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Adrien Goëffon, Jean-Michel Richer and Jin-Kao Hao
LERIA - University of Angers, 2 bd Lavoisier, 49045 Angers Cedex 01, France

{goeffon,richer,hao}@info.univ-angers.fr

Abstract— The Maximum Parsimony problem aims at re-
constructing a phylogenetic tree from DNA sequences while
minimizing the number of genetic transformations. To solve this
NP-complete problem, heuristic methods have been developed,
often based on local search. In this article, we focus on the
influence of the neighborhood relations. After analyzing the
advantages and drawbacks of the well-known NNI, SPR and
TBR neighborhoods, we introduce the concept of Progressive
Neighborhood which consists in constraining progressively the
size of the neighborhood as the search advances. We empirically
show that applied to the Maximum Parsimony problem, this
progressive neighborhood turns out to be more efficient and
robust than the classic neighborhoods using a descent algorithm.
Indeed, it allows to find better solutions with a smaller number
of iterations or trees evaluated.

Index Terms— optimization, combinatorial algorithms, phy-
logeny reconstruction, maximum parsimony

I. INTRODUCTION

Phylogeny can be defined as the reconstruction of the
evolutionary history of a set of species nowadays identified
by their nucleic acid (DNA) or amino acid (AA) sequences.
The evolutionary relationships between species are represented
by a tree which can be rooted or unrooted and whose branches
are labelled with lengths that correspond to the evolutionary
distance between species. Hillis in [22] identifies many ap-
plications of phylogeny reconstruction like genetic evolution,
taxonomy and classification or virus detection.

Some methods attempt to reverse a model of evolution
which embodies certain knowledge about the process of evolu-
tion that affects the molecular sequences. Models of evolution
vary in their complexity and are defined by a set of parameters.
For example, the Jukes Cantor (JC) model which considers that
all sites evolve identically and independently requires just one
parameter. Another model is the Kimura 2-Parameters model
which is a generalization of the JC model.

It should be noticed that the assumptions taken into account
for the search of an optimal tree of evolution may not
reflect the reality of the evolution process. For example, the
parsimony criterion considers that the most probable tree, or
the best tree is the tree which minimizes the number of changes
(or mutations), while it might not be the case for the natural
evolution process (parsimony assumes that mutations are rare
but this may not be the case). It is nevertheless interesting to
rely on a mathematical model of a natural process in order to
infer some new hypothesis that could be verified by further
experiences.

In the past much work has been devoted to the problem
of phylogeny reconstruction and we can bring three different

approaches to light: Distance methods, inspired by the clus-
tering work of Sokal and Sneath [34], introduced in 1967 by
Cavalli-Sforza and Edwards [4] or by Fitch and Margoliash
[12] rely on a matrix of distances observed between species.
The most well-known algorithm of this class of methods is
the Neighbor-Joining from Saitou and Nei [31], improved by
Gascuel [15]. Those methods are very efficient for they rely
on an algorithm of polynomial complexity but they sometimes
lack robustness.

Probabilistic methods are based on a model of evolution
of characters. The Maximum Likelihood (ML), introduced by
Felsenstein [8] in 1981 provides a general framework that
consists in inferring the most probable phylogeny that maxi-
mizes the likelihood of observed sequences. Although ML is
popular for phylogenetic inference because it is considered as
a robust method, it is more computationally expensive than
other methods.

Cladistic methods are based on a matrix of given characters.
The most well-known method of this class relies on the
Maximum Parsimony (MP) criterion [7] as it is quite simple
to apprehend. Such a method aims at building a binary tree
that minimizes the number of changes without resorting to a
particular model of evolution. The cost of a tree can be com-
puted in polynomial time. However the search for an optimal
tree is NP-complete as shown by Foulds and Graham [13]. In
theory, this problem can be solved by enumerating all possible
topologies of a binary tree and retaining the topologies which
have the smallest cost. As there is an exponential number of
topologies, such an exhaustive search is only viable for very
small instances. This is why heuristics methods have been
applied to this problem in order to obtain a near optimal tree
with reasonable computation time [16], [18], [28].

Among these heuristics, local search or neighborhood
search, probably represents the most popular and effective
method. Neighborhood search is based on an iterative im-
provement process using a given neighborhood relation which
plays a key role in the effectiveness of neighborhood search
methods.

In the literature, there exists three main neighborhoods for
trees called NNI (of small size), SPR (medium) and TBR
(large) whose properties make them more or less suitable to
perform a superficial or a thorough search. In this paper we
show how to combine the properties of those neighborhoods
in order to improve the efficiency of local search algorithms.
We introduce here a new neighborhood called parametric
progressive neighborhood (PPN) for the resolution of the
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MP problem 1. The experimentations carried out on various
benchmark instances show that a simple descent algorithm
using PPN is able to converge rapidly toward high quality
solutions.

The remaining of the paper is organized as follows. In the
next section, we give a formal definition of the Maximum Par-
simony Problem. In Section III, we describe three well-known
tree neighborhoods commonly used by local search procedures
and analyze their limits. We then propose in Section IV the
framework of a parametric Progressive Neighborhood, which
combines large and small neighborhoods properties. This
progressive neighborhood is used within a descent algorithm
and proves to be efficient compared to NNI, SPR or TBR as it
allows to find good solutions in a small number of iterations.
The next two sections are devoted to experimentations and
comparisons. In the last two sections, we try to justify our
approach and give some concluding remarks.

II. THE MAXIMUM PARSIMONY PROBLEM

Given a multiple alignment of a set S of n species of length
k nucleotides, the aim of the Maximum Parsimony problem
is to find a phylogenetic tree that minimizes the number of
changes (or mutations) between sequences. Each leaf of the
tree is associated to one of the n species and the cost (or
number of mutations) of the overall tree can be estimated by
building sequences of parsimony from the leaves to the root
of the tree. More precisely we have the following definitions:

Definition 1 (Sequence of parsimony): Given two sequen-
ces S1 and S2 of length k such that S1 =< x1, · · · , xk >,
S2 =< y1, · · · , yk > with ∀i ∈ {1..k}, xi, yi belong to the
power set P(Σ), where Σ = {−, A, C,G, T}, the sequence of
parsimony of S1 and S2, noted F (S1, S2) =< z1, · · · , zk >
is obtained by (see Fitch [11]) :

∀i, 1 ≤ i ≤ k, zi =

{
xi ∪ yi, if xi ∩ yi = ∅
xi ∩ yi, otherwise

The cost of the sequence of parsimony is defined by:

φ(F (S1, S2)) =

k∑

i=1

ci where ci =

{
1, if xi ∩ yi = ∅
0, otherwise

Definition 2 (Binary Tree of Parsimony): Let S be a set of
n aligned sequences of length k where each character of the
sequence is expressed over a given alphabet Σ. Let T = (V,E)
be a binary tree, where V = {v1, . . . , vr} is the set of nodes
and E ⊆ {(u, v)/u, v ∈ V } is the set of edges. T is called a
binary tree of parsimony of S if :
• there exist r = 2×n−1 nodes partitioned in two subsets:

– the set of internal nodes I composed of n− 1 nodes
that have 2 descendants, i.e. I = {w ∈ V/∃u, v ∈
V such that {(w, u), (w, v)} ∈ E},

– the set of leafs L composed of n nodes which have
no descendant, i.e L = {u ∈ V/ 6 ∃v ∈ V, (u, v) ∈
E},

• there exists an assignment ψ which is a bijection from
the set of sequences S to the set of leafs L,

1The PPN program is available upon request from the authors of this paper.

• each internal node w of I is assigned to a (hypothetical)
sequence of parsimony Sw = F (Su, Sv).

Definition 3 (Cost of a Tree of Parsimony): Let T be a bi-
nary tree of parsimony of a set of sequences S. The cost (or
score) of T , φ(T ) is equal to

∑
φ(Sw), ∀w ∈ I .

Definition 4 (Maximum Parsimony Problem): Given a set
S of n sequences of length k, expressed over an alphabet
Σ, find the most parsimonious tree T of S such that the score
of parsimony of T is minimum.

MP can also be formulated as a combinatorial optimization
problem (T , φ) as follows:

1) the search space T is defined by the set of all possible
binary trees of parsimony, where T is of size

∏|S|
i=3(2i−

3) [32],
2) the cost function φ : T → IN is the score of parsimony

of a tree.
Note that those definitions concern the Fitch parsimony,

for which all changes have equal cost. Wagner or Camin-
Sokal parsimony lead to different definitions. For a thorough
introduction to the MP problem we refer the reader to [9].

III. LOCAL SEARCH AND NEIGHBORHOODS

A. Iterative Descent

To solve the MP problem we have decided to use a
local search algorithm based on an iterative descent (or
hill-climbing) scheme [23] which is one of the most basic
stochastic local search algorithms. The descent is guided by
an evaluation (score) function φ and wanders through a forest
of trees. Each tree is also called a configuration of the search
space T . Moreover, the search is strongly influenced by a
neighborhood relation N which for a given tree T defines a
subset of T called the neighbors of T .

The iterative descent starts from an initial, often randomly
generated, configuration in the search space and tries to
improve iteratively the current configuration with respect to
φ. At each iteration, a neighboring configuration T ′ ∈ N (T )
replaces the current configuration T , if T ′ has a better score,
i.e. φ(T ′) < φ(T ).

The search ends when there is no more neighbor which
can improve the score of the current configuration. The last
configuration visited is called a solution of the problem.

Such a solution is also called a local optimum because
the algorithm does not guarantee that it will end with the
best solution of the problem, called a global optimum. Indeed
stochastic local search algorithms mainly depend on the neigh-
borhood relation used. Although we are not sure to obtain the
best solution, local search proves to be a simple yet powerful
framework which can provide good results.

B. NNI, SPR and TBR neighborhoods for trees

A neighborhood relation structures the search space through
which a local search algorithm finds a path towards a solution.
There are three well-known neighborhoods for trees in the
literature: NNI, SPR and TBR.

NNI (Nearest Neighbor Interchange) [37] consists in swap-
ping two adjacent branches of the tree. We can say that NNI



3

is a small size neighborhood for which a tree of n leaves has
(2n− 6) neighbors [30].

SPR (Subtree Pruning Regrafting) [35] is a strategy which
cuts a branch and reinserts it elsewhere. There are 2(n −
3)(2n − 7) possible SPR rearrangements [2] for each tree
which makes it a medium size neighborhood.

TBR (Tree-Bisection-Reconnection) [35] consists in break-
ing the tree in two subtrees which will be reconnected from
one of their branches. From a given tree, the TBR neighbor-
hood induces at most (2n − 3)(n − 3)2 neighbor trees [2].
TBR is thus a much larger neighborhood than NNI and SPR.

Finally, the following property can be verified [27]: NNI ⊆
SPR ⊆ TBR.

C. Properties and limits of known neighborhoods

A small neighborhood relation as NNI allows only local
modifications on a tree topology, implying that a neighboring
tree that results from such a transformation is very close to the
initial tree. Consequently, the variation cost induced by a NNI
transformation can be easily calculated. Another advantage of
NNI is related to its small number of neighbors compared to
other neighborhoods. The resolution time of a local search
algorithm using NNI is then much smaller than with SPR
or TBR. However, the drawback induced by NNI is that it
has a weak capability to significantly improve the cost of a
configuration after a few moves. And thus local optima far
from the global optimum can sometimes be reached at an early
stage of the search.

On the contrary a large neighborhood relation like TBR re-
quires more computational effort. Exploring all the neighbors
of a configuration using TBR is computationally expensive.
Indeed, the neighboring trees are subject to important topo-
logical modifications. Thus, less information can be conserved
for the calculation of the parsimony score of a neighbor tree
even if Goloboff [18] proposed a method that aims at reducing
the complexity of this calculation.

D. Escaping from local optima

To avoid being trapped in a local optima, existing meth-
ods propose different alternatives. For example, the method
proposed by Nixon [28], often used in MP softwares, applies
noising strategies [5] to modify the evaluation (cost) function
when the local search procedure is stagnating. This enables
one to perturb the current configuration while keeping moving
through a search space of identical structure.

Another method used by Ribeiro et al. [1], [29] consists in
succesively using a set of neighborhood relations. For example
{NNI, STEP, SPR} or {SPR, 2-SPR, . . . , l-SPR}, where l-
SPR is the neighborhood relation defined by l SPR moves
and STEP is a SPR for which only leaves are pruned. This
can be considered as an application of the VNS (Variable
Neighborhood Search) metaheuristic, proposed by Hansen and
Mladenovic [21]) to the MP problem. In [1], [29], Ribeiro
et al. reported very good solutions for a set of benchmarks.
For this reason, this method is used later in this paper as a
reference for our experimental studies.

However, the interest of this VNS application seems limited.
If the initial configuration is quite far from the optimum, the
first local search step (with the most restricted neighborhood
of the set) will quickly reach a local optimum. Even if one
uses a large neighborhood in order to try to improve the
quality of the current configuration, it is likely that a great
part of the computational effort will be lost by considering
more neighbors that will be shown to be useless, thus loosing
a great part of the information gained during the first part of
the local search.

IV. PROGRESSIVE NEIGHBORHOOD

A. General Principle

In order to combine the interesting properties of large and
small neighborhoods, we propose to start the search from a
large neighborhood whose size decreases progressively as the
search goes forward.

Contrary to VNS which enlarges its neighborhoods progres-
sively, starting the search from a large neighborhood may
prove to be a very interesting alternative. Indeed, a large
neighborhood allows to take into account more neighbors
(or topologies) and ensures a more intensive search. Using
a large neighborhood at the early stage of the search allows to
quickly improve the quality of the best configuration found,
thus providing a good tree topology for the later stages of the
search. Near the end of the search, the changes applied to the
tree topology should be limited via a smaller neighborhood.
In fact, important topological changes might not be relevant
at late stages of the search and could be considered as starting
a new search. Such a search scheme may be achieved by
progressively reducing the size of the neighborhood.

The basic idea behind the progressive neighborhood search
is thus to introduce a parametric neighborhood relation that
evolves during the search, either statically according to a
prefixed schedule or reactively according to some information
collected during the search.

In the rest of this section, we define a simple progressive
neighborhood search scheme that is based on two existing
neighborhoods (SPR and NNI). We show how such a scheme
can lead to high quality solutions for the MP problem with
fast computing time. Later in Section VI, more empirical jus-
tifications are given to support the rationale of this progressive
neighborhood.

B. Application to the MP problem

1) Insight of the method: As an illustration example, let us
consider two neighborhoods N 1 and N 2 such that N 2 ⊆ N 1,
in order to define a simple parametric neighborhood Nd that
can range through N 1 and N 2. Consider N 1 = SPR and
N 2 = NNI . Note that NNI can be considered as a special
case of SPR with the constraint that a pruned branch T must
be reinserted to an edge adjacent to T in the initial tree. By
extension, let us imagine a neighborhood of type SPR where
the distance between the pruned edge and the edge receiving
the branch insertion is constrained by a specific value d. If
there is no limitation on the distance (d = ∞), we obtain the
SPR neighborhood. If the distance is set to its minimum value
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(d = 1), we obtain the NNI neighborhood (see Figures 1 and
2).

A

A

C

B

X

< dδ

X C

B

(SPR  )d

Fig. 1. SPR and parametric progressive neighborhood: SPR corresponds to
the case where d = ∞
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Fig. 2. NNI and parametric progressive neighborhood: NNI corresponds to
the case where d = 1

2) A parametric neighborhood that collapses: In order to
enable the neighborhood to progressively collapse we intro-
duce the notion of distance (in terms of edges) between two
nodes vi and vj . The node vi is the root of a subtree which
is pruned from the current tree, and that will be regrafted
between vj and its direct ancestor.

Let us now define more precisely the distance between vi
and vj , noted by δ(vi, vj), as the length of the elementary
path between the respective ascendants of vi and vj , minus
1 if the path contains the root (in the case of rooted trees).
Thus, two nodes with the same direct ancestor have a distance
of 0. Notice that the distance defined previously also applies
to unrooted trees.

In order to control the size of the neighborhood during the
search, we introduce a parameter d and define PPN as the
set of configurations of SPR such that the distance between
a pruned edge and its inserted edge (i.e. distance δ between
their two descendant nodes) is at most equal to d.

To start with the the medium size SPR neighborhood
and progressively end with the small NNI neighborhood, we
compute the initial and final values of the parameter d as
follows:





Ndinit ≡ SPR

Ndfinal ≡ NNI
⇒
(

dinit

dfinal

)
=

(
maxV 2 δ(vi, vj)

1

)

dinit depends on Tinit, i.e. the tree that initiates the search,
and corresponds to the smallest upper bound of distances
between nodes, which is equal to the longest distance between
all pairs of leaves.

If we linearly reduce d then the value of d at the i-th stage
of a local search of a maximum of M iterations is equal to
bdinit

(
1− i

M

)
c (i < M ).

In the following section we experimentally evaluate the
impact of the progressive neighborhood PPN compared to NNI
and SPR.

V. EXPERIMENTATIONS

A. Benchmarks

In order to show the potential of the progressive neighbor-
hood, we used a set of benchmarks composed of both random
and real instances.

Random instances were generated with dnatree [25], using
the Kimura 2-parameters model [24]. 300 instances generated
according to different parameters, were used for the tests.
Few variations among the different results were observed in
regard to the nature of the instance. To lighten the reading,
we have selected six instances of different sizes that are a
representative sample of all tests performed. They contain 100,
300 or 500 DNA sequences, either short (100 nucleic acids)
or long (1000). The transition / transversion rate is fixed to 2
and the mutation probability by time unit set to 5%. Instances
are identified by two numbers: the number of sequences and
their length (100-100, 300-100, 500-100, 100-1000, 300-1000,
500-1000).

We also used the real Zilla [6] instance, which is commonly
cited in the literature. This instance is composed of 500
sequences of 759 nucleotides and has a best known score of
parsimony of 16 218 [28] which is believed to be very difficult
to reach.

An interesting set of instances from [29] was also taken
into consideration in order to evaluate the ability of the PPN
neighborhood to help the descent quickly converge to a near
optimal solution.

B. Experimental conditions

The PPN neighborhood proposed in this paper is compared
to the well-known neighborhoods NNI and SPR using an
iterative descent algorithm. The only difference is that the
descent can accept neighbors with the same score, in order
to avoid being trapped in a local optimum.

Since NNI ⊆ PPN ⊆ SPR, the descent based on SPR is
supposed to globally return better solutions. Indeed, a local
optimum with respect to one neighborhood is also a local
optimum with respect to all included neighborhoods.

But finding a true optimal solution involves looking through
all the neighbors at each iteration, which may be computation-
ally intractable for large instances and large neighborhoods.
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For this reason, we have chosen to use a descent algorithm
based on the first improvement principle. Therefore, instead
of examining all the neighbors of a current tree at each
iteration, the neighbors are examined in a fixed order so as to
systematically find a neighbor with a score smaller or equal to
the current tree. The descent procedure ends when it reaches
a maximum of M iterations which is also the number of trees
evaluated. The pseudo-code given in Algorithm 1 shows the
skeleton of the descent procedure used to perform our tests.

Algorithm 1 Descent algorithm with a fixed number of
iterations

Input: n aligned sequences, N a neighborhood relation and
M the maximum number of iterations (or trees evaluated)
Output: The best tree found
Generate an initial tree T ∈ T , randomly (R) or with a
greedy method (G)
nbIter = 0
While nbIter < M do

for each T ′ ∈ N (T ) do
if φ(T ′) 6 φ(T ) then

T = T ′

break
nbIter = nbIter + 1

return T

In our experiments, we have set M to 50 000 for medium
size random instances (100 or 300 sequences). For large
instances (> 500 sequences), M is set to a more important
value (see Section V-C for details).

Table I gives an overview of the number of neighbors
|N (T )| of a tree T depending on the number of sequences n
(see Section III-B), for the NNI, SPR and TBR neighborhoods.
Note that the number of unrooted trees with n leaves is equal
to the number of rooted trees with n− 1 leaves.

n |NNI| |SPR| |TBR| |T |
50 94 8 792 6 2.1× 105 2.8× 1076

100 194 37 442 6 1.8× 106 3.3× 10184

300 594 352 242 6 5.2× 107 3.4× 10700

500 994 987 042 6 2.5× 108 1.0× 101280

TABLE I
SIZES OF THE NEIGHBORHOODS NNI, SPR AND TBR AND TOTAL

NUMBER OF NEIGHBORS FOR A TREE OF n LEAVES

For all instances, we have run the descent algorithm with
each neighborhood (NNI, SPR and PPN) 100 times. In the
following tables the different combinations appear as Ini-
tial+Neighborhood where Initial indicates the method used
to build the first tree which initiates the descent and Neigh-
borhood is the neighborhood used i.e. NNI, SPR or PPN
within the local search framework of Algorithm 1. In order
to compare the behavior of each descent for different initial
solutions, we use a random (R) and a greedy (G) algorithm
which are described in [1] as first random step and first random
operational taxon unit insertion over greedy branch. Descents
from random trees R assess the ability of the methods to

φ0 φb f (%) φa σ time

10
0-

10
0

R+SPR

1
57

0 534 6 536.3 1.5 0.4
R+NNI 534 5 566.7 32.4 0.3
R+PPN 534 87 534.4 2.3 0.3
G+SPR

54
4

534 26 534.9 0.6 0.5
G+NNI 534 42 536.2 2.7 0.4
G+PPN 534 82 534.2 0.4 0.4

10
0-

10
00

R+SPR

12
91

4 4 080 10 4 093.7 14.3 3.7
R+NNI 4 080 46 4 121.9 91.4 3.2
R+PPN 4 080 100 4 080.0 0 2.2
G+SPR

4
08

5 4 080 85 4 080.3 0.5 4.0
G+NNI 4 080 75 4 080.3 0.6 3.4
G+PPN 4 080 100 4 080.0 0 2.8

TABLE II
RESULTS OBTAINED WITH A DESCENT ALGORITHM ON SMALL SIZE

RANDOM INSTANCES FOR THREE DIFFERENT NEIGHBORHOODS: NNI,
SPR, PPN.

converge to a near optimal solution. G is a greedy algorithm
which builds good initial tree and may be helpful in order to
find a better solution.

C. Results

Tables II, III and IV contain for each instance and each
neigborhood the following data: the score of the initial tree
φ0, the best score (or best tree) obtained when the search ends
φb and its frequency f, the average score of trees for a given
number of runs φa, the standard deviation σ of φa and the
average CPU time in seconds for a given number of runs2.

1) Random instances: For small random instances (see
Table II), we notice that the descent algorithm with the
progressive neighborhood (PPN) returns solutions with the
best score. NNI does not seem to be reliable when the initial
solution is randomly built.

For medium size instances (see Table III), we observed
that the SPR neighborhood is not appropriate any more for
short descents. The quality of solutions returned with NNI
is strongly dependent on the initial tree and can converge
prematurely to a local optimum of poor quality. This shows
the instability of this method due to stochastic factors. The
progressive neighborhood PPN, on the other hand, obtains
good results in any case. On the 300-100 instance, we have
tested a descent using the TBR neighborhood, but it seems not
effective with those experimental conditions.

The efficiency of the neighborhoods can be better observed
on Figure 3 which shows the evolution of the score of trees
for a given number of iterations of the descent algorithm.
We observe that the descent algorithm using the progressive
neighborhood clearly dominates SPR and NNI.

For large instances (see Table IV, for which time is given in
seconds), we observed that SPR generally yields bad results.
Scores returned by NNI are subject to high variations with im-
portant standard deviations. Increasing the number of iterations
(M ) enables SPR to find better results (with a more important
computation time) but still far from the best results of the

2Implemented in C++, all algorithms are compiled using the gcc/g++
compiler and run on a 2.4 GHz Opteron 850 processor.
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φ0 M φb f (%) φa σ time

30
0-

10
0

R+TBR

5
86

4 5
.1

0
4 1 601 1 1 671.3 36.2 10.5

R+SPR 1 583 1 1 649.5 30.3 0.8
R+NNI 1 569 1 1 954.3 151.6 0.4
R+PPN 1 300 1 1 329.1 38.6 0.6
R+SPR

5
.1

0
5 1 301 1 1 307.3 3.2 6.5

R+NNI 1 329 1 1 632.4 143.2 5.7
R+PPN 1 300 30 1 301.9 5.5 6.6
G+SPR

1
32

5 5
.1

0
4 1 307 2 1 315.4 4.3 1.1

G+NNI 1 300 1 1 304.7 2.7 0.8
G+PPN 1 300 4 1 302.6 1.4 1.2
G+TBR

5
.1

0
5 1 303 3 1 307.4 2.1 121.8

G+SPR 1 300 1 1 302.8 1.4 7.0
G+NNI 1 301 10 1 304.2 2.7 5.8
G+PPN 1 300 19 1 301.0 0.7 8.0

30
0-

10
00

R+SPR

51
38

7 5
.1

0
4 16 789 1 17 422.8 253.1 9.2

R+NNI 14 209 15 14 381.8 213.8 5.8
R+PPN 14 209 94 14 209.5 1.8 4.2
R+SPR

5
.1

0
5 14 209 1 14 234.7 16.4 64.2

R+NNI 14 209 33 14 352.6 202.2 51.3
R+PPN 14 209 100 14 209.0 0 40.9
G+SPR

14
23

0 5
.1

0
4 14 209 1 14 221.4 8.0 22.0

G+NNI 14 209 76 14 209.7 1.9 15.1
G+PPN 14 209 100 14 209.0 0 20.3
G+SPR

5
.1

0
5 14 209 87 14 209.3 0.8 76.2

G+NNI 14 209 78 14 209.5 1.8 59.7
G+PPN 14 209 100 14 209.0 0 60.0

TABLE III
RESULTS OBTAINED WITH A DESCENT ALGORITHM ON MEDIUM SIZE

RANDOM INSTANCES FOR THE NEIGHBORHOODS: NNI, SPR, TBR, PPN.

φ0 M φb f (%) φa σ time

50
0-

10
0

R+SPR

9
16

4 5
.1

0
4 3 493 1 3 671.6 68.6 1.1

R+NNI 4 039 1 4 410.9 174.7 0.9
R+PPN 2 279 1 2 367.4 53.2 1.1
R+SPR

5
.1

0
5 2 312 1 2 344.7 15.7 8.5

R+NNI 2 263 1 2 428.2 108.2 6.5
R+PPN 2 243 48 2 244.0 3.0 9.8
G+SPR

2
26

5 5
.1

0
4 2 259 1 2 273.1 6.7 2.6

G+NNI 2 243 7 2 247.2 3.6 1.6
G+PPN 2 243 4 2 245.3 1.5 3.4
G+SPR

5
.1

0
5 2 246 2 2 251.3 2.8 9.1

G+NNI 2 243 28 2 245.6 3.0 7.2
G+PPN 2 243 61 2 243.5 0.7 13.1

50
0-

10
00

R+SPR

10
0

38
8 5
.1

0
4 35 980 1 37 690.7 580.4 17.6

R+NNI 25 821 1 29 080.7 1767.8 18.3
R+PPN 24 319 5 24 391.9 141.6 5.2
R+SPR

5
.1

0
5 24 938 1 25 205.6 116.0 100.4

R+NNI 24 319 3 24 618.5 593.2 66.3
R+PPN 24 319 100 24 319.0 0 54.2
G+SPR

24
35

9 5
.1

0
4 24 326 1 24 351.4 13.6 85.2

G+NNI 24 319 70 24 321.0 3.4 49.4
G+PPN 24 319 98 24 219.1 0.7 81.1
G+SPR

5
.1

0
5 24 319 6 24 325.8 5.3 160.1

G+NNI 24 319 76 24 320.6 3.1 104.0
G+PPN 24 319 100 24 219.0 0 143.8

TABLE IV
RESULTS OBTAINED WITH A DESCENT ALGORITHM ON LARGE SIZE

RANDOM INSTANCES FOR THREE DIFFERENT NEIGHBORHOODS: NNI,
SPR, PPN.
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Fig. 3. Evolution of the score of trees for SPR, NNI and PPN with a 300-100
random instance starting from a random tree

φ0 M φb f (%) φa σ time

z
i
l
l
a

R+SPR

37
42

7

105

18 013 1 18 470.2 126.9 18.5
R+NNI 19 875 1 21 863.2 894.9 10.6
R+PPN 16 263 1 16 553.0 204.3 7.7
R+SPR

106

16 272 1 16 312.8 20.4 135.3
R+NNI 19 142 1 21 342.4 1 102.9 118.4
R+PPN 16 222 3 16 257.0 45.3 78.5
R+SPR

2.107

16 219 5 16 225.8 4.8 2 325
R+PPN 16 218 5 16 223.3 3.9 1 609
G+SPR

16
47

5

105

16 335 1 16 384.1 21.9 69.1
G+NNI 16 255 1 16 313.0 22.4 39.6
G+PPN 16 226 1 16 245.9 11.8 66.8
G+SPR

106

16 237 1 16 256.4 8.3 203.8
G+NNI 16 257 1 16 311.3 28.1 141.3
G+PPN 16 219 1 16 228.5 6.7 140.9

TABLE V
RESULTS ON THE Zilla INSTANCE

other methods. Also note the efficiency of the method using
the progressive neighborhood PPN for large instances like
the 500-1000 instance. In 100 000 iterations, PPN succeeds
to systematically return the best solution of score 24 319
with half of the time required by SPR. Among the 20 runs
performed, NNI has found this score only once.

2) Real instances: For the well-known Zilla instance, it
is believed that it is very difficult to find the best known
score of 16 218 (see [28]). This was confirmed during the
experimentations we carried out.

We have performed different tests with an increasing num-
ber of iterations (M = 105 and 106) and results of the
three methods are reported in Table V. NNI systematically
returns poor solutions from random trees in less than 100 000
iterations and won’t improve for a greater value of M . On
this difficult instance, PPN obtains better scores than SPR.
Moreover, we have run SPR and PPN from random trees 20
times for M = 2 × 107 iterations. PPN could find the best
known score within 30 minutes. Although the algorithm is
quite simple, this result may be considered very interesting.

Figure 4 shows the evolution of the score for the three
neighborhoods used to solve the Zilla instance within 300 000
iterations and from a tree built with the UPGMA distance-
based method [33]. With this intermediate and quite good
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Fig. 4. Evolution of the score from an intermediate solution on the Zilla
instance

tree, we can see that NNI is more effective than SPR at the
beginning of the search before reaching local optima, contrary
to the case for which the descent started from initial trees
randomly generated (Figure 3). This is a first obervation which
justifies the use of a progressive neighborhood.

D. Comparison with other methods and softwares

We would like to underline that the aim of this work is
not the development of a new software able to compete with
the best softwares like TNT (see section V-F) because they
make an intensive use of several heuristics and strategies. Our
aim here is to present a new neighborhood which, used with a
simple descent algorithm, turns out to be more efficient than
the existing neighborhoods generally used for the resolution
of the Maximum Parsimony problem. We believe that this new
neighborhood could be used to improve the efficiency of the
existing softwares. In the following, we won’t try to compare
the resolution time of each method or software but some of
them are reported in order to give an overview of the effort
that is required to solve a particular problem.

E. Comparison with GRASP+VND

Finally, we assess the performance of PPN on a set of 8
real-life instances (see Table VI) taken from [29], which are
initially presented in [26]. Table VI reports the best known
scores obtained by a GRASP+VND procedure [29], which
could find three new optima and could redicover the other
known values. The authors recall that the previous best known
solutions were not found with their method. For each instance,
the column named time corresponds to the computation time
(in seconds) used to obtain the best score out of 10 executions
of the GRASP+VND algorithm on a 2GHz Pentium IV
processor. This information is provided for indication purpose
only and may give some evidence about the difficulty of each
problem instance. For example, one may notice from Table VI
that the last four instances seem more difficult given that much
more computing times are needed to reach the best scores by
GRASP+VND.

GRASP+VND is a very recent procedure which applies
two well-known metaheuristics GRASP [10] and VND [21]

GRASP+VND
Instance n k φb time

GRIS 47 93 172 3 505
ANGI 49 58 216 5 099
TENU 56 179 682 7 497
ETHE 58 86 372 10 042
ROPA 75 82 325 15 764
GOLO 77 97 496 32 836
SCHU 113 146 759 113 391
CARP 117 110 548 82 176

TABLE VI
SIZE AND BEST-KNOWN SCORES ON INSTANCES TAKEN FROM [29]

PPN
Instance φb M f (%) φa σ time

GRIS 172

5
×

1
0
4

100 172.0 0 1.7
ANGI 216 8 218.0 1.4 1.3
TENU 682 9 686.6 3.7 2.6
ETHE 372 2 374.3 1.0 1.5
ROPA 326 5 328.7 1.6 1.6
GOLO 497 1 505.8 4.2 2.1
SCHU 759 1 768.6 5.1 3.5
CARP 549 1 554.8 3.1 3.0
ROPA 325

2
×

1
0
5 3 328.1 1.7 7.3

GOLO 496 2 502.7 2.9 8.0
SCHU 759 10 766.4 4.5 12.4
CARP 548 1 553.5 3.5 10.9

TABLE VII
PERFORMANCES OF PPN ON BENCHMARKS TAKEN FROM [29]

to the MP problem. An initial solution is built with a greedy
randomized algorithm and is then improved with a VND
heuristic using the Multiple Subtree Pruning and Regrafting
neighborhood (l-SPR). Note that Ganapathy, Ramachandran
and Warnow define in [14] the p-Edge-Contract-and-Refine (p-
ECR) neighborhood which can be seen as a similar extension
of NNI. In practice, l and p are limited to 2 for those multiple
steps neighborhoods.

For PPN, we have limited the number of iterations of the
descent to M = 50 000. We have executed the PPN procedure
100 times on each instance (on a 2.4GHz AMD Opteron
processor) and report in Table VI the value of the best solution
found (φb), the average computation time in seconds (time) as
well as the frequency of the best solution found (f). Moreover,
we indicate for each instance the average score (φa) and its
standard deviation (σ).

From Table VII, one observes that within M = 50 000
iterations, PPN can find the optimum score for 5 out of 8
instances in a very short time (a few seconds). If we extend
the search to M = 200 000 for the 4 most difficult instances,
PPN is able to find all the best known results. Those results
prove the efficiency of PPN due to the limited number of trees
visited during the search.

F. Comparison with TNT

The software TNT [20] (for Tree analysis using New Tech-
nology) is probably the fastest and most effective parsimony
analysis program. TNT uses many search strategies such as



8

TNT
PPN search SPR search TBR search New Tech. search

Instance φb φa trees φb φa trees φb φa trees φb φa trees
GRIS 172 172.0 5.0× 104 172 173.7 1.1× 105 172 172.1 4.3× 105 172 172.0 5.7× 106

ANGI 216 218.0 5.0× 104 216 219.2 1.8× 105 216 218.6 7.7× 105 216 216.0 8.6× 106

TENU 682 686.6 5.0× 104 682 688.0 1.9× 105 682 683.5 8.1× 105 682 682.0 1.5× 107

ETHE 372 374.3 5.0× 104 372 376.8 2.3× 105 372 374.1 9.0× 105 372 372.2 1.0× 107

ROPA 325 328.1 2.0× 105 327 329.6 4.0× 105 326 328.3 1.8× 106 325 325.0 2.3× 107

GOLO 496 502.7 2.0× 105 498 507.2 5.5× 105 497 502.7 2.6× 106 496 496.3 2.3× 107

SCHU 759 766.4 2.0× 105 761 771.1 1.3× 106 759 762.8 7.8× 106 759 759.0 6.8× 107

CARP 548 553.5 2.0× 105 548 553.6 1.4× 106 548 553.1 7.3× 106 548 548.0 6.1× 107

TABLE VIII
COMPARISON OF PPN AND TNT USING TRADITIONAL SEARCH (SPR, TBR) OR NEW TECHNOLOGY SEARCH

tree drifting, parsimony ratchet or sectorial search. TNT has
also the ability to evaluate millions of trees in a very efficient
way [18]. Table VIII reports the number of trees evaluated
during a SPR, TBR and a New Technology search. We can
observe that the 4 methods presented (PPN vs TNT) show
their ability to reach an optimal or a near optimal solution for
each instance but PPN evaluates less trees than other methods
especially on hard instances as reported on the column trees
which represents the number of trees evaluated during the
search.

G. Discussion

The reduction scheme of the progressive neighborhood
implies that a maximum number of iterations M has to be
fixed. The bigger M is, the slower the size of the neighborhood
will decrease. If M is too big, SPR and PPN have the same
behaviour. Indeed, the first third of the iterations of PPN uses
a neighborhood close to SPR. If M is set to a small value,
PPN will obtain good local optima but with less effort than
SPR.

VI. JUSTIFICATIONS

In order to justify the validity of the progressive neighbor-
hood, we have investigated the behavior of a descent algorithm
with a SPR neighborhood and its influence on the search of
a better configuration. In this section, we use δ to note the
distance δ(vi, vj) between a tree T and a neighbor in SPR.

The first study aims at observing the evolution of the
distance δ between a given tree T and a best neighbor T ′

which is one the best neighbors of T . For this purpose, we have
used a best improvement descent algorithm (see algorithm 2).
At each iteration of the algorithm, a best improving neighbor
is chosen to replace the current tree. Recall that an improving
neighbor has a better (smaller) parsimony score than the
current tree. The algorithm stops when there is no more
improving neighbor.

We have run this algorithm several times (R = 10) on 6
different random instances. Figure 5 shows the results obtained
on an instance of 100 sequences of 1000 characters. The black
line on Figure 5 is a polynomial approximation of degree 6
of the points.

From Figure 5, one observes clearly that at the beginning
of the search, the distance δ is quite important. This distance

Algorithm 2 Best improvement descent using a SPR neigh-
borhood which returns the best tree in function of the tree
quality

Repeat R times
Generate an initial random tree T0

i = 0
While Ti is not a local optimum do

find T ′ on of the best neighbor of T
i = i+ 1

p = i the final number of iterations
Print coordinates ( ip , δ(Ti−1, Ti)), ∀i ∈ {1..p}

decreases when the search progresses. Near the end of the
search, the current tree and its best neighbor are quite close,
separated only by a small distance δ near 1.

We can say that to obtain a best improving neighbor at the
early stage of the search, it is necessary to make important tree
transformations, i.e. using a large neighborhood such as SPR
or TBR. Since the distance between a tree and its best neighbor
decreases along with the progress of the search, limited tree
transformations will be sufficient near the end and a small
neighborhood like NNI seems appropriate.

Fig. 5. Evolution of the distance δ between a tree and its best neighbor
according to the SPR transformation in function of the number of iterations.

The second study we have carried out aims at evaluating
the evolution of the number of improving neighbors (i.e. trees
having a smaller parsimony score than the current tree). In
order to correlate this information with the one related to the
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distance δ, we consider, for a given distance of δ, the evolution
of the ratio :

number of improving neighbors

total number of neighbors

during a search (see Figure 6).
We can notice from Figure 6 that as long as the search

progresses, the number of improving neighbors decreases and
that the improving neighbors are more and more close (in
terms of distance δ) to the current tree. Towards the end
of the search, there are almost no more improving trees
with large values of δ. This observation constitutes therefore
another empirical justification for the use of a progressive
neighborhood.
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Fig. 6. Evolution of the ratio number of improving neighbors /total number
of neighbors in function of the tree score, for a given distance δ (20, 15, 10,
5, 3, 2, 1).

VII. CONCLUSION

The local search heuristics using the SPR and NNI neigh-
borhoods are among the most popular search methods to solve
the MP problem in phylogenetic reconstruction. Although
highly effective and fast for small instances (consisting of
less than 100 species), they may not be reliable and efficient
enough when applied to larger instances. In the case of a
small size neighborhood like NNI, several searches have to be
performed from distinct trees (replications) in order to explore
several areas of the search space and thus to avoid the local
optima pitfalls. In the case of larger neighborhoods like SPR
or TBR, the search space is so huge that it is necessary to use

a combination of methods (genetic algorithms [19], supertrees
[3], . . . ) in order to obtain results of acceptable quality.

It would be also interesting to carry out a thorough study
using TBR. In a first approximation TBR seems too large to
provide any improvement compared to SPR, but this might
be due to the linear reduction scheme which might not be
appropriate.

The aim of this study was to understand the efficiency of the
well-known neighborhoods and to propose an alternative that
combines the interesting properties of the SPR and NNI neigh-
borhoods. The progressive neighborhood (PN) introduced in
this article shows a significant improvement compared to SPR
and NNI, especially with difficult instances. Moreover, the
progressive neighborhood is much more robust as it allows
to minimize the replication of runs. Another interesting point
is that the quality of the first tree used to begin the search
does not seem to have much influence on the quality of the
solution when using a descent algorithm with PN.

Finally, given the characteristics of the progressive neigh-
borhood, it would be particularly interesting to integrate this
neighborhood within the best current phylogeny reconstruction
softwares like PAUP* [36] or TNT [20] in order to improve
their efficiency.

Indeed, we have designed a hybrid algorithm called Hydra
(for HYbrid Distance Recombination Algorithm) that com-
bines a genetic algorithm using a new crossover operator
DiBIP and a progressive neighborhood based local search
algorithm [17]. The experimentations we have carried out on a
set of 28 (real and randomly generated) benchmark instances
show very competitive results compared to state-of-the-art
algorithms. Indeed, for the 8 real datasets, the best known
score are systematically found. The most remarkable results
concern the set of 20 random instances for which we can
improve 19 of the best scores known to day.
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[32] E. Schröder. Vier Kombinatorische Probleme. Z. Math. Phys. 15:361-
376, 1870.

[33] R. R. Sokal et C. D. Michener. A statistical method for evaluating
systemaic relationships University of Kansas Science Bulletin 38:1409-
1438, 1958.

[34] R. R. Sokal et P. H. A. Sneath. Principles of Numerical Taxonomy. W.
H. Freeman, San Francisco, 1963.

[35] D. L. Swofford, G. J. Olsen. in D.M. Hillis and C. Moritz (Ed.)
Phylogeny Reconstruction. Molecular Systematics, chapter 11:411-501,
1990.

[36] D. L. Swofford. PAUP*: Phylogenetic Analysis Using Parsimony 4.0
Beta, 2002. Molecular Systematics, chapter 11:411-501, 1990.

[37] M. S. Waterman and T. F. Smith. On the similarity of dendograms.
Journal of Theoretical Biology 73:789-800, 1978.

Jin-Kao Hao holds a full Professor position in the
Computer Science Department of the University of
Angers (France) since 1999. He graduated from the
School of Computer Science of the National Uni-
versity of Defence Technology (China) in 1982. He
received his M.S., Ph.D. and Professorship Diploma
HDR respectively in 1987, 1991, 1998 from the
National Institute of Applied Sciences (Lyon), the
University of Burgundy (Dijon) and the University
of Montpellier II in France. His research lies in the
design of effective heuristic and metaheuristic algo-

rithms for solving large-scale combinatorial problems in various application
areas. His current research interests in bioinformatics include microarray
data classification, phylogenetic tree reconstruction and multiple sequence
alignment.

Jean-Michel Richer received a PhD degree in
Computer Science from the University of Burgundy
(Dijon), France in 1999. After working as a senior
developer for Simplex Solutions SA, he joined Pr
Jin-Kao Hao’s team at the University of Angers
as an assistant professor in 2000. His current re-
search interests concern computational biology and
methods related to the resolution of combinatorial
optimization problems.
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