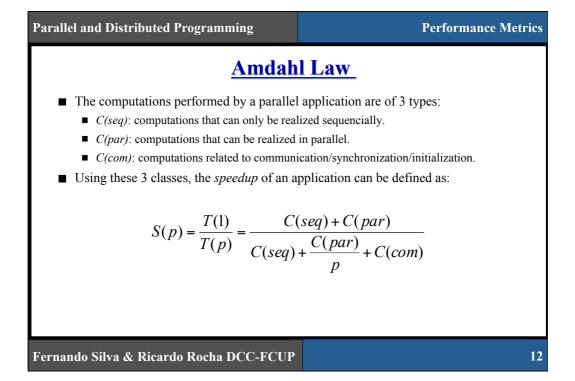
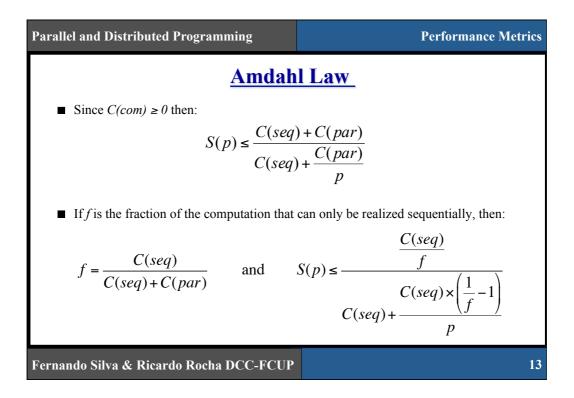
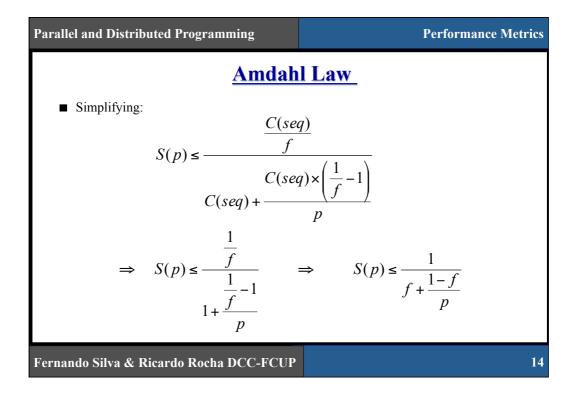


Performance Metrics for Processors

- Some of the best known metrics to measure performance of a processor architecture:
 - *MIPS*: Millions of Instructions Per Second.
 - **FLOPS**: FLoating point Operations Per Second.
 - *SPECint*: SPEC (Standard Performance Evaluation Corporation) benchmarks that evaluate processor performance on integer arithmetic (1992).
 - *SPECfp*: SPEC benchmarks that evaluate processor performance on floating point operations (2000).
 - Whetstone: synthetic benchmarks to assess processor performance on floating point operations (1972).
 - Dhrystone: synthetic benchmarks to asses processor performance on integer arithmetic (1984).


Parallel and Di	Parallel and Distributed Programming Performance Metric												
	<u>Speedup</u>												
• <i>Speedup</i> is a measure of performance. It measures the ration between the sequential execution time and the parallel execution time.													
	$S(p) = \frac{T(1)}{T(p)}$												
			execution ti execution t		-								
		1 CPU	2 CPUs	4 CPUs	8 CPUs	16 CPUs							
	<i>T(p)</i> 1000 520 280 160 100												
	<i>S(p)</i> 1 1,92 3,57 6,25 10,00												
Fernando Silva	& Ricard	o Rocha D	CC-FCUP				7						

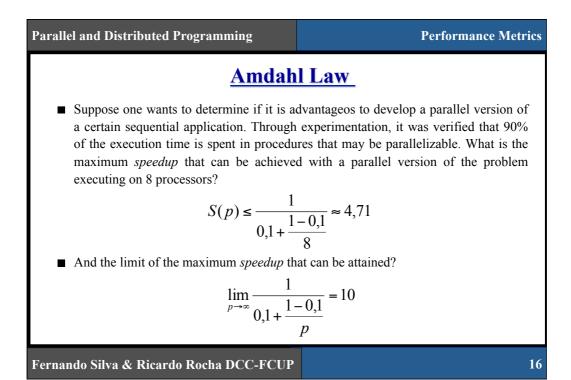

Parallel and Di	stributed]	Programm			Perforn	nance Metrics						
Efficiency												
• Efficiency is a measure of the usage of the computational resources. It measures the ration between performance and the resources used to achieve that performance.												
	$E(p) = \frac{S(p)}{p} = \frac{T(1)}{p \times T(p)}$											
		<i>S(p)</i> is	the speedu	p for <i>p</i> pro	cessors							
		1 CPU	2 CPUs	4 CPUs	8 CPUs	16 CPUs						
	S(p)	1	1,92	3,57	6,25	10,00						
	<i>E(p)</i> 1 0,96 0,89 0,78 0,63											
Fernando Silva	1 & Ricard	lo Rocha D	OCC-FCUP				8					

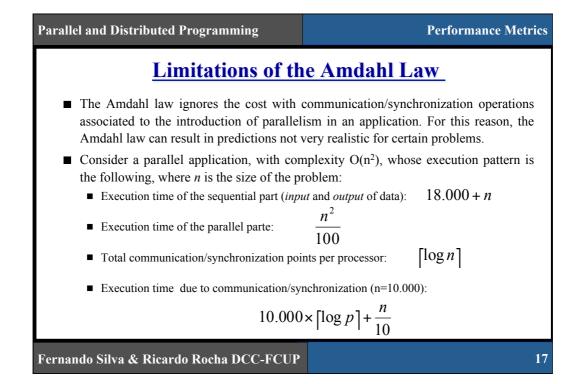

llel and Distributed Programming					Perform	nance Metric
		Redun	dancy			
rs. It meas	sures the r	ation betwo	een the nu	mber of op		-
		per of opera	tions perfo		1	
	1 CPU	2 CPUs	4 CPUs	8 CPUs	16 CPUs	
O(p)	10000	10250	11000	12250	15000	
R(p)	1	1,03	1,10	1,23	1,50	
	The formula $D(1)$ is the $D(p)$ is the $D($	ncy measures the in rs. It measures the r el execution and by D(1) is the total numb (p) is the total numb 1 CPU	ncy measures the increase in t rs. It measures the ration between el execution and by the sequent R(p) = D(1) is the total number of opera (p) is the total number of opera 1 CPU 2 CPUs	ncy measures the increase in the require rs. It measures the ration between the num el execution and by the sequential execution $R(p) = \frac{O(p)}{O(1)}$ $D(1)$ is the total number of operations perform I(p) is the total number of operations perform 1 CPU 2 CPUs 4 CPUs	rs. It measures the ration between the number of operation of the execution and by the sequential execution. $R(p) = \frac{O(p)}{O(1)}$ $D(1) \text{ is the total number of operations performed with } (p) \text{ is the total number of operations performed with } 1 CPU 2 CPUs 4 CPUs 8 CPUs 1 C$	ncy measures the increase in the required computation when rs. It measures the ration between the number of operations per el execution and by the sequential execution. $R(p) = \frac{O(p)}{O(1)}$ $D(1)$ is the total number of operations performed with 1 processon (p) is the total number of operations performed with p processon 1 CPU 2 CPUs 4 CPUs 8 CPUs 16 CPUs

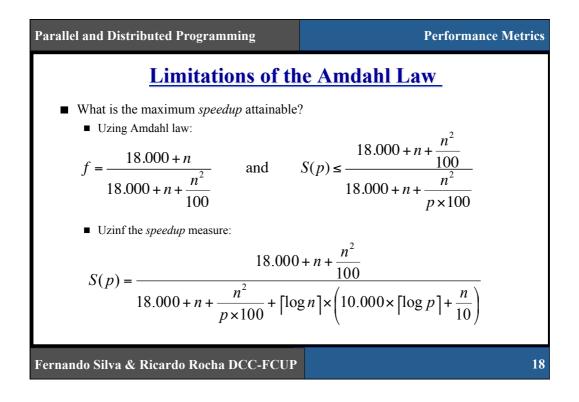
Parallel and Di	istributed]	Programm	ning			Perforn	nance Metrics						
	Utilization												
the ratio	• Utilization is a measure of the good use of the computational capacity. It measures the ratio between the computational capacity utilized during execution and the capacity that was available. $U(p) = R(p) \times E(p)$												
		1 CPU	2 CPUs	4 CPUs	8 CPUs	16 CPUs							
	R(p)	1	1,03	1,10	1,23	1,50							
	<i>E(p)</i> 1 0,96 0,89 0,78 0,63												
	<i>U(p)</i> 1 0,99 0,98 0,96 0,95												
Fernando Silva	a & Ricard	o Rocha D	OCC-FCUI				10						

Parallel and Di	stributed 1	Programm	ing			Perforn	nance Metrics						
	Quality												
 Quality is a measure of the relevancy of using parallel computing. 													
	$Q(p) = \frac{S(p) \times E(p)}{R(p)}$												
	$\mathcal{Q}(p) = R(p)$												
		1 CPU	2 CPUs	4 CPUs	8 CPUs	16 CPUs							
	S(p)	1	1,92	3,57	6,25	10,00							
	E(p)	1	0,96	0,89	0,78	0,63							
	<i>R(p)</i> 1 1,03 1,10 1,23 1,50												
Q(p) 1 1,79 2,89 3,96 4,20													
Fernando Silva	& Ricard	o Rocha D	OCC-FCUI				11						

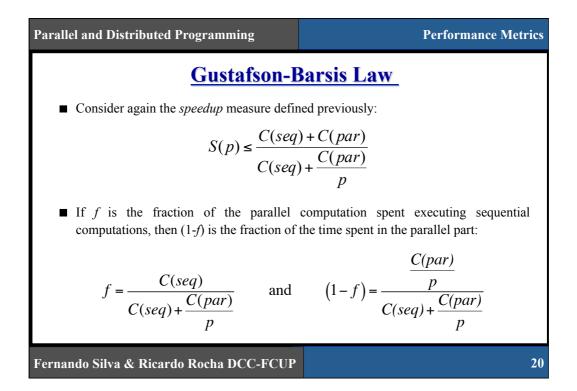
Performance Metrics

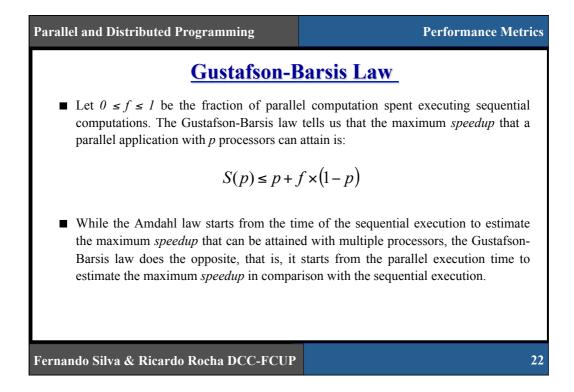

15


Amdahl Law


• Let $0 \le f \le l$ be the computation fraction that can only be realized sequentially. The Amdahl law tells us that the maximum *speedup* that a parallel application can attain with *p* processors is:

$$S(p) \le \frac{1}{f + \frac{1 - f}{p}}$$


■ The Amdahl law can also be used to determine the limit of maximum *speedup* that a determined application can achieve regardless of the number of processors used.



Parallel and Dist	tributed Prog	ramming			Per	formance M	etrics					
	Limitations of the Amdahl Law											
		1 CPU	2 CPUs	4 CPUs	8 CPUs	16 CPUs						
	n = 10.000	1	1,95	3,70	6,72	11,36						
Amdahl	<i>n</i> = 20.000	1	1,98	3,89	7,51	14,02						
law	n = 30.000	1	1,99	3,94	7,71	14,82						
	<i>n</i> = 10.000	1	1,61	2,11	2,22	2,57						
Speedup	<i>n</i> = 20.000	1	1,87	3,21	4,71	6,64						
	<i>n</i> = 30.000	1	1,93	3,55	5,89	9,29						
Fernando Silva d	ernando Silva & Ricardo Rocha DCC-FCUP											

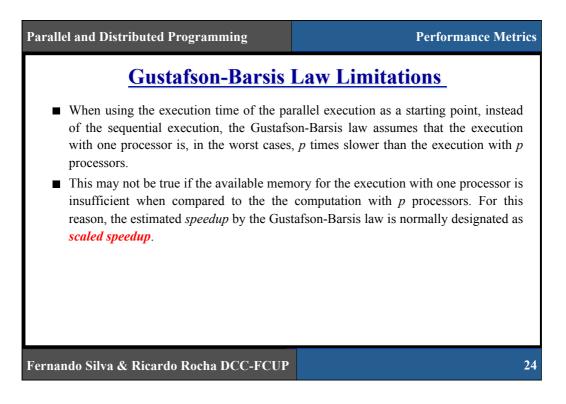
Parallel and Distributed Programming	Performance Metrics
Gustafson-F	Barsis Law_
• Then: $C(seq) = f \times \left(C(seq) - f \right)$	$seq) + \frac{C(par)}{p}$
$C(par) = p \times (1 - f) \times$ Simplifying:	$\left(C(seq) + \frac{C(par)}{p}\right)$
$S(p) \leq \frac{(f + p \times (1 - f)) \times (e)}{C(seq) + e}$	$\frac{C(seq) + \frac{C(par)}{p}}{\frac{C(par)}{p}}$
$\Rightarrow S(p) \le f + p \times (1 - f)$	$\Rightarrow \qquad S(p) \le p + f \times (1 - p)$
Fernando Silva & Ricardo Rocha DCC-FCUP	21

Performance Metrics

23

Gustafson-Barsis Law

Consider that a certain application executes in 220 seconds in 64 processors. What is the maximum *speedup* of an application knowing, by experimentation, that 5% of the execution time is spent on sequential computations.


$$S(p) \le 64 + (0,05) \times (1 - 64) = 64 - 3,15 = 60,85$$

■ Suppose that a certain company wants to buy a supercomputer with 16.384 processors to achieve a *speedup* of 15.000 in an important fundamental problem. What is the maximum fraction of the parallel execution that can be spent in sequential computations to attain the expected *speedup*?

$$15.000 \le 16.384 + f \times (1 - 16.384)$$

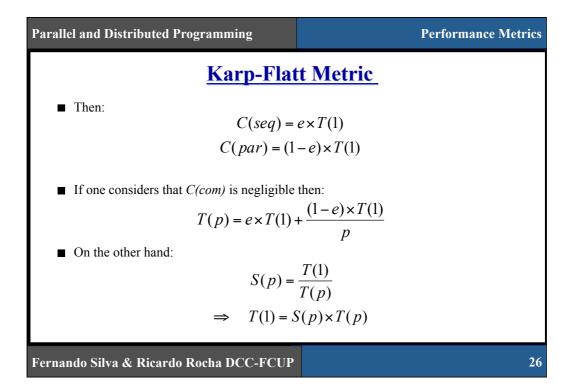
 $f \times 16.383 \le 1.384$

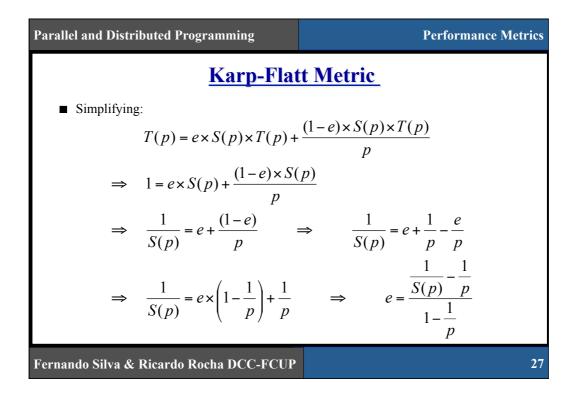
$$f \le 0.084$$

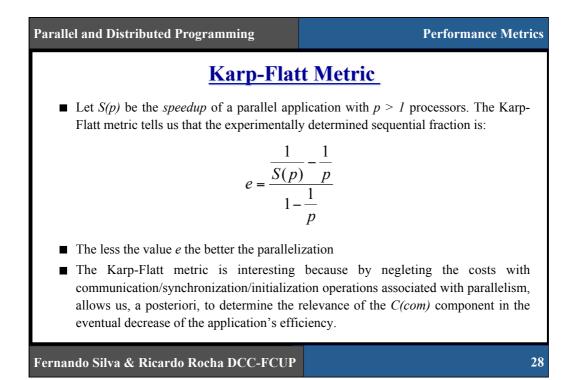
Parallel and Distributed Programming

Performance Metrics

25


Karp-Flatt Metric


• Let us consider again the definition of sequential execution time and parallel execution time:


$$T(1) = C(seq) + C(par)$$
$$T(p) = C(seq) + \frac{C(par)}{p} + C(com)$$

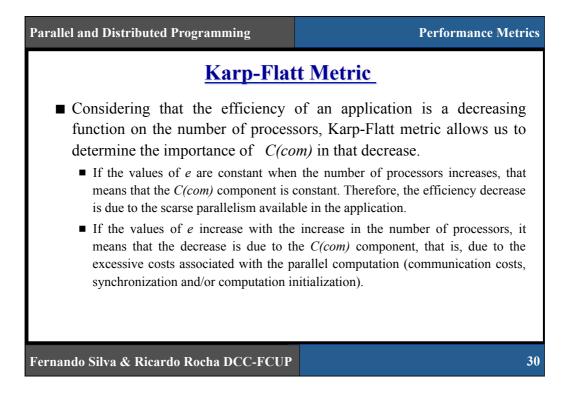
■ Let *e* be the **experimentally determined sequential fraction** of a parallel computation:

$$e = \frac{C(seq)}{T(1)}$$

Parallel and Distributed Programming

Performance Metrics

29


Karp-Flatt Metric

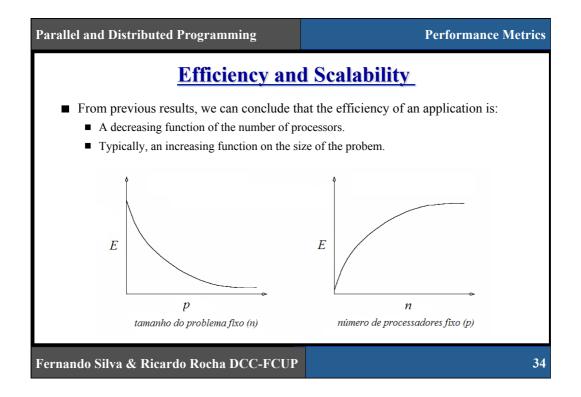
By definition, the experimentally determined sequential fraction is a constant value that does not depend on the number of processors.

$$e = \frac{C(seq)}{T(1)}$$

• On the other hand, the Karp-Flatt metric is a function of the number of processors.

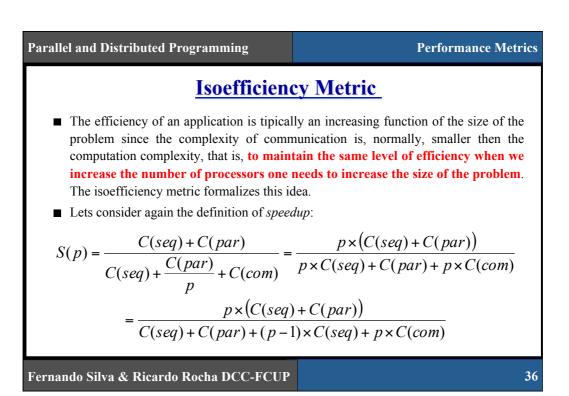
$$e = \frac{\frac{1}{S(p)} - \frac{1}{p}}{1 - \frac{1}{p}}$$

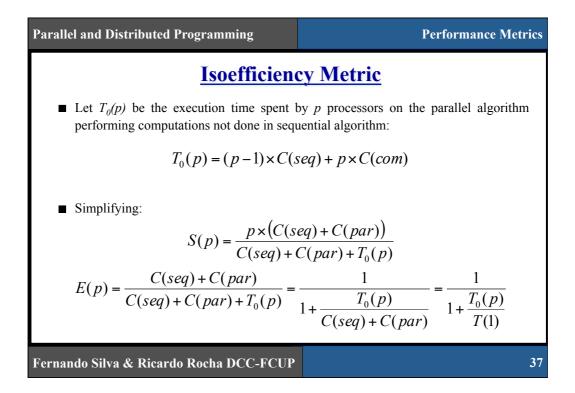
Parallel and Distributed Programming

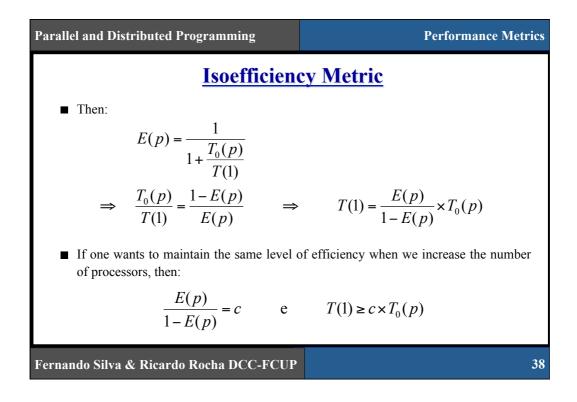

Karp-Flatt Metric

■ For example, the Karp-Flatt metric allows us to detect sources of inefficiency not considered by the model, which assumes that *p* processors execute the parallel part *p* times faster then when executing with just one processor.

- If we have 5 processors to solve a problem decomposed in 20 atomic tasks, then all processors can execute 4 tasks. If all tasks take the same time to execute, then the parallel execution time should be a fraction of 5.
- On the other hand, if we have 6 processors to solve the same problem, 4 processors can execute 3 tasks but the other 2 must necessarily execute 4. This makes the execution time again a fraction of 5 and not of 6.


Parall	el and Dis	stributed P	rogrammi	ing			Perform	ance Metrics				
	Karp-Flatt Metric											
	Consider the following <i>speedups</i> obtained by a certain parallel application:											
		2 CPUs	3 CPUs	4 CPUs	5 CPUs	6 CPUs	7 CPUs	8 CPUs				
	S(p)	1,82	2,50	3,08	3,57	4,00	4,38	4,71				
	е	0,099	0,100	0,100	0,100	0,100	0,100	0,100				
-	 What is the main reason for the application to just achieve a <i>speedup</i> of 4,71 with 8 processors? Given that <i>e</i> doesn't increase with the number of processors, it means that the main 											
	reason for the small <i>speedup</i> is the little parallelism avaiable in the problem.											
Ferna	ndo Silva	& Ricardo	Rocha D	CC-FCUP				32				


Parall	el and Dis	stributed P	rogrammi	ing			Perform	ance Metri	cs			
	Karp-Flatt Metric											
-	• Consider the following <i>speedups</i> obtained by a certain parallel application:											
		2 CPUs	3 CPUs	4 CPUs	5 CPUs	6 CPUs	7 CPUs	8 CPUs				
	S(p)	1,87	2,61	3,23	3,73	4,14	4,46	4,71				
	е	0,070	0,075	0,079	0,085	0,090	0,095	0,100				
	 What is the main reason for the application to just achieve a <i>speedup</i> of 4,71 with 8 processors? Given that <i>e</i> increases slightly with the number of processors, it means that the main reason for the small <i>speedup</i> are the costs associated to the parallel computation. 											
Ferna	ndo Silva	& Ricardo) Rocha D	CC-FCUP				3	33			



Parallel and Distr	ibuted Prog	ramming	5	Performance Metrics									
	Efficiency and Scalability												
proportiona The scalab	 An application is said scalable when its efficiency is maintained when we increase proportionally the number of processors and the size of the problem. The scalability of an application reflects its capacity in making use of available resources effectively. 												
		1 CPU	2 CPUs	4 CPUs	8 CPUs	16 CPUs							
	<i>n</i> = 10.000	1	0,81	0,53	0,28	0,16							
Efficiency	Efficiency $n = 20.000$ 1 0,94 0,80 0,59 0,42												
	n = 30.000 1 0,96 0,89 0,74 0,58												
							-						

Fernando Silva & Ricardo Rocha DCC-FCUP

Isoefficiency Metric

• Let E(p) be the efficiency of a parallel application with p processors. The isoefficiency metric tells us that to maintain the same level of efficiency when we increase the number of processors, then the size of the problem must be increased so that the following inequality is satisfied:

$$T(1) \ge c \times T_0(p)$$

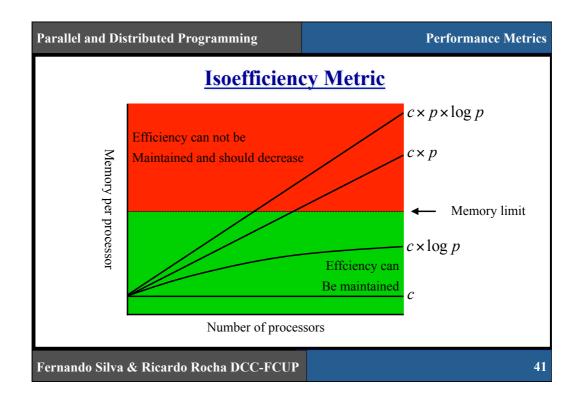
with $c = \frac{E(p)}{1 - E(p)}$ and $T_0(p) = (p-1) \times C(seq) + p \times C(com)$

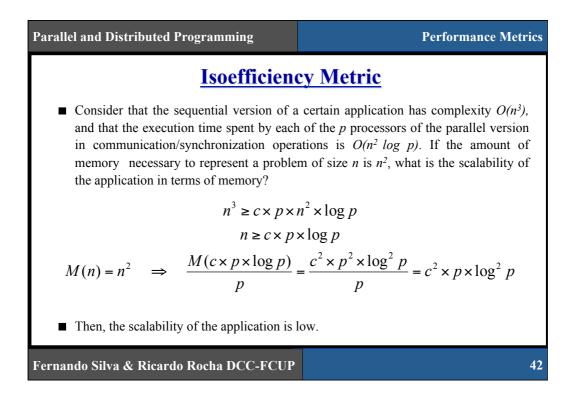
■ The applicability of the isoefficiency metric may depend on the available memory, considering the maximum size of the problem that can be solved is limited by that quantity.

Fernando Silva & Ricardo Rocha DCC-FCUP

Parallel and Distributed Programming

Parallel and Distributed Programming
 Performance Metrics


 Isoefficiency Metric
 Isoefficiency Metric


 • Suppose that the isoefficiency metric for a problem size n is given as a function on the number of processors p:

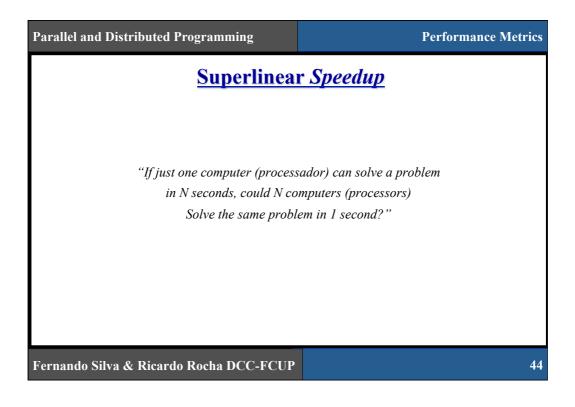
$$n \ge f(p)$$

 • If $M(n)$ designates the quantity of required memory to solve a problem of size n then:
 $M(n) \ge M(f(p))$

 • That is, to maintain the same level of efficiency, the quantity of required memory per processor is:
 $\frac{M(n)}{p} \ge \frac{M(f(p))}{p}$

 Fernando Silva & Ricardo Rocha DCC-FCUP
 40

Performance Metrics


43

Superlinear Speedup

■ The *speedup* is said to be superlinear when the ratio between the sequential execution time and the parallel execution time with *p* processors is greater than *p*.

$$\frac{T(1)}{T(p)} \ge p$$

- Some factors that may make the speedup superlinear are:
 - Comunication/synchronization/initialization costs are almost inexistent.
 - Tolerancy to communication latency.
 - Increase the memory capacity (the problem may have to fit all in memory).
 - Subdivisions of the problema (smaller tasks may generate less *cache misses*).
 - Computation randomness in optimization problems or with multiple solutions.

