end if

27: Iter← Iter+ 1
28: end while

29: return (A∗ and f(A∗))

7

3.1 Experimental results

In Table 1, we present the computational results of the TSX_WDP algorithm
on the five groups of benchmarks. Given that there are 500 instances, we show
only some results of each group, like in some recent papers [4]. For each pre-
sented instance, the following computational statistics are indicated: the maxi-

mum revenue obtained by the TSX_WDP algorithm over the 40 independent
trials (Rbest), the average revenue over the 40 trials (Ravg), the worst revenue

over the 40 trials (Rworst) and the average CPU time in seconds (AvgTime).
As one can observe, the values of Ravg are very close to the values of Rbest
in most of cases and these two values are even equal for certain instances (for
example for in101, in102, in205 etc.). This table shows the proposed algorithm
can consistently reach high quality solutions for the tested problems.

Table 1. Results obtained by TSX_WDP for WDP benchmarks

Instances Rbest Ravg Rworst AvgTime Instance Rbest Ravg Rworst AvgTime

in101 69585.298 69585.298 69585.298 88 in201 81557.742 80383.277 79331.63 56

in102 72518.222 72518.222 72518.222 76 in202 89289.573 86815.261 81291.193 52

in103 69730.618 69475.485 65903.632 75 in203 86239.213 83941.410 77220.427 54

in104 71327.641 70765.941 65948.396 78 in204 84879.397 84374.869 76822.810 55

in105 73351.044 71570.624 68899.994 93 in205 83748.837 83748.837 83748.837 57

in401 77417.482 77191.182 70628.481 12 in501 83738.040 83506.552 82605.443 107

in402 76273.336 76153.051 74469.073 10 in502 83297.340 82546.590 76751.565 82

in403 74843.958 74356.247 69989.28 10 in503 83718.749 82017.955 78112.719 81

in404 78761.690 78597.224 77939.364 10 in504 83944.901 82772.535 77217.558 76

in405 75915.900 75640.510 74899.125 10 in505 83071.930 81876.413 78909.275 66

in601 107246.248 102862.848 96840.461 117 in602 99668.269 97854.579 91452.904 78

in603 98577.454 96567.287 95219.36 75 in604 101713.602 100786.326 99395.413 78

3.2 Comparative results for the WDP

In order to further show the effectiveness of the TSX_WDP algorithm, we
present a comparative study with five state of the art algorithms from the liter-
ature: Casanova [10], SAGII [8], SLS [3], TS [3], MA [4].

In Table 2, we show the general comparative results for each group. In this
table, rows µ correspond to the average of best objective value of the 100 in-
stances in each group. Rows time represent the average time to reach the best
solution. δ(%) is the deviation of the TSX_WDP algorithm with respect to
each reference algorithm. The deviations are calculated respectively as follows:
µTSX_WDP − µalgo_X)/µTSX_WDP where algo_X is one of the five reference
algorithms. Since the compared algorithms are implemented in different lan-
guages and run on different plateforms, the comparison is focused on solution

8

quality that can be reached by each algorithm. The computing time is provided
only for indicative purposes. The results of the reference algorithms are extracted
from the corresponding papers except the results of Casanova which are from
[8].

Table 2. Comparative results of TSX_WDP with Casanova, MA, SLS, TS, SAGII on
the WDP benchmarks: µ is the average of the best objective value of the 100 instances
in each group. time is the average time to reach the best solution.

Test Set 100 instances REL-500-1000 REL-1000-500 REL-1000-1000 REL-1000-1500 REL-1500-1500

TSX_WDP Time 74.19 9.45 48.98 75.92 90.61

µ 69647.975 75274.184 86786.159 85577.806 103178.732

Casanova Time 119.46 57.74 111.42 168.24 165.92

µ 37053.78 51248.79 51990.91 56406.74 65661.03

δTSX/Casanova(%) 46.79 31.91 40.09 34.08 36.36

TS Time 91,07 25.84 104,30 223,37 175.68

µ 65286.94 71985.34 81633.63 77931.41 97824.64

δTSX/TS(%) 6.26 4.36 5.93 8.93 5.18

SLS Time 22.35 5.91 14.19 14.97 16.47

µ 64216.14 72206.07 82120.31 79065.08 98877.07

δTSX/SLS(%) 7.79 4.07 5.37 7.61 4.16

MA Time 56.64 14.98 33.05 24.51 28.22

µ 65740.25 73604.62 83304.20 79644.64 99957.96

δTSX/AM (%) 5.61 2.21 4.01 6.93 3.12

SAGII Time 38.06 24.46 45.37 68.82 91.78

µ 64922.02 73922.10 83728.34 82651.49 101739.64

δTSX/SAGII(%) 6.78 1.79 3.52 3.41 1.39

Table 2 discloses that TSX_WDP gives an improvement between 31% and
47% in solution quality compared to Casanova. TSX_WDP finds better solu-
tions with shorter times than Casanova. TSX_WDP shows good performances
compared to SLS. The improvement is between 4% and 8%. The results of
TSX_WDP are better than TS in quality and in time (with an improvement rate
between 4% and 9%). TSX_WDP outperforms MA. The deviation is between
2% and 7%. Finally, TSX_WDP produces better results than SAGII which is
currently the most successful algorithm for the WDP and is based on sophisti-
cated Branch-and-Bound and preprocessing tools (The deviation is between 1%
and 7%). Thus, we can conclude that TSX_WDP discovers new best results for
the five groups of benchmarks.

To further illustrate the results of Table 2, we consider the comparative
curves of Fig. 2. The X-axis of the curves represent the 5 groups of the WDP
benchmarks and their Y-axis are the gain of each group (µ). These curves confirm
that TSX_WDP competes favorably with each of the reference algorithms for
each group of instances.

9

1 2 3 4 5

4
e

+
0

4
5

e
+

0
4

6
e

+
0

4
7

e
+

0
4

8
e

+
0

4
9

e
+

0
4

1
e

+
0

5

Instances

M
a

x
R

e
ve

n
u

e

TSX_WDP

SAGII

MA

SLS

TS

Casanova

Fig. 2. A comparison of the solution quality between TSX_WDP, Casanova, TS, SLS,
MA and SAGII

4 Conclusion

In this work, we have presented a tabu search algorithm for the winner de-
termination problem based on a two different neighborhood structures and a
recombination operator. The algorithm uses the intensification move to improve
progressively the quality of the current solution. When the solution cannot be
further improved, the TSX_WDP algorithm switches to a perturbation move by
choosing a random bid. In both cases, a tabu list is used to prevent the search
from revisiting the previous examined solutions. To escape deep local optima,
the proposed algorithm employs a backbone-based recombination operator which
relies on an elite solution archive which is built and updated during the search.
This recombination operator generates new starting points for tabu search with
the aim of leading the algorithm into new promising search areas. The proposed
TSX_WDP algorithm is evaluated on a set of 500 benckmark instances. The
comparative study with five reference algorithms shows the proposed algorithm
is able to reach solution of very high quality.

Acknowledgment

We are grateful to the referees for their comments and questions which helped us
to improve the paper. The work is partially supported by the RaDaPop (2009-

10

2013) and LigeRO projects (2009-2013) from the Region of Pays de la Loire,
France.

References

1. Andersson, A., Tenhunen, M., Ygge, F.: Integer programming for combinatorial
auction winner determination. In: Proceedings of the 4th International Conference
on Multi-agent Systems. IEEE Computer Society Press, pp 39–46, New York (2000)

2. Benlic, U., Hao, J.K.: A multilevel memetic approach for improving graph k-
partitions. IEEE Transactions on Evolutionary Computation 15(5): 624–472, 2011.

3. Boughaci, D., Benhamou, B., Drias, H.: A memetic algorithm for the optimal
winner determination problem. Soft Computing, 13(8-9): 905-917 (2009)

4. Boughaci, D., Benhamou, B., Drias, H.: Local Search Methods for the optimal
winner determination problem in combinatorial auctions. Journal of Mathematical
Modelling and Algorithms, 9(2): 165–180 (2010)

5. Cramton, P., Shoham, Y., and Steinberg, R.: Combinatorial auctions. MIT Press,
Cambridge (2006)

6. Fujishima, Y., Leyton-Brown, K., Shoham, Y.: Taming the computational com-
plexity of combinatorial auctions: optimal and approximate approaches. In: Pro-
ceedings of the 16th International Joint Conference on Artificial Intelligence, pp
48–53, Sweden (1999)

7. Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. Journal
of Combinatorial Optimization, 3(4): 379–397 (1999)

8. Guo, Y., Lim, A., Rodrigues, B., Zhu, Y.: Heuristics for a bidding problem. Com-
puters & Operations Research, 33(8): 2179–2188 (2006)

9. Holland, A. , O’sullivan, B.: Towards fast Vickrey pricing using constraint pro-
gramming. Artificial Intelligence Review, 21(3-4): 335–352 (2004)

10. Hoos, HH., Boutilier, C.: Solving combinatorial auctions using stochastic local
search. In: Proceedings of the 17th National Conference on Artificial Intelligence,
pp 22–29, USA (2000)

11. Abrache, J., Crainic, T.G, Gendreau, M., Rekik, M.: Combinatorial auctions. An-
nals of Operations Research, 153(1): 131–164 (2007)

12. Klemperer, P.,: Auctions: Theory and Practice, Princeton, N.J.: Princeton Univer-
sity Press, (2004)

13. Lau, H.C., Goh, Y.G.: An intelligent brokering system to support multi-agent web-
based 4th-party logistics. In: Proceedings of the 14th International Conference on
Tools with Artificial Intelligence, pp. 54-61, Washington, DC (2002)

14. Lehmann, D., Rudolf, M., Sandholm, T.: The Winner Determination Problem. In:
Cramton et al. (ed) Combinatorial auctions. MIT Press, Cambridge (2006)

15. Leyton-Brown, K., Shoham, Y., Tennenholtz, M.: An algorithm for multi-unit com-
binatorial auctions. In: Proceedings of the 17th National Conference on Artificial
Intelligence and 12th Conference on Innovative Applications of Artificial Intelli-
gence. AAAI Press/MIT Press, pp 56-61, Austin, Texas (2000)

16. Nisan, N.: Bidding and allocation in combinatorial auctions. In: Proceedings of the
2nd ACM Conference on Electronic Commerce. ACM Press, Minneapolis, MN, pp
1-12, Minneapolis (2000)

17. Rothkopf, MH., Pekee, A., Ronald, M.: Computationally manageable combinatorial
auctions. Management Science, 44(8): 1131-1147 (1998)

11

18. Sandholm, T.: Optimal winner determination algorithms. In: Cramton et al. (ed)
Combinatorial auctions. MIT Press, Cambridge (2006)

19. Sandholm, T., Suri, S.: Improved optimal algorithm for combinatorial auctions
and generalizations. In: Proceedings of the 17th National Conference on Artificial
Intelligence, pp 90-97, USA (2000)

20. Sandholm, T., Suri, S., Gilpin, A., Levine, D.: CABoB: a fast optimal algorithm
for combinatorial auctions. In: Proceedings of the International Joint Conferences
on Artificial Intelligence, pp 1102-1108, Seattle, WA (2001)

21. Vries, S., Vohra, R.: Combinatorial auctions a survey. INFORMS Journal on Com-
puting, 15: 284-309 (2003)

22. Wang, Y., Lu, Z., Glover, F., Hao, J.K.: Backbone guided tabu search for solving
the UBQP problem. Journal of Heuristics, 19(4): 679-695 (2013

12

