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Abstract. The Maximum Parsimony problem aims at reconstructing a phyloge-
netic tree from DNA sequences while minimizing the number of evolutionary
changes. Known to be NP-complete, the MP problem has many applications.
This paper introduces a Distance-based Information Preservation (DiBIP) Tree
Crossover. Contrary to previous crossover operators, DiBIP uses a distance mea-
sure to characterize the semantic information of a phylogenetic tree and ensures
the preservation of distance related properties between parents and offspring. The
performance of DiBIP is assessed with a mimetic algorithm on a set of 28 bench-
mark instances from the literature. Comparisons with 3 state-of-the-art algorithms
show very competitive results of the proposed approach with improvement of
some previously best results found.

1 Introduction

Phylogeny can be defined as the reconstruction of the evolutionary history of a set
of species identified by sequences of molecular or morphological characters [5]]. The
evolutionary relationships between species are represented by a tree whose leaves are
labeled by the given species. Hillis et al. in [[L1] identify many applications of phy-
logeny like genetic evolution, taxonomy and classification, or virus detection. The gen-
eral problem of inferring the most probable phylogenetic tree according to a given cri-
terion is computationally hard.

In the past much work has been devoted to the problem of phylogeny reconstruc-
tion following 3 main approaches. Distance methods rely on a matrix of distances ob-
served between species and have polynomial-time algorithms. But they are known to
lack sometimes robustness.

Probabilistic methods are based on an evolution model of characters. The Maxi-
mum Likelihood (ML) provides a general framework that consists in inferring the most
probable phylogeny that maximizes the likelihood of observed species. Although ML
is popular for phylogenetic inference because it is considered as a robust method, it is
more computationally expensive than other methods.

Cladistic methods are based on a matrix of given characters. The most well-known
method of this class relies on the Maximum Parsimony (MP) criterion. Such a method
aims at building a binary tree that minimizes a cost function which corresponds to the
number of evolutionary changes. The cost of a tree can be computed in polynomial
time. However the problem of searching for an optimal tree is NP-complete [[/]. Given
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this fact, various heuristic algorithms have been proposed, including local search [[10J8]],
evolutionary algorithms [14/3115]], GRASP [16] and supertrees [[1].

In this paper, we are interested in solving effectively the MP problem. For this pur-
pose, we propose a new crossover scheme, called Distance-Based Information Preserva-
tion (DiBIP) Tree Crossover. DiBIP is fundamentally different from existing crossover
operators. It ensures the transmission of useful information from parents to offspring.
Benchmarking results are reported and compared with some best known and perform-
ing algorithms for the MP problem.

2 The Maximum Parsimony Problem

Given a multiple alignment of a set S of n sequences of length k characters, the aim
of the Maximum Parsimony problem is to find a phylogenetic tree that minimizes the
number of changes (mutations) between sequences. Each leaf of the tree is associated
to one of the n species and the cost (number of mutations) of the overall tree can be
estimated by building sequences of parsimony from the leaves to the root of the tree.
More precisely we have the following definitions:

Definition 1 (Sequence of parsimony). Given 2 sequences S1 and Ss of length k such
that S1 =< @1, ,x >, S =< y1, -+ ,yx > withVi € {1..k}, z;,y; belong to the
power set P(X), where X is the set of possible characters, the sequence of parsimony
of S1 and Ss, noted F(S1,52) =< z1,+ -+ , 2z, > is obtained by (see Fitch [6]]):

1 <i<k oo — ;
Vi, 1 <i<k,z {ximyi,otherwme

The cost of the sequence of parsimony is defined by:

0, otherwise

k
O(F(S1,52)) = Zci where ¢; = {
i=1

Definition 2 (Binary Tree of Parsimony). Let S be a set of n aligned sequences of
length k where each character of the sequence is expressed over a given alphabet 3.
Let T = (V,E) be a binary tree, where V.= {v1,...,v,} is the set of nodes and
E C{(u,v)/u,v € V} is the set of edges. T is called a binary tree of parsimony of S
if there exist 1 = 2 X n — 1 nodes partitioned in 2 subsets:

— a set of internal nodes I composed of n — 1 nodes each having 2 descendants and
being labeled by a (hypothetical) sequence of parsimony of the 2 descendants,

— a set of leaves L composed of n nodes with no descendant, bijectively labeled by
the sequences of S.

Definition 3 (Cost of a Tree of Parsimony). Ler T' be a binary tree of parsimony of a
set of sequences S. The cost (or score) of T, ¢(T') is equal to >, p(Sy,), Yw € I.

Definition 4 (Maximum Parsimony Problem). Given a set S of n sequences of length
k, expressed over an alphabet X, find the most parsimonious tree T' of S such that the
score of parsimony of T' is minimum.

For a set of sequences S, there are Hlils (2i — 3) possible parsimony trees. The MP
problem is thus a highly combinatorial search problem.
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3 Crossover Operators for MP and Trees

The literature describes several evolutionary algorithms for phylogenetic reconstruc-
tion: for instance [13l12] for the ML problem, [14,2/3!15] for the MP problem and [4]]
for distance-based phylogenetic approaches. Notice that conventional subtree crossover
operators used in tree-based genetic programming are not directly applicable here.

Tree crossover operators designed for inferring phylogenetic trees often follow the
subtree cutting-and-regrafting strategy. Generally, given 2 parents trees, a subtree is
first selected from one parent (donor parent). Then the leaves of this subtree are deleted
from the other parent (receiver parent), leading to an intermediate tree. The final child
tree is obtained by reconnecting the subtree from the donor parent to a merge point of
the intermediate tree. Obviously, exchanging the donor and receiver parents can lead
to a second child. Fig. [I] shows an example with fourteen species, where the subtree
(B, (L, N)) is taken from parent 1 and reinserted in parent 2 between the root and the
subtree ((F, J), M) after deleting the 3 leaves (B, L and N) from parent 2.

With such a crossover strategy, only partial information is transmitted from parents
to offspring. For instance, in the above example, a subtree with 3 leaves (out of four-
teen) of the donor tree is passed on to the child. In one sense, only a small portion
of information of the donor is transmitted while a large portion of information related
to the eleven other species of the donor tree is lost during the crossover operation. In

Parent 1 Parent 2
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Intermediate child Child
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- o 0T om>» x

Fig. 1. Example of commonly used crossover
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the next section, we introduce a Distance-Based Information Preservation crossover
scheme, which ensures a global combination and transmission of information during
crossover operations.

4 Distance-Based Information Preservation (DiBIP) Crossover

4.1 General Scheme

Our Distance-Based Information Preservation (DiBIP) crossover scheme aims to pre-
serve representative properties of parents in terms of distance between species. The
general approach can be summarized as a three-steps procedure: 1) calculate a distance
matrix for each parent tree, 2) combine the matrices of the 2 parents to get a third matrix,
3) create a child tree from the previous third matrix.

In order to give a formal description of the DiBIP crossover scheme, we first intro-
duce some notations.

T7 and T5 represent 2 trees used for the crossover operation;

o is a distance metric to measure the distance of each pair of species of a tree T';
- A: 7T — Dis a tree-to-distance operator to obtain a distance matrix from a tree;
@ : D x D — D is a matrix operator to combine 2 distance matrices to produce a
new distance matrix;

— A : D — T is a distance-to-tree operator to construct a tree from a given distance
matrix.

Given these notations, the general DiBIP crossover scheme can be described with
the procedure shown in Algorithm [T}

Algorithm 1 The general DiBIP crossover scheme

Input: T3, Tz, 67, A, @, A
Output: A child tree T~

1. Apply the tree-to-distance operator A to each parent tree 7; (i=1,2) to obtain the corre-
sponding distance matrix D; = A(T;) (i=1,2);

2. Apply the matrix operator & to Dy and D5 to obtain D*: D* = D & Da;

3. Apply the distance-to-tree operator /A to D™ to obtain a child tree: " = A(D™).

This general scheme gives rise to several comments. First, the distance measure
should be ideally correlated to the evolutionary changes between species. For instance,
2 species separated in the tree by a small number of evolutionary changes should have
a smaller distance than 2 species separated by a large number of changes. A minimal
requirement for the distance measure would make the measure topology dependent. In
this sense, the length of the elementary path between 2 species is such a possible ex-
ample. On the other hand, the conventional Hamming distance is not applicable here
because this metric is totally independent of tree topologies.

Second, since we want to preserve representative properties of the parents during the
crossover operation, a valid matrix operator & should meet some specific requirements
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meaningful to the MP problem and help to transmit good properties shared by both
parents to the child. For instance, if a pair of species (a,b) is closer than another pair
(c,d) in both parents, then this distance property should be conserved by the crossover
process and transmitted to the resulting child. More generally, let (a,b) and (c,d) be 2
pairs of species, D1 and D5, the distance matrix of 2 trees 77 and 75, and < € {<,=,>}
a relation, then the following condition, called relation preservation property, should be
verified:

(D1(a,b) < D1(c,d)) A (D2(a,b) <4 Da(c,d)) = (D*(a,b) < D*(c,d))

For example, let us consider the operation & such that for a pair of species (¢,5),
(D1®D3)(i,7) = a.min{D1(4,7), Da(i, ) } + (1 — ). max{ D1 (4, j), D2(i, 7) } with
a € [0, 1]. It is easy to verify that this defines indeed a valid & operator. Moreover, this
definition offers in fact many possibilities and seems particularly relevant to the MP
problem. For instance, the arithmetic average (o« = 0.5) and the max operator max
(o = 0) are 2 special cases. At last, let us mention that the arithmetic addition + is
another simple valid & operator.

Finally, one may notice that A is not A~ and the distance matrix A(T*) is in general
different from D*.

To summarize, the proposed DiBIP crossover scheme is fundamentally different
from conventional tree crossover operators. From this scheme, one can derive a con-
crete DiBIP crossover operator by defining a distance metric §7 and instantiating the
following 3 operators: A, @ and A.

4.2 Application of the DiBIP Crossover to the MP Problem

In order to show how the above DiBIP crossover scheme is applied to the MP problem,
we devise a concrete DiBIP operator by making the following choices. The distance
measure 7 between 2 species ¢ and j is defined by the length of the elementary path
between the respective ascendants of ¢ and j, minus 1 if the path contains the root of the
tree T'. Since the position of the root has no effect on the parsimony score, this element
must not affect the distance matrix. Fig.[2lshows a tree and the resulting distance matrix
according to 6.

As to the matrix operator ¢, we simply used the addition + such that D(i,j) =
D1 (4,4) + Da(i, 7). Notice that this operator satisfies the relation preservation prop-
erty mentioned in the previous section. Finally, the distance-to-tree operator A is a

B 0
C 1 1
A B c D 3 3 2
E 3 3 2 0
F
F 2 2 1 1 1
D E

Fig. 2. Distances measured using the length of elementary path between 2 species
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non-deterministic variant of the well-known UPGMA method [17]. Fig. B] shows an
application of this crossover operator. One notices that the closeness of species in both
parents is conserved in the child. This observation applies equally to distant species.

4.3 Complexity of the DiBIP Crossover Operator

For a given tree T', A(T') can be done in ©(n? log,(n)) time with n being the number of
the leaves (species). This calculation is performed only once for each inferred tree even
if the same tree can be used several times by the crossover operation. This is simply
done by recording the corresponding distance matrix. The matrix addition using + as
well as the distance-to-tree operation with UPGMA have time complexity of ©(n?).
Consequently, the crossover operator has a total time complexity of ©(n? log,(n)).

Parent 1 : T4 Parent 2 : T
D M
I B
A F
K L
J J
B K
L A
N E
G D
Cc H
M c
F G
E 1
H N
D1:A(T1) DZZA(TZ)
ABCDEFGHIJKLMN ABCDEFGHIJKLMN
Al- B Al- B
Bl6 - C B|8 - C
cl53-D cl46-D
D154 -E D173 -E
E|5544-F E|0 841 -F
F|55442-G F|91789-G
G|530444-H Gl460347-H
H|(5544024 -1 H[2 621272 -1
1106515555 -7 1|64456544-]
J[512444245-K J[715672553-K
K[2431333323-1L K|4423452223-1L
L|71466646725-M L|91789077525-M
M|554420425436 -N M[624563442123-N
N|7146664672506 - N|6445654403252 -
D* =Dy & D> Child : T* = A(D™)
M
ABCDEFGHIJKLMN F
Al- B B
B[4 - C L
cl9 9 - D )
D|2 127 - E
E[5 138 5 F N
Fll4 6 111211 - G H
G|9 9 07 811 - H £
H|7 11 6 5 96 - 1 R
1|6109 611109 9 -7
J{i22 71011679 8-K A
K|6 8 5 4 8 55 46 -L K
L|16 2 11 1415 6 11 13124 10 - M ,
M[11 789 83867559-N
N[135 8 1112118 1075758 ©
G

Fig. 3. Application of the DiBIP Tree Crossover
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5 A Hybrid Genetic Local Search Algorithm for the MP Problem

5.1 General Procedure

HYDRA (for HYbrid Distance Recombination Algorithm) is a mimetic algorithm that
combines a genetic algorithm using the DiBIP crossover operator and a local search
algorithm called DPN (Descent with Progressive Neighborhood) [9]. The HYDRA al-
gorithm (see Algorithm 2) starts by randomly generating an initial population where
each individual is an inferred phylogenetic tree (GeneratePopulation). Then, the algo-
rithm enters an iterative process. At each step 2 individuals (parents) are chosen in the
population (ChooseParents) and recombined (DiBIP crossover) to obtain a new indi-
vidual (child). The DPN local search algorithm is applied to improve the child during [
iterations. The improved child is finally added to the population under insertion condi-
tions. This process is repeated until the stop condition is met, usually when a maximum
number of iterations Max;:e, has been reached or when the computation time exceeds
a maximum duration Maxs;me.

Algorithm 2 Hybrid genetic local search algorithm (HYDRA) for the MP problem

Input: A : an alignment of sequences, IV : the size of the GA population, { : the number of
local search iterations
Output: The most parsimonious tree found

P = GeneratePopulation(A,N)
While not StopCondition() do
(T1, T>) = ChooseParents(P)
T = DiBIP(Ty, T>)
T =DPN(T\l)
P = Replace(P,T)
return the best tree found

The function ChooseParents operates with a tournament selection strategy. Two
groups of 20% of the individuals are constituted. Two individuals that represent the best
individuals of each group are selected for the crossover operation. The Replace function
inserts the child tree 7" into the population P and removes from P the older individual
(insertion condition). Notice that other selection strategies and insertion conditions may
be defined.

5.2 Local Search: Descent with Progressive Neighborhood

The DPN procedure used in HYDRA for local improvement is a basic descent algorithm
using a Progressive Neighborhood [9]. DPN considers a large size neighborhood at the
beginning of the search which progressively shrinks when the search goes on. The basic
neighborhood used in DPN is the well-known SPR (Subtree Pruning and Regrafting)
neighborhood which cuts a subtree and reinserts it elsewhere. To control gradually the
size of the neighborhood, DPN introduces a parameter d,,x Which fixes the maximum
allowed distance between the root of the detached subtree and the position where it
is reconnected. In practice, dyax is set to a maximum value at the beginning of the
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search in order to allow any SPR move. Then this value is progressively reduced until it
becomes equal to 1 which corresponds to the much smaller neighborhood NNI (Nearest
Neighbor Interchange).

6 Experimentations

6.1 Competing Algorithms and Benchmarks

In this section, we compare the mimetic HYDRA algorithm based on the DiBIP
crossover operator with 3 highly effective MP algorithms: an evolutionary algorithm
[[15], the GRASP+VND [16] method and the software TNT [[10]. GRASP+VND is a
combined application of 2 well-known metaheuristics GRASP and VND to the MP
problem. TNT (Tree analysis using New Technology) is probably the fastest and one of
the most effective parsimony analysis program. TNT uses many search strategies such
as tree recombinations, local search and supertrees.

The benchmark instances used here come from [15] and [16] and represent 28 in-
stances: 8 obtained from real data and 20 randomly generated instances (TST 01 to 20).
For these instances, the best results found in the literature are reported in [[15416].

6.2 Computational Results

HYDRA uses a population of size N = 30, a maximum of 50,000 iterations for each
DPN run and ends after 300 seconds. The algorithm is coded in C++ and compiled with
gec using the optimization flag —03. It is run sequentially onto a cluster of 10 nodes,
each having a Xeon 2 GHz BiProcessor with 1 Gb of RAM. Like in [15], the HYDRA
algorithm is run 10 times for each instance.

Results are printed on Tables [[land 2] where ¢, ¢, and CO respectively represent
the best score obtained, the average score and the average number of crossover opera-
tions over 10 runs. For random instances, diff is the improvement of the score obtained
in comparison to the best known scores. The reported results of [[15l16]] are taken from
these 2 papers while the results of TNT are obtained by us using the default parameters.

Table 1. Results on real instances

Instance Hydra [L5] [L16] TNT
Name n k b Pm co b dm b P
GRIS 47 93 172 172.0 4012 172 172.0 172 172
ANGI 49 59 216 216.0 1658 216 216.0 216 217
TENU 56 179 682 682.0 812 682 682.0 682 682
ETHE 58 86 372 372.0 2392 372 372.4 372 373
ROPA 75 82 325 326.2 1519 325 325.8 325 327
GOLO 77 97 496 496.0 2068 496 496.2 496 501
SCHU 113 146 759 759.0 669 759 759.2 759 761
CARP 117 110 548 548.9 815 548 548.6 548 550
Average computation time (s) 300 1000 33789 <1
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Table 2. Results on random instances

Instance Hydra LL5] LLo] TNT

Name |n k [ Pm Cco v Pm P P diff
TSTOl |45 61 545 547.1 2548 549 549.6 551 554 -4
TST02 |47 151 1354 1358.7 775 1358 1363.6 1364 1380 -4
TSTO3 |49 111 834 837.3 1012 838 840.6 845 849 -4
TST04 |50 97 590 591.2 1064 592 595.0 598 603 -2
TSTOS |52 75 789 792.6 1458 790 794.0 797 805 -1
TST06 |54 65 597 599.3 1491 603 605.4 609 612 -6
TSTO7 |56 143 1271 12755  [548 1276 1280,6 1291 1300 -5
TSTO8 |57 119 853 857.2 666 863 867.4 870 889 -11
TST09 |59 93 1146 1149.5  [906 1150 1154.2 1152 1167 -4
TST10 |60 71 721 723.7 1168 725 728.6 733.0 740 -4
TSTI11 |62 63 544 546.2 1237 544 546,8 553 564 0
TSTI12 |64 147 1218 1224.1 (408 1229 1233.0 1243 1250 -11
TST13 |65 113 1523 15264 [660 1526 1530.6 1532 1538 -3
TST14 |67 99 1167 1171.7  |683 1174 1177,4 1177 1194 -7
TST15 |69 77 757 760.1 792 765 766.4 774 783 -8
TST16 |70 69 532 535.5 865 545 547.6 551 552 -13
TST17 |71 159 2460 2467.1 |360 2468 2470.8 2468 2485 -8
TST18 |73 117 1529 1533.8 (473 1542 1548.2 1554 1571 -13
TST19 |74 95 1019 1021.6 [601 1028 1033.0 1036 1037 -9
TST20 |75 79 665 668.5 720 676 678.8 682 693 -11
Average computation time (s) 300 1000 1982 <1

From Tables[Tland 2] one observes that for the 8 real instances HYDRA consistently
obtains the previously best results reported in [[15416]] but with much shorter compu-
tation time. Also observe the robustness of HYDRA which, for 6 of 8 instances, has
found the best score for each run. The effectiveness of HYDRA is better observed on
the set of random instances. Indeed, for 19 instances out of 20, the previously published
best scores are improved.

Let us mention that when the number of runs is increased to 100, HYDRA obtains
still better results for 11 of the 20 random instances (up to 5 units). HYDRA is also
compared with its local search component DPN alone, showing clearly better results on
the tested instances (not shown here).

7 Conclusion

In this paper, we have introduced the Distance-Based Information Preservation (DiBIP)
crossover, a new crossover scheme for inferring phylogenetic trees. The key idea is to
use a distance matrix to characterize each inferred tree. Consequently, 2 trees can be
easily combined by an operation on 2 distance matrices. Contrary to existing crossover
mechanisms, the DiBIP crossover scheme offers a simple and natural way to ensure a
global information combination and transmission during the cross-overing operation.

The practical usefulness of the DiBIP crossover scheme for the Maximum Parsimony
problem is assessed within a mimetic algorithm. Comparisons with 3 state-of-the-art
algorithms on a set of 28 (real and randomly generated) benchmark instances show
very competitive results of our approach. Indeed, for the real instances, the best known
score are systematically found rapidly and consistently. The most remarkable results
concern the random instances for which we can improve 19 (out of 20) best scores
known today within 5 minutes of CPU time.



770 A. Goéffon, J.-M. Richer, and J.-K. Hao

Acknowledgments. This work is partially supported by the French Ouest Genopole®.
We thank the reviewers of the paper for their careful reading and useful comments and
Dr. Celso C. Ribeiro for providing us with the dataset used in the paper.

References

1. O.R. P. Bininda-Emonds (Ed.). Phylogenetic Supertrees: Combining Information to Reveal
the Tree of Life. Springer, 2004.

2. C. B. Congdon. Gaphyl: An Evolutionary Algorithms Approach For The Study Of Natural
Evolution. Proceedings of the 6th Joint Conference on Information Science, 2002.

3. C.B. Congdon and K. J. Septor. Phylogenetic trees using evolutionary search: Initial progress
in extending gaphyl to work with genetic data. Proc. of the 2003 Congress on Evolutionary
Computation, pp.320-326, IEEE press, 2003.

4. C. Cotta and P. Moscato. Inferring Phylogenetic Trees Using Evolutionary Algorithms. Lec-
ture Notes in Computer Science, 2439:720-729, Springer, 2002.

5. J. Felsenstein. Inferring phylogenies. Sinauer Associates, 2003.

6. W. Fitch. Towards defining course of evolution: minimum change for a specified tree topol-
ogy. Systematic Zoology 20:406-416, 1971.

7. L.R.Foulds and R. L. Graham. The Steiner problem in phylogeny is NP-complete. Advances
in Applied Mathematics 3:43-49, 1982.

8. A. Goéfton, J.-M. Richer and J.-K. Hao. Local search for the maximum parsimony problem.
Lecture Notes in Computer Science 3612:678-683, Springer, 2005.

9. A. Goéffon, J.-M. Richer and J.-K. Hao. Progressive Tree Neighborhood applied to the
Maximum Parsimony Problem. Submitted to /EEE Transactions on Computational Biology
and Bioinformatics, 2006.

10. P. A. Goloboff, J. S. Farris and K. Nixon. TNT: Tree Analysis Using New Technology, 2003.

11. D. Hillis, C. Moritz and B. Mable. Molecular Systematics, Sinauer, Boston, 1996.

12. P. O. Lewis. A genetic algorithm for maximum-likelihood phylogeny inference using nu-
cleotide sequence data. Molecular Biolology and Evolution, 15(3):277-283, 1998.

13. H. Matsuda. Protein Phylogenetic Inference Using Maximum Likelihood With A Genetic
Algorithm Prof. of Pacific Symposium on Biocomputing, pp.512-536, 1996.

14. A. Moilanen. Searching for Most Parsimonious Trees with Simulated Evolutionary Opti-
mization. Cladistics 15(1):39-50, 1998.

15. C. C. Ribeiro and D. S. Vianna. A genetic algorithm for the phylogeny problem using an
optimized crossover strategy based on path-relinking. Proc. of 2nd Bresil Workshop on Bioin-
formatics, pp.97-102, 2003.

16. C. C. Ribeiro and D. S. Vianna. A GRASP/VND heuristic for the phylogeny problem using
a new neighborhood structure. International Transactions in Operational Research 12:1-14,
2005.

17. Sneath, P. H. A, and R. R. Sokal. 1973. Numerical taxonomy. W. H. Freeman and Co., San
Francisco, California



	Introduction
	The Maximum Parsimony Problem
	Crossover Operators for MP and Trees
	Distance-Based Information Preservation (DiBIP) Crossover
	General Scheme
	Application of the DiBIP Crossover to the MP Problem
	Complexity of the DiBIP Crossover Operator

	A Hybrid Genetic Local Search Algorithm for the MP Problem
	General Procedure
	Local Search: Descent with Progressive Neighborhood

	Experimentations
	Competing Algorithms and Benchmarks
	Computational Results

	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


