
Loal Searh for the Maximum ParsimonyProblemAdrien Go�e�on, Jean-Mihel Riher and Jin-Kao HaoLERIA - University of Angers2 Boulevard Lavoisier, 49045 Angers Cedex 01, Franefgoeffon,riher,hao??g�info.univ-angers.frAbstrat. Four loal searh algorithms are investigated for the phylo-geneti tree reonstrution problem under the Maximum Parsimony ri-terion. A new subtree swapping neighborhood is introdued and studiedin ombination with an e�etive array-based tree representation. Com-putational results are shown on a set of randomly generated benhmarkinstanes as well as on 8 real problems (sequenes of phytopathogen -proteobateria) and ompared with two referenes from the literature.1 IntrodutionPhylogeny onerns the reonstrution of the evolutionary history of a set ofspeies identi�ed by their nulei aid (DNA) or amino aid (AA) sequenes,also alled taxa. The evolutionary relationships between speies are representedby a tree, alled a phylogeneti tree, whose branhes reet historial relation-ships. The appliations of phylogeny range from lassi�ation and taxonomy tomoleular epidemiology [5℄.The problem of phylogeny reonstrution an be addressed using severalmethods. The distane-based approah omputes a distane matrix from the taxaand tries to �nd a tree that approximates this matrix. Agglomerative lusteringalgorithms suh as NJ (Neighbor-Joining) [11℄ and BIONJ [8℄ are well-knownexamples. The harater-based approah searhes through tree topologies to �ndthe best tree aording to an optimality riterion. The widely used MaximumParsimony riterion [3℄ is suh an example whih states that the tree requir-ing the fewest number of hanges (mutations) should be preferred. This Maxi-mum Parsimony Problem (MPP) is known to be NP-Hard [7℄. Therefore, severalheuristis have been developed, inluding branh-swapping used in PHYLIP [4℄and PAUP [12℄, simulated annealing [2℄ and other metaheuristis [1℄. MaximumLikelihood is yet another approah for the inferene of phylogeny using proba-bilisti estimation.In this paper, we are interested in studying Loal Searh algorithms for theMPP and studying two important elements: the neighborhood relation and theinternal tree representation. We evaluate a new neighborhood alled SubtreeSwapping Neighborhood (SSN) as well as an array-based tree representation.?? Corresponding author



2 The Maximum Parsimony ProblemDe�nition 1 (Phylogeneti tree). A phylogeneti tree is a direted graphshowing the relationships between a group of ontemporary taxa (labels of theleaves) and their hypothetial ommon anestors (internal nodes labeled by on-sensus sequenes). If a rooted tree is used, the root is the ommon anestor ofall the ontemporary taxa.De�nition 2 (Consensus sequenes). Given two sequenes S1 and S2 oflength k: S1 =< x11; x12; � � � ; x1k >, S2 =< x21; x22; � � � ; x2k > with xji taken fromsome alphabetP, the onsensus sequene S (parent node in a phylogeneti tree)is obtained from S1 and S2 by:8i; 1 � i � k; xi = �x1i [ x2i ; if x1i \ x2i = ;x1i \ x2i ; if x1i \ x2i 6= ;The ost of the onsensus sequene S is de�ned by:f(S) = kXi=1 i where i = �1; if x1i \ x2i = ;0; otherwiseDe�nition 3 (Parsimony sore of a phylogeneti tree). Given a phyloge-neti tree t and V a set of nodes whose leaves are labeled with the sequenes ofan initial set S, the parsimony sore of t is given by :f(t) = Xv2V nS f(Sv )where Sv are the onsensus sequenes assoiated to the internal nodes of t.The goal of the Maximum Parsimony Problem is then to �nd a tree t� 2T with the lowest parsimony sore f(t�), T being the set of all the possiblephylogeneti trees for a given set of taxa S.3 Loal Searh for the Maximum Parsimony ProblemGiven the NP-hardness of the MPP, loal searh (LS) heuristis have been mas-sively used to �nd approximate phylogeneti trees. In this Setion, we study fourLS algorithms using a new neighborhood. First, the basi and ommon elementsof these LS algorithms are introdued.3.1 Tree representation and evaluationOne important issue of LS algorithms for the MPP onerns the way the trees arerepresented and evaluated. Here, we use an array-based representation (Fig. 1).Eah node is identi�ed by a number (N), assoiated with its left (L) and right(R) son, the parent (P) and the ost (C) of the node. This representation is par-tiularly suitable for applying hanges in the SSN neighborhood and onvenientfor omputing the ost of eah neighboring tree.
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6Fig. 1. Tree representation3.2 NeighborhoodNeighborhood is a ritial element of loal searh algorithms. The literature o�ersthree major neighborhoods for trees: NNI (Nearest neighborhood interhanges)[14℄, SPR (Subtree pruning and Regrafting) and TBR (Tree Bisetion Reon-netion) [13℄. NNI is a restrited neighborhood whih onsists in swapping twoadjaent branhes. SPR removes a subtree and reinserts it in other branhes ofthe tree. TBR breaks the initial tree into two subtrees whih an be reonnetedto any branhes of one another. It is easy to see that NNI � SPR � TBR.In this study, we introdue a new neighborhood, that we all SSN (for SubtreeSwapping Neighborhood). SSN onsists in swapping two subtrees of a tree. LetSSNX;Y (t) be the tree obtained by exhanging the subtrees with roots X andY of tree t suh that Y (resp. X) must not be ontained in the subtree rootedfrom X (resp. from Y ). Then the SSN neighborhood N an be formally de�nedas follows N : T ! 2T is suh that for eah t =<N; V >2 T , a tree t0 2 T isa neighbor of t, i.e. t0 2 N (t), if and only if 9(X;Y ) 2 V � V , SSNX;Y (t) = t0where V is the set of nodes. As shown later, SSN, ombined with our internaltree representation, ontributes greatly to the eÆieny of our LS algorithms.3.3 Implemented Loal Searh algorithmsPure Desent (PD) The Pure Desent (PD) algorithm aepts only betterneighboring solutions. A neighboring tree t0 is aepted to replae the urrenttree t only if f(t0) < f(t) (t0 is more parsimonious than t). This algorithmneeds no parameter and stops automatially when a loal optimum (minimum)is enountered. The pure desent is very fast and may serve as a baseline referenefor evaluating other algorithms.Random Walk Desent (RWD) This algorithm ombines the pure desentwith the random walk strategy to aept from time to time a random neighbor(whih is not neessarily better). At eah iteration, with probability p 2 [0; 1℄,



a neighbor is taken randomly from the neighborhood to replae the urrentsolution regardless of its ost; with probability 1 � p, a pure desent iterationis arried out. Here, p = 1�:jSj2 , � taking values from 1 to 10 and jSj being thenumber of speies of the problem instane.Iterative Loal Searh (ILS) ILS uses the pure desent to reah a �rstloal optimum and then perturbs this loal optimum by arrying out a limitednumber of random walks. This leads to a new solution whih is then used bythe pure desent to seek another loal optimum. The two-steps proess Desent- Perturbation is repeated until a prede�ned stop ondition is met.Simulated Annealing (SA) At eah iteration, a neighbor t0 is taken randomlyfrom N (t) of the urrent tree t. t0 is aepted to replae t if t0 is better than t.Otherwise, t0 is aepted with a probability e� f(t0)�f(t)� where f is the evaluation(ost) funtion given in Setion 2 and � is the temperature parameter whihis dereased by a simple linear funtion. The algorithm stops when the urrentsolution is not replaed for a �xed number of iterations.4 Experimental ResultsIn this setion, we ompare the four LS algorithms presented above and as-sess their performanes with respet to two referenes: DNAPARS of PHYLIPpakage [4℄ and LVB (both fast and slow versions) [2℄. Implemented in C++,PD, RWD, ILS and SA are ompiled using the -O2 optimization option of theg/g++ ompiler and run on Sun Fire V880 with 8 GBytes of RAM.4.1 BenhmarksOur benhmarks inlude problems having 100 to 180 sequenes of a length of 100nuleotides and were generated with Dnatree [10℄ and the Kimura two-parametermodel [9℄ with a transition/transversion ratio �xed to 2, and an evolution rate of0.05. We used also 8 real instanes from plant pathology, omposed of 69 to 95sequenes of phytopathogen -proteobateria (denoted by phyto here) with 409to 645 sites and report only here the results on one real instane sine we observedvery similar behavior on these instanes. To run the programs, an initial tree isgenerated either with a random onstrution (Rand) or with a distane-basedmethod (Dist). Eah algorithm is run 20 to 50 times.4.2 Comparison of PD, RWD, ILS and SATable 1 shows the omparative results of (PD, RWD, ILS and SA) on �ve lassesof random instanes and the phytopathogen instane, with the following infor-mation: the best ost found (fb), the average ost (fm), the standard deviationof the ost (�) and the average omputing time (time).



Algorithm fb fm � time Algorithm fb fm � time100.100 160.100PD 419 420,9 1,5 3m30 PD 655 658,9 2,6 13mRWD 419 420,1 1,4 30m RWD 655 656,6 1,9 1h20ILS 419 419,0 0 20m ILS 655 655,5 0,7 1hSA 419 419,0 0 30m SA 654 654,0 0 1h10DNAPARS 419 419 � 4m DNAPARS 654 654 � 65hLVB Slow 420 420 � >2h LVB Slow 655 655 � >3hLVB Fast 421 421 � >2h LVB Fast 655 655 � >3h120.100 180.100PD 495 495,8 1,4 6m PD 753 755,4 1,8 15mRWD 495 495 0 40m RWD 752 754,0 1,3 1h40ILS 495 495,3 0,6 30m ILS 752 753,0 1,4 1h20SA 495 495,0 0 40m SA 751 751,0 0 1h40DNAPARS 495 495 � 40h DNAPARS 751 751 � 1h20LVB Fast 496 496 � >1h LVB Slow 752 752 � >3hLVB Slow 496 496 � >1h LVB Fast 752 752 � >3h140.100 phytoPD 683 684,6 1,2 8m PD 731 734,8 2,6 6mRWD 682 683,6 1,0 1h RWD 730 731,0 1,1 40mILS 683 684,2 1,1 40m ILS 731 732,8 1,5 30mSA 682 682,0 0 50m SA 729 729,8 0,7 40mDNAPARS 682 682 � 51h DNAPARS 731 731 � 14hLVB Slow 683 683 � >5h LVB Slow 764 764 � >4hLVB Fast 685 683 � >4h LVB Fast 740 740 � >4hTable 1. Comparison of PD, ILS, RWD, SA, DNAPARS and LVBFrom Table 1, one observes that PD is able to �nd good solutions with veryshort omputation times ompared with other algorithms. RWD �nds a littlebetter solutions, but needs more omputation time. We suspet that exeutingRWDmore times may lead to even better solutions. ILS, even with a long ompu-tation time, is not ompetitive. This is somewhat unexpeted given that it usesa perturbation tehniques to re-start PD. One possible explanation would bethat the simple re-start tehnique used by PD (reall that PD was run 5 times)is more appropriate than re-starting PD with a solution near a loal optimum.Finally, SA is the most powerful algorithm, able to �nd the most parsimonioustrees with reasonable omputation times.4.3 Comparisons of LS algorithms with LVB and DNAPARSFrom Table 1, one observes �rst that in terms of solution quality, SA and DNA-PARS �nd the same results for random instanes, and SA �nds better solutionsfor the real instane. However, SA is muh faster than DNAPARS to �nd solu-tions of the same quality. This is partiularly true when the problem instaneis of larger size. Indeed for still larger instanes (with more than 200 sequenes,not reported here), DNAPARS did not �nish after 2 days of omputation whileSA needs 1 to 2 hours to obtain near-optimal solutions. For the phytopathogeninstane, our SA algorithm obtains better result than DNAPARS (with a ostof 729 against 731). If we onsider the results of LVB, one observes easily thatboth the fast and slow versions of LVB are often dominated by our algorithms,both in terms of solution quality and omputation time.
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