
3-640 Vol. 2A MOV—Move

INSTRUCTION SET REFERENCE, A-M

MOV—Move
Opcode Instruction 64-Bit

Mode
Compat/
Leg Mode

Description

88 /r MOV r/m8,r8 Valid Valid Move r8 to r/m8.

REX + 88 /r MOV r/m8***,r8*** Valid N.E. Move r8 to r/m8.

89 /r MOV r/m16,r16 Valid Valid Move r16 to r/m16.

89 /r MOV r/m32,r32 Valid Valid Move r32 to r/m32.

REX.W + 89 /r MOV r/m64,r64 Valid N.E. Move r64 to r/m64.

8A /r MOV r8,r/m8 Valid Valid Move r/m8 to r8.

REX + 8A /r MOV r8***,r/m8*** Valid N.E. Move r/m8 to r8.

8B /r MOV r16,r/m16 Valid Valid Move r/m16 to r16.

8B /r MOV r32,r/m32 Valid Valid Move r/m32 to r32.

REX.W + 8B /r MOV r64,r/m64 Valid N.E. Move r/m64 to r64.

8C /r MOV r/m16,Sreg** Valid Valid Move segment register to
r/m16.

REX.W + 8C /r MOV r/m64,Sreg** Valid Valid Move zero extended 16-
bit segment register to
r/m64.

8E /r MOV Sreg,r/m16** Valid Valid Move r/m16 to segment
register.

REX.W + 8E /r MOV Sreg,r/m64** Valid Valid Move lower 16 bits of
r/m64 to segment
register.

A0 MOV AL,moffs8* Valid Valid Move byte at (seg:offset)
to AL.

REX.W + A0 MOV AL,moffs8* Valid N.E. Move byte at (offset) to
AL.

A1 MOV AX,moffs16* Valid Valid Move word at (seg:offset)
to AX.

A1 MOV EAX,moffs32* Valid Valid Move doubleword at
(seg:offset) to EAX.

REX.W + A1 MOV RAX,moffs64* Valid N.E. Move quadword at (offset)
to RAX.

A2 MOV moffs8,AL Valid Valid Move AL to (seg:offset).

REX.W + A2 MOV moffs8***,AL Valid N.E. Move AL to (offset).

A3 MOV moffs16*,AX Valid Valid Move AX to (seg:offset).

Vol. 2A 3-641

INSTRUCTION SET REFERENCE, A-M

MOV—Move

Description

Copies the second operand (source operand) to the first operand (destination
operand). The source operand can be an immediate value, general-purpose register,
segment register, or memory location; the destination register can be a general-
purpose register, segment register, or memory location. Both operands must be the
same size, which can be a byte, a word, a doubleword, or a quadword.

The MOV instruction cannot be used to load the CS register. Attempting to do so
results in an invalid opcode exception (#UD). To load the CS register, use the far JMP,
CALL, or RET instruction.

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the source
operand must be a valid segment selector. In protected mode, moving a segment

A3 MOV moffs32*,EAX Valid Valid Move EAX to (seg:offset).

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

REX.W + A3 MOV moffs64*,RAX Valid N.E. Move RAX to (offset).

B0+ rb MOV r8, imm8 Valid Valid Move imm8 to r8.

REX + B0+ rb MOV r8***, imm8 Valid N.E. Move imm8 to r8.

B8+ rw MOV r16, imm16 Valid Valid Move imm16 to r16.

B8+ rd MOV r32, imm32 Valid Valid Move imm32 to r32.

REX.W + B8+ rd MOV r64, imm64 Valid N.E. Move imm64 to r64.

C6 /0 MOV r/m8, imm8 Valid Valid Move imm8 to r/m8.

REX + C6 /0 MOV r/m8***, imm8 Valid N.E. Move imm8 to r/m8.

C7 /0 MOV r/m16, imm16 Valid Valid Move imm16 to r/m16.

C7 /0 MOV r/m32, imm32 Valid Valid Move imm32 to r/m32.

REX.W + C7 /0 MOV r/m64, imm32 Valid N.E. Move imm32 sign
extended to 64-bits to
r/m64.

NOTES:
* The moffs8, moffs16, moffs32 and moffs64 operands specify a simple offset relative to the seg-

ment base, where 8, 16, 32 and 64 refer to the size of the data. The address-size attribute of the
instruction determines the size of the offset, either 16, 32 or 64 bits.

** In 32-bit mode, the assembler may insert the 16-bit operand-size prefix with this instruction (see
the following “Description” section for further information).

***In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

3-642 Vol. 2A MOV—Move

INSTRUCTION SET REFERENCE, A-M

selector into a segment register automatically causes the segment descriptor infor-
mation associated with that segment selector to be loaded into the hidden (shadow)
part of the segment register. While loading this information, the segment selector
and segment descriptor information is validated (see the “Operation” algorithm
below). The segment descriptor data is obtained from the GDT or LDT entry for the
specified segment selector.

A NULL segment selector (values 0000-0003) can be loaded into the DS, ES, FS, and
GS registers without causing a protection exception. However, any subsequent
attempt to reference a segment whose corresponding segment register is loaded
with a NULL value causes a general protection exception (#GP) and no memory
reference occurs.

Loading the SS register with a MOV instruction inhibits all interrupts until after the
execution of the next instruction. This operation allows a stack pointer to be loaded
into the ESP register with the next instruction (MOV ESP, stack-pointer value)
before an interrupt occurs1. Be aware that the LSS instruction offers a more efficient
method of loading the SS and ESP registers.

When operating in 32-bit mode and moving data between a segment register and a
general-purpose register, the 32-bit IA-32 processors do not require the use of the
16-bit operand-size prefix (a byte with the value 66H) with this instruction, but most
assemblers will insert it if the standard form of the instruction is used (for example,
MOV DS, AX). The processor will execute this instruction correctly, but it will usually
require an extra clock. With most assemblers, using the instruction form MOV DS,
EAX will avoid this unneeded 66H prefix. When the processor executes the instruc-
tion with a 32-bit general-purpose register, it assumes that the 16 least-significant
bits of the general-purpose register are the destination or source operand. If the
register is a destination operand, the resulting value in the two high-order bytes of
the register is implementation dependent. For the Pentium 4, Intel Xeon, and P6
family processors, the two high-order bytes are filled with zeros; for earlier 32-bit
IA-32 processors, the two high order bytes are undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

1. If a code instruction breakpoint (for debug) is placed on an instruction located immediately after
a MOV SS instruction, the breakpoint may not be triggered. However, in a sequence of instruc-
tions that load the SS register, only the first instruction in the sequence is guaranteed to delay
an interrupt.

In the following sequence, interrupts may be recognized before MOV ESP, EBP executes:

MOV SS, EDX
MOV SS, EAX
MOV ESP, EBP

Vol. 2A 3-643

INSTRUCTION SET REFERENCE, A-M

MOV—Move

Operation

DEST ← SRC;

Loading a segment register while in protected mode results in special checks and
actions, as described in the following listing. These checks are performed on the
segment selector and the segment descriptor to which it points.

IF SS is loaded
THEN

IF segment selector is NULL
THEN #GP(0); FI;

IF segment selector index is outside descriptor table limits
or segment selector's RPL ≠ CPL
or segment is not a writable data segment
or DPL ≠ CPL

THEN #GP(selector); FI;
IF segment not marked present

THEN #SS(selector);
ELSE

SS ← segment selector;
SS ← segment descriptor; FI;

FI;

IF DS, ES, FS, or GS is loaded with non-NULL selector
THEN

IF segment selector index is outside descriptor table limits
or segment is not a data or readable code segment
or ((segment is a data or nonconforming code segment)
and (both RPL and CPL > DPL))

THEN #GP(selector); FI;
IF segment not marked present

THEN #NP(selector);
ELSE

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor; FI;

FI;

IF DS, ES, FS, or GS is loaded with NULL selector
THEN

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;

3-644 Vol. 2A MOV—Move

INSTRUCTION SET REFERENCE, A-M

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If attempt is made to load SS register with NULL segment

selector.

If the destination operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#GP(selector) If segment selector index is outside descriptor table limits.

If the SS register is being loaded and the segment selector's RPL
and the segment descriptor’s DPL are not equal to the CPL.

If the SS register is being loaded and the segment pointed to is a
non-writable data segment.

If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is not a data or readable code segment.

If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is a data or nonconforming code segment,
but both the RPL and the CPL are greater than the DPL.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#SS(selector) If the SS register is being loaded and the segment pointed to is
marked not present.

#NP If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is marked not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

