
1

Performance Metrics

1 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Parallel and Distributed
Programming

Performance Metrics

Performance Metrics

2 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Performance
!   Two main goals to be achieved with the design of parallel applications are:

!   Performance: the capacity to reduce the time to solve the problem when the computing
resources increase;

!   Scalability: the capacity to increase performance when the complexity, or size of the
problem, increases.

!   The main factors limiting the performance and the scalability of an application are:
!   Architectural Limitations
!   Algorithmic Limitations

2

Performance Metrics

3 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Factors Limiting Performance
!   Architectural Limitations

!   Latency and Bandwidth
!   Data Coherency
!   Memory Capacity

!   Algorithmic Limitations
!   Missing Parallelism (sequential code)
!   Communication Frequency
!   Synchronization Frequency
!   Poor Scheduling (task granularity/load balancing)

Performance Metrics

4 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Performance Metrics
!   There are 2 distinct classes of performance metrics:

!   Performance Metrics for Processors: assess the performance of a processor using
normally by measuring the speed or the number of operations that it does in a certain
period of time.

!   Performance Metrics of Parallel Applications: assess the performance of a parallel
application normally by comparing the execution time with multiple processors and the
execution time with just one processor.

!   We are mostly interested in metrics that allow the performance evaluation of parallel
applications.

3

Performance Metrics

5 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Performance Metrics for Processors
!   Some of the best known metrics to measure performance of a

processor architecture:
!   MIPS: Millions of Instructions Per Second.
!   FLOPS: FLoating point Operations Per Second.
! SPECint: SPEC (Standard Performance Evaluation Corporation) benchmarks

that evaluate processor performance on integer arithmetic (1992).
! SPECfp: SPEC benchmarks that evaluate processor performance on floating

point operations (2000).
!   Whetstone: synthetic benchmarks to assess processor performance on floating

point operations (1972).
!   Dhrystone: synthetic benchmarks to asses processor performance on integer

arithmetic (1984).

Performance Metrics

6 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Performance Metrics for Parallel Applications
!   There are a number of metrics, the best known are:

!   Speedup
!   Efficiency
!   Redundancy
!   Utilization
!   Quality

!   There also some laws/metrics that try to explain and assert the potential performance
of a parallel application. The best known are:
!   Amdahl Law
!   Gustafson-Barsis Law
!   Karp-Flatt Law
!   Isoeficiency Law

4

Performance Metrics

7 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Speedup
!   Speedup is a measure of performance. It measures the ration between the sequential

execution time and the parallel execution time.

T(1) is the execution time with one processor
T(p) is the execution time with p processors

)(
)1()(
pT

TpS =

1 CPU 2 CPUs 4 CPUs 8 CPUs 16 CPUs

T(p) 1000 520 280 160 100

S(p) 1 1,92 3,57 6,25 10,00

Performance Metrics

8 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Efficiency
!   Efficiency is a measure of the usage of the computational resources. It measures the

ration between performance and the resources used to achieve that performance.

S(p) is the speedup for p processors

)(
)1()()(
pTp

T
p
pSpE

×
==

1 CPU 2 CPUs 4 CPUs 8 CPUs 16 CPUs

S(p) 1 1,92 3,57 6,25 10,00

E(p) 1 0,96 0,89 0,78 0,63

5

Performance Metrics

9 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Redundancy
!   Redundancy measures the increase in the required computation when using more

processors. It measures the ration between the number of operations performed by
the parallel execution and by the sequential execution.

O(1) is the total number of operations performed with 1 processor
O(p) is the total number of operations performed with p processors

)1(
)()(

O
pOpR =

1 CPU 2 CPUs 4 CPUs 8 CPUs 16 CPUs

O(p) 10000 10250 11000 12250 15000

R(p) 1 1,03 1,10 1,23 1,50

Performance Metrics

10 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Utilization
!   Utilization is a measure of the good use of the computational capacity. It measures

the ratio between the computational capacity utilized during execution and the
capacity that was available.

)()()(pEpRpU ×=

1 CPU 2 CPUs 4 CPUs 8 CPUs 16 CPUs

R(p) 1 1,03 1,10 1,23 1,50

E(p) 1 0,96 0,89 0,78 0,63

U(p) 1 0,99 0,98 0,96 0,95

6

Performance Metrics

11 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Quality
!   Quality is a measure of the relevancy of using parallel computing.

1 CPU 2 CPUs 4 CPUs 8 CPUs 16 CPUs

S(p) 1 1,92 3,57 6,25 10,00

E(p) 1 0,96 0,89 0,78 0,63

R(p) 1 1,03 1,10 1,23 1,50

Q(p) 1 1,79 2,89 3,96 4,20

)(
)()()(

pR
pEpSpQ ×

=

Performance Metrics

12 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Amdahl Law
!   The computations performed by a parallel application are of 3 types:

!   C(seq): computations that can only be realized sequencially.
!   C(par): computations that can be realized in parallel.
!   C(com): computations related to communication/synchronization/initialization.

!   Using these 3 classes, the speedup of an application can be defined as:

)()()(

)()(
)(
)1()(

comC
p
parCseqC

parCseqC
pT

TpS
++

+
==

7

Performance Metrics

13 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Amdahl Law
!   Since C(com) ≥ 0 then:

!   If f is the fraction of the computation that can only be realized sequentially, then:

p
parCseqC

parCseqCpS)()(

)()()(
+

+
≤

f = C(seq)
C(seq)+C(par)

 and S(p) !

C(seq)
f

C(seq)+
C(seq)" 1

f
#1

$

%
&

'

(
)

p

Performance Metrics

14 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Amdahl Law
!   Simplifying:

p
ff

pS

p
f

fpS

p
f

seqC
seqC

f
seqC

pS

−
+

≤⇒
−

+

≤⇒

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×

+

≤

1
1)(

11

1

1

)(

11)(
)(

)(

)(

8

Performance Metrics

15 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Amdahl Law
!   Let 0 ≤ f ≤ 1 be the computation fraction that can only be realized sequentially. The

Amdahl law tells us that the maximum speedup that a parallel application can attain
with p processors is:

!   The Amdahl law can also be used to determine the limit of maximum speedup that a
determined application can achieve regardless of the number of processors uused.

p
ff

pS
−

+
≤ 1

1)(

Performance Metrics

16 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Amdahl Law
!   Suppose one wants to determine if it is advantageos to develop a parallel version of

a certain sequential application. Through experimentation, it was verified that 90%
of the execution time is spent in procedures that may be parallelizable. What is the
maximum speedup that can be achieved with a parallel version of the problem
executing on 8 processors?

!   And the limit of the maximum speedup that can be attained?

71,4

8
1,011,0

1)(≈
−

+
≤pS

101,011,0

1lim =
−

+
∞→

p
p

9

Performance Metrics

17 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Limitations of the Amdahl Law
!   The Amdahl law ignores the cost with communication/synchronization operations

associated to the introduction of parallelism in an application. For this reason, the
Amdahl law can result in predictions not very realistic for certain problems.

!   Consider a parallel application, with complexity O(n2), whose execution pattern is
the following, where n is the size of the problem:
!   Execution time of the sequential part (input and output of data):

!   Execution time of the parallel parte:

!   Total communication/synchronization points per processor:

!   Execution time due to communication/synchronization (n=10.000):

⎡ ⎤nlog
100

2n
n+000.18

⎡ ⎤ 10
log000.10 np +×

Performance Metrics

18 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Limitations of the Amdahl Law
!   What is the maximum speedup attainable?

!   Uzing Amdahl law:

!   Uzinf the speedup measure:

f = 18.000+ n

18.000+ n+ n2

100

 and S(p) !
18.000+ n+ n2

100

18.000+ n+ n2

p"100

⎡ ⎤ ⎡ ⎤ ⎟
⎠

⎞
⎜
⎝

⎛ +××+
×

++

++
=

10
log000.10log

100
000.18

100
000.18

)(2

2

npn
p
nn

nn
pS

10

Performance Metrics

19 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Limitations of the Amdahl Law

1 CPU 2 CPUs 4 CPUs 8 CPUs 16 CPUs

Amdahl

law

n = 10.000 1 1,95 3,70 6,72 11,36

n = 20.000 1 1,98 3,89 7,51 14,02

n = 30.000 1 1,99 3,94 7,71 14,82

Speedup

n = 10.000 1 1,61 2,11 2,22 2,57

n = 20.000 1 1,87 3,21 4,71 6,64

n = 30.000 1 1,93 3,55 5,89 9,29

Performance Metrics

20 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Gustafson-Barsis Law
!   Consider again the speedup measure defined previously:

!   If f is the fraction of the parallel computation spent executing sequential
computations, then (1-f) is the fraction of the time spent in the parallel part:

p
parCseqC

parCseqCpS)()(

)()()(
+

+
≤

f = C(seq)

C(seq)+ C(par)
p

 and 1! f() =

C(par)
p

C(seq)+ C(par)
p

11

Performance Metrics

21 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Gustafson-Barsis Law
!   Then:

!   Simplifying:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+×−×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+×=

p
parCseqCfpparC

p
parCseqCfseqC

)()()1()(

)()()(

()()

() ()pfppSfpfpS
p
parCseqC

p
parCseqCfpf

pS

−×+≤⇒−×+≤⇒

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+×−×+

≤

1)(1)(

)()(

)()(1
)(

Performance Metrics

22 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Gustafson-Barsis Law
!   Let 0 ≤ f ≤ 1 be the fraction of parallel computation spent executing sequential

computations. The Gustafson-Barsis law tells us that the maximum speedup that a
parallel application with p processors can attain is:

!   While the Amdahl law starts from the time of the sequential execution to estimate
the maximum speedup that can be attained with multiple processors, the Gustafson-
Barsis law does the opposite, that is, it starts from the parallel execution time to
estimate the maximum speedup in comparison with the sequential execution.

()pfppS −×+≤ 1)(

12

Performance Metrics

23 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Gustafson-Barsis Law
!   Consider that a certain application executes in 220 seconds in 64 processors. What is

the maximum speedup of an application knowing, by experimentation, that 5% of
the execution time is spent on sequential computations.

!   Suppose that a certain company wants to buy a supercomputer with 16.384
processors to achieve a speedup of 15.000 in an important fundamental problem.
What is the maximum fraction of the parallel execution that can be spent in
sequential computations to attain the expected speedup?

85,6015,364)641()05,0(64)(=−=−×+≤pS

084,0
384.1383.16

)384.161(384.16000.15

≤

≤×

−×+≤

f
f

f

Performance Metrics

24 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Gustafson-Barsis Law Limitations
!   When using the execution time of the parallel execution as a starting point, instead

of the sequential execution, the Gustafson-Barsis law assumes that the execution
with one processor is, in the worst cases, p times slower than the execution with p
processors.

!   This may not be true if the available memory for the execution with one processor is
insufficient when compared to the the computation with p processors. For this
reason, the estimated speedup by the Gustafson-Barsis law is normally designated as
scaled speedup.

13

Performance Metrics

25 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Karp-Flatt Metric
!   Let us consider again the definition of sequential execution time and parallel

execution time:

!   Let e be the experimentally determined sequential fraction of a parallel
computation:

)()()()(

)()()1(

comC
p
parCseqCpT

parCseqCT

++=

+=

)1(
)(

T
seqCe =

Performance Metrics

26 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Karp-Flatt Metric
!   Then:

!   If one considers that C(com) is negligible then:

!   On the other hand:

)1()1()(
)1()(
TeparC

TeseqC
×−=

×=

)()()1(
)(
)1()(

pTpST
pT

TpS

×=⇒

=

p
TeTepT)1()1()1()(×−

+×=

14

Performance Metrics

27 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Karp-Flatt Metric
!   Simplifying:

p

ppSe
pp

e
pS

p
e

p
e

pSp
ee

pS

p
pSepSe

p
pTpSepTpSepT

11

1
)(

1

 111
)(

1

1
)(

1)1(
)(

1

)()1()(1

)()()1()()()(

−

−
=⇒+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−×=⇒

−+=⇒
−

+=⇒

×−
+×=⇒

××−
+××=

Performance Metrics

28 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Karp-Flatt Metric
!   Let S(p) be the speedup of a parallel application with p > 1 processors. The Karp-

Flatt metric tells us that the experimentally determined sequential fraction is:

!   The less the value e the better the parallelization
!   The Karp-Flatt metric is interesting because by negleting the costs with

communication/synchronization/initialization operations associated with parallelism,
allows us, a posteriori, to determine the relevance of the C(com) component in the
eventual decrease of the application’s efficiency.

p

ppSe 11

1
)(

1

−

−
=

15

Performance Metrics

29 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Karp-Flatt Metric
!   By definition, the experimentally determined sequential fraction is a constant value

that does not depend on the number of processors.

!   On the other hand, the Karp-Flatt metric is a function of the number of processors.

)1(
)(

T
seqCe =

p

ppSe 11

1
)(

1

−

−
=

Performance Metrics

30 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Karp-Flatt Metric
!   Considering that the efficiency of an application is a decreasing

function on the number of processors, Karp-Flatt metric allows us to
determine the importance of C(com) in that decrease.
!   If the values of e are constant when the number of processors increases, that

means that the C(com) component is constant. Therefore, the efficiency decrease
is due to the scarse parallelism available in the application.

!   If the values of e increase with the increase in the number of processors, it
means that the decrease is due to the C(com) component, that is, due to the
excessive costs associated with the parallel computation (communication costs,
synchronization and/or computation initialization).

16

Performance Metrics

31 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Karp-Flatt Metric
!   For example, the Karp-Flatt metric allows us to detect sources of

inefficiency not considered by the model, which assumes that p
processors execute the parallel part p times faster then when executing
with just one processor.
!   If we have 5 processors to solve a problem decomposed in 20 atomic tasks, then

all processors can execute 4 tasks. If all tasks take the same time to execute, then
the parallel execution time should be a fraction of 5.

!   On the other hand, if we have 6 processors to solve the same problem, 4
processors can execute 3 tasks but the other 2 must necessarily execute 4. This
makes the execution time again a fraction of 5 and not of 6.

Performance Metrics

32 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Karp-Flatt Metric
!   Consider the following speedups obtained by a certain parallel application:

!   What is the main reason for the application to just achieve a speedup of 4,71 with 8
processors?
!   Given that e doesn’t increase with the number of processors, it means that the main

reason for the small speedup is the little parallelism avaiable in the problem.

2 CPUs 3 CPUs 4 CPUs 5 CPUs 6 CPUs 7 CPUs 8 CPUs

S(p) 1,82 2,50 3,08 3,57 4,00 4,38 4,71

e 0,099 0,100 0,100 0,100 0,100 0,100 0,100

17

Performance Metrics

33 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Karp-Flatt Metric
!   Consider the following speedups obtained by a certain parallel application:

!   What is the main reason for the application to just achieve a speedup of 4,71 with 8
processors?
!   Given that e increases slightly with the number of processors, it means that the main

reason for the small speedup are the costs associated to the parallel computation.

2 CPUs 3 CPUs 4 CPUs 5 CPUs 6 CPUs 7 CPUs 8 CPUs

S(p) 1,87 2,61 3,23 3,73 4,14 4,46 4,71

e 0,070 0,075 0,079 0,085 0,090 0,095 0,100

Performance Metrics

34 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Efficiency and Scalability
!   From previous results, we can conclude that the efficiency of an application is:

!   A decreasing function of the number of processors.
!   Typically, an increasing function on the size of the probem.

18

Performance Metrics

35 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Efficiency and Scalability
!   An application is said scalable when its efficiency is maintained when we increase

proportionally the number of processors and the size of the problem.
!   The scalability of an application reflects its capacity in making use of available

resources effectively.

1 CPU 2 CPUs 4 CPUs 8 CPUs 16 CPUs

Efficiency

n = 10.000 1 0,81 0,53 0,28 0,16

n = 20.000 1 0,94 0,80 0,59 0,42

n = 30.000 1 0,96 0,89 0,74 0,58

Performance Metrics

36 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Isoefficiency Metric
!   The efficiency of an application is tipically an increasing function of the size of the

problem since the complexity of communication is, normally, smaller then the
computation complexity, that is, to maintain the same level of efficiency when we
increase the number of processors one needs to increase the size of the problem.
The isoefficiency metric formalizes this idea.

!   Lets consider again the definition of speedup:

()

()
)()()1()()(

)()(

)()()(
)()(

)()()(

)()()(

comCpseqCpparCseqC
parCseqCp

comCpparCseqCp
parCseqCp

comC
p
parCseqC

parCseqCpS

×+×−++

+×
=

×++×

+×
=

++

+
=

19

Performance Metrics

37 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Isoefficiency Metric
!   Let T0(p) be the execution time spent by p processors on the parallel algorithm

performing computations not done in sequential algorithm:

!   Simplifying:

)()()1()(0 comCpseqCppT ×+×−=

()

)1(
)(1

1

)()(
)(1

1
)()()(

)()()(

)()()(
)()()(

000

0

T
pT

parCseqC
pTpTparCseqC

parCseqCpE

pTparCseqC
parCseqCppS

+
=

+
+

=
++

+
=

++

+×
=

Performance Metrics

38 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Isoefficiency Metric
!   Then:

!   If one wants to maintain the same level of efficiency when we increase the number
of processors, then:

)(
)(1

)()1(
)(

)(1
)1(
)(

)1(
)(1

1)(

0
0

0

pT
pE
pET

pE
pE

T
pT

T
pTpE

×
−

=⇒
−

=⇒

+
=

)()1(e
)(1

)(
0 pTcTc

pE
pE

×≥=
−

20

Performance Metrics

39 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Isoefficiency Metric
!   Let E(p) be the efficiency of a parallel application with p processors. The

isoefficiency metric tells us that to maintain the same level of efficiency when we
increase the number of processors, then the size of the problem must be increased so
that the following inequality is satisfied:

!   The applicability of the isoefficiency metric may depend on the available memory,
considering the maximum size of the problem that can be solved is limited by that
quantity.

T (1) ! c"T0 (p)

with c = E(p)
1#E(p)

 and T0 (p) = (p#1)"C(seq)+ p"C(com)

Performance Metrics

40 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Isoefficiency Metric
!   Suppose that the isoefficiency metric for a problem size n is given as a function on

the number of processors p:

!   If M(n) designates the quantity of required memory to solve a problem of size n
then:

!   That is, to maintain the same level of efficiency, the quantity of required memory
per processor is:

)(pfn ≥

())()(pfMnM ≥

()
p
pfM

p
nM)()(
≥

21

Performance Metrics

41 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Isoefficiency Metric

M
em

ory per processor

Efficiency can not be
Maintained and should decrease

Effciency can
Be maintained

Number of processors

Memory limit

ppc log××

pc×

c

pc log×

Performance Metrics

42 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Isoefficiency Metric
!   Consider that the sequential version of a certain application has complexity O(n3),

and that the execution time spent by each of the p processors of the parallel version
in communication/synchronization operations is O(n2 log p). If the amount of
memory necessary to represent a problem of size n is n2, what is the scalability of
the application in terms of memory?

!   Then, the scalability of the application is low.

ppc
p

ppc
p

ppcMnnM

ppcn
pnpcn

22
222

2

23

loglog)log()(

log
log

××=
××

=
××

⇒=

××≥

×××≥

22

Performance Metrics

43 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Superlinear Speedup
!   The speedup is said to be superlinear when the ratio between the sequential

execution time and the parallel execution time with p processors is greater than p.

!   Some factors that may make the speedup superlinear are:
!   Comunication/synchronization/initialization costs are almost inexistent.
!   Tolerancy to communication latency.
!   Increase the memory capacity (the problem may have to fit all in memory).
!   Subdivisions of the problema (smaller tasks may generate less cache misses).
!   Computation randomness in optimization problems or with multiple solutions.

p
pT

T
≥
)(
)1(

Performance Metrics

44 Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

“If just one computer (processador) can solve a problem
in N seconds, could N computers (processors)

Solve the same problem in 1 second?”

Superlinear Speedup

