
A Memetic Algorithm for Phylogenetic

Reconstruction with Maximum Parsimony

Jean-Michel Richer1 and Adrien Goëffon2 and Jin-Kao Hao1

1 University of Angers, LERIA, 2 Bd Lavoisier, 49045 Anger Cedex 01, France
2 LaBRI (UMR 5800) Université de Bordeaux 351 cours de la Libération 33405

Talence Cedex, France

Abstract. The Maximum Parsimony problem aims at reconstructing a
phylogenetic tree from DNA, RNA or protein sequences while minimiz-
ing the number of evolutionary changes. Much work has been devoted
by the research community to solve this NP-complete problem and many
algorithms and techniques have been devised in order to find high qual-
ity solution with reasonable computational resources. In this paper we
present a memetic algorithm (implemented in the software Hydra) which
is based on an integration of an effective local search operator with a spe-
cific topological tree crossover operator. We report computational results
on a set of 12 benchmark instances from the literature and demonstrate
its effectiveness with respect to one of the most powerful software (TNT).
We also study the behavior of the algorithm with respect to some fun-
damental ingredients.

Keywords: Maximum Parsimony, phylogeny, progressive descent, tree
crossover, memetic algorithm.

1 Introduction

Phylogenetics, also known as Phylogenetic Systematics, is the formal name for
the field within Biology that reconstructs evolutionary history of species. Phy-
logenetics studies the connections between groups of species (as understood by
an ancestor / descendant relationships) which are represented by a phylogenetic
tree. In such a phylogenetic tree, the leaves represent contemporary or extinct
species and internal nodes correspond to hypothetical ancestors.

Recent advances in genomics, including whole-genome sequencing have mainly
influenced phylogenetics. In the past, morphological characters (like size, color,
number of legs, etc...) were used for inferring phylogenies. With today’s data
obtained from the sequencing programs, we can compare organisms from the in-
formation extracted from their genetic material (DNA, RNA) or their proteome
(protein sequences). This is particularly useful when dealing with prokaryote
organisms like bacteria or viruses for which morphological characters are diffi-
cult to define or identify. Molecular phylogenetics has then become an important
field in Bioinformatics and finds many applications in biology and medicine like

genetic evolution, taxonomy and classification, or virus detection and mutation
[13].

Much work has been devoted to the problem of phylogeny reconstruction
since the 1960s. The general principle behind phylogenetic methods is to find a
tree that minimizes sequence changes or mutations. We can bring three different
approaches to light:

– Distance methods, inspired by the clustering work of Sokal and Sneath [19],
introduced in 1967 by [2] or by [6] rely on a matrix of distances observed
between species. The most popular algorithm of this class of methods is
probably the Neighbor-Joining from [17], improved by [8]. Those methods
are very efficient for they rely on an algorithm of polynomial complexity but
they sometimes lack robustness.

– Probabilistic methods are based on a model of evolution of characters. The
Maximum Likelihood (ML), introduced by [4] in 1981 provides a general
framework that consists in inferring the most probable phylogeny that max-
imizes the likelihood of observed sequences. Although ML is popular for
phylogenetic inference because it is considered as a robust method, it is
more computationally expensive than other methods.

– Cladistic methods are based on a matrix of given characters. The most well-
known method of this class relies on the Maximum Parsimony (MP) criterion
[3] as it is quite simple to apprehend. Such a method aims at building a binary
tree that minimizes the number of changes without resorting to a particular
model of evolution. The cost of a tree can be computed in polynomial time
[5]. However, the search for an optimal tree is computationally intractable.
Indeed, the Maximum Parsimony problem is extremely difficult to solve since
it is equivalent to the NP-complete Steiner problem in the hypercube [7]. This
is why heuristics methods constitute the main alternative in order to obtain
a near optimal tree with reasonable computation time [12, 15].

In this article, we are interested in finding high quality solutions for the
phylogeny reconstruction problem with Maximum Parsimony under Fitch’s cri-
terion. We present a memetic algorithm which combines a local searcher using
a parametric neighborhood relation and a specific tree crossover based on a
topological distance. The crossover operator aims at creating new phylogenetic
trees by conserving topological distance properties of parent trees while the
local searcher improves the quality of each newly created offspring by a multi-
neighborhood descent algorithm.

In order to accelerate the fitness evaluation of potential solutions (phyloge-
netic trees) which is a critical issue in our context, we introduce a vectorization
technique to fully take advantage of some characteristics offered by modern x86
processors. To our knowledge, this technique was never described in the litera-
ture and helps decrease the computation time by about 80% on any x86 modern
processor.

To assess the performance of the proposed memetic algorithm, we report
computational results on a set of 12 benchmark instances from TreeBase, a well-
known database on phylogenetic information and compare these results with

those obtained by TNT, which is considered to be the most efficient software for
the MP problem.

The rest of the paper is organized as follows. In the next section we for-
mally introduce the MP problem. We then describe the main components of
the memetic algorithms (Section 3). Computational results and comparisons are
shown in Section 4 where some analysis is also given to study the influence of
some basic ingredients on the performance of the algorithm (Section 4.4).

2 Phylogeny reconstruction and Maximum Parsimony

Phylogeny generally takes as input a multiple alignment which is a matrix of
characters composed of n lines (related to a set S of species, where |S| = n) and
k columns which represent the characters of the sequences. Each sequence is also
called a taxon (or taxonomic unit, plural taxa). Each character of the matrix
belongs to an alphabet Σ. The aim of the Maximum Parsimony problem is to
find a phylogenetic tree (i.e. generally a binary tree, rooted or unrooted) that
minimizes the number of changes (or mutations) between sequences. Each leaf
of the tree is associated to one of the n species and the cost (or number of mu-
tations) of the overall tree can be estimated by building hypothetical sequences
of parsimony from the leaves toward the root of the tree. More precisely we can
formulate the following definitions:

Definition 1 (Sequence of parsimony - see [5]).
Given two sequences S1 and S2 of length k characters such that S1 = x1 · · ·xk,

S2 = y1 · · · yk with ∀i ∈ {1..k}, xi, yi belong to the power set P(Σ), the sequence
of parsimony of S1 and S2, noted F (S1, S2) = z1 · · · zk is obtained by :

∀i, 1 ≤ i ≤ k, zi =

{

xi ∪ yi, if xi ∩ yi = ∅
xi ∩ yi, otherwise

The cost (or number of mutations) of a sequence of parsimony is defined by:

φ(F (S1, S2)) =
k

∑

i=1

ci where ci =

{

1, if xi ∩ yi = ∅
0, otherwise

Definition 2 (Rooted Binary Tree of Parsimony). Let S be a set of n
aligned sequences of length k where each character of the sequence is expressed
over a given alphabet Σ. Let T = (V, E) be a binary tree, where V = {v1, . . . , vr}
is the set of nodes and E ⊆ {(u, v)/u, v ∈ V } is the set of edges. T is called a
binary tree of parsimony of S if :

– there exist r = 2 × n − 1 nodes partitioned in two subsets:
• I : a set of internal nodes composed of n − 1 nodes each having 2 de-

scendants,
• L : a set of leaves composed of n nodes with no descendant.

– there exists a bijection from the set of sequences S to the set of leaves L,

– each internal node w of I is assigned to a (hypothetical) sequence of parsi-
mony Sw = F (Su, Sv).

Definition 3 (Cost of a Tree of Parsimony). Let T be a binary tree of
parsimony of a set of sequences S. The cost (or score) of T , φ(T) is equal to
∑

φ(Sw), ∀w ∈ I.

Remark: For a given phylogenetic tree, its parsimony score can be efficiently
(in polynomial time) calculated by the Fitch’s algorithm given in [5]. However,
it is primordial to accelerate the scoring process as much as possible within a
search algorithm when a great number of potential trees must be evaluated.

Definition 4 (Maximum Parsimony Problem - MPP). Given a set S of n
sequences of length k, expressed over an alphabet Σ, find the most parsimonious
tree T of S such that the score of parsimony of T is minimum.

For a set of S of sequences, there are
∏|S|

i=3
(2i−3)) possible parsimony trees.

The MP problem is thus a highly combinatorial search problem.

3 A Memetic Algorithm for the MPP

3.1 Outline of the algorithm

The algorithm presented in this paper follows a simple, yet powerful memetic
schema. From an initial population of solutions, the algorithm carries out a num-
ber of evolution cycles. At each cycle, two parents are selected and a crossover
operator is applied to the parents to create a new solution (Section 3.2). Each
newly created offspring undergoes some local improvements (Section 3.4) before
being inserted into the population. Other issues to be considered concern among
others fitness evaluation (Section 3.3), parents selection and insertion condition.
Parents selection operates with a tournament selection strategy. Two groups of
20% of the individuals are first constituted and two individuals that represent the
best individuals of each group are then selected. A new individual T is inserted
into the population if it is not already present in the population. The individual
that will be removed from the population can be the oldest or the closest to
the new one. The outline of the Hydra algorithm is given on Algorithm 1. We
describe below the basic ingredients of this memetic algorithm for the MPP.

3.2 Initial population

The population is composed of phylogenetic trees (individuals) for the given set
of taxa. The individuals of the initial population are generated with a greedy
algorithm. At each step of the algorithm, an isolated taxon (future leaf) is ran-
domly selected and inserted on a branch of the current tree such that this in-
sertion position minimizes Fitch’s score. This corresponds to the 1stRotuGbr
heuristics used in [1]. Notice that each initial individual undergoes improvements
using the local searcher (Section 3.4).

Algorithm 1 Hybrid Genetic and Local Search algorithm (Hydra) for the MPP

input: A : a set of aligned taxa, N : the population size, M number of LS iterations
output: The most parsimonious tree found

P = GeneratePopulation(A,N)
for a given number of generations do

(T1, T2)← ChooseParents(P)
T ← Recombination(T1, T2) // to generate a new tree
T ← Local search improvement(T ,M) // to improve an offspring
P ← Replace(P ,T) // To insert the new offspring

end for

return the best tree found

3.3 Fitness evaluation

Each individual of the population is evaluated according to the Definition 1 and
by Fitch’s algorithm. Such an evaluation assigns to the individual a parsimony
score. Given that the fitness evaluation is one of the most time consuming ele-
ments of the algorithm, we use a specific implementation technique to accelerate
this evaluation (see Section 3.6)

3.4 Local search with progressive neighborhood

Our local searcher is based on a descent algorithm using a powerful neighborhood
called Progressive Neighborhood (PN) introduced in [10]. Similar to the VNS
(Variable Neighborhood Search) heuristic, PN modifies the size of the neighbor-
hood during the search. But, contrary to VNS, PN starts from a medium (or
large) size neighborhood like SPR or TBR [20] and progressively reduces it to the
small size NNI [21] neighborhood using a parametric neighborhood relation that
evolves during the search. Experiments presented in [10] showed the efficiency of
this progressive neighborhood in comparison with other existing neighborhoods
for phylogenetic reconstruction. The basic rational behind PN is that important
tree transformations must be performed at early stages of the search using a
medium or large size neighborhood (like SPR or TBR) and only minor refine-
ments are necessary at the end of the local search process where a neighborhood
like NNI is sufficient.

In order to make the neighborhood evolve, a topological distance on trees is
defined in [10] that enables to build a distance matrix for a set of taxa given a
tree topology. This distance is also used to control the size of the neighborhood
(i.e. the distance between a pruned edge and its inserted edge is at most equal
to a given distance).

Definition 5 (Topological distance). Let i and j be two taxa of a tree T . The
topological distance δT (i, j) between i and j is defined as the number of edges of
the path between parents of i and j, minus 1 if the path contains the root of the
tree.

B
C
D
E
F

A B C D E

0
1 1
3 3 2
3 3 2 0
2 2 1 1 1

δ
T

A B

f

k

Tree T

D E

F

j
h

g
C

Distance

Fig. 1: Example of topological distance δT

For example, on figure 1, A and B have the same parent f , so δT (A, B) = 0,
and δT (A, D) = 3 because the number of edges between f and g is 4 (f → k →
j → h → g), and as we pass through the root node k, we decrease the value of one
unit. Note that for the topological distance, we consider trees as unrooted, this
is why we remove one unit when passing through the root node. The reduction
process used in Hydra takes into account a parameter M which corresponds to
a maximum number of LS iterations. Using this distance definition, a parameter
d is introduced to control the size of the neighborhood and is defined as the
distance between a pruned edge and the edge where it is reinserted (i.e. distance δ
between their two descendant nodes). As such, changing d leads to neighborhoods
of different sizes which are explored with a descent algorithm.

3.5 Distance-preserving crossover operator DiBIPX

For phylogeny reconstruction, the individuals are trees. To create new solutions
by recombination, we need a tree crossover operator. Traditionally, crossovers
on phylogenetic trees follow the subtree cutting and regrafting strategy which
consists in removing a subtree T ∗

1 from a parent T1 and to reinsert it in the
second parent T2. Duplicated sequences (leaves) are removed from T2. However,
this process suffers from a major drawback. The topological information of trees,
which are responsible of their parsimony score, is not entirely used to improve
the tree. In that sense those crossovers perform a blind search and it would then
be necessary to be able to pass in review millions of trees per second to keep up
with the search efficiency.

For the purpose of creating meaningful offspring, we use the Distance-Based
Information Preservation tree crossover (DiBIPX) introduced in [9]. DiBIPX is
different from conventional tree crossover operators in that it explicitly takes into
account the topological distance of parents trees. The key idea behind DiBIPX is
the preservation of semantic information shared by the parents: if two sequences
are topologically close (or far) in both parent trees, then this property should
be conserved for the child. Moreover, this crossover enables to diversify the
search: the child is fully rebuilt from these information. More precisely, DiBIPX
is composed of three steps. First, using the topological distance (Section 3.4), the
parents trees are first transformed into two distance matrices M1 and M2 (see
Figure 1). These matrices are then combined into a new distance matrix M3 by

a matrix operation ⊕. Finally, this new matrix M3 is used to built the offspring
tree using a distance-based clustering method like UPGMA [18]. In this paper,
M3 = αM1 ⊕ (1 − α)M2 such that ∀δ1(i, j) ∈ M1 and δ2(i, j) ∈ M2, δ3(i, j) =
α × min {δ1(i, j), δ2(i, j)} + (1 − α) × max {δ1(i, j), δ2(i, j)} with α ∈ [0, 1].

3.6 Acceleration of the fitness evaluation

During the resolution of the MPP, the basic operation that is extensively used
is Fitch’s function (see Definition 1), which is implemented figure 2 (in C-like
style). This function takes as input two taxa t1 and t2. The output is the
hypothetical taxon t3 and the number of changes returned by the function. The
alphabet of the DNA sequences is generally composed of 6 different symbols :
−, A, C, G, T, ?. Where − represents a gap and ? an undefined character.

int fitch(char t1[], char t2[], char t3[]) {

int changes=0;

for (int i=0;i<k;++i) {

t3[i]= t1[i] & t2[i];

if (t3[i]==0) { t3[i]= t1[i] | t2[i]; ++changes; }

}

return changes;

}

Fig. 2: Parsimony function traduction of Definition 1

Our implementation of this function takes full advantage of some relevant
features offered by modern x86 processors. More precisely, the core of modern
x86 processors has a SSE (SIMD Streaming Extension) unit which enables to
vectorize the code. A SSE register is 128 bits long and can contain 16 bytes.
In order to efficiently perform the union and intersection of Definition 1, each
character is represented by a power of 2, from 20 = 1 (−) to 24 = 16 (T), except
for ? which can represent any other character and is then coded by the value
31 = 1 + 2 + · · · + 16. The union can be performed by the binary-OR (|) and
the intersection by the binary-AND (&). The vectorization of Fitch’s function
gives a 90% improvement on Intel Core 2 Duo processors, while other architec-
tures (pentiumII/III/4, pentium-M, Athlon 64, Sempron) provide 70 to 80 %
improvement. This improvement enabled us to divide the overall computation
time of our program by a factor of 3 to 4.

4 Computational results and comparisons

In this section, we show computational results on a set of 12 benchmark in-
stances. To assess their quality, they are compared with the results of the very

popular software TNT [11] (Tree analysis using New Technology). (TNT is per-
haps today’s most powerful software for phylogenetic reconstruction under PM
criterion). The code of TNT is not an open source, but is known to be highly
optimized to be able to evaluate millions of trees per second. TNT integrates a
large number of search strategies such as tree drifting, parsimony ratchet, sec-
torial search and more others. The reference software TNT was used with its
default parameters specified in the documentation.

4.1 Benchmarks

A set of 12 medium to large instances (more than 100 taxa) from the TreeBase
site (www.treebase.org) are used. TreeBase is a relational database of phyloge-
netic information which stores phylogenetic trees and the data matrices used to
generate them from published research papers. For these instances, no optimum
parsimony score is known.

4.2 Parameters tuning

In order to carry out the comparisons as fair as possible, we use for Hydra a
set of standard (not fine-tuned) parameters values as follows for all the tested
instances. With these parameters, each run of the algorithm undergoes (40+50)×
200, 000 = 18×106 iterations (fitness evaluations with Fitch’s algorithm). As we
shall see later on, this number is much less than the one reached by the reference
software TNT with its default parameters. According to the problem instance,
the running time of one execution of Hydra goes from one to ten minutes on
a Core 2 at 2.5MHz computer. Nevertheless, TNT consumes less computation
time due to its extremely optimized code.

Parameters Values
population size 40

number of crossovers (generations) 50
local search iterations per crossover 200 000

neighborhood progressive
α for DiBIP crossover 0.70

Table 1: Parameters of the Hydra algorithm.

4.3 Results and comparisons

On table 2 we report the results obtained with Hydra. For each instance, we re-
port the following information for 20 executions: best parsimony score, maximum
parsimony score, average score and standard deviation. For TNT, the software

Hydra TNT
problem #taxa length min max avg std # iter score

m0808 178 3453 23,777 23,794 23,782.22 4.62 40 23,782
m0972 155 355 1,528 1,529 1,528.44 0.50 14 1,532
m1038 297 2021 12,370 12,375 12,371.22 2.19 99 12,376
m1902 209 977 6,124 6,129 6,126.22 1.52 44 6,131
m1987 134 618 2,073 2,075 2,073.67 0.92 30 2,073

m2055 299 2064 2,597 2,604 2,599.00 2.37 47 2,598
m2123 198 1426 1,925 1,925 1,925.00 0.00 46 1,925

m2725 210 8245 157,354 157,772 157,570,56 95.29 63 157,093

m2780 119 2020 11,488 11,494 11,490.78 1.90 11 11,490
m3275 117 5098 21,935 21,936 21,935.11 0.30 9 21,935

m3452 116 1157 3,602 3,603 3,602.33 0.49 23 3,602

m3453 137 995 3,904 3,908 3,904.78 1.42 24 3,904

Table 2: Comparison between Hydra and TNT on TreeBase instances.

gives only two information: the best parsimony score and the total number of
iterations (which corresponds to the number of evaluated candidate trees).

The results show that except for one instance, Hydra obtains results of equal
or better quality than TNT. Hydra reaches these results with much smaller iter-
ations (much fewer evaluations of candidate trees) except for problems m0972,
m2780 and m3275 for which the number of iterations of Hydra is greater than
TNT. Nevertheless the experiments we have carried out show that by fixing M
to 50,000 or 100,000 (i.e. 4.5 or 9 millions iterations), we could obtain the same
scores.

Note that the computation time of TNT is less important than Hydra because
TNT implements highly specific optimization techniques to avoid a complete
evaluation of the overall tree when looking for a neighbor of lower cost. Such
technique is not yet implemented in Hydra.

4.4 Analysis and discussion

In this section, we investigate and analyze the influence of some elements of the
Hydra algorithm on its performance.

First, we verify how the length of the LS improvement after each crossover
impacts on the convergence of the algorithm. To avoid a possible bias due to the
structure of problem instance, we chose to use two random instances (tst01 and
tst20) from [16]. We run the Hydra algorithm with three different values of local
search iterations per crossover: 10 000, 50 000 and 100 000. Figure 3 (a-b) shows
on a logarithmic scale, the result of the evolution of the best score averaged over
5 independent runs, each run being limited to 108 iterations. One observes that
if the computational resources are limited, the algorithm converges faster with
short local search than with long local search iterations. The influence of the
local search iterations seems to decrease when the search progresses.

 540

 545

 550

 555

 560

 565

 570

 1 10 100 1000

be
st

 s
co

re

iterations of local search (x 100 000)

50 000 iterations per crossover
10 000 iterations per crossover

100 000 iterations per crossover

(a) Influence of number of LS iterations - tst01

 660

 665

 670

 675

 680

 685

 690

 695

 700

 1 10 100 1000

be
st

 s
co

re

iterations of local search (x 100 000)

50 000 iterations per crossover
10 000 iterations per crossover

100 000 iterations per crossover

(b) Influence of number of LS iterations - tst20

 540

 545

 550

 555

 560

 565

 570

 1 10 100 1000 10000

be
st

 s
co

re

crossovers

Metric : length of paths
Metric : topological distance

(c) Influence of distance metric - tst01

 660

 670

 680

 690

 700

 710

 1 10 100 1000 10000

be
st

 s
co

re

crossovers

Metric : length of paths
Metric : topological distance

(d) Influence of distance metric - tst20

Fig. 3: Study of influence of three parameters

Second, we check the performance of DiBIPX if the topological distance
defined in Section 3.4 is replaced by another distance metric. For this purpose,
we use another distance which is the length of the path between two nodes of the
tree taking into account the parsimony distance between each pair of neighboring
nodes. Figure 3 (c-d) shows the result of the evolution of the best score under the
same condition as above. One observes there is no clear dominance of a distance
metric over the other one, but the convergence with the topological distance is
sometimes faster for a short number of LS iterations.

5 Conclusion

In this paper, we have presented the Hydra memetic algorithm for the phy-
logenetic tree inference problem with the Maximum Parsimony criterion. The
algorithm uses a local search procedure which is based on a parametric progres-
sive neighborhood, a specific distance-based topological tree crossover, as well as
a specific implementation technique in order to accelerate the fitness evaluation.

Experimentations on a number of real benchmark instances from TreeBase
show that Hydra competes very well when compared to TNT. Indeed, Hydra
is able to find phylogenetic trees of better Parsimony score with much fewer
evaluations of candidate trees.

However, Hydra needs more computation time than TNT. This last point
constitutes an important issue to be addressed in the future. On the other hand,
the techniques presented in this paper may be integrated into TNT to increase
its search power.

6 Availability:

Hydra is distributed with C++ source code, benchmarks and documentation and
is freely available from the website of the authors. It runs under all Unix/Linux
platforms. There is also a binary for Windows platforms (http://www.info.univ-
angers.fr/pub/richer/rec.php).

7 Acknowledgements

This work was partially suported by the French Ouest Genopole R© and by the
BIL (Bio-Informatique Ligérienne) project (http://www.info.univ-angers.fr/bil).

References

1. A.A. Andreatta and C.C. Ribeiro. Heuristics for the phylogeny problem. Journal
of Heuristics, 8:429–447, 2002.

2. L.L. Cavalli-Sforza and A.W.F. Edwards. Phylogenetic analysis: models and esti-
mation procedures. Evolution, 32:550–570, 1967.

3. A.W.F Edwards and L.L. Cavalli-Sforza. The reconstruction of evolution. Annals
of Human Genetics, 27:105–106, 1963.

4. J. Felsenstein. Evolutionary trees from dna sequences: a maximum likelihood ap-
proach. Journal of Molecular Evolution, 17:368–376, 1981.

5. W. Fitch. Towards defining course of evolution: minimum change for a specified
tree topology. Systematic Zoology, 20:406–416, 1971.

6. W.M. Fitch and E. Margoliash. Construction of phylogenetic trees. Science,
155(3760):279–284, 1967.

7. L.R. Foulds and R.L. Graham. The steiner problem in phylogeny is np-complete.
Advances in Applied Mathematics, 3:43–49, 1982.

8. O. Gascuel. On the optimization principle in phylogenetic analysis and the mini-
mum evolution criterion. Biology and Evolution, 17:401–405, 2000.

9. A. Goëffon, J.M. Richer, and J.K. Hao. A distance-based information preservation
tree crossover for the maximum parsimony problem. Lecture Notes in Computer
Science, pages 761–770, 2006.

10. A. Goëffon, J.M. Richer, and J.K. Hao. Progressive tree neighborhood applied to
the maximum parsimony problem. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, Vol 5 (1) January-March 2008.

11. P. A. Goloboff, J. S. Farris, and K. Nixon. Tnt : Tree analysis using new technology.
http://www.cladistics.com/aboutTNT.html, 2003.

12. P.A. Goloboff. Character optimisation and calculation of tree lengths. Cladistics,
9:433–436, 1993.

13. D.M. Hillis, C. Moritz, and B.K. Mable. Molecular Systematics. Sinauer Associates,
Inc., 1996.

14. J.H. Holland. Adaptation in natural and artificial systems. The University of
Michigan Press, 1975.

15. K.C. Nixon. The parsimony ratchet, a new method for rapid parsimony analysis.
Cladistics, 15:407–414, 1999.

16. C.C. Ribeiro and D.S. Vianna. A grasp/vnd heuristic for the phylogeny problem
using a new neighborhood structure. International Transactions in Operational
Research, 12:1–14, 2005.

17. N. Saitou and M. Nei. The neighbor-joining method: a new method for recon-
structing phylogenetic trees. Mol. Biol. Evol., 4:406–425, 1987.

18. R.R. Sokal and C.D. Michener. A statistical method for evaluating systematic
relationships. University of Kansas Science Bulletin, 38:1409–1438, 1958.

19. R.R. Sokal and P.H.A. Sneath. Principles of Numerical Taxonomy. W.H. Freeman,
San Francisco, 1963.

20. D. L. Swofford, G. J. Olsen. in D.M. Hillis and C. Moritz (Ed.) Phylogeny Recon-
struction. Molecular Systematics, chapter 11:411-501, 1990.

21. M. S. Waterman and T. F. Smith. On the similarity of dendograms. Journal of
Theoretical Biology 73:789-800, 1978.

