
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/260594489

Resolution of structured SAT problems with Score(FD/B)

Conference Paper · August 1996

Source: CiteSeer

CITATIONS

2
READS

23

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Predictor for Parsimony View project

Computational Intelligence Methods for Solving Optimization Problems in Bioinformatics View project

Jean-Michel Richer

University of Angers

27 PUBLICATIONS   270 CITATIONS   

SEE PROFILE

Jean-Jacques Chabrier

University of Burgondy

65 PUBLICATIONS   182 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Jean-Jacques Chabrier on 17 March 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/260594489_Resolution_of_structured_SAT_problems_with_ScoreFDB?enrichId=rgreq-7e150b63b4417c8cb59ce6bf853aeb37-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NDQ4OTtBUzo5NzQyNDE3NzYzMTIzMkAxNDAwMjM5MTQyMjI2&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/260594489_Resolution_of_structured_SAT_problems_with_ScoreFDB?enrichId=rgreq-7e150b63b4417c8cb59ce6bf853aeb37-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NDQ4OTtBUzo5NzQyNDE3NzYzMTIzMkAxNDAwMjM5MTQyMjI2&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Predictor-for-Parsimony?enrichId=rgreq-7e150b63b4417c8cb59ce6bf853aeb37-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NDQ4OTtBUzo5NzQyNDE3NzYzMTIzMkAxNDAwMjM5MTQyMjI2&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Computational-Intelligence-Methods-for-Solving-Optimization-Problems-in-Bioinformatics?enrichId=rgreq-7e150b63b4417c8cb59ce6bf853aeb37-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NDQ4OTtBUzo5NzQyNDE3NzYzMTIzMkAxNDAwMjM5MTQyMjI2&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-7e150b63b4417c8cb59ce6bf853aeb37-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NDQ4OTtBUzo5NzQyNDE3NzYzMTIzMkAxNDAwMjM5MTQyMjI2&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Michel_Richer?enrichId=rgreq-7e150b63b4417c8cb59ce6bf853aeb37-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NDQ4OTtBUzo5NzQyNDE3NzYzMTIzMkAxNDAwMjM5MTQyMjI2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Michel_Richer?enrichId=rgreq-7e150b63b4417c8cb59ce6bf853aeb37-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NDQ4OTtBUzo5NzQyNDE3NzYzMTIzMkAxNDAwMjM5MTQyMjI2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Angers?enrichId=rgreq-7e150b63b4417c8cb59ce6bf853aeb37-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NDQ4OTtBUzo5NzQyNDE3NzYzMTIzMkAxNDAwMjM5MTQyMjI2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Michel_Richer?enrichId=rgreq-7e150b63b4417c8cb59ce6bf853aeb37-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NDQ4OTtBUzo5NzQyNDE3NzYzMTIzMkAxNDAwMjM5MTQyMjI2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Jacques-Chabrier?enrichId=rgreq-7e150b63b4417c8cb59ce6bf853aeb37-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NDQ4OTtBUzo5NzQyNDE3NzYzMTIzMkAxNDAwMjM5MTQyMjI2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Jacques-Chabrier?enrichId=rgreq-7e150b63b4417c8cb59ce6bf853aeb37-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NDQ4OTtBUzo5NzQyNDE3NzYzMTIzMkAxNDAwMjM5MTQyMjI2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Jacques-Chabrier?enrichId=rgreq-7e150b63b4417c8cb59ce6bf853aeb37-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NDQ4OTtBUzo5NzQyNDE3NzYzMTIzMkAxNDAwMjM5MTQyMjI2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Jacques-Chabrier?enrichId=rgreq-7e150b63b4417c8cb59ce6bf853aeb37-XXX&enrichSource=Y292ZXJQYWdlOzI2MDU5NDQ4OTtBUzo5NzQyNDE3NzYzMTIzMkAxNDAwMjM5MTQyMjI2&el=1_x_10&_esc=publicationCoverPdf


Resolution of structured SAT problems with
Score(FD/B)1

Jacqueline CHABRIER, Jean-Michel RICHER, Jean-Jacques CHABRIER
C.R.I.D

Université de Bourgogne
B.P. 138

21004 Dijon Cedex, FRANCE
{jc,richer,chabrier}@crid.u-bourgogne.fr

Abstract

Many satisfiability problems called structured SAT problems (like Ramsey, Pi-
geonHole, and so on) may be very shortly defined with Score(FD/B), a boolean
constraint programming language design at the Computer Research Center of
Dijon (CRID). In addition to the expressiveness, design features of the language
(cardinality constraints) are also used to detect some properties (symmetries)
of the problems at the compilation of the source program. The detected sym-
metries (if any) are used by the extended resolution method to prune efficiently
the search space. In this paper, we present an original approach which exploits
the symmetry properties, statically detected, to improve the systematic local
search method supported by Score(FD/B). We also describe how to make use of
these properties on the applications Ramsey and PigeonHole. Then we report
some experimental results.

The system Score(FD/B) has been developped in C on a SUN SPARC 10.

Keywords

SAT , boolean constraint language, symmetries, local search, systematic method.

1 Introduction

Propositional satisfiability (SAT ) is the problem of deciding if there is an as-
signment for the variables in a propositional formula that makes the formula
true. SAT is of considerable practical interest as many AI tasks can be en-
coded as SAT problems (eg. theorem proving [19], constraint satisfaction [1],
interpretation [16], planning [12]). Unfortunately, unless P = NP , SAT is in-
tractable in the worst case, as it is a NP-hard problem. In recent years, there
are, however, a number of theoretical and experimental results which produce
good performance for certain classes of SAT problems (GSAT [17], GENET [8],
CSAT [10]). Other works in constraint programming language design (PRO-
LOG III [7], CHIP [20], ILOG SOLVER [11]) propose several language features

1
Score(FD/B) is the acronym of System of COnstraints and associated REpairs methods

for solving Constraint Satisfaction Problems on Finite Domains (FD) restricted to Booleans
(B). This research is partially supported by the PRC-IA BAHIA.



for describing concisely constraint satisfaction problems on boolean and nu-
merical domains [22], and help users to solve their problems with constraint
satisfaction techniques.

Certain kinds of SAT problems that we call structured SAT problems, be-
cause they can be described in a high level language with small sets of boolean
constraints (for example cardinality constraints), are difficult. Often, they can
not be solved with the classical methods of resolution if they involve more than
a certain number of variables. There are, however, theoretical and experimental
studies dealing with symmetry properties [3] and cardinality formulas in propo-
sitional calculus [4], which show good results for several known problems such
as Schur’lemma, the eight queens, and Ramsey. The most interesting result is
the proof of unsatisfiability of the Ramsey problem for 17 vertices and 3 colors.
The symmetries introduced in different automated deduction algorithms like
SL-Resolution [13], Davis & Putnam procedure [9] and semantic evaluation [15]
are detected and used dynamically at each step of the resolution.

In this paper, we present a new method which uses symmetry properties
detected at the compilation of structured SAT programs described with the
Score(FD/B) language. Indeed, this method is an extended version of the com-
plete local-based search method presented in [6]. In section 2, we give a brief
overview of Score(FD/B): some characteristic features of the boolean constraint
language and the associated resolution method. In section 3, we introduce the
necessary terminology with definitions on symmetries in the propositional cal-
culus. In section 4, we propose a method which uses symmetries detected
statically to compute only the basic models (non-symmetrical models). In sec-
tion 5, we describe how to make use of these properties on the applications
Ramsey and PigeonHole and then we report some experimental results with
and without symmetries. We end in section 6 with some conclusions.

2 A brief overview of Score(FD/B)

Score is a general framework of constraint system developed at the Computer
Research Center of Dijon by Jacqueline Chabrier to solve constraint satisfaction
problems on finite domains. The Score instance on booleans (0/1) domains,
called Score(FD/B), integrates a compiler of the boolean constraint language
and a dedicated complete local-based search method.

2.1 The Score language

For a SAT problem defined by a formula in a conjunctive normal form (CNF)
i.e. a conjunction of clauses where a clause is a disjunction of literals and a
literal a negated or un-negated variable, the translation in Score(FD/B) is di-
rect. Indeed, a clause is considered as a boolean constraint, i.e. a relationship
between the boolean variables of the clause; and a formula in CNF as a set of
boolean constraints. Note that these basic constraints of the language are use-
ful to describe random SAT problems [6]. Now, many problems present some
structures we want to take into account at the language level. For this purpose,
Score(FD/B) supports new language design features: parameterized modules,



arrays of boolean variables with iteration and if statements, and a powerful
built-in boolean constraint: the cardinality constraint [21]. Some complete pro-
grams are given in the following, so we only introduce here the new cardinality
constraint: #(p, q, l1, l2, . . . , ln), for p, q, n ∈ N, 0 ≤ p ≤ q ≤ n, which means
that at least p and at most q literals among l1, l2, . . . , ln must be true.

Using this cardinality constraint, many problems have a shorter description
than with basic constraints defined before. Morever, each cardinality constraint
is equivalent to a system of basic constraints.

2.2 The Score method

The Score method presented in [6] combines advantages of local search and
systematic techniques. We will assume that the reader is already familiar with
these approaches [18].

Score can be considered as a local search method but with a memory mech-
anism. The method uses an initial variables configuration and searchs the next
one in the neighborhood, until the solution is found. The added memory mech-
anism avoids to test twice the same path, and also makes sure, if necessary,
that all the search tree will be explored. Therefore, this approach provides a
complete method and allows to find all the solutions.

Score can also be considered as a systematic method since, during resolution,
some instanciated variables produce a partial solution. But, in our case, all the
variables are instanciated and therefore the current configuration can be used
in the choice heuristics.

The input of the Score procedure is a data structure produced by the com-
piler. This structure includes a representation in the domain (0/1) of the set V

of the boolean variables declared in the source program and a representation of
the set C of all the source constraints unfolded at compilation. Score performs
a local-based search to satisfy the set C of constraints. One important feature
of Score, however, is the completeness of the method discussed in [6].

The procedure starts with an initial configuration, i.e. an assignment of
values (0/1) for all the variables in V partitioned in three disjoint subsets V M ,
V C and V NC. The subset V M memorizes marked variables, i.e. variables
considered without conflict in this subset (partial solution). V C is the subset
of variables in conflict and V NC the subset of the other variables. A procedure
called repair, using the neighborhood of the current configuration, marks a
variable with an assignment that increases the set V M of the marked variables.
If, for a chosen variable and its associated value, an inconsistency occurs, repair
chooses another value. When the two values for this variable have failed, repair
backtracks. Such repairs are repeated until either a satisfying assignment is
found or the procedure fails.

3 Symmetries in propositional calculus

The idea of using symmetries in propositional calculus to obtain short proofs
was first introduced by Krishnamurty [14]. He uses the fact that a set of con-



straints remains invariant by a permutation of the literals, improving so the
performances by enabling entire subsets of the search space.

First of all, let us give some definitions and theorems on symmetries that
are useful in the following [2].

Let C be a set of constraints expressed on a set L of literals.

Definition 1 - Interpretation - An interpretation of a set L of literals,
L ⊆ L, is an application I of L → {0, 1} such that ∀l ∈ L, I(¬l) = ¬I(l).

Definition 2 - Model for C - An interpretation I of L is a model for C
if, with this interpretation, c is true ∀c ∈ C.

Definition 3 - Model for (L, I) - A pair (L, I), where L ⊆ L and I is an
interpretation of L, has a model if I can be expanded to L to obtain a model
for C.

Definition 4 - Symmetry - A permutation σ : L → L is called a symmetry
of C if it satisfies the following properties:

1. ∀l ∈ L, σ(¬l) = ¬σ(l)
2. σ(C) = C

Definition 5 - Symmetrical literals - Two literals l and l′ of L are
symmetrical in C (l ∼ l′) if there exists a symmetry σ of C such that σ(l) = l′.

Theorem 1 - If l ∼ l′, (l, I) has a model iff (l′, I) has a model.

4 Symmetries with Score(FD/B)

4.1 Principle

Due to features of the language Score(FD/B) such as cardinality constraints,
arrays and foreach structures, we can detect statically (at the compilation time)
some symmetries.

The usual application of symmetries is very simple. Suppose we have a
symmetry property between two literals l and l′ of L, noted P (l, l′), then if
({l, l′}, I) has no model, we can deduce that ({l, l′}, I ′) has no model for some
other interpretations I ′. This is the direct consequence of Theorem 1. This
result permits significant cuts in the search tree.

In this section, we propose to generalize the symmetry property P to a set
L of literals of C in order to have a similar result for the interpretations and an
attractive pruning of the search space.

In the following, we will consider n ∗ m literals and the matrix noted M [I]
which represents an interpretation I of these literals.

Definition 6 - M
∗

=⇒ M ′ - If M and M ′ are two matrices, we note
M

∗

=⇒ M ′ if M ′ is obtained from M by swapping as many times as wanted two
rows or two columns.



Definition 7 - [a], [b] and [c] properties - If L = {lij} is a set of n ∗m

literals of C, we can define the following properties:

[a] ∃C2
n symmetries σ

(1)
pq , for p, q = 1, . . . , n p < q, such that

lpj = σ
(1)
pq (lqj) ∀j = 1, . . . ,m

lqj = σ
(1)
pq (lpj) ∀j = 1, . . . ,m

lαj = σ
(1)
pq (lαj) ∀α = 1, . . . , n s.t. α 6= p, q ∀j = 1, . . . ,m

[b] ∃C2
m symmetries σ

(2)
pq , for p, q = 1, . . . ,m p < q, such that

lip = σ
(2)
pq (liq) ∀i = 1, . . . , n

liq = σ
(2)
pq (lip) ∀i = 1, . . . , n

liα = σ
(2)
pq (liα) ∀α = 1, . . . ,m s.t. α 6= p, q ∀i = 1, . . . , n

[c] ∃ m cardinality constraints, for j = 1, . . . ,m
#(1, 1, l1j , l2j , . . . , lnj).

Theorem 2 - Let L = {lij} be a set of n ∗ m literals of C which satisfy the
properties [a] and [b]. Then if (L, I) with M [I] has no model, then (L, I ′) with
M ′[I ′] has no model if M

∗

=⇒ M ′.

Proof - The existing symmetry σ
(1)
pq proves that if (L, I) with M [I] has no

model, then (L, I ′) with M ′[I ′] has no model if M ′ is obtained from M with
the swap of the two rows p and q.

Likewise, the existing symmetry σ
(2)
pq proves that if (L, I) with M [I] has no

model, then (L, I ′) with M ′[I ′] has no model if M ′ is obtained from M with
the swap of the two columns p and q.

The set of the existing symmetries σ
(1)
pq and σ

(2)
pq proves the result.

In order to apply this theorem, we must find the symmetries; but also, with
the given matrix M and M ′, verify if M

∗

=⇒ M ′.

Theorem 3 - Let M(n,m) and M ′(n,m) be two matrices such that ∀i, 1 ≤
i ≤ n, ri =

∑m
j=1 Mij and r′i =

∑m
j=1 M ′

ij . If M
∗

=⇒ M ′, then (r′1, . . . , r
′

n) is a
permutation of (r1, . . . , rn).

Proof - When we swap two columns of M , we obtain a matrix M ′ with
r′i = ri ∀i = 1, . . . , n. When we swap two rows of M , we obtain a matrix M ′

where (r′1, . . . , r
′

n) is a permutation of (r1, . . . , rn). We have the wanted result.

We have a necessary condition for M
∗

=⇒ M ′. But it is not a sufficient
condition. If cj =

∑n
i=1 Mij ∀j = 1, . . . ,m and c′j =

∑n
i=1 M ′

ij ∀j = 1, . . . ,m
and if we add the condition that (c′1, . . . , c

′

m) is a permutation of (c1, . . . , cm),
we still do not obtain a sufficient condition. A counter-example is given below:

M = 1 1 0 0 M ′ = 1 0 0 1
1 0 1 1 0 1 1 1
1 1 0 1 0 1 1 1

Theorem 4 - Let M(n,m) and M ′(n,m) be two matrices such that ri =
∑m

j=1 Mij , cj =
∑n

i=1 Mij , r′i =
∑m

j=1 M ′

ij and c′j =
∑n

i=1 M ′

ij . If (r′1, . . . , r
′

n) is

a permutation of (r1, . . . , rn) and if cj = c′j = 1 ∀j = 1, . . . ,m, then M
∗

=⇒ M ′.



Proof - We show that we can, by successive permutations of two rows
or two columns transform each of the two matrices M and M ′ to a matrix
M ′′ (r′′i =

∑m
j=1 M ′′

ij and c′′j =
∑n

i=1 M ′′

ij) such that c′′j = 1 ∀j = 1, . . . ,m,
(r′′1 , . . . , r′′n) is a permutation of (r1, . . . , rn) and of (r′1, . . . , r

′

n), r′′1 ≥ · · · ≥ r′′n
and M ′′

ij = 1 if r′′1 + · · · + r′′j−1 < j ≤ r′′1 + · · · + r′′j , and 0 else.

Theorem 5 - Main result - Let {lij} a set of n ∗ m literals with the
properties [a], [b] and [c]. If (L, I) with M [I] has no model, then (L, I ′) with
M ′[I ′] such that (r′1, . . . , r

′

n) is a permutation of (r1, . . . , rn) has no model.

Proof - This theorem results from Theorems 2 and 4.

4.2 Symmetry use

At the compilation of the source program, we try to find n ∗ m literals which
satisfy the properties [a], [b] and [c]. Note that our method does not search all
the symmetries of the problem.

First at all, we begin by searching if we have the property [c] for some
cardinality constraints, because it is the condition to obtain the sets of literals
{l1j , . . . , lnj}. We verify if there exist symmetries satisfying the [a] property on
all or a subset of these literals. If it is the case, we then verify if we have the
other symmetries with the [b] property.

When we have found the n ∗ m literals {lij} satisfying [a], [b] and [c], we
say that if ({lij}, I), with the values {r1, . . . , rn} for M [I], has no model, then
({lij}, I ′),where {r′1, . . . , r

′

n} for M ′[I ′] is a permutation of {r1, . . . , rn}, has no
model.

Now, we consider an extended version of resolution method Score to take
into account the symmetry properties. The procedure starts with an initial
configuration and then tries to mark the variables associated with the literals
{lij} found during the compilation phase. When these variables with their
interpretation have no model, then we can eliminate an important number of
other interpretations for these variables for which we know they have no model.
Therefore, the procedure will not have to visit the corresponding branches in
the proof tree.

Note that this Score procedure makes important cuts in the search tree for
satisfiable problems as well as for unsatisfiable ones. See the Ramsey applica-
tion.

5 Applications

5.1 Ramsey

The Ramsey problem (3, 3, 3; 2) consists in coloring the edges of a full graph
of N vertices with three colors such that there is no monochromatic triangle in
the graph.

For N = 3 to 16, the problem is satisfiable. For N ≥ 17, the problem is
unsatisfiable, but this property is not provable in an acceptable time with the
basic version of Score.



proc Ramsey(N)
{

int I,J,K;
array red[N][N], green [N][N], blue [N][N];
/* One edge has one and only one color */
foreach I in 1..N-1

foreach J in I+1..N
#(1,1, red[I][J], green[I][J], blue[I][J] );

/* There is no monochromatic triangle */
foreach I in 1..N-2

foreach J in I+1..N-1
foreach K in J+1..N
{

#(0,2, red[I][J], red[I][K], red[J][K] );
#(0,2, green[I][J], green[I][K], green[J][K] );
#(0,2, blue[I][J], blue[I][K], blue[J][K] );

}
}

Figure 1: Ramsey problem

If we want to use the main theorem, at the compilation phase, we find the
cardinality constraints #(1, 1, red[I][J ], green[I][J ], blue[I][J ])∀I = 1, . . . ,N−1
and J = I + 1, . . . , N . Therefore we have the [c] property and n = 3. Then,

we find C2
3 = 3 symmetries σ

(1)
rg , σ

(1)
rb and σ

(1)
gb corresponding to the three sym-

metries between the colors red and green, red and blue, green and blue. After

that, we search for symmetries σ
(2)
pq between only literals red[I][J ], only literals

green[I][J ] and only literals blue[I][J ].
We find (N − 1)(N − 2) = C2

N−1 symmetries on the [1][2],[1][3], . . . ,[1][N ]
suffixes for the three sets of literals.

So we have n = 3,m = N − 1,

L =







red[1][2] red[1][3] . . . red[1][N ]
green[1][2] green[1][3] . . . green[1][N ]
blue[1][2] blue[1][3] . . . blue[1][N ]







For N = 17, we only test 30 markings for 48 variables. The Score method
finds very quickly that there is no model.

For N = 16, this method improves the search time which decreases from 3
minutes 45 seconds to 1 second; many branches are pruned before finding the
model.

5.2 PigeonHole

The PigeonHole problem consists in finding an allocation of N pigeons in P

dovecotes, where each dovecote can contain 1 pigeon maximum.



We know that for N ≤ P , the problem is satisfiable and a model can be
found in a linear time; and for N > P , the problem is unsatisfiable and we find
it in an exponential time.

proc PigeonHole(N,P )
{

int I;
array pig[N][P];
/* One pigeon is in one and only one dovecote*/
foreach I in 1..N

#(1, 1, pig[I][*]);
/* In a dovecote, there is 1 pigeon maximum */
foreach I in 1..P

#(0, 1, pig[*][I]);
}

Figure 2: PigeonHole problem

We find N cardinality constraints: #(1, 1, pig[I][1], pig[I][2], . . . , pig[I][P ]])

∀I = 1, . . . , N , and we have [c] and n = P . Then we find C2
P symmetries σ

(1)
pq

between pig[I][p] and pig[I][q] satisfying [a], and C2
N symmetries σ

(2)
pq between

pig[p][I] and pig[q][I] satisfying [b].
So we have n = P,m = N , and

L =











pig[1][1] pig[2][1] . . . pig[N ][1]
pig[1][2] pig[2][2] . . . pig[N ][2]

. . .

pig[1][P ] pig[2][P ] . . . pig[N ][P ]











In conclusion, for N > P , if the allocation of P particular pigeons does not
give a model, then the allocation of any others pigeons neither will give any
model. Therefore, the procedure prunes a lot of the search space. On the other
hand, for N ≤ P , the improvement is not so remarkable because the solutions
are immediately found by the procedure.

5.3 Results

In Table 1, we present results for the two applications Ramsey and PigeonHole
on a SUN SPARC Station 10. We give in the first column the name of the
problem, then the satisfiability (Y or N), the number of variables, the number
of cardinality constraints and in the two last columns the CPU time without
and with symmetries.

6 Conclusion

In this paper, we have shown that a powerful constraint language improves the
expressiveness but also facilitates the detection of some properties of the prob-



Problem Sat Vars Constraints Time without Time with
symmetries symmetries

PigeonHole 10,10 Y 100 20 1 s 1 s
PigeonHole 10,9 N 90 19 45 s 1 s
PigeonHole 11,10 N 110 21 5 m 40 s 10 s
PigeonHole 30,30 Y 900 60 1 s 1 s
PigeonHole 30,29 N 870 59 ∞ 55 s

Ramsey 14 Y 273 1183 1 s 1 s
Ramsey 15 Y 315 1470 48 s 1 s
Ramsey 16 Y 360 1800 3 m 45 s 1 s
Ramsey 17 N 408 2176 ∞ 1 s

Table 1: Results with Score(FD/B)

lems. The detected symmetries (if any) may be used by an extended resolution
method to prune efficiently the search space. We believe that symmetries are
especially suitable for dealing with many structured problems.

To conclude, symmetries through the method presented in this paper, make
it possible to improve any other resolution, if the use of symmetries help us
to prune the search space and if we don’t lose a lot of time in detecting them.
That is the case here thanks to the language.

Acknowledgements The authors wish to thank the anonymous referees for
their valuable comments on an early draft of this paper.

References

[1] Projet BAHIA. Etude comparative de trois formalismes en calcul proposi-
tionnel : projet BAHIA, (Booléens, heuristiques et algorithmes pour l’I.A.)
5èmes Journées Nationales PRC-GDR I.A., (C.N.R.S., M.R.T.), Nancy,
1995.

[2] Belaid Benhamou, Lakhdar Sais. Formules de cardinalité et symétries en
calcul propositionnel, Master’s thesis, GIA, Marseille, 1993.

[3] B. Benhamou, L. Sais and P. Siegel. Dealing with symetry in propositional
calculus, AAAI 92, San Jose, 1992.

[4] B. Benhamou, L. Sais and P. Siegel. Dealing with cardinality formulas in
propositional calculus, AAAI 92, San Jose, 1992.

[5] J. Chabrier, J. J. Chabrier, F. Trousset. Résolution efficace d’un problème
de satisfaction de contraintes : le million de reines, 11èmes Journées In-
ternationales d’Intelligence Artificielle, Avignon, Mai 1991.



[6] J. Chabrier, V. Juliard, J. J. Chabrier. Score(FD/B): An efficient complete
local-based search method for satisfiability problems, CP95, Workshop on
Studying And Solving Really Hard Problems, Cassis, September 1995.

[7] A. Colmerauer. An introduction to PROLOG III, CACM 33(7), p 69-90,
1990.

[8] A. J. Davenport, E. P. K. Tsang, C. J. Wang, K. Zhu. GENET: a connec-
tionnist architecture for solving constraint satisfaction problems by iterative
improvement, In Proc. 12th National Conf. on Artificial Intelligence, Vol
1, p 325-330, 1994.

[9] M. Davis and H. Putnam. A computing procedure for quantification theory,
JACM 7, p 201-215, 1960.

[10] O. Dubois, P. André, Y. Boufkhad, J. Carlier. SAT vs UNSAT, DIMACS
Challenge on Satisfiability Testing, 1994.

[11] ILOG SOLVER. Reference Manual, Version 3.0, 1995.

[12] H. A. Kautz, B. Selman. Planning as satisfiability, In Proc. of the 10th
ECAI, p 359-363, 1992.

[13] R. Kowalski, D. Kuehner. Linear resolution with selection function, Arti-
ficial Intelligence (2), p 227-260, 1971.

[14] B. Krishnamurthy. Short Proofs for Tricky Formulas, Acta Informatica,
vol 44, pages 253–275, 1985.

[15] L.Oxusoff, A. Rauzy. L’évaluation sémantique en calcul propositionnel,
PhD Thesis, GIA, Marseille, 1989.

[16] R. Reiter, A. Mackworth. A logical framework for depiction and image
interpretation, Artificial Intelligence, 41(3), p 123-155, 1989.

[17] B. Selman, H.J. Levesque, D.G. Mitchell. A New Method for Solving Hard
Satisfiability Problems, Proc. of AAAI-92, San Jose, CA, p 440-446, 1992

[18] E. Tsang Foundations of constraint satisfaction, Academic Press, 1993.

[19] G. S. Tseitin. On the complexity of derivation in propositional calculus,
Structures in the constructive mathematics and mathematical Logic, p
115-125, H.A.O. Shsenko, 1968.

[20] P. Van Hentenryck. Constraint Satisfaction in Logic programming, Logic
programming Series, The MIT Press, Cambridge, MA, 1989.

[21] P. Van Hentenryck and Y. Deville. The Cardinality Operator : A New
Logical Connective for Constraint Logic Programming, In Proc. of the 8th
ICLP, Paris, 1991, p 745-759, The MIT Press, Cambridge, Mass. 1991.

[22] P. Van Hentenryck, H. Simonis, M. Dincbas. Constraint satisfaction using
constraint logic programming, Artificial Intelligence 58, p 113-159, 1992.

View publication statsView publication stats

https://www.researchgate.net/publication/260594489

