®

(intel

Intel® SSE4 Programming
Reference

Reference Number: D31561-001
April 2007



INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANT-
ED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED
FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Developers must not rely on the absence or characteristics of any features or instructions marked “re-
served” or “undefined.” Improper use of reserved or undefined features or instructions may cause unpre-
dictable behavior or failure in developer's software code when running on an Intel processor. Intel reserves
these features or instructions for future definition and shall have no responsibility whatsoever for conflicts
or incompatibilities arising from their unauthorized use.

The Intel® 64 architecture processors may contain design defects or errors known as errata. Current char-
acterized errata are available on request.

Hyper-Threading Technology requires a computer system with an Intel® processor supporting Hyper-
Threading Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will
vary depending on the specific hardware and software you use. For more information, see http://www.in-
tel.com/technology/hyperthread/index.htm; including details on which processors support HT Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and for some uses, certain platform software enabled for it. Functionality, perfor-
mance or other benefits will_vary depending on hardware and software configurations. Intel® Virtualization
Technology-enabled BIOS and VMM applications are currently in development.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, oper-
ating system, device drivers and applications enabled for Intel™ 64 architecture. Processors will not operate
(including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary de-
pending on your hardware and software configurations. Consult with your system vendor for more infor-
mation.

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2
Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, and VTune are trademarks or registered trade-
marks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 5937
Denver, CO 80217-9808

or call 1-800-548-4725
or visit Intel’s website at http://www.intel.com

Copyright © 2006-2007 Intel Corporation



CHAPTER 1
STREAMING SIMD EXTENSIONS 4

1.1 INTRODUCTION. .ttt ettt e et e e e e e e e e e 1
1.2 SSEZ OVERVIEW. . .ottt e 1
CHAPTER 2

SSE4 FEATURES

2.1 NEW DA T A TYPES ..ottt e e e s 3
2.2 SSE4. T INSTRUCTION SET . .ttt ettt 3
2.2.1 Dword MUltiply INStrUCTIONS . . ..ot e 3
222 Floating-Point Dot Product INStructions. .........covviiiiii i 3
2.23 Streaming Load Hint INStruction. . ... ..ot i 4
224 Packed Blending INSTrUCtioNS. . ... ovvu v e 4
2.2.5 Packed Integer MIN/MAX INSTrUCHIONS .. ...vveii e 5
2.26 Floating-Point Round Instructions with Selectable RoundingMode ................... 5
2.2.7 Insertion and Extractions from XMM RegiSters.........oovviiiiiiiiiviiiiiiiieennn, 6
228 Packed Integer FOrmat CONVETSIONS . ... v v et 6
229 Improved Sums of Absolute Differences (SAD) for 4-Byte Blocks. .................... 7
2.2.10 HOMZONtal SEArCh . ... 8
2.2.11 PaCKEd TOS T, ottt e e 8
2.2.12 Packed Qword Equality COmMPariSONS . .......vrir it eens 8
2.2.13 Dword Packing With Unsigned Saturation...........cccoviiiiii i 9
2214 IEEE 754 ComMPlIaNCe . ...ttt e 9
23 SSE4.2 INSTRUCTION SET . .ttt ettt 10
2.3.1 String and Text Processing INStruCtions ........ovviiiiii i 10
2311 Memory Operand AlIGNMENT . ......oouii e 11
23.2 Packed Comparison SIMD integer Instruction............cooviiiii i 12
233 Application-Targeted Accelerator INStructions ..........cccovvviiiiiiiiiiiiinnnenns 12
CHAPTER 3

APPLICATION PROGRAMMING MODEL

3.1 CPU D . Lttt e 13
3.2 DETECTING SSE4 INSTRUCTIONS . . . oottt 39
3.2.1 Detecting SSE4.1 Instructions Using CPUID ..ot 39
3.2.2 Detecting SSE4.2 Instructions UsingCPUID ...t 39
33 EXCEPTIONS AND SSE4 . ..ottt e e 40
CHAPTER 4

SYSTEM PROGRAMMING MODEL

4.1 ENABLING SSE4 ..ottt e e 41
4.2 DEVICE NOT AVAILABLE (DNA) EXCEPTIONS . ..ottt 41
4.3 SSEZ EMULATION Lottt e 42
CHAPTER 5

SSE4 INSTRUCTION SET

5.1 INSTRUCTION FORMA T S .ottt e s 43
5.2 NO T AT ON S L .ttt et e e e e e 43



53

IMM8 CONTROL BYTE OPERATION FOR PCMPESTRI / PCMPESTRM / PCMPISTRI /

POMPISTRM. Lt 44
General DeSCriPTiON ..ottt e e 44
SoUrCe Data FOmmMat. . ..ot e e 45
Aggregation OPeration . .....v.vt vt e 46
0] = T Y7 48
OUTPUTL SElBCHION. .ttt e e e 48
Valid/Invalid Override of COmMPariSONS. . ...vvvvvr ittt enn 49
Summary of Im8 Control byte. ... ...ovvi i e 50
Diagram Comparison and Aggregation Process. ...........ooovviiiiiiiiennnnnnns 51
INSTRUCTION REFERENCE. . .. .ttt e 51
BLENDPD — Blend Packed Double Precision Floating-Point Values .................. 52
BLENDPS — Blend Packed Single Precision Floating-Point Values ................... 54
BLENDVPD — Variable Blend Packed Double Precision Floating-Point Values ........ 56
BLENDVPS — Variable Blend Packed Single Precision Floating-Point Values ......... 58
CRC32 — Accumulate CRC32 ValUe . ..o v e 61
DPPD — Dot Product of Packed Double Precision Floating-Point Values ............. 65
DPPS — Dot Product of Packed Single Precision Floating-Point Values .............. 68
EXTRACTPS — Extract Packed Single Precision Floating-Point Value................ 71
INSERTPS — Insert Packed Single Precision Floating-Point Value ................... 74
MOVNTDQA — Load Double Quadword Non-Temporal Aligned Hint ................. 77
MPSADBW — Compute Multiple Packed Sums of Absolute Difference ............... 80
PACKUSDW — Pack with Unsigned Saturation ..............coviiiiiiiiiiiiniinn 84
PBLENDVB — Variable Blend Packed Bytes...........ccoviiiiiiiiiiiiiiiiiiianes 87
PBLENDW — Blend Packed Words. . ......ovviiiii e ieeeas 90
PCMPEQQ — Compare Packed Qword DataforEqual .............coovvvviiiinnn, 93
PCMPESTRI — Packed Compare Explicit Length Strings, Return Index ............... 95
PCMPESTRM — Packed Compare Explicit Length Strings, ReturnMask .............. 98
PCMPISTRI — Packed Compare Implicit Length Strings, ReturnIndex .............. 101
PCMPISTRM — Packed Compare Implicit Length Strings, ReturnMask .............. 104
PCMPGTQ — Compare Packed Data for Greater Than............ocovvvviiivinnnn, 107
PEXTRB — EXIraCt BYte. ..ot e e e e 109
PEXTRD/PEXTRQ — Extract Dword/QWord. . ......ovvviieiiiiiiinei e 111
PEXTRW — EXTract Word . ..o e 114
PHMINPOSUW — Packed Horizontal Word Minimum ..........cccovviviiiienenns, 117
PINSRB — INSert By e . oottt e e 120
PINSRD/PINSRQ — Insert Dword/QWord. ........ouvivvineiii i 122
PMAXSB — Maximum of Packed Signed Byte Integers................covivivnnns. 125
PMAXSD — Maximum of Packed Signed Dword Integers.............oovvviiinanns. 128
PMAXUD — Maximum of Packed Unsigned Dword Integers..............cocovvnns. 130
PMAXUW — Maximum of Packed Word Integers ............coviiiiiiiiiininnes. 132
PMINSB — Minimum of Packed Signed Byte Integers................ccovivenn.t. 135
PMINSD — Minimum of Packed Dword Integers ............cooviiiiiiiiininnanns. 138
PMINUD — Minimum of Packed Dword Integers...........coovvrviviiinenenenanns. 140
PMINUW — Minimum of Packed Word INntegers..........covvviiviiininiiinenannn, 142
PMOVSX — Packed Move with Sign Extend. ..........coviii i 145
PMOVZX — Packed Move with Zero Extend ...........coovviiiiiiiiiiiiii i 148
PMULDQ — Multiply Packed Signed Dword Integers........ccovvviviviiiiiinnnnnn, 151



PMULLD — Multiply Packed Signed Dword Integers and Store Low Result ......... 153

POPCNT — Return the Count of Number of BitsSetto 1................coviiiit 155

PTEST- LoGICal COmMPare .. v vttt ettt ettt iaas 158

ROUNDPD — Round Packed Double Precision Floating-Point Values ............... 160

ROUNDPS — Round Packed Single Precision Floating-Point Values ................ 164

ROUNDSD — Round Scalar Double Precision Floating-Point Values ................ 167

ROUNDSS — Round Scalar Single Precision Floating-Point Values.................. 170
APPENDIX A
INSTRUCTION SUMMARY AND ENCODINGS
1.1 SSE4.T INSTRUCTION SUMMARY AND ENCODINGS ..o 173
1.2 SSE4.2 INSTRUCTION SUMMARY AND ENCODINGS ..o 184
APPENDIX B
INSTRUCTION OPCODE MAP
FIGURES
Figure 2-1. MPSADBW OPEration ..o vvv ettt ettt e e e 8
Figure 3-1. Version Information Returned by CPUID INEAX . ......ooiiii it 21
Figure 3-2. Extended Feature Information Returned in the ECX Register .................... 24
Figure 3-3. Feature Information Returned in the EDX Register...........ovovviviiiinnnnnn. 26
Figure 3-4. Determination of Support for the Processor Brand String........................ 35
Figure 3-5. Algorithm for Extracting Maximum Processor Frequency .............ooevvnen.n. 37
Figure 5-1. Operation of PCMPSTRX and PCMPESTRX. ..ot v vt eineans 51
Figure 5-2. Bit Control Fields of Immediate Byte for ROUNDxx Instruction................. 160
TABLES
Table 2-1. Enhanced 32-bit SIMD Multiply Supported by SSE4.1 .. ................. 3
Table 2-2. Blend Field Size and Control Modes Supported by SSE4.1 . .............. 5
Table 2-3. Enhanced SIMD Integer MIN/MAX Instructions Supported by SSE4.1 .. .. ... 5
Table 2-4. New SIMD Integer conversions supported by SSE4.1.................... 7
Table 2-5. New SIMD Integer Conversions Supported by SSE4.1 .. ................. 7
Table 2-6. Enhanced SIMD Pack supportby SSE4.1. .. ...... ... ... .. .. ... 9
Table 2-7. SIMD numeric exceptions signaled by SSE4.1 ......... ... ... ......... 10
Table 3-1. Information Returned by CPUID Instruction. .. ........................ 14
Table 3-2. Highest CPUID Source Operand for Intel 64 and IA-32 Processors . ... .... 20
Table 3-3. Processor Type Field . . . ... ... . . 22
Table 3-4. More on Extended Feature Information Returned

inthe ECX Register . . ... . . . 24
Table 3-5. More on Feature Information Returned in the EDX Register. .. ........... 26
Table 3-6. Encoding of Cache and TLB Descriptors. . ... ...... ... it 30
Table 3-7. Processor Brand String Returned with Pentium 4 Processor. . ............ 36
Table 3-8. Mapping of Brand Indices; and
Intel 64 and 1A-32 Processor Brand Strings. . ............ ... ... ...... 38

Table 5-1. Source Data Format. . ... ... .. .. 45



Table 5-2.
Table 5-3.
Table 5-4.
Table 5-5.
Table 5-6.
Table 5-7.
Table 5-8.
Table 5-9.
Table A-1.
Table A-2.
Table A-3.
Table A-4.
Table B-1.
Table B-2.
Table B-3.
Table B-4.
Table B-5.

vi

Aggregation Operation. . . ... .. . 46
Aggregation Operation. . . ........... . i 47
Polarity . . ... e 48
Ouput Selection . . ... ... e 48
Output Selection . ... . . 48
Comparison Result for Each Element Pair BoolRes[i.j]. ... .............. 49
Summary of Imm8 Control Byte. . . ........ ... ... . ... ... ... 50
Rounding Modes and Encoding of Rounding Control (RC) Field ......... 161
SSE4.1 Instruction Set Summary .......... .. 173
Encodings of SSE4.1 instructions . . ......... ... ... ... .. .. . ..., 175
SSE4.2 Instruction SetSummary ......... .. ... .. .. 184
Encodings of SSE4.2 instructions . . ......... ... ... . o 185
Three-byte Opcode Map: 00H — 7FH (First Two Bytes are OF 38H) ... ... 187
Three-byte Opcode Map: 08H — FFH (First Two Bytes are OF 38H) . ... .. 187
Three-byte Opcode Map: 00H — 7FH (First Two Bytes are OF 3AH) . ... .. 188
Three-byte Opcode Map: 80H — FFH (First Two Bytes are OF 3AH). .. ... 188
Two-byte Opcode Map: B8H (First Byte isOFH) *..................... 189



STREAMING SIMD EXTENSIONS 4

CHAPTER 1
STREAMING SIMD EXTENSIONS 4

1.1 INTRODUCTION

Intel® Streaming SIMD Extensions 4 (SSE4) introduces 54 new instructions in Intel
64 processors made from 45 nm process technology.

® 47 of the SSE4 instructions are available in 45 nm Intel processors based on the
successor of Intel Core™ microarchitecture (code named Penryn). This subset of
47 SSE4 instruction is referred to as SSE4.1 in this document.

® SSE4.1 and seven other new SSE4 instructions are supported in 45 nm Intel
processors based on a new microarchitecture (code named Nehalem). The subset
of the 7 new SSE4 instructions available to Intel processors based on the
Nehalem microarchitecture is referred to as SSE4.2 in this document.

1.2 SSE4 OVERVIEW

SSE4.1 is targeted to improve the performance of media, imaging, and 3D work-

loads. SSE4.1 adds instructions that improve compiler vectorization and significantly
increase support for packed dword computation. The technology also provides a hint
that can improve memory throughput when reading from uncacheable WC memory

type.
The 47 SSE4.1 instructions (see Appendix A, “Instruction Summary and Encodings™)
include:

® Two instructions perform packed dword multiplies.

® Two instructions perform floating-point dot products with input/output selects.
® One instruction performs a load with a streaming hint.

® Six instructions simplify packed blending.

® Eight instructions expand support for packed integer MIN/MAX.

® Four instructions support floating-point round with selectable rounding mode and
precision exception override.

® Seven instructions improve data insertion and extractions from XMM registers

® Twelve instructions improve packed integer format conversions (sign and zero
extensions).

® One instruction improves SAD (sum absolute difference) generation for small
block sizes.

® One instruction aids horizontal searching operations.
® One instruction improves masked comparisons.



STREAMING SIMD EXTENSIONS 4

® One instruction adds qword packed equality comparisons.
® One instruction adds dword packing with unsigned saturation.
The seven SSE4.2 instructions improve performance in the following areas:

® String and text processing that can take advantage of single-instruction multiple-
data programming techniques.

® Application-targeted accelerator (ATA) instructions.

® A SIMD integer instruction that enhances the capability of the 128-bit integer
SIMD capability in SSE4.1.

SSE4 requires no new OS support to save and restore the register state beyond what
is required by Streaming SIMD Extensions (SSE). There are six SSE4.1 instructions
which generate numeric (SIMD floating-point) exceptions, thus requiring the OS to
provide IEEE-754 compliant event handlers for post-compute exception (similar to
SSE/SSE2/SSE3 instructions). SSE4.2 instructions do not generate SIMD floating-
point exceptions. See Intel® 64 and IA-32 Architectures Software Developer’'s Man-
ual, Volume 1 , Appendix E.

SSE4 is fully compatible with software written for previous generations of Intel 64
and 1A-32 architecture microprocessors. All existing software continues to run
correctly without modification on microprocessors that incorporate SSE4, as well as
in the presence of existing and new applications that incorporate SSE4.



SSE4 FEATURES

CHAPTER 2
SSE4 FEATURES

2.1 NEW DATA TYPES

SSE4 does not introduce any new data types.

2.2 SSE4.1 INSTRUCTION SET

SSE4.1 instructions can use an XMM register as a source or destination. Program-
ming SSE4.1 is similar to programming 128-bit Integer SIMD and floating-point
SIMD instructions in SSE/SSE2/SSE3/SSSE3. SSE4.1 does not provide any 64-bit
integer SIMD instructions.

2.2.1 Dword Multiply Instructions

SSE4.1 adds two dword multiply instructions that aid vectorization. They allow four
simultaneous 32 bit by 32 bit multiplies. PMULLD returns a low 32-bits of the result
and PMULDQ returns a 64-bit signed result. These represent the most common
integer multiply operation. See Table 2-1.

Table 2-1. Enhanced 32-bit SIMD Multiply Supported by SSE4.1

32 bit Integer Operation
unsigned x unsigned signed x signed
- Low 32-bit (not available) PMULLD
2 High 32-bit (not available) (not available)
@ [ 64bit PMULUDQ* PMULDQ
NOTE:

* Available prior to SSE4.1.

2.2.2 Floating-Point Dot Product Instructions

SSE4.1 adds double-precision (for 2 elements; DPPD) and single-precision dot prod-
ucts (for up to 4 elements; DPPS).

These dot-product instructions include source select and destination broadcast which

generally improves the usability. For example, a single DPPS instruction can be used
for a 2, 3, or 4 element dot product.




SSE4 FEATURES

2.2.3 Streaming Load Hint Instruction

Historically, CPU read accesses of WC memory type regions have significantly lower
throughput than accesses to cacheable memory.

The streaming load instruction in SSE4.1, MOVNTDQA, provides a non-temporal hint
that can cause adjacent 16-byte items within an aligned 64-byte region (a streaming
line) to be fetched and held in a small set of temporary buffers (“streaming load buff-
ers”). Subsequent streaming loads to other aligned 16-byte items in the same
streaming line may be supplied from the streaming load buffer and can improve
throughput.

Programmers are advised to use the following practices to improve the efficiency of
MOVNTDQA streaming loads from WC memory:

® Streaming loads must be 16-byte aligned.

® Temporally group streaming loads of the same streaming cache line for effective
use of the streaming load buffers. Loads issued much later may cause the
streaming line to be refetched from memory.

® Temporally group streaming loads from at most a few streaming lines together.
The number of streaming load buffers is small; grouping a modest number of
streams will avoid running out of streaming load buffers and the resultant
refetching of streaming lines from memory.

® Avoid writing to a streaming line until all reads to 16-byte items have occurred.
Reading a 16-byte item from a streaming line that has been written, may cause
the streaming line to be refetched.

® Avoid reading a given 16-byte item within a streaming line more than once;
repeated loads of a particular 16-byte item are likely to cause the streaming line
to be refetched.

® The streaming load buffers, reflecting the WC memory type characteristics, are
not required to be snooped by operations from other agents. Software should not
rely upon such coherency actions to provide any data coherency with respect to
other logical processors or bus agents. Rather, software must employ memory
fences (i.e. the MFENCE instruction) to insure the consistency of WC memory
accesses between producers and consumers.

2.24 Packed Blending Instructions

SSE4.1 adds 6 instructions used for blending (BLENDPS, BLENDPD, BLENDVPS,
BLENDVPD, PBLENDVB, PBLENDW).

Blending conditionally copies a field in a source operand to the same field in the des-
tination. SSE4.1 instructions improve blending operations for most field sizes. A sin-
gle new SSE4.1 instruction can generally replace a sequence of 2 to 4 operations
using previous architectures.

The variable blend instructions (BLENDVPS, PBLENDVPD, PBLENDW) introduce the
use of control bits stored in an implicit XMM register (XMMO). The most significant
bit in each field (the sign bit, for 2’s compliment integer or floating-point) is used as



a selector. See Table 2-2.

SSE4 FEATURES

Table 2-2. Blend Field Size and Control Modes Supported by SSE4.1

Packed Packed

Double Single | Packed | Packed | Packed | Packed Blend
Instructions | FP FP QWord DWword Word Byte Control
BLENDPS X Imm8
BLENDPD X Imm8
BLENDVPS X XD XMMO
BLENDVPD X X XMMO
PBLENDVB @ @ @ X XMMO
PBLENDW X X X Imm8
NOTE:

1. Use of floating-point SIMD instructions on integer data types may incur performance penalties.
2. Byte variable blend can be used for larger sized fields by reformatting (or shuffling) the blend

control.

2.2.5

Packed Integer MIN/MAX Instructions

SSE4.1 adds 8 packed integer MIN and MAX instructions (PMINUW, PMINUD,
PMINSB, PMINSD; PMAXUW, PMAXUD, PMAXSB, PMAXSD).

Four 32-bit integer packed MIN and MAX instructions operate on unsigned and signed
dwords. Two instructions operate on signed bytes. Two instructions operate on un-
signed words. See Table 2-3.

Table 2-3. Enhanced SIMD Integer MIN/MAX Instructions Supported by SSE4.1

Integer Width
Byte Word DWord
Integer PMINUB* PMINUW PMINUD
Format Unsigned | PMAXUB* PMAXUW PMAXUD
PMINSB PMINSW* PMINSD
Signed PMAXSB PMAXSW* PMAXSD
NOTE:

* Available prior to SSE4.1.

2.2.6

Floating-Point Round Instructions with Selectable Rounding

Mode

High level languages and libraries often expose rounding operations having a variety




SSE4 FEATURES

of numeric rounding and exception behaviors. Using SSE/SSE2/SSE3 instructions to
mitigate the rounding-mode-related problem is sometimes not straight forward.

SSE4.1 introduces four rounding instructions (ROUNDPS, ROUNDPD, ROUNDSS,
ROUNDSD) that cover scalar and packed single- and double-precision floating-point
operands. The rounding mode can be selected using an immediate from one of the
IEEE-754 modes (Nearest, -Inf, +Inf, and Truncate) without changing the current
rounding mode; or the the instruction can be forced to use the current rounding
mode. Another bit in the immediate is used to suppress inexact precision exceptions.

Rounding instructions in SSE4.1 generally permit single-instruction solutions to C99
functions ceil(), floor(), trunc(), rint(), nearbyint(). These instructions simplify the
implementations of half-way-away-from-zero rounding modes as used by C99
round() and F90’s nint().

2.2.7 Insertion and Extractions from XMM Registers

SSE4.1 adds 7 instructions (corresponding to 9 assembly instruction mnemonics)
that simplify data insertion and extraction between general-purpose register (GPR)
and XMM registers (EXTRACTPS, INSERTPS, PINSRB, PINSRD, PINSRQ, PEXTRB,
PEXTRW, PEXTRD, and PEXTRQ). When accessing memory, no alignment is required
for any of these instructions (unless alignment checking is enabled).

EXTRACTPS extracts a single-precision floating-point value from any offset in an
XMM register and stores the result to memory or a general-purpose register. IN-
SERTPS inserts a single floating-point value from either a 32-bit memory location or
from an XMM register. In addition, INSERTPS allows the insertion of +0.0f into des-
tination fields.

PINSRB, PINSRD, and PINSRQ insert byte, dword, or gqword values from 32/64 reg-
isters or memory into an XMM register. Word values were already supported by SSE2
(PINSRW).

PEXTRB, PEXTRW, PEXTRD, and PEXTRQ extract byte, word, dword, and gword from
an XMM register and insert the values into a general-purpose register or memory.

2.2.8 Packed Integer Format Conversions

A common type of operation on packed integers is the conversion by zero- or sign-
extension of packed integers into wider data types. SSE4.1 adds 12 instructions that
convert from a smaller packed integer type to a larger integer type (PMOVSXBW,
PMOVZXBW, PMOVSXBD, PMOVZXBD, PMOVSXWD, PMOVZXWD, PMOVSXBQ,
PMOVZXBQ, PMOVSXWQ, PMOVZXWQ, PMOVSXDQ, PMOVZXDQ).

The source operand is from either an XMM register or memory; the destination is an
XMM register. See Table 2-4.

When accessing memory, no alignment is required for any of the instructions unless
alignment checking is enabled. In which case, all conversions must be aligned to the
width of the memory reference. The number of elements converted (and width of

memory reference) is illustrated in Table 2-5. The alignment requirement is shown



SSE4 FEATURES

in parenthesis.

Table 2-4. New SIMD Integer conversions supported by SSE4.1

Source Type
Byte Word Dword
Signed Word PMOVSXBW
Unsigned Word PMOVZXBW
.§ Signed Dword PMOVSXBD PMOVSXWD
@ Unsigned Dword PMOVZXBD PMOVZXWD
E § Signed Qword PMOVSXBQ PMOVSXWQ PMOVSXDQ
o F | Unsigned Qword PMOVZXBQ PMOVZXWQ PMOVZXDQ
Table 2-5. New SIMD Integer Conversions Supported by SSE4.1
Source Type
Byte Word Dword
S Word 8 (64 bits)
= Dword 4 (32 bits) 4 (64 bits)
'% 9 Qword 2 (16 bits) 2 (32 bits) 2 (64 bits)
1=

2.2.9 Improved Sums of Absolute Differences (SAD) for 4-Byte
Blocks

SSE4.1 adds an instruction (MPSADBW) that performs eight 4-byte wide SAD opera-
tions per instruction. Compared to PSADBW, MPSADBW operates on smaller chunks
(4-byte instead of 8-byte chunks); this makes the instruction better suited to video
coding standards such as VC.1 and H.264. MPSADBW performs four times the
number of absolute difference operations than that of PSADBW (per instruction). This
can improve performance for dense motion searches.

MPSADBW uses a 4-byte wide field from a source operand; the offset of the 4-byte
field within the 128-bit source operand is specified by two immediate control bits.
MPSADBW produces eight 16-bit SAD results. Each 16-bit SAD result is formed from
overlapping pairs of 4 bytes in the destination with the 4-byte field from the source
operand. MPSADBW uses eleven consecutive bytes in the destination operand, its
offset is specified by a control bit in the immediate byte (i.e. the offset can be from
byte O or from byte 4). Figure 2-1 illustrates the operation of MPSADBW. MPSADBW
can simplify coding of dense motion estimation by providing source and destination
offset control, higher throughput of SAD operations, and the smaller chunk size.




SSE4 FEATURES

Imm[1:0]*32
127 96 64 |
Source A
& Imm[2]*32
|
y—F v
Destination

o s A s

Figure 2-1. MPSADBW Operation

2.2.10 Horizontal Search

SSE4.1 adds a search instruction (PHMINPOSUW) that finds the value and location
of the minimum unsigned word from one of 8 horizontally packed unsigned words.
The resulting value and location (offset within the source) are packed into the low
dword of the destination XMM register.

Rapid search is often a significant component of motion estimation. MPSADBW and
PHMINPOSUW can be used together to improve video encode.

2.2.11 Packed Test

The packed test instruction PTEST is similar to a 128-bit equivalent to the legacy in-
struction TEST. With PTEST, the source argument is typically used like a bit mask.
PTEST performs a logical AND between the destination with this mask and sets the
ZF flag if the result is zero. The CF flag (zero for TEST) is set if the inverted mask
AND’d with the destination is all zero. Because the destination is not modified, PTEST
simplifies branching operations (such as branching on signs of packed floating-point
numbers, or branching on zero fields).

2.2.12 Packed Qword Equality Comparisons

SSE4.1 adds a 128-bit packed gword equality test. The new instruction (PCMPEQQ)
is identical to PCMPEQD, but has qword granularity.



SSE4 FEATURES

2.2.13 Dword Packing With Unsigned Saturation

SSE4.1 adds a new instruction PACKUSDW to complete the set of small integer pack
instructions in the family of SIMD instruction extensions. PACKUSDW packs dword to
word with unsigned saturation. See Table 2-6 for the complete set of packing instruc-
tions for small integers.

Table 2-6. Enhanced SIMD Pack support by SSE4.1

Pack Type

DWord -> word Word -> Byte
Unsigned PACKUSDW (new!) PACKUSWB
Signed PACKSSDW PACKSSWB

Saturation

Type

2.2.14 |EEE 754 Compliance

The six SSE4.1 instructions that perform floating-point arithmetic are:
®* DPPS

® DPPD

¢ ROUNDPS
® ROUNDPD
® ROUNDSS
® ROUNDSD

Dot Product operations are not specified in IEEE-754. When neither FTZ nor DAZ are
enabled, the dot product instructions resemble sequences of IEEE-754 multiplies and
adds (with rounding at each stage), except that the treatment of input NaN’s is
implementation specific (there will be at least one NaN in the output). The input
select fields (bits imm8[4:7]) force input elements to +0.0f prior to the first multiply
and will suppress input exceptions that would otherwise have been be generated.

As a convenience to the exception handler, any exceptions signaled from DPPS or
DPPD leave the destination unmodified.

Round operations signal invalid and precision only.



SSE4 FEATURES

Table 2-7. SIMD numeric exceptions signaled by SSE4.1

DPPS DPPD ROUNDPS ROUNDPD
ROUNDSS ROUNDSD

Overflow X X
Underflow X X
Invalid X X X® X @
Inexact Precision X X X@ X®
Denormal X X
NOTE:

1. Invalid is signaled only if Src = SNaN.
2. Precision is ignored (regardless of the MXCSR precision mask) if if imm8[3] = ‘1",

The other SSE4.1 instructions with floating-point arguments (BLENDPS, BLENDPD,
BLENDVPS, BLENDVPD, INSERTPS, EXTRACTPS) do not signal any SIMD numeric
exceptions.

2.3 SSE4.2 INSTRUCTION SET

Five of the seven SSE4.2 instructions can use an XMM register as a source or desti-
nation. These include four text/string processing instructions and one packed quad-
word compare SIMD instruction. Programming these five SSE4.2 instructions is
similar to programming 128-bit Integer SIMD in SSE2/SSSE3. SSE4.2 does not
provide any 64-bit integer SIMD instructions.

The remaining two SSE4.2 instructions uses general-purpose registers to perform
accelerated processing functions in specific application areas.

2.3.1 String and Text Processing Instructions

String and text processing instructions in SSE4.2 allocates 4 opcodes to provide a
rich set of string and text processing capabilities that traditionally required many
more opcodes. These 4 instructions use XMM registers to process string or text
elements of up to 128-bits (16 bytes or 8 words). Each instruction uses an immediate
byte to support a rich set of programmable controls. A string-processing SSE4.2
instruction returns the result of processing each pair of string elements using either
an index or a mask.

The capabilities of the string/text processing instructions include:

® Handling string/text fragments consisting of bytes or words, either signed or
unsigned

10



SSE4 FEATURES

® Support for partial string or fragments less than 16 bytes in length, using either
explicit length or implicit null-termination

® Four types of string compare operations on word/byte elements

® Up to 256 compare operations performed in a single instruction on all string/text
element pairs

® Built-in aggregation of intermediate results from comparisons

® Programmable control of processing on intermediate results

® Programmable control of output formats in terms of an index or mask

® Bi-directional support for the index format

® Support for two mask formats: bit or natural element width

® Not requiring 16-byte alignment for memory operand

The four SSE4.2 instructions that process text/string fragments are:

® PCMPESTRI — Packed compare explict-length strings, return index in ECX/RCX
¢ PCMPESTRM — Packed compare explict-length strings, return mask in XMMO

® PCMPISTRI — Packed compare implict-length strings, return index in ECX/RCX
® PCMPISTRM — Packed compare implict-length strings, return mask in XMMO

All four require the use of an immediate byte to control operation. The two source
operands can be XMM registers or a combination of XMM register and memory
address. The immediate byte provides programmable control with the following
attributes:

® Input data format

® Compare operation mode

® Intermediate result processing
® Output selection

Depending on the output format associated with the instruction, the text/string
processing instructions implicitly uses either a general-purpose register (ECX/RCX)
or an XMM register (XMMO) to return the final result.

Two of the four text-string processing instructions specify string length explicitly.
They use two general-purpose registers (EDX, EAX) to specify the number of valid
data elements (either word or byte) in the source operands. The other two instruc-
tions specify valid string elements using null termination. A data element is consid-
ered valid only if it has a lower index than the least significant null data element.

2.3.1.1 Memory Operand Alignment

The text and string processing instructions in SSE4.2 do not perform alignment
checking on memory operands. This is different from most other 128-bit SIMD
instructions accessing the XMM registers. The absence of an alignment check for



SSE4 FEATURES

these four instructions does not imply any modification to the existing definitions of
other instructions.

2.3.2 Packed Comparison SIMD integer Instruction

SSE4.2 also provides a 128-bit integer SIMD instruction PCMPGTQ that performs
logical compare of greater-than on packed integer quadwords.

2.3.3 Application-Targeted Accelerator Instructions

There are two application-targeted accelerator instructions in SSE4.2:

® CRC32 — Provides hardware acceleration to calculate cyclic redundancy checks
for fast and efficient implementation of data integrity protocols.

® POPCNT — Accelerates software performance in the searching of bit patterns.

12



APPLICATION PROGRAMMING MODEL

CHAPTER 3
APPLICATION PROGRAMMING MODEL

The application programming environment for SSE4 is similar to that of Streaming
SIMD Extensions (SSE), SSE2, SSE3, and SSSE3.

3.1 CPUID

The CPUID instruction is extended to provide additional information, including three
feature flags that indicate support for SSE4 instructions. CPUID’s output is depen-
dent on the contents of the EAX register upon execution. For example, the following
pseudocode loads EAX with OOH and causes CPUID to return a Maximum Return
Value and the Vendor Identification String in the appropriate registers:

MOV EAX, O0H
CPUID

Table 3-1 shows information returned, depending on the initial value loaded into the
EAX register. Table 3-2 shows the maximum CPUID input value recognized for each
family of Intel 64 and 1A-32 processors on which CPUID is implemented.

Two types of information are returned: basic and extended function information. If a
value is entered for CPUID.EAX is invalid for a particular processor, the data for the
highest basic information leaf is returned. For example, using the Intel® Core™2 Duo
processor, the following is true:

CPUID.EAX = O5H (* Returns MONITOR/MWAIT leaf. *)

CPUID.EAX = OAH (* Returns Architectural Performance Monitoring leaf. *)

CPUID.EAX = OBH (* INVALID: Returns the same information as CPUID.EAX = OAH. *)

CPUID.EAX = 80000008H (* Returns virtual/physical address size data. *)

CPUID.EAX = B0O00O000AH (* INVALID: Returns same information as CPUID.EAX = OAH. *)

CPUID can be executed at any privilege level to serialize instruction execution. Seri-
alizing instruction execution guarantees that any modifications to flags, registers,
and memory for previous instructions are completed before the next instruction is
fetched and executed.

See also:

“Serializing Instructions” in Chapter 7, “Multiple-Processor Management,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A

AP-485, Intel Processor Identification and the CPUID Instruction (Order Number
241618)



APPLICATION PROGRAMMING MODEL

Table 3-1. Information Returned by CPUID Instruction

Initial EAX
Value Information Provided about the Processor
Basic CPUID Information
OH EAX Maximum Input Value for Basic CPUID Information (see Table 3-2)
EBX “Genu”
ECX “ntel”
EDX “inel”
O1H EAX Version Information: Type, Family, Extended Family, Model, Extended
Model, and Stepping ID (see Figure 3-1)
EBX Bits 7-0: Brand Index
Bits 15-8: CLFLUSH line size (Value * 8 = cache line size in bytes)
Bits 23-16: Maximum number of logical processors in this physical
package.
Bits 31-24: Initial APIC ID
ECX Extended Feature Information (see Figure 3-2 and Table 3-4)
EDX Feature Information (see Figure 3-3 and Table 3-5)
02H EAX Cache and TLB Information (see Table 3-6)
EBX Cache and TLB Information
ECX Cache and TLB Information
EDX Cache and TLB Information
03H EAX Reserved.
EBX Reserved.
ECX Bits 00-31 of 96 bit processor serial number. (Available in Pentium IlI
processor only; otherwise, the value in this register is reserved.)
EDX Bits 32-63 of 96 bit processor serial number. (Available in Pentium Il

processor only; otherwise, the value in this register is reserved.)

NOTE:

Processor serial number (PSN) is not supported in the Pentium 4
processor or later. On all models, use the PSN flag (returned using
CPUID) to check for PSN support before accessing the feature. See AP-
485, Intel Processor Identification and the CPUID Instruction (Order
Number 241618) for more information on PSN.

14




APPLICATION PROGRAMMING MODEL

Table 3-1. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

CPUID leaves > 3 < 80000000 are visible only when
IA32_MISC_ENABLES.BOOT_NT4{bit 22] = O (default).

Deterministic Cache Parameters Leaf

04H NOTE:

04H output depends on the initial value in ECX. See also: “INPUT
EAX = 4: Returns Deterministic Cache Parameters for each level on
page 1-33.

EAX Bits 4-0: Cache Type*
Bits 7-5: Cache Level (starts at 1)
Bit 8: Self Initializing cache level (does not need SW initialization)
Bit 9: Fully Associative cache
Bit 10: Write-Back Invalidate
0 = WBINVD/INVD from threads sharing this cache acts upon lower
level caches for threads sharing this cache
1 = WBINVD/INVD is not guaranteed to act upon lower level caches
of non-originating threads sharing this cache.
Bit 11:
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.
Bits 13-12: Reserved
Bits 25-14: Maximum number of threads sharing this cache in a
physical package (see note)**
Bits 31-26: Maximum number of processor cores in the physical
package. **, ***

EBX Bits 11-00: L = System Coherency Line Size**
Bits 21-12: P = Physical Line partitions**
Bits 31-22: W = Ways of associativity**




APPLICATION PROGRAMMING MODEL

Table 3-1. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value

Information Provided about the Processor

ECX

EDX

Bits 31-00: S = Number of Sets**

Reserved = 0
NOTES:

* (Cache Type fields:
0 = Null - No more caches 3 = Unified Cache
1 = Data Cache 4-31 = Reserved
2 = Instruction Cache

** Add one to the return value to get the result.

*** The returned value is constant for valid initial values in ECX. Valid
ECX values start from O.

MONITOR/MWAIT Leaf

5H

EAX

EBX

ECX

EDX

Bits 15-00: Smallest monitor-line size in bytes (default is processor’s
monitor granularity)
Bits 31-16: Reserved = 0

Bits 15-00: Largest monitor-line size in bytes (default is processor’s
monitor granularity)
Bits 31-16: Reserved = 0

Bits 00: Enumeration of Monitor-Mwait extensions (beyond EAX and
EBX registers) supported

Bits 01: Supports treating interrupts as break-event for MWAIT, even
when interrupts disabled

Bits 31 - 02: Reserved

Bits 03 - 00: Number of CO* sub C-states supported using MWait

Bits 07 - 04: Number of C1* sub C-states supported using MWAIT
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT
Bits 31 - 20: Reserved = 0

* The definition of CO through C4 states for MWAIT extension
are processor-specific C-states, not ACPI C-states.

16




APPLICATION PROGRAMMING MODEL

Table 3-1. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value

Information Provided about the Processor

Thermal and Power Management Leaf

6H

EAX

EBX

ECX

EDX

Bits 00: Digital temperature sensor is supported if set
Bits 31 - 01: Reserved

Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor
Bits 31 - 04: Reserved

Bits 00: ACNT/MCNT. The capability to provide a measure of delivered
processor performance (since last reset of the counters), as a
percentage of expected processor performance at frequency specified
in CPUID Brand String

Bits 31 - 01: Reserved =0

Reserved = 0

Architectural Performance Monitoring Leaf

OAH

EAX

EBX

ECX
EDX

Bits 07 - 00: Version ID of architectural performance monitoring
Bits 15- 08: Number of general-purpose performance monitoring
counter per logical processor

Bits 23 - 16: Bit width of general-purpose, performance monitoring
counter

Bits 31 - 24: Length of EBX bit vector to enumerate architectural
performance monitoring events

Bit 0: Core cycle event not available if 1

Bit 1: Instruction retired event not available if 1

Bit 2: Reference cycles event not available if 1

Bit 3: Last-level cache reference event not available if 1
Bit 4: Last-level cache misses event not available if 1
Bit 5: Branch instruction retired event not available if 1
Bit 6: Branch mispredict retired event not available if 1
Bits 31- 07: Reserved = 0

Reserved = 0

Bits 04 - 00: Number of fixed-function performance counters (if
Version ID > 1)

Bits 12- 05: Bit width of fixed-function performance counters (if
Version ID > 1)

Reserved =0




APPLICATION PROGRAMMING MODEL

Table 3-1. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
Extended Function CPUID Information
80000000H | EAX Maximum Input Value for Extended Function CPUID Information (see
Table 3-2).
EBX Reserved
ECX Reserved
EDX Reserved
80000001TH | EAX Extended Processor Signature and Extended Feature Bits.
EBX Reserved
ECX Bit 0: LAHF/SAHF available in 64-bit mode
Bits 31-1 Reserved
EDX Bits 10-0: Reserved
Bit 11: SYSCALL/SYSRET available (when in 64-bit mode)
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 28-21: Reserved = 0
Bit 29: Intel® 64 Technology available = 1
Bits 31-30: Reserved = 0
80000002H | EAX Processor Brand String
EBX Processor Brand String Continued
ECX Processor Brand String Continued
EDX Processor Brand String Continued
80000003H | EAX Processor Brand String Continued
EBX Processor Brand String Continued
ECX Processor Brand String Continued
EDX Processor Brand String Continued
80000004H | EAX Processor Brand String Continued
EBX Processor Brand String Continued
ECX Processor Brand String Continued
EDX Processor Brand String Continued
80000005H | EAX Reserved = 0
EBX Reserved =0
ECX Reserved =0
EDX Reserved =0

18




APPLICATION PROGRAMMING MODEL

Table 3-1. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

80000006H | EAX Reserved =0
EBX Reserved =0

ECX Bits 7-0: Cache Line size in bytes
Bits 15-12: L2 Associativity field *
Bits 31-16: Cache size in 1K units

EDX Reserved =0

NOTES:
*L2 associativity field encodings:
OOH - Disabled
01H - Direct mapped
02H - 2-way
04H - 4-way
O6H - 8-way
08H - 16-way
OFH - Fully associative

80000007H | EAX Reserved = 0
EBX Reserved =0
ECX Reserved =0
EDX Reserved =0

80000008H | EAX Virtual/Physical Address size
Bits 7-0: #Physical Address Bits*
Bits 15-8: #Virtual Address Bits
Bits 31-16: Reserved = 0

EBX Reserved =0
ECX Reserved = 0
EDX Reserved =0

NOTES:
* |f CPUID.B0OO00008H:EAX[7:0] is supported, the maximum physical
address number supported should come from this field.

INPUT EAX = 0: Returns CPUID’s Highest Value for Basic Processor Information and
the Vendor Identification String
When CPUID executes with EAX set to 0, the processor returns the highest value the

CPUID recognizes for returning basic processor information. The value is returned in
the EAX register (see Table 3-2) and is processor specific.



APPLICATION PROGRAMMING MODEL

A vendor identification string is also returned in EBX, EDX, and ECX. For Intel
processors, the string is “Genuinelntel” and is expressed:

EBX « 756e6547h (* "Genu”, with G in the low nibble of BL *)
EDX «— 49656e69h (* “inel”, with i in the low nibble of DL *)
ECX « 6c65746eh (* "ntel”, with n in the low nibble of CL *)

INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor
Information

When CPUID executes with EAX set to O, the processor returns the highest value the
processor recognizes for returning extended processor information. The value is
returned in the EAX register (see Table 3-2) and is processor specific.

Table 3-2. Highest CPUID Source Operand for Intel 64 and IA-32 Processors

Highest Value in EAX
Intel 64 or 1A-32 Processors Basic Information Extended Function

Information
Earlier Intel486 Processors CPUID Not Implemented CPUID Not Implemented
Later Intel486 Processors and O1H Not Implemented
Pentium Processors
Pentium Pro and@Pentium@II 02H Not Implemented
Processors, Intel Celeron
Processors
Pentium Ill Processors 03H Not Implemented
Pentium 4 Processors 02H 80000004H
Intel Xeon Processors 02H 80000004H
Pentium M Processor 02H 80000004H
Pentium 4 Processor O5H 80000008H
supporting Hyper-Threading
Technology
Pentium D Processor (8xx) O5H 80000008H
Pentium D Processor (9xx) 06H 80000008H
Intel Core Duo Processor OAH 80000008H
Intel Core 2 Duo Processor OAH 80000008H
Intel Xeon Processor 3000, OAH 80000008H
3200, 5100, 5300 Series

20



APPLICATION PROGRAMMING MODEL

IA32_BIOS_SIGN_ID Returns Microcode Update Signature

For processors that support the microcode update facility, the 1A32_BIOS_SIGN_ID
MSR is loaded with the update signature whenever CPUID executes. The signature is
returned in the upper dword. For details, see Chapter 9 in the Intel® 64 and 1A-32
Architectures Software Developer’s Manual, Volume 3A.

INPUT EAX = 1: Returns Model, Family, Stepping Information

When CPUID executes with EAX set to 1, version information is returned in EAX (see
Figure 3-1). For example: extended family, extended model, model, family, and
processor type for the processor code-named Penryn is as follows:

¢ Extended Model — 0001B

¢ Extended Family — 0000_0000B
® Model —0111B

¢ Family — 0110B

® Processor Type — 00B

See Table 3-3 for available processor type values. Stepping IDs are provided as
needed.

31 28 27 20 19 16 1514 13 12 11 8 7 4 3 0
Extended Extended Family Stepping
EAX Family ID Model ID ID Model ID

Extended Family ID (0) — |

Extended Model ID (0)
Processor Type
Family (OFH for the Pentium 4 Processor Family)

Model

D Reserved

OM16525

Figure 3-1. Version Information Returned by CPUID in EAX

21



APPLICATION PROGRAMMING MODEL

Table 3-3. Processor Type Field

Type Encoding
Original OEM Processor 00B
Intel OverDrive Processor 01B
Dual processor (not applicable to Intel486 10B
processors)
Intel reserved 11B

Extended family, extended model, model, family, and processor type for the
processor code-named Nehalem is as follows:

¢ Extended Model — 0001B

® Extended Family — 0000_0000B
® Model — 1010B

® Family — 0110B

® Processor Type — 00B

NOTE
See AP-485, Intel Processor Identification and the CPUID Instruction
(Order Number 241618) and Chapter 14 in the Intel® 64 and 1A-32

Architectures Software Developer’s Manual, Volume 1, for
information on identifying earlier 1A-32 processors.

The Extended Family ID needs to be examined only when the Family ID is OFH. Inte-
grate the fields into a display using the following rule:

IF Family_ID # OFH
THEN Displayed_Family = Family_ID;
ELSE Displayed_Family = Extended_Family_ID + Family_ID;
(* Right justify and zero-extend 4-bit field. *)

Fl;

(* Show Display_Family as HEX field. *)

The Extended Model ID needs to be examined only when the Family ID is 06H or OFH.
Integrate the field into a display using the following rule:

IF (Family_ID = O6H or Family_ID = OFH)
THEN Displayed_Model = (Extended_Model_ID << 4) + Model_ID;
(* Right justify and zero-extend Extended_Model_ID and Model_ID. *)
ELSE Displayed_Model = Model_ID;

Fl;

(* Show Display_Model as HEX field. *)

22



APPLICATION PROGRAMMING MODEL

INPUT EAX = 1: Returns Additional Information in EBX

When CPUID executes with EAX set to 1, additional information is returned to the
EBX register:

® Brand index (low byte of EBX) — this number provides an entry into a brand
string table that contains brand strings for 1A-32 processors. More information
about this field is provided later in this section.

® CLFLUSH instruction cache line size (second byte of EBX) — this number
indicates the size of the cache line flushed with CLFLUSH instruction in 8-byte
increments. This field was introduced in the Pentium 4 processor.

® Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to
the local APIC on the processor during power up. This field was introduced in the
Pentium 4 processor.

INPUT EAX = 1: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 1, feature information is returned in ECX and
EDX.

® Figure 3-2 and Table 3-4 show encodings for ECX.
® Figure 3-3 and Table 3-5 show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly
interpret feature flags.

NOTE

Software must confirm that a processor feature is present using
feature flags returned by CPUID prior to using the feature. Software
should not depend on future offerings retaining all features.

23



APPLICATION PROGRAMMING MODEL

3130 29 28 27 26 25 24 232221201918 1716 1514131211109 8 7 6 54 3 2 1 0

ECX

POPCNT

SSE4.2

SSE4.1

PDCM — Perf/Debug Capability MSR

xTPR Update Control

CMPXCHG16B
CNXT-ID — L1 Context ID

TM2 — Thermal Monitor 2

D Reserved

SSSE3 — SSSE3 Extensions

EST — Enhanced Intel SpeedStep® Technology
VMX — Virtual Machine Technology
DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT
SSE3 — SSE3 Extensions

OM16524b

Figure 3-2. Extended Feature Information Returned in the ECX Register

Table 3-4. More on Extended Feature Information Returned

in the ECX Register

Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the
processor supports this technology.

1-2 Reserved Reserved

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports
this feature.

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor
supports the extensions to the Debug Store feature to allow for
branch message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates that the
processor supports this technology.

6 Reserved Reserved

7 EST Enhanced Intel SpeedStep® technology. A value of 1 indicates that
the processor supports this technology.

8 ™2 Thermal Monitor 2. A value of 1 indicates whether the processor
supports this technology.

24




APPLICATION PROGRAMMING MODEL

Table 3-4. More on Extended Feature Information Returned

in the ECX Register (Contd.)

Bit # Mnemonic Description

9 SSSE3 Supplemental Streaming SIMD Extensions 3 (SSSE3). A value of 1
indicates the processor supports this technology.

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can
be set to either adaptive mode or shared mode. A value of O
indicates this feature is not supported. See definition of the
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) for
details.

11-12 Reserved Reserved

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is
available. See the “CMPXCHG8B/CMPXCHG16B—Compare and
Exchange Bytes"” section in Volume 2A.

14 xTPR Update xTPR Update Control. A value of 1 indicates that the processor

Control supports changing IA32_MISC_ENABLES[bit 23].

15 PDCM Perf/Debug Capability MSR. A value of 1 indicates that the
processor supports the performance and debug feature indication
MSR

18-16 Reserved Reserved

19 SSE4.1 Streaming SIMD Extensions 4.1 (SSE4.1). A value of 1 indicates
the processor supports this technology.

20 SSE4.2 Streaming SIMD Extensions 4.2 (SSE4.2). A value of 1 indicates
the processor supports this technology.

22-21 Reserved Reserved

23 POPCNT POPCNT. A value of 1 indicates the processor supports the
POPCNT instruction.

31-24 Reserved Reserved

25




APPLICATION PROGRAMMING MODEL

313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0

EDX

PBE—-Pend. Brk. EN.J
TM-Therm. Monitor
HTT-Multi-threading ——
SS-Self Snoop

SSE2-SSE2 Extensions
SSE-SSE Extensions
FXSR-FXSAVE/FXRSTOR
MMX-MMX Technology ———————
ACPI-Thermal Monitor and Clock Ctrl
DS-Debug Store

CLFSH-CFLUSH instruction

PSN—Processor Serial Number

PSE-36 — Page Size Extension

PAT—-Page Attribute Table
CMOV-Conditional Move/Compare Instruction
MCA-Machine Check Architecture

PGE-PTE Global Bit

MTRR-Memory Type Range Registers

SEP-SYSENTER and SYSEXIT
APIC-APIC on Chip

CX8-CMPXCHGSB Inst.

MCE-Machine Check Exception

PAE-Physical Address Extensions
MSR-RDMSR and WRMSR Support

TSC-Time Stamp Counter

PSE—-Page Size Extensions

DE-Debugging Extensions

VME-Virtual-8086 Mode Enhancement
FPU-x87 FPU on Chip

D Reserved

OM16523

Figure 3-3. Feature Information Returned in the EDX Register

Table 3-5. More on Feature Information Returned in the EDX Register

Bit# | Mnemonic | Description

0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU.

VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements,
including CR4.VME for controlling the feature, CR4.PVI for protected mode
virtual interrupts, software interrupt indirection, expansion of the TSS with
the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags.

26




APPLICATION PROGRAMMING MODEL

Table 3-5. More on Feature Information Returned in the EDX Register (Contd.)

Bit #

Mnemonic

Description

2

DE

Debugging Extensions. Support for I/0 breakpoints, including CR4.DE for
controlling the feature, and optional trapping of accesses to DR4 and DR5.

PSE

Page Size Extension. Large pages of size 4 MByte are supported, including
CR4.PSE for controlling the feature, the defined dirty bit in PDE (Page
Directory Entries), optional reserved bit trapping in CR3, PDEs, and PTEs.

TSC

Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD
for controlling privilege.

MSR

Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and
WRMSR instructions are supported. Some of the MSRs are implementation
dependent.

PAE

Physical Address Extension. Physical addresses greater than 32 bits are
supported: extended page table entry formats, an extra level in the page
translation tables is defined, 2-MByte pages are supported instead of 4
Mbyte pages if PAE bit is 1. The actual number of address bits beyond 32 is
not defined, and is implementation specific.

MCE

Machine Check Exception. Exception 18 is defined for Machine Checks,
including CR4.MCE for controlling the feature. This feature does not define
the model-specific implementations of machine-check error logging,
reporting, and processor shutdowns. Machine Check exception handlers may
have to depend on processor version to do model specific processing of the
exception, or test for the presence of the Machine Check feature.

CX8

CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits)
instruction is supported (implicitly locked and atomic).

APIC

APIC On-Chip. The processor contains an Advanced Programmable Interrupt
Controller (APIC), responding to memory mapped commands in the physical
address range FFFEOOOOH to FFFEOFFFH (by default - some processors
permit the APIC to be relocated).

10

Reserved

Reserved

11

SEP

SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and
associated MSRs are supported.

12

MTRR

Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR
contains feature bits that describe what memory types are supported, how
many variable MTRRs are supported, and whether fixed MTRRs are
supported.

13

PGE

PTE Global Bit. The global bit in page directory entries (PDEs) and page table
entries (PTEs) is supported, indicating TLB entries that are common to
different processes and need not be flushed. The CR4.PGE bit controls this
feature.

27



APPLICATION PROGRAMMING MODEL

Table 3-5. More on Feature Information Returned in the EDX Register (Contd.)

Bit # | Mnemonic | Description

14 | MCA Machine Check Architecture. The Machine Check Architecture, which
provides a compatible mechanism for error reporting in P6 family, Pentium 4,
Intel Xeon processors, and future processors, is supported. The MCG_CAP
MSR contains feature bits describing how many banks of error reporting
MSRs are supported.

15 | CMOV Conditional Move Instructions. The conditional move instruction CMOV is
supported. In addition, if x87 FPU is present as indicated by the CPUID.FPU
feature bit, then the FCOMI and FCMOV instructions are supported

16 | PAT Page Attribute Table. Page Attribute Table is supported. This feature
augments the Memory Type Range Registers (MTRRs), allowing an operating
system to specify attributes of memory on a 4K granularity through a linear
address.

17 | PSE-36 36-Bit Page Size Extension. Extended 4-MByte pages that are capable of
addressing physical memory beyond 4 GBytes are supported. This feature
indicates that the upper four bits of the physical address of the 4-MByte
page is encoded by bits 13-16 of the page directory entry.

18 | PSN Processor Serial Number. The processor supports the 96-bit processor
identification number feature and the feature is enabled.

19 | CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 | Reserved | Reserved

21 DS Debug Store. The processor supports the ability to write debug information
into a memory resident buffer. This feature is used by the branch trace store
(BTS) and precise event-based sampling (PEBS) facilities (see Chapter 18,
“Debugging and Performance Monitoring,” in the Intel® 64 and IA-32
Architectures Software Developer's Manual, Volume 3B).

22 | ACPI Thermal Monitor and Software Controlled Clock Facilities. The processor
implements internal MSRs that allow processor temperature to be monitored
and processor performance to be modulated in predefined duty cycles under
software control.

23 | MMX Intel MMX Technology. The processor supports the Intel MMX technology.

24 | FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions
are supported for fast save and restore of the floating point context.
Presence of this bit also indicates that CR4.0SFXSR is available for an
operating system to indicate that it supports the FXSAVE and FXRSTOR
instructions.

25 | SSE SSE. The processor supports the SSE extensions.

26 | SSE2 SSE2. The processor supports the SSE2 extensions.

28




APPLICATION PROGRAMMING MODEL

Table 3-5. More on Feature Information Returned in the EDX Register (Contd.)

Bit # | Mnemonic | Description

27 |SS Self Snoop. The processor supports the management of conflicting memory
types by performing a snoop of its own cache structure for transactions
issued to the bus.

28 | HTT Multi-Threading. The physical processor package is capable of supporting
more than one logical processor.

29 |T™ Thermal Monitor. The processor implements the thermal monitor automatic
thermal control circuitry (TCC).

30 |Reserved | Reserved

31 PBE Pending Break Enable. The processor supports the use of the FERR#/PBE#
pin when the processor is in the stop-clock state (STPCLK# is asserted) to
signal the processor that an interrupt is pending and that the processor
should return to normal operation to handle the interrupt. Bit 10 (PBE
enable) in the IA32_MISC_ENABLE MSR enables this capability.

INPUT EAX = 2: Cache and TLB Information Returned in EAX, EBX, ECX, EDX

When CPUID executes with EAX set to 2, the processor returns information about the
processor’s internal caches and TLBs in the EAX, EBX, ECX, and EDX registers.

The encoding is as follows:

The least-significant byte in register EAX (register AL) indicates the number of
times the CPUID instruction must be executed with an input value of 2 to get a
complete description of the processor’s caches and TLBs. The first member of the
family of Pentium 4 processors will return a 1.

The most significant bit (bit 31) of each register indicates whether the register
contains valid information (set to 0) or is reserved (set to 1).

If a register contains valid information, the information is contained in 1 byte
descriptors. Table 3-6 shows the encoding of these descriptors. Note that the
order of descriptors in the EAX, EBX, ECX, and EDX registers is not defined; that
is, specific bytes are not designated to contain descriptors for specific cache or
TLB types. The descriptors may appear in any order.

29



APPLICATION PROGRAMMING MODEL

Table 3-6. Encoding of Cache and TLB Descriptors

Descriptor Value

Cache or TLB Description

OOH Null descriptor

O01H Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries

02H Instruction TLB: 4 MByte pages, 4-way set associative, 2 entries

03H Data TLB: 4 KByte pages, 4-way set associative, 64 entries

04H Data TLB: 4 MByte pages, 4-way set associative, 8 entries

O5H Data TLB1: 4 MByte pages, 4-way set associative, 32 entries

06H 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size

08H 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line
size

OAH 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size

OBH Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries

OCH 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size

22H 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines
per sector

23H 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per
sector

25H 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per
sector

29H 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per
sector

2CH 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size

30H 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line
size

40H No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-
level cache

41H 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size

42H 2nd-level cache; 256 KBytes, 4-way set associative, 32 byte line size

43H 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size

44H 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size

45H 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size

46H 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size

47H 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size

48H 2nd-level cache; 3MByte, 12-way set associative, 64 byte line size

30




APPLICATION PROGRAMMING MODEL

Table 3-6. Encoding of Cache and TLB Descriptors (Contd.)

Descriptor Value

Cache or TLB Description

49H 2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size

4AH 3rd-level cache; 6MByte, 12-way set associative, 64 byte line size

4BH 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size

4DH 3rd-level cache: 16MByte, 16-way set associative, 64 byte line size

4€EH 2nd-level cache; 6MByte, 24-way set associative, 64 byte line size

50H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

51H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

52H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

56H Data TLBO: 4 MByte pages, 4-way set associative, 16 entries

57H Data TLBO: 4 KByte pages, 4-way associative, 16 entries

5BH Data TLB: 4 KByte and 4 MByte pages, 64 entries

5CH Data TLB: 4 KByte and 4 MByte pages,128 entries

5DH Data TLB: 4 KByte and 4 MByte pages,256 entries

60H 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

66H 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size

68H 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

70H Trace cache: 12 K-pop, 8-way set associative

71H Trace cache: 16 K-pop, 8-way set associative

72H Trace cache: 32 K-pop, 8-way set associative

78H 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

79H 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines
per sector

7AH 2nd-level cache; 256 KByte, 8-way set associative, 64 byte line size, 2 lines
per sector

7BH 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines
per sector

7CH 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per
sector

7DH 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH 2nd-level cache; 512 KByte, 2-way set associative, 64-byte line size

82H 2nd-level cache; 256 KByte, 8-way set associative, 32 byte line size

31



APPLICATION PROGRAMMING MODEL

Table 3-6. Encoding of Cache and TLB Descriptors (Contd.)

Descriptor Value Cache or TLB Description
83H 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size
84H 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size
85H 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size
86H 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size
87H 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size
BOH Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries
B3H Data TLB: 4 KByte pages, 4-way set associative, 128 entries
B4H Data TLB1: 4 KByte pages, 4-way associative, 256 entries
FOH 64-Byte prefetching
F1H 128-Byte prefetching

Example 3-1. Example of Cache and TLB Interpretation
The first member of the family of Pentium 4 processors returns the following informa-
tion about caches and TLBs when the CPUID executes with an input value of 2:

EAX 66 5B 50 01H
EBX OH
ECX OH
EDX 00 7A 70 OOH

Which means:

® The least-significant byte (byte 0) of register EAX is set to O1H. This indicates
that CPUID needs to be executed once with an input value of 2 to retrieve
complete information about caches and TLBs.

® The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to O,
indicating that each register contains valid 1-byte descriptors.

¢ Bytes 1, 2, and 3 of register EAX indicate that the processor has:

— B0H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-
MByte pages.

— B5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.

— 66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte
cache line size.

® The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.
® Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:
— OOH - NULL descriptor.

— 70H - Trace cache: 12 K-pop, 8-way set associative.

32



APPLICATION PROGRAMMING MODEL

— 7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored,
64-byte cache line size.

— OOH - NULL descriptor.

INPUT EAX = 4: Returns Deterministic Cache Parameters for Each Level

When CPUID executes with EAX set to 4 and ECX contains an index value, the
processor returns encoded data that describe a set of deterministic cache parame-
ters (for the cache level associated with the input in ECX). Valid index values start
from O.

Software can enumerate the deterministic cache parameters for each level of the
cache hierarchy starting with an index value of O, until the parameters report the
value associated with the cache type field is 0. The architecturally defined fields
reported by deterministic cache parameters are documented in Table 3-1.

The CPUID leaf 4 also reports information about maximum number of cores in a
physical package. This information is constant for all valid index values. Software can
query maximum number of cores per physical package by executing CPUID with
EAX=4 and ECX=0.

INPUT EAX = 5: Returns MONITOR and MWAIT Features

When CPUID executes with EAX set to 5, the processor returns information about
features available to MONITOR/MWAIT instructions. The MONITOR instruction is used
for address-range monitoring in conjunction with MWAIT instruction. The MWAIT
instruction optionally provides additional extensions for advanced power manage-
ment. See Table 3-1.

INPUT EAX = 6: Returns Thermal and Power Management Features

When CPUID executes with EAX set to 6, the processor returns information about
thermal and power management features. See Table 3-1.

INPUT EAX = 10: Returns Architectural Performance Monitoring Features

When CPUID executes with EAX set to 10, the processor returns information about
support for architectural performance monitoring capabilities. Architectural perfor-
mance monitoring is supported if the version ID (see Table 3-1) is greater than Pn O.
See Table 3-1.

For each version of architectural performance monitoring capability, software must
enumerate this leaf to discover the programming facilities and the architectural
performance events available in the processor. The details are described in Chapter
18, “Debugging and Performance Monitoring,” in the Intel® 64 and 1A-32 Architec-
tures Software Developer’s Manual, Volume 3B.

33



APPLICATION PROGRAMMING MODEL

METHODS FOR RETURNING BRANDING INFORMATION
Use the following techniques to access branding information:

1. Processor brand string method; this method also returns the processor’s
maximum operating frequency

2. Processor brand index; this method uses a software supplied brand string table.

These two methods are discussed in the following sections. For methods that are avail-
able in early processors, see Section: “ldentification of Earlier IA-32 Processors” in
Chapter 14 of the Intel® 64 and IA-32 Architectures Software Developer’'s Manual,
Volume 1.

The Processor Brand String Method

Figure 3-4 describes the algorithm used for detection of the brand string. Processor
brand identification software should execute this algorithm on all Intel 64 and 1A-32
processors.

This method (introduced with Pentium 4 processors) returns an ASCII brand identifi-
cation string and the maximum operating frequency of the processor to the EAX,
EBX, ECX, and EDX registers.

34



APPLICATION PROGRAMMING MODEL

Input: EAX=
0x80000000
False Processor Brand
IF (EAX & 0x80000000) String Not
Supported
CPUID
True=
Function
Supported Extended
EAX Return Value =
Max. Extended CPUID
Function Index
IF (EAX Return Value True Processor Brand
> 0x80000004) String Supported
OM15194

Figure 3-4. Determination of Support for the Processor Brand String

How Brand Strings Work

To use the brand string method, execute CPUID with EAX input of 8000002H through
80000004H. For each input value, CPUID returns 16 ASCII characters using EAX,
EBX, ECX, and EDX. The returned string will be NULL-terminated.

Table 3-7 shows the brand string that is returned by the first processor in the Pentium
4 processor family.

35



APPLICATION PROGRAMMING MODEL

Table 3-7. Processor Brand String Returned with Pentium 4 Processor

EAX Input Value

Return Values

ASCII Equivalent

80000002H EAX =20202020H "
EBX =20202020H v
ECX =20202020H e
EDX = 6E4952020H “nl "

80000003H EAX =286(6574H “(let”
EBX =5020295¢2H “P)R"
ECX = 69746€E65H “itne”
EDX = 52286D75H "R(mu”

80000004H EAX =20342029H "4y
EBX =20555043H " upC”
ECX =30303531H “0051"
EDX = 007A484DH “\OzHM"

Extracting the Maximum Processor Frequency from Brand Strings

Figure 3-5 provides an algorithm which software can use to extract the maximum

processor operating frequency from the processor brand string.

NOTE

When a frequency is given in a brand string, it is the maximum
qualified frequency of the processor, not the frequency at which the
processor is currently running.

36




APPLICATION PROGRAMMING MODEL

Scan "Brand String" in
Reverse Byte Order

"zHM", or | \atch
ZHG", or Substrin
o HT )
False
IF Substring Matched Report Error
Determine "Freq" If "zZHM"
and "Multiplier” | 1" Multiplier = 1 x 10°
If "zZHG" — 5
/ Multiplier =1 x 10
Determine "Multiplier" If"zHT" -
< Multiplier =1 x 10
Scan Digits
Until Blank

Reverse Digits
To Decimal Value

A

Determine "Freq"
In Reverse Order

Max. Qualified
Frequency = " " ;
"Freq" x "Multiplier" F.re.q = XY.Zif
Digits = "Z.YX"

OM15195

Figure 3-5. Algorithm for Extracting Maximum Processor Frequency

The Processor Brand Index Method

The brand index method (introduced with Pentium® IIl Xeon® processors) provides
an entry point into a brand identification table that is maintained in memory by
system software and is accessible from system- and user-level code. In this table,
each brand index is associate with an ASCII brand identification string that identifies
the official Intel family and model number of a processor.

When CPUID executes with EAX set to 1, the processor returns a brand index to the
low byte in EBX. Software can then use this index to locate the brand identification
string for the processor in the brand identification table. The first entry (brand index
0) in this table is reserved, allowing for backward compatibility with processors that
do not support the brand identification feature. Starting with processor signature

37



APPLICATION PROGRAMMING MODEL

family ID = OFH, model = 03H, brand index method is no longer supported. Use
brand string method instead.

Table 3-8 shows brand indices that have identification strings associated with them.

Table 3-8. Mapping of Brand Indices; and
Intel 64 and IA-32 Processor Brand Strings

Brand Index Brand String

OOH This processor does not support the brand identification feature

OTH Intel(R) Celeron(R) processor1

02H Intel(R) Pentium(R) lll processor1

03H Intel(R) Pentium(R) Ill Xeon(R) processor; If processor signature =
000006B1h, then Intel(R) Celeron(R) processor

04H Intel(R) Pentium(R) Ill processor

06H Mobile Intel(R) Pentium(R) Ill processor-M

07H Mobile Intel(R) Celeron(R) processor1

08H Intel(R) Pentium(R) 4 processor

O%H Intel(R) Pentium(R) 4 processor

OAH Intel(R) Celeron(R) processor1

OBH Intel(R) Xeon(R) processor; If processor signature = 00000F13h, then Intel(R)
Xeon(R) processor MP

OCH Intel(R) Xeon(R) processor MP

OEH Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature =
00000F13h, then Intel(R) Xeon(R) processor

OFH Mobile Intel(R) Celeron(R) processor1

11H Mobile Genuine Intel(R) processor

12H Intel(R) Celeron(R) M processor

13H Mobile Intel(R) Celeron(R) processor1

14H Intel(R) Celeron(R) processor

15H Mobile Genuine Intel(R) processor

16H Intel(R) Pentium(R) M processor

17H Mobile Intel(R) Celeron(R) processor1

18H - OFFH RESERVED
NOTES:

1. Indicates versions of these processors that were introduced after the Pentium Il

38



APPLICATION PROGRAMMING MODEL

3.2 DETECTING SSE4 INSTRUCTIONS

3.2.1 Detecting SSE4.1 Instructions Using CPUID

In order for an application to use SSE4.1, the following conditions must exist. Other-

wise, an invalid opcode exception (Int 6) is generated:

¢ CRO.EM = 0 (emulation disabled)

® CR4.0SFXSR = 1(0OS supports saving Streaming SIMD Extensions state during
context switches)

® CPUID.O1H:ECX.SSE4_1 [bit 19]= 1 (processor supports SSE4.1)

An application can determine whether SSE4.1 is supported by checking the CPUID
feature flag at CPUID.01H:ECX[Bit 19]. The essential steps are illustrated in the
pseudo code below.

Checking for SSE4.1 Support
unsigned Reg€ECX;

boolean SSE4_1_instructions_work = TRUE;
asm{ // pseudo operation illustrating
eax <- 1 // which CPUID feature flag to check
cpuid
RegECX <- ecx
}
if (RegECX[bit 19] ) SSE4_1_instructions_work = TRUE;
// Add appropriate code as needed to ensure
// OS providing adequate support for context switching, etc...
return SSE4_1_instructions_work;

3.2.2 Detecting SSE4.2 Instructions Using CPUID

In order for an application to use PCMPGTQ and the text/string search instructions in
SSE4.2, the following conditions must exist. Otherwise, an invalid opcode exception
(Int 6) is generated:

¢ CRO.EM = 0 (emulation disabled)
® CR4.0SFXSR = 1(0S supports saving SSE state during context switches)
® CPUID.O1H:ECX.SSE4_2 [bit 20]= 1 (processor supports SSE4.2)

An application can determine whether the desired SSE4.2 instructions are supported
by checking the CPUID feature flag at CPUID.01H:ECX[Bit 20]. The essential steps
are illustrated in the pseudo code below.

39



APPLICATION PROGRAMMING MODEL

Example 3-2. Detecting SSE4.2 using CPUID
unsigned RegECX;

boolean SSE4_2_instructions_work = TRUE;
asm{ // pseudo operation illustrating
eax <- 1 // which CPUID feature flag to check
cpuid
Reg€ECX <- ecx

}

if (RegECX[bit 20] ) SSE4_2_instructions_work = TRUE;

// Add appropriate code as needed to ensure

// 0S providing adequate support for context switching, etc...
return SSE4_2_instructions_work;

In order for an application to use CRC32 instruction, the following condition must
exist. Otherwise, an invalid opcode exception (INT 6) is generated:

CPUID.OTH:ECX.SSE4_2 [bit 20]= 1 (processor supports SSE4.2)

In order for an application to use POPCNT instruction, the following condition must
exist. Otherwise, an invalid opcode exception (INT 6) is generated:

CPUID.OTH:ECX.SSE4_2 [bit 23]= 1 (processor supports POPCNT)

3.3 EXCEPTIONS AND SSE4

The SSE4.1 and SSE4.2 instruction sets do not introduce new types of exceptions.

40



SYSTEM PROGRAMMING MODEL

CHAPTER 4
SYSTEM PROGRAMMING MODEL

This chapter describes the interface of the SSE4 to the operating system.

4.1 ENABLING SSE4

SSE4.1 and SSE4.2 are extensions of SSE, SSE2, SSE3, and SSSE3.

To check if the processor supports SSE4.1, execute CPUID with EAX =1 as input. If
bit 19 of ECX is set, then the processor supports SSE4.1. If the bit is cleared, the
processor does not support SSE4.1.

To check if the processor supports SSE4.2 instructions for string/text processing,
PCMPGTQ, and CRC32, execute CPUID with EAX =1 as input. If bit 20 of ECX is set,
then the processor supports these SSE4.2 instructions. If the bit is cleared, the
processor does not support them.

Enabling OS support for SSE4.1, PCMPGTQ, string/text processing instructions of
SSE4.2 has the same requirements as for SSE. See Chapter 12, “System Program-
ming for Streaming SIMD Instruction Sets” of Intel® 64 and 1A-32 Architectures
Software Developer’s Manual, Volume 3A.

To check if the processor supports the POPCNT instruction, execute CPUID with EAX
=1 as input. If bit 23 of ECX is set, then the processor supports the POPCNT instruc-
tion. If the bit is cleared, the processor does not support it.

Operating system does not require special support to enable CRC32 or POPCNT
beyond normal requirements of Intel 64 architecture.

4.2 DEVICE NOT AVAILABLE (DNA) EXCEPTIONS

If CRO.TS is set, attempts to execute an SSE4.1 instruction will cause a DNA excep-
tion (#NM). Likewise, an attempt to execute PCMPGTQ or a string/text processing
instruction of SSE4.2 will cause a DNA exception (#NM).

If CPUID.O1H:ECX.SSE4.1 [bit 19] is clear, execution of any SSE4.1 instruction
causes an invalid opcode fault regardless of the state of CRO.TS.

If CPUID.O1H:ECX.SSE4.2 [bit 20] is clear, execution of PCMPGTQ or a string/text
processing instruction of SSE4.2 causes an invalid opcode fault regardless of the
state of CRO.TS.

41



SYSTEM PROGRAMMING MODEL

4.3 SSE4 EMULATION

The CRO.EM bit enables emulation of x87 floating-point instructions. It cannot be
used to emulate SSE4.1. Likewise, the bit cannot be used to emulate PCMPGTQ or
any of the string text processing instructions of SSE4.2.

If an SSE4.1 instruction is executed when CRO.EM is set, an Invalid Opcode exception
(Int 6) is generated instead of a Device Not Available exception (INT 7).

If PCMPGTQ or an SSE4.2 string text processing instruction is executed while
CRO.EM = 1, an Invalid Opcode exception (INT 6) is generated instead of a Device
Not Available exception (INT 7).

CRC32 and POPCNT are not impacted by CRO.TS or CRO.EM.

42



SSE4 INSTRUCTION SET

CHAPTER 5
SSE4 INSTRUCTION SET

5.1 INSTRUCTION FORMATS

SSE4 uses existing instruction formats. Instructions use the ModR/M format and, in
general, operations are not duplicated to provide two directions (i.e. separate load
and store variants).

5.2 NOTATIONS

Besides opcodes, the following notation describes information in the ModR/M byte:

® /digit: (digit between 0 and 7) indicates that the instruction uses only the r/m
(register and memory) operand. The reg field contains the digit that provides an
extension to the instruction’s opcode.

® /digitR: (digit between 0 and 7) indicates that the instruction uses only the
register operand (ie, mod=11). The reg field contains the digit that provides an
extension to the instruction’s opcode.

® /r: indicates that the ModR/M byte of an instruction contains both a register
operand and an r/m operand.

In addition, these abbreviations are used:
® r32: Intel Architecture 32-bit integer register

®* xmm/ml128: indicates a 128-bit Streaming SIMD Extensions/Streaming SIMD
Extensions 2 register or a 128-bit memory location.

®* xmm/m64: indicates a 128-bit Streaming SIMD Extensions/Streaming SIMD
Extensions 2 register or a 64-bit memory location.

®* xmm/m32: indicates a 128-bit Streaming SIMD Extensions/Streaming SIMD
Extensions 2 register or a 32-bit memory location.

®* mm/m64: indicates a 64-bit integer MMX™ multimedia register or a 64-bit
memory location.

® imm38: indicates an immediate 8-bit operand.

® ib: indicates that an immediate byte operand follows the opcode, ModR/M byte or
scaled-indexing byte.

® <XMMO=: indicates implied use of the XMMO register.

When there is ambiguity, xmm1 indicates the first source operand using an XMM
register and xmm2 the second source operand using an XMM register.

43



SSE4 INSTRUCTION SET

Some instructions use the XMMO register as the third source operand, indicated by
<XMMO=>. The use of the third XMM register operand is implicit in the instruction
encoding and does not affect the ModR/M encoding.

53 IMM8 CONTROL BYTE OPERATION FOR PCMPESTRI /
PCMPESTRM / PCMPISTRI / PCMPISTRM

The operation of the immediate control byte (see Section 2.3.1) is common to the
four string text processing instructions of SSE4.2. This section describes these
common operations. Some of the notations introduced in this section are referenced
in the reference pages of each instruction.

5.3.1 General Description

The operation of PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM is defined by
the combination of the respective opcode and the interpretation of an immediate
control byte that is part of the instruction encoding.

The opcode controls the relationship of input bytes/words to each other (determines
whether the inputs terminated strings or whether lengths are expressed explicitly) as
well as the desired output (index or mask).

The Imm8 Control Byte for PCMPESTRM/PCMPESTRI/PCMPISTRM/PCMPISTRI
encodes a significant amount of programmable control over the functionality of those
instructions. Some functionality is unique to each instruction while some is common
across some or all of the four instructions. This section describes functionality which
is common across the four instructions.

The arithmetic flags (ZF, CF, SF, OF, AF, PF) are set as a result of these instructions.

However, the meanings of the flags have been overloaded from their typical mean-

ings in order to provide additional information regarding the relationships of the two
inputs.

PCMPxSTRXx instructions perform arithmetic comparisons between all possible pairs
of bytes or words, one from each packed input source operand. The boolean results
of those comparisons are then aggregated in order to produce meaningful results.
The Imm8 Control Byte is used to affect the interpretation of individual input
elements as well as control the arithmetic comparisons used and the specific aggre-
gation scheme.

Specifically, the Imm8 Control Byte consists of bit fields that control the following
attributes:

® Source data format — Byte/word data element granularity, signed or unsigned
elements

44



SSE4 INSTRUCTION SET

® Aggregation operation — Encodes the mode of per-element comparison
operation and the aggregation of per-element comparisons into an intermediate

result

® Polarity — Specifies intermediate processing to be performed on the interme-
diate result

® Output selection — Specifies final operation to produce the output (depending
on index or mask) from the intermediate result

5.3.1.1 Source Data Format
Table 5-1. Source Data Format

Imm8[1:0] Meaning Description

00b Unsigned bytes Both 128-bit sources are treated as packed,
unsigned bytes.

01b Unsigned words Both 128-bit sources are treated as packed,
unsigned words.

10b Signed bytes Both 128-bit sources are treated as packed, signed
bytes.

11b Signed words Both 128-bit sources are treated as packed, signed
words.

If the Imm8 Control Byte has bit[0] cleared, each source contains 16 packed bytes.
If the bit is set each source contains 8 packed words. If the Imm8 Control Byte has
bit[1] cleared, each input contains unsigned data. If the bit is set each source

contains signed data.

45



SSE4 INSTRUCTION SET

5.3.1.2 Aggregation Operation

Table 5-2. Aggregation Operation

Imm8[3:2] Mode Comparison
00b Equal any The arithmetic comparison is “equal.”
01b Ranges Arithmetic comparison is “greater than or equal”

between even indexed bytes/words of reg and each
byte/word of reg/mem.

Arithmetic comparison is “less than or equal” between
odd indexed bytes/words of reg and each byte/word
of reg/mem.

(reg/mem[m] >= reg[n] for n = even, reg/mem[m] <=
reg[n] for n = odd)

10b Equal each The arithmetic comparison is “equal.”

11b Equal ordered The arithmetic comparison is “equal.”

All 256 (64) possible comparisons are always performed. The individual Boolean
results of those comparisons are referred by “BoolRes[Reg/Mem element index, Reg
element index].” Comparisons evaluating to “True” are represented with a 1, False
with a O (positive logic). The initial results are then aggregated into a 16-bit (8-bit)
intermediate result (IntRes1) using one of the modes described in the table below, as
determined by Imm8 Control Byte bit[3:2].

See Section 5.3.1.5 for a description of the overridelfDatalnvalid() function used in
Table 5-3.

46



SSE4 INSTRUCTION SET

Table 5-3. Aggregation Operation

Mode Pseudocode
Equal any UpperBound = imm8[0]? 7:15;
(find characters from a set) IntRes1 =0;

For j = 0 to UpperBound, j++
For i = 0 to UpperBound, i++
IntRes 1[j] OR= overridelfDatalnvalid(BoolRes]j,i])

Ranges UpperBound =imm8[0]? 7: 15;

(find characters from ranges) IntRes1 =0;

For j = 0 to UpperBound, j++

For i = 0 to UpperBound, i+=2

IntRes 1[j] OR= (overridelfDatalnvalid(BoolRes]j,i]) AND
overridelfDatalnvalid(BoolRes[j,i+1]))

Equal each UpperBound = imm8[0]? 7:15;

(string compare) IntRes1 =0;

For i = 0 to UpperBound, i++

IntRes1[i] = overridelfDatalnvalid(BoolResi,i])

Equal ordered UpperBound =imm8[0]? 7 :15;

(substring search) IntRes1 = imm8[0] ? OxFF : OxFFFF

For j = 0 to UpperBound, j++

For i = 0 to UpperBound-j, k=j to UpperBound, k++, i++
IntRes 1[j] AND= overridelfDatalnvalid(BoolRes[k,i])

47




SSE4 INSTRUCTION SET

5.3.1.3 Polarity

Table 5-4. Polarity

Imm8[5:4] Operation Description

00b Positive Polarity (+) IntRes2 = IntRes1

01b Negative Polarity (-) IntRes2 = -1 XOR IntRes1

10b Masked (+) IntRes2 = IntRes1

11b Masked (-) IntRes2[i] = IntRes1[i] if reg/mem[i] invalid, else =
~IntRes1[i]

IntRes1 may then be further modified by performing a 1’'s compliment, according to
the value of the Imm8 Control Byte bit[4]. Optionally, a mask may be used such that
only those IntRes1 bits which correspond to “valid” reg/mem input elements are
complimented (note that the definition of a valid input element is dependant on the
specific opcode and is defined in each opcode’s description). The result of the
possible negation is referred to as IntRes2.

53.14 Output Selection

Table 5-5. Ouput Selection

Imm38[6] Operation Description

0b Least significant index | The index returned to ECX is of the least significant set
bitin IntRes2.

1b Most significant index | The index returned to ECX is of the most significant set
bit in IntRes2.

For PCMPESTRI/PCMPISTRI, the Imm8 Control Byte bit[6] is used to determine if the
index is of the least significant or most significant bit of IntRes2.

Table 5-6. Output Selection

Imm8[6] Operation Description

0b Bit mask IntRes?2 is returned as the mask to the least significant
bits of XMMO with zero extension to 128 bits.

1b Byte/word mask IntRes?2 is expanded into a byte/word mask (based on

imm8[1]) and placed in XMMO. The expansion is
performed by replicating each bit into all of the bits of
the byte/word of the same index.

48



SSE4 INSTRUCTION SET

Specifically for PCMPESTRM/PCMPISTRM, the Imm8 Control Byte bit[6] is used to
determine if the mask is a 16 (8) bit mask or a 128 bit byte/word mask.

5.3.1.5

Valid/Invalid Override of Comparisons

PCMPxSTRXx instructions allow for the possibility that an end-of-string (EOS) situation
may occur within the 128-bit packed data value (see the instruction descriptions
below for details). Any data elements on either source that are determined to be past
the EOS are considered to be invalid, and the treatment of invalid data within a
comparison pair varies depending on the aggregation function being performed.

In general, the individual comparison result for each element pair BoolRes[i.j] can be
forced true or false if one or more elements in the pair are invalid. See Table 5-7.

Table 5-7. Comparison Result for Each Element Pair BoolRes[i.j]

xmm2/ Imm8[3:2] = | Imm8[3:2]= | Imm8[3:2] =
xmm1 m128 00b 01b 10b Imm8[3:2] = 11b
byte/ word | byte/word (equal any) (ranges) (equal each) (equal ordered)
Invalid Invalid Force false Force false Force true Force true
Invalid Valid Force false Force false Force false Force true
Valid Invalid Force false Force false Force false Force false
Valid Valid Do not force | Do not force | Do not force Do not force

49




SSE4 INSTRUCTION SET

5.3.1.6

Summary of Im8 Control byte

Table 5-8. Summary of Imm8 Control Byte

Description

----00--b
——--01--b
----10--b
———-11--b

128-bit sources treated as 16 packed bytes.
128-bit sources treated as 8 packed words.
Packed bytes/words are unsigned.

Packed bytes/words are signed.

Mode is equal any.

Mode is ranges.

Mode is equal each.

Mode is equal ordered.

IntRes1 is unmodified.

IntRes1 is negated (1's compliment).
Negation of IntRes1 is for all 16 (8) bits.
Negation of IntRes1 is masked by reg/mem validity.

Index of the least significant, set, bit is used (regardless of corresponding
input element validity).
IntRes? is returned in least significant bits of XMMO.

Index of the most significant, set, bit is used (regardless of corresponding
input element validity).
Each bit of IntRes2 is expanded to byte/word.

This bit currently has no defined effect, should be O.
This bit currently has no defined effect, should be O.

50




SSE4 INSTRUCTION SET

5.3.1.7 Diagram Comparison and Aggregation Process
String A (xmm1) String B (xmm2/mem)

| I | \ 4 A
| | ] imm8[1:0] =
: EAX/RAX \ Detgrm|ne end -of- Compare all pairs of 00B: unsigned byte compares
1 string and mark A B 01B: unsigned word compares
1 EDX/RDX 1 invalid elements (Ai, B)) 10B: signed byte compares
: 1 11B: signed word compares
__________ | ,

PCMPESTR* only BoolRes]i,j]

imm8[3:2] =
00B: Equal any
Aggregation function 01B: Ranges

imm8[6] =

0: index encodes least signifi
cant true bit of IntRes 2

1: index encodes most signifi
canttrue bit of IntRes 2

Generate index

ECX(RCX)

PCMP*STRI only

4

Optional boolean
negation

10B: Equal each
11B: Equal ordered

IntRes1

imm8[6:5] =
x0B: don’t negate IntRest
01B: negate all bits of IntRes1
11B: negate only bits of IntRes1
corresponding to valid
elements in String B

IntRes2

imma[6] =
0: Return zero-extended IntRes2
1: expand IntRes2 to byte (word)

mask

Generate mask

PCMP*STRM only

Figure 5-1. Operation of PCMPSTRx and PCMPESTRX

5.4

INSTRUCTION REFERENCE

The remainder of this chapter provides detailed descriptions of SSE4.1 and SSE4.2

instructions.

51



SSE4 INSTRUCTION SET

BLENDPD — Blend Packed Double Precision Floating-Point Values

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 3A 0D /r BLENDPD xmm1, Valid Valid Select packed DP-FP values
ib xmmZ2/m128, imm8 from xmm1 and xmmZ2/m128

from mask specified in imm8
and store the values into
xmm1.

Description

Double Precision Floating-Point values from the source operand (second operand)
are conditionally written to the destination operand depending on bits in the imme-
diate operand. The immediate bits 0-1 (third operand) determine whether the corre-
sponding DP-FP value in the destination is copied from the source (second
argument).

If a bit in the mask, corresponding to a DP-FP value, is “1", then the DP-FP value is
copied, else the value is left is unchanged.

Operation

BLENDPD

IF (imm8[0] == 1) THEN DEST[63:0] < SRC[63:0];
ELSE DEST[63:0] < DEST[63:0];

IF (imm8[1] == 1) THEN DEST[127:64] < SRC[127:64];
ELSE DEST[127:64] < DEST[127:64];

Intel C/C++ Compiler Intrinsic Equivalent

BLENDPD __m128d _mm_blend_pd (__m128d v1, _m128d v2, const int mask);

SIMD Floating-Point Exceptions
None

Protected Mode and Compatibility Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

52



#NM
#UD

SSE4 INSTRUCTION SET

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] =0

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

If any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM
#UD

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

53



SSE4 INSTRUCTION SET

BLENDPS — Blend Packed Single Precision Floating-Point Values

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode

66 OF 3A0OC/r BLENDPS xmm1, Valid Valid Select packed single precision

ib xmmZ2/m128, imm8 floating-point values from
xmm1 and xmm2/m128
from mask specified in imm8
and store the values into
xmm]1.

Description

Single Precision Floating-Point values from the source operand (second operand) are
conditionally written to the destination operand (first operand) depending on mask
bits in the immediate operand. The immediate bits 0-3 (third operand) determine
whether the corresponding single precision floating-point value in the destination is
copied from the source. If a bit in the mask, corresponding to a single precision
floating-point value, is “1", then the single precision floating-point value is copied,
else it is unchanged.

Operation

BLENDPS

IF (imm8[0] == 1) THEN DEST[31:0] < SRC[31:0];
ELSE DEST[31:0] < DEST[31:0];

IF (imm8[1] == 1) THEN DEST[63:32] < SRC[63:32];
ELSE DEST[63:32] < DEST[63:32];

IF (imm8[2] == 1) THEN DEST[95:64] < SRC[95:64];
ELSE DEST[95:64] < DEST[95:64];

IF (imm8[3] == 1) THEN DEST[127:96] < SRC[127:96];
ELSE DEST[127:96] < DEST[127:96];

Intel C/C++ Compiler Intrinsic Equivalent

BLENDPS

__m128 _mm_blend_ps (__m128 v1, __m128 v2, const int mask);

SIMD Floating-Point Exceptions

None

Protected Mode and Compatibility Mode Exceptions

#GP(0)

54

For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.




#SS(0)
#PF(fault-code)
#NM

#UD

SSE4 INSTRUCTION SET

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.
For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If not aligned on 16-byte boundary, regardless of segment
If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] =0

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM
#UD

If the memory address is in a non-canonical form.
If not aligned on 16-byte boundary, regardless of segment

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

55



SSE4 INSTRUCTION SET

BLENDVPD — Variable Blend Packed Double Precision Floating-Point
Values

Opcode Instruction 64-bit  Compat/ Description
Mode Leg Mode
66 0F3815/r BLENDVPD xmm], Valid Valid Select packed DP FP
xmm2/m128, <XMMO> values from xmm1 and

xmmZ2 from mask
specified in XMMO and
store the values in
xmm1.

Description

Double-precision floating-point values from the source operand (second argument)
are conditionally written to the destination operand (first argument) depending on
bits in the implicit third register argument. The most significant bit in the corre-
sponding qword of XMMO determines whether the destination DP FP value is copied
from the source . The presence of a "1" in the mask bit indicates that the DP FP value
is copied; otherwise it is left unchanged. The register assignment of the third
operand is defined to be the architectural register XMMO.

Operation

BLENDPVD with implicit XMMO register operand

MASK €« XMMO;

IF (MASK[63] == 1) THEN DEST[63:0] €< SRC[63:0];
ELSE DEST[63:0] < DEST[63:0];

IF (MASK[127] == 1) THEN DEST[127:64] €< SRC[127:64];
ELSE DEST[127:64] €< DEST[127:64];

Intel C/C++ Compiler Intrinsic Equivalent

BLENDVPD __m128d _mm_blendv_pd(__m128dv1,__m128dv2,_ m128dv3);

SIMD Floating-Point Exceptions

None

Protected Mode and Compatibility Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

56



#SS(0)
#PF(fault-code)
#NM

#UD

SSE4 INSTRUCTION SET

For an illegal address in the SS segment.
For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM

#UD

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.
If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is O.

If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

57



SSE4 INSTRUCTION SET

BLENDVPS — Variable Blend Packed Single Precision Floating-Point
Values

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 38 14 BLENDVPS xmm]1, Valid Valid Select packed single
Ir xmm2/m128, <XMM0> precision floating-point

values from xmm1 and
xmmZ2/m128 from mask
specified in XMMO and store
the values into xmm1.

Description

Single-precision floating-point values from the source operand (second argument)
are conditionally written to the destination operand (first argument) depending on
bits in the third register argument. The most significant bit in the corresponding
dword in the third register determines whether the destination single precision
floating-point value is copied from the source dword. The presence of a "1" in the
mask bit indicates that the single precision floating-point value is copied; otherwise
it is not copied. The register assignment of the third operand is defined to be the
architectural register XMMO.

Operation

BLENDVPS with implicit XMMO register operand

MASK < XMMO;

IF (MASK[31] == 1) THEN DEST[31:0] < SRC[31:0];
ELSE DEST[31:0] < DEST[31:0]);

IF (MASK[63] == 1) THEN DEST[63:32] < SRC[63:32]);
ELSE DEST[63:32] < DEST[63:32]);

IF (MASK[95] == 1) THEN DEST[95:64] < SRC[95:64]);
ELSE DEST[95:64] < DEST[95:64]);

IF (MASK[127] == 1) THEN DEST[127:96] < SRC[127:96]);
ELSE DEST[127:96] < DEST[127:96));

Intel C/C++ Compiler Intrinsic Equivalent

BLENDVPS __m128 _mm_blendv_ps(__m128v1,_m128v2,__ m128v3);

SIMD Floating-Point Exceptions

None

58



SSE4 INSTRUCTION SET

Protected Mode and Compatibility Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

59



SSE4 INSTRUCTION SET

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM
#UD

60

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.



SSE4 INSTRUCTION SET

CRC32 — Accumulate CRC32 Value

64-bit Compat/

Opcode Instruction Mode Leg Mode Description

F2 OF 38FO0 /r CRC32 r32, r/m8 Valid Valid Accumulate CRC32 on
r/m8.

F2 REXOF 38 FO /r CRC32 r32, r/m8*  Valid N.E. Accumulate CRC32 on
r/m8.

F2 OF 38F1 /r CRC32 r32, r/m16  Valid Valid Accumulate CRC32 on
r/mi6.

F2 OF 38F1 /r CRC32 r32, r/m32 \Valid Valid Accumulate CRC32 on
r/m32.

F2 REXW OF 38 F0 /r CRC32 r64, r/m8 Valid N.E. Accumulate CRC32 on

F2 REXW OF 38 F1 /r r/m8.

CRC32 r64, /m64  Valid N.E. Accumulate CRC32 on

r/mé4.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

Description

Starting with an initial value in the first operand (destination operand), accumulates
a CRC32 (polynomial Ox11EDC6F41) value for the second operand (source operand)
and stores the result in the destination operand. The source operand can be a
register or a memory location. The destination operand must be an r32 or r64
register. If the destination is an r64 register, then the 32-bit result is stored in the
least significant double word and OO00000O0H is stored in the most significant double
word of the r64 register.

The initial value supplied in the destination operand is a double word integer stored
in the r32 register or the least significant double word of the r64 register. To incre-
mentally accumulate a CRC32 value, software retains the result of the previous
CRC32 operation in the destination operand, then executes the CRC32 instruction
again with new input data in the source operand. Data contained in the source
operand is processed in reflected bit order. This means that the most significant bit of
the source operand is treated as the least significant bit of the quotient, and so on,
for all the bits of the source operand. Likewise, the result of the CRC operation is
stored in the destination operand in reflected bit order. This means that the most
significant bit of the resulting CRC (bit 31) is stored in the least significant bit of the
destination operand (bit 0), and so on, for all the bits of the CRC.

Operation

In the pseudocode below, BIT_REFLECT on an N-bit wide operand is the bit-by-bit
reflect operation from the most-significant bit to least-significant bit, as described in
the paragraph above.

61




SSE4 INSTRUCTION SET

CRC32 instruction for 64-bit source operand and 64-bit destination operand:

TEMP1[63-0] < BIT_REFLECT64 (SRC[63-0])
TEMP2[31-0] < BIT_REFLECT32 (DEST[31-0])
TEMP3[95-0] < TEMP1[63-0] << 32

TEMP4[95-0] < TEMP2[31-0] << 64

TEMP5[95-0] < TEMP3[95-0] XOR TEMP4[95-0]
TEMP6[31-0] < TEMP5[95-0] MOD2 11EDC6F4TH
DEST[31-0] < BIT_REFLECT (TEMPS[31-0])
DEST[63-32] < 00000000H

CRC32 instruction for 32-bit source operand and 32-bit destination operand:

TEMP1[31-0] & BIT_REFLECT32 (SRC[31-0])
TEMP2[31-0] & BIT_REFLECT32 (DEST[31-0])
TEMP3[63-0] < TEMP1[31-0] << 32

TEMP4[63-0] < TEMP2[31-0] << 32

TEMP5[63-0] < TEMP3[63-0] XOR TEMP4[63-0]
TEMP6[31-0] < TEMP5[63-0] MOD2 11EDC6F4TH
DEST[31-0] < BIT_REFLECT (TEMPS[31-0])

CRC32 instruction for 16-bit source operand and 32-bit destination operand:

TEMP1[15-0] < BIT_REFLECT16 (SRC[15-0])
TEMP2[31-0] < BIT_REFLECT32 (DEST[31-0])
TEMP3[47-0] < TEMP1[15-0] << 32

TEMP4[47-0] < TEMP2[31-0] << 16

TEMP5[47-0] < TEMP3[47-0] XOR TEMP4[47-0]
TEMP6[31-0] < TEMP5[47-0] MOD2 11EDC6F4TH
DEST[31-0] < BIT_REFLECT (TEMPS[31-0])

CRC32 instruction for 8-bit source operand and 64-bit destination operand:

TEMP1[7-0] < BIT_REFLECT8(SRC[7-0])
TEMP2[31-0] & BIT_REFLECT32 (DEST[31-0])
TEMP3[39-0] < TEMP1[7-0] << 32

TEMP4[39-0] < TEMP2[31-0] << 8

TEMP5[39-0] < TEMP3[39-0] XOR TEMP4[39-0]
TEMP6[31-0] < TEMP5[39-0] MOD2 11EDC6F4TH
DEST[31-0] < BIT_REFLECT (TEMPS[31-0])
DEST[63-32] < 00000000H

CRC32 instruction for 8-bit source operand and 32-bit destination operand:
TEMP1[7-0] < BIT_REFLECT8(SRC[7-0])
TEMP2[31-0] € BIT_REFLECT32 (DEST[31-0])

TEMP3[39-0] < TEMP1[7-0] << 32
TEMP4[39-0] < TEMP2[31-0] << 8

62



SSE4 INSTRUCTION SET

TEMP5[39-0] < TEMP3[39-0] XOR TEMP4[39-0]
TEMP6[31-0] < TEMP5[39-0] MOD2 11€DC6F4TH
DEST[31-0] & BIT_REFLECT (TEMP6[31-0])

Notes:

BIT_REFLECT64: DST[63-0] = SRC[0-63]
BIT_REFLECT32: DST[31-0] = SRC[0-31]
BIT_REFLECT16: DST[15-0] = SRC[0-15]
BIT_REFLECT8: DST[7-0] = SRC[0-7]

MOD2: Remainder from Polynomial division modulus 2

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent

unsigned int _mm_crc32_u8( unsigned int crc, unsigned char data )

unsigned int _mm_crc32_u16( unsigned int crc, unsigned short data )

unsigned int _mm_crc32_u32( unsigned int crc, unsigned int data )

unsinged __int64 _mm_crc32_u64( unsinged __int64 crc, unsigned __int64 data )

SIMD Floating Point Exceptions

None

Protected Mode and Compatibility Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.
#SS(0) If a memory operand effective address is outside the SS

segment limit.

#PF (fault-code) For a page fault.

#UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.
If LOCK prefix is used.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

63



SSE4 INSTRUCTION SET

Virtual 8086 Mode Exceptions

#GP(0)
#SS(0)

#PF (fault-code)
#UD

If any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand effective address is outside the SS
segment limit.

For a page fault.
If CPUID.O1H:ECX.SSE4_2 [Bit 20] = 0.
If LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as

in Protected Mode.

64-Bit Mode Exceptions

#GP(0)
#SS(0)

#PF (fault-code)
#UD

64

If the memory address is in a non-canonical form.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.
If CPUID.0O1H:ECX.SSE4_2 [Bit 20] = 0.
If LOCK prefix is used.



SSE4 INSTRUCTION SET

DPPD — Dot Product of Packed Double Precision Floating-Point Values

Opcode Instruction 64-bit Compat/ Description

Mode Leg Mode
66 OF 3A  DPPD xmm1, Valid Valid Selectively multiply packed DP
41 /rib xmm2/m128, imm8 floating-point values from xmm1

with packed DP floating-point values
from xmmZ2, add and selectively
store the packed DP floating-point
values to xmm1.

Description

Conditionally multiplies the packed double precision floating-point values in the
destination operand (first operand) with the packed double-precision floating-point
values in the source(second operand) depending on a mask extracted from bits 4-5
of the immediate operand. Each of the two resulting double-precision values is
summed and this sum is conditionally broadcast to each of 2 positions in the destina-
tion operand if the corresponding bit of the mask selected from bits 0-1 of the imme-
diate operand is "1". If the corresponding low bit 0-1 of the mask is zero, the
destination is set to zero.

DPPS follows the NaN forwarding rules stated in the Software Developer’s Manual,
vol. 1, table 4.7. These rules do not cover horizontal prioritization of NaNs. Hori-
zontal propagation of NaNs to the destination and the positioning of those NaNs in
the destination is implementation dependent. NaNs on the input sources or compu-
tationally generated NaNs will have at least one NaN propagated to the destination.

Operation

DPPD

IF (imm8[4] == 1) THEN Temp1[63:0] &< DEST[63:0] * SRC[63:0];
ELSE Temp1[63:0] € +0.0;

IF (imm8[5] == 1) THEN Temp1[127:64] < DEST[127:64] * SRC[127:64];
ELSE Temp1[127:64] & +0.0;

Temp2[63:0] & Temp1[63:0] + Temp1[127:64];
IF (imm8[0] == 1) THEN DEST[63:0] €« TempZ2[63:0];
ELSE DEST[63:0] < +0.0;

IF (imm8[1] == 1) THEN DEST[127:64] < Temp2[63:0];
ELSE DEST[127:64] < +0.0;

65



SSE4 INSTRUCTION SET

Flags Affected
None
Intel C/C++ Compiler Intrinsic Equivalent

DPPD _ m128d _mm_dp_pd(__m128da, __m128d b, const int mask);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Exceptions are determined separately for each add and multiply operation.
Unmasked exceptions will leave the destination untouched.

Protected Mode and Compatibility Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If an unmasked SIMD floating-point exception and OSXM-

MEXCPT in CR4 is O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

H#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.

#UD If an unmasked SIMD floating-point exception and OSXM-
MEXCPT in CR4 is O.

If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

66



#XM

SSE4 INSTRUCTION S

If LOCK prefix is used.

If an unmasked SIMD floating-point exception and CR4.0SXM
MEXCPT[bit 10] = 1.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM
#UD

#XM

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.
If TS in CRO is set.

If an unmasked SIMD floating-point exception and OSXM-
MEXCPT in CR4 is 0.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

If an unmasked SIMD floating-point exception and CR4.0SXM
MEXCPT[bit 10] = 1.

ET

67



SSE4 INSTRUCTION SET

DPPS — Dot Product of Packed Single Precision Floating-Point Values

Opcode Instruction 64-bit Compat/ Description

Mode Leg Mode
66 OF 3A  DPPS xmm1, Valid Valid Selectively multiply packed SP
40 /rib xmmZ2/m128, imm8 floating-point values from xmm1

with packed SP floating-point
values from xmmZ2, add and
selectively store the packed SP
floating-point values or zero
values to xmm]1.

Description

Conditionally multiplies the packed single precision floating-point values in the desti-
nation operand (first operand) with the packed single-precision floats in the source
(second operand) depending on a mask extracted from the high 4 bits of the imme-
diate operand (third operand). Each of the four resulting single-precision values is
summed and this sum is conditionally broadcast to each of 4 positions in the destina-
tion operand if the corresponding bit of the mask selected from the low 4 bits of the
immediate operand is "1". If the corresponding low bit 0-3 of the mask is zero, the
destination is set to zero.

DPPS follows the NaN forwarding rules stated in the Software Developer’s Manual,
vol. 1, table 4.7. These rules do not cover horizontal prioritization of NaNs. Hori-
zontal propagation of NaNs to the destination and the positioning of those NaNs in
the destination is implementation dependent. NaNs on the input sources or compu-
tationally generated NaNs will have at least one NaN propagated to the destination.

Operation

DPPS

IF imm8[4] == 1) THEN Temp1[31:0] < DEST[31:0] * SRC[31:0];
ELSE Temp1[31:0] <« +0.0;

IF (imm8[5] == 1) THEN Temp1[63:32] < DEST[63:32] * SRC[63:32];
ELSE Temp1[63:32] < +0.0;

IF imm8[6] == 1) THEN Temp1[95:64] < DEST[95:64] * SRC[95:64];
ELSE Temp1[95:64] < +0.0;

IF imm8[7] == 1) THEN Temp1[127:96] < DEST[127:96] * SRC[127:96];
ELSE Temp1[127:96] < +0.0;

Temp2[31:0] ¢ Temp1[31:0] + Temp1[63:32];

Temp3[31:0] ¢ Temp1[95:64] + Temp1[127:96];
Temp4[31:0] € Temp2[31:0] + Temp3[31:0];

68



SSE4 INSTRUCTION SET

IF (imm8[0] == 1) THEN DEST[31:0] & Temp4[31:0];
ELSE DEST[31:0] € +0.0;

IF (imm8[1] == 1) THEN DEST[63:32] & Temp4[31:0];
ELSE DEST[63:32] € +0.0;

IF (imm8[2] == 1) THEN DEST[95:64] & Temp4[31:0];
ELSE DEST[95:64] € +0.0;

IF (imm8[3] == 1) THEN DEST[127:96] < Temp4[31:0];
ELSE DEST[127:96] € +0.0;

Intel C/C++ Compiler Intrinsic Equivalent

DPPS __m128 _mm_dp_ps(__m128a,_m128 b, const int mask);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Exceptions are determined separately for each add and multiply operation.
Unmasked exceptions will leave the destination untouched.

Protected Mode and Compatibility Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If an unmasked SIMD floating-point exception and OSXM-

MEXCPT in CR4 is O.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

69



SSE4 INSTRUCTION SET

#NM If CRO.TS[bit 3] = 1.

#UD If an unmasked SIMD floating-point exception and OSXM-
MEXCPT in CR4 is 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

HXM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a nhon-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.

#UD If an unmasked SIMD floating-point exception and OSXM-
MEXCPT in CR4 is 0.

If EM in CRO is set.

If OSFXSR in CR4 is O.

If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

HXM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

70



SSE4 INSTRUCTION SET

EXTRACTPS — Extract Packed Single Precision Floating-Point Value

Opcode Instruction 64-bit Compat/ Description

Mode Leg Mode
66 OF 3A 17  EXTRACTPS r/m32, Valid Valid Extract a single-precision
Irib xmmZ, imm8 floating-point value from

xmmZ at the source
offset specified by imm8
and store the result to

r/m32.
66 REXW OF  EXTRACTPS r64/m32, Valid N.E. Extract a single-precision
3A17/rib XxmmZ, imm8 floating-point value from

xmmZ2 at the source
offset specified by imm8
and store the result to
r64/m32. Zero extend
the result.

Description

Extract the single-precision floating-point value from the source xmm register
(second argument) at a 32 bit offset determined from imm8[1-0]. The extracted
single precision floating-point value is stored into the low 32-bits of the destination
register or to the 32-bit memory location. When a REX.W prefix is used in 64-bit
mode to a general purpose register (GPR), the packed single quantity is zero
extended to 64 bits.

Operation

EXTRACTPS
IF (64-Bit Mode and REX.W used and the destination is a GPR)
THEN
SRC_OFFSET < imm8[1:0];
r/m64[31:0] € (SRC >> (32 * SRC_OFFSET)) AND OFFFFFFFFh;
r/m64[63:32] €& ZERO_FILL;
ELSE
SRC_OFFSET < imm8[1:0];
r/m32[31:0] € (SRC >> (32 * SRC_OFFSET)) AND OFFFFFFFFh;

Intel C/C++ Compiler Intrinsic Equivalent

EXTRACTPS int _mm_extract_ps(__m128 src, const int ndx);

71




SSE4 INSTRUCTION SET

SIMD Floating-Point Exceptions

None

Protected Mode and Compatibility Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

#AC(0)

For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

For an illegal address in the SS segment.
For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

72



SSE4 INSTRUCTION SET

64-Bit Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#NM
#UD

#AC(0)

If the memory address is in a non-canonical form.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is O.

If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

73



SSE4 INSTRUCTION SET

INSERTPS — Insert Packed Single Precision Floating-Point Value

Opcode Instruction 64-bit Compat/ Description

Mode Leg Mode
66 0F3A21 INSERTPS xmm1,  Valid Valid Insert a single precision floating-
Irib xmmz2/m32, imm8 point value selected by imm8 from

xmmZ2/m32 into xmm1 at the
specified destination element
specified by imm8 and zero out
destination elements in xmm1 as
indicated in imm8.

Description

Select a single precision floating-point element from source register (second
operand, register form) as indicated by Count_S bits of the immediate operand (third
operand) or load a floating-point element from memory indicated by the source
(second operand, memory form) and insert it into the destination (first operand) at
the location indicated by the Count_D bits of the immediate operand. Zero out desti-
nation elements based on the ZMask bits of the immediate operand.

Operation

INSERTPS

IF (SRC == REG) THEN COUNT_S < imm8[7:6];
ELSE COUNT_S € O;

COUNT_D < imm8[5:4];

ZMASK < imm8[3:0];

CASE (COUNT_S) OF
0: TMP & SRC[31:0];
1:  TMP < SR([63:32];
2. TMP < SRC[95:64];
3. TMP < SRC[127:96];

CASE (COUNT_D) OF

0: TMP2[31:0] < TMP;
TMP2[127:32] < DEST[127:32];

1:  TMP2[63:32] < TMP;
TMP2[31:0] < DEST[31:0];
TMP2[127:64] < DEST[127:64];

2. TMP2[95:64] < TMP;
TMP2[63:0] < DEST[63:0];

74



SSE4 INSTRUCTION SET

TMP2[127:96] < DEST[127:96];
3. TMP2[127:96] < TMP;
TMP2[95:0] & DEST[95:0];

IF (ZMASK[O] == 1) THEN DEST[31:0] < 00000000H;
ELSE DEST[31:0] € TMP2[31:0];

IF (ZMASK[1] == 1) THEN DEST[63:32] < 00000000H;
ELSE DEST[63:32] < TMP2[63:32];

IF (ZMASK[2] == 1) THEN DEST[95:64] < 00000000H;
ELSE DEST[95:64] < TMP2[95:64];

IF (ZMASK[3] == 1) THEN DEST[127:96] < 00000000H;
ELSE DEST[127:96] < TMP2[127:96];

Intel C/C++ Compiler Intrinsic Equivalent

INSERTPS __m128 _mm_insert_ps(__m128 dst, __m128 src, const int ndx);

SIMD Floating-Point Exceptions
None

Protected Mode and Compatibility Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

75



SSE4 INSTRUCTION SET

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.

#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

76



SSE4 INSTRUCTION SET

MOVNTDQA — Load Double Quadword Non-Temporal Aligned Hint

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 38  MOVNTDQA xmm1, Valid Valid Move double quadword from m128
2AIr m128 to xmm using non-temporal hint if
WC memory type.
Description

MOVNTDQA loads a double quadword from the source operand (second operand) to
the destination operand (first operand) using a non-temporal hint if the memory
source is WC (write combining) memory type. For WC memory type, the non-
temporal hint may be implemented by loading a temporary internal buffer with the
equivalent of an aligned cache line without filling this data to the cache. Any
memory-type aliased lines in the cache will be snooped and flushed. Subsequent
MOVNTDQA reads to unread portions of the WC cache line will receive data from the
temporary internal buffer if data is available. The temporary internal buffer may be
flushed by the processor at any time for any reason, for example:

® A load operation other than a MOVNTDQA which references memory already
resident in a temporary internal buffer.

® A non-WC reference to memory already resident in a temporary internal buffer.
® Interleaving of reads and writes to a single temporary internal buffer.
® Repeated MOVNTDQA loads of a particular 16-byte item in a streaming line.

® Certain micro-architectural conditions including resource shortages, detection of
a mis-speculation condition, and various fault conditions

The non-temporal hint is implemented by using a write combining (WC) memory
type protocol when reading the data from memory. Using this protocol, the processor
does not read the data into the cache hierarchy, nor does it fetch the corresponding
cache line from memory into the cache hierarchy. The memory type of the region
being read can override the non-temporal hint, if the memory address specified for
the non-temporal read is not a WC memory region. Information on non-temporal
reads and writes can be found in Chapter 10, “Memory Cache Control” of Intel® 64
and 1A-32 Architectures Software Developer’s Manual, Volume 3A.

Because the WC protocol uses a weakly-ordered memory consistency model, a
fencing operation implemented with a MFENCE instruction should be used in conjunc-
tion with MOVNTDQA instructions if multiple processors might use different memory
types for the referenced memory locations or in order to synchronize reads of a
processor with writes by other agents in the system.

A processor’s implementation of the streaming load hint does not override the effec-
tive memory type, but the implementation of the hint is processor dependent. For
example, a processor implementation may choose to ignore the hint and process the

77



SSE4 INSTRUCTION SET

instruction as a normal MOVDQA for any memory type. Alternatively, another imple-
mentation may optimize cache reads generated by MOVNTDQA on WB memory type
to reduce cache evictions.

Operation

MOVNTDQA
DST < SRC,

Intel C/C++ Compiler Intrinsic Equivalent

MOVNTDQA __m128i _mm_stream_load_si128 (__m128i *p);

Flags Affected
None

Protected Mode and Compatibility Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

78



SSE4 INSTRUCTION SET

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.

#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

79



SSE4 INSTRUCTION SET

MPSADBW — Compute Multiple Packed Sums of Absolute Difference

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 3A MPSADBW Valid Valid Sums absolute 8-bit integer difference of
42 rib xmm1, adjacent groups of 4 byte integers in
xmm2/m128, xmm1 and xmmZ2/m128 and writes the
imm8 results in xmm1. Starting offsets within
xmm1and xmmZ2/m128 are determined by
imm8.
Description

MPSADBW sums the absolute difference of 4 unsigned bytes, selected by bits [0:1] of
the immediate byte (third operand), from the source (second operand) with sequen-
tial groups of 4 unsigned bytes in the destination operand. The first group of eight
sequential groups of bytes from the destination operand (first operand) start at an
offset determined by bit 2 of the immediate. The operation is repeated 8 times, each
time using the same source input but selecting the next group of 4 bytes starting at
the next higher byte in the destination. Each 16-bit sum is written to dest.

Operation

MPSADBW

SRC_OFFSET < imm8[1:0]*32

DEST_OFFSET « imm8[2]*32

DEST_BYTEO < DEST[DEST_OFFSET+7:DEST_OFFSET]
DEST_BYTET < DEST[DEST_OFFSET+15:DEST_OFFSET+8]
DEST_BYTEZ < DEST[DEST_OFFSET+23:DEST_OFFSET+16]
DEST_BYTE3 <« DEST[DEST_OFFSET+31:DEST_OFFSET+24]
DEST_BYTE4 < DEST[DEST_OFFSET+39:DEST_OFFSET+32]
DEST_BYTES <« DEST[DEST_OFFSET+47:DEST_OFFSET+40]
DEST_BYTEG <« DEST[DEST_OFFSET+55:DEST_OFFSET+48]
DEST_BYTE7 < DEST[DEST_OFFSET+63:DEST_OFFSET+56]
DEST_BYTE8 <« DEST[DEST_OFFSET+71:DEST_OFFSET+64]
DEST_BYTEY <« DEST[DEST_OFFSET+79:DEST_OFFSET+72]
DEST_BYTE10 < DEST[DEST_OFFSET+87:DEST_OFFSET+80]

SRC_BYTEO < SRC[SRC_OFFSET+7:SRC_OFFSET]
SRC_BYTE1 & SRC[SRC_OFFSET+15:SRC_OFFSET+8]
SRC_BYTEZ < SRC[SRC_OFFSET+23:SRC_OFFSET+16]
SRC_BYTE3 < SRC[SRC_OFFSET+31:SRC_OFFSET+24]

80




TEMPO < ABS(DEST_BYTEO - SRC_BYTEO)
TEMP1 < ABS(DEST_BYTE1 - SRC_BYTET)
TEMP2 < ABS(DEST_BYTEZ - SRC_BYTE?2)
TEMP3 < ABS(DEST_BYTE3 - SRC_BYTE3)
DEST[15:0] « TEMPO + TEMP1 + TEMPZ + TEMP3

TEMPO < ABS(DEST_BYTE1 - SRC_BYTEO)
TEMP1 < ABS(DEST_BYTEZ - SRC_BYTET)
TEMP2 < ABS(DEST_BYTE3 - SRC_BYTE?2)
TEMP3 < ABS(DEST_BYTE4 - SRC_BYTE3)
DEST[31:16] <« TEMPO + TEMP1 + TEMPZ + TEMP3

TEMPO < ABS(DEST_BYTEZ - SRC_BYTEO)
TEMP1 < ABS(DEST_BYTE3 - SRC_BYTET)
TEMP2 < ABS(DEST_BYTE4 - SRC_BYTE2)
TEMP3 < ABS(DEST_BYTES - SRC_BYTE3)
DEST[47:32] < TEMPO + TEMP1 + TEMPZ + TEMP3

TEMPO < ABS(DEST_BYTE3 - SRC_BYTEO)
TEMP1 < ABS(DEST_BYTE4 - SRC_BYTET)
TEMP2 < ABS(DEST_BYTES - SRC_BYTE?2)
TEMP3 < ABS(DEST_BYTEG - SRC_BYTE3)
DEST[63:48] < TEMPO + TEMP1 + TEMPZ + TEMP3

TEMPO < ABS(DEST_BYTE4 - SRC_BYTEO)
TEMP1 < ABS(DEST_BYTES - SRC_BYTET)
TEMP2 < ABS(DEST_BYTEG - SRC_BYTE?2)
TEMP3 < ABS(DEST_BYTE7 - SRC_BYTE3)
DEST[79:64] < TEMPO + TEMP1 + TEMPZ + TEMP3

TEMPO < ABS(DEST_BYTES - SRC_BYTEO)
TEMP1 < ABS(DEST_BYTEG - SRC_BYTET)
TEMP2 < ABS(DEST_BYTE7 - SRC_BYTE?2)
TEMP3 < ABS(DEST_BYTES - SRC_BYTE3)
DEST[95:80] < TEMPO + TEMP1 + TEMPZ + TEMP3

TEMPO < ABS(DEST_BYTEG - SRC_BYTEO)
TEMP1 < ABS(DEST_BYTE7 - SRC_BYTET)
TEMP2 < ABS(DEST_BYTES - SRC_BYTE?2)
TEMP3 < ABS(DEST_BYTES - SRC_BYTE3)
DEST[111:96] <« TEMPO + TEMP1 + TEMPZ2 + TEMP3

TEMPO < ABS(DEST_BYTE7 - SRC_BYTEO)

SSE4 INSTRUCTION SET

81



SSE4 INSTRUCTION SET

TEMP1 < ABS(DEST_BYTES - SRC_BYTET1)

TEMP2 < ABS(DEST_BYTES - SRC_BYTEZ)

TEMP3 < ABS(DEST_BYTE10 - SRC_BYTE3)
DEST[127:112] €« TEMPO + TEMP1 + TEMPZ + TEMP3

Intel C/C++ Compiler Intrinsic Equivalent

MPSADBW __m128i _mm_mpsadbw_epu8 (__m128is1, __m128is2, const int mask);

Flags Affected
None

Protected Mode and Compatibility Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.
For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

82

For a page fault.



SSE4 INSTRUCTION SET

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.

#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

83



SSE4 INSTRUCTION SET

PACKUSDW — Pack with Unsigned Saturation

Opcode Instruction 64-bit Compat/ Description

Mode Leg Mode
66 OF 38  PACKUSDW xmm1, Valid Valid Convert 4 packed signed doubleword
2B/r xmm2/m128 integers from xmm1 and 4 packed

signed doubleword integers from
xmmZ2/m128into 8 packed unsigned
word integers in xmm1 using
unsigned saturation.

Description

Converts packed signed doubleword integers into packed unsigned word integers
using unsigned saturation to handle overflow conditions. If the signed doubleword
value is beyond the range of an unsigned word (that is, greater than FFFFH or less
than 0000H), the saturated unsigned word integer value of FFFFH or O0O00H, respec-
tively, is stored in the destination.

Operation

PACKUSDW
TMP[15:0] < (DEST[31:0] < 0)? 0 : DEST[15:0];

DEST[15:0] < (DEST[31:0] > FFFFH) ? FFFFH : TMP[15:0] ;
TMP[31:16] < (DEST[63:32] < 0)? 0 : DEST[47:32];

DEST[31:16] < (DEST[63:32] > FFFFH) ? FFFFH : TMP[31:16];
TMP[47:32] < (DEST[95:64] < 0)? 0 : DEST[79:64];

DEST[47:32] < (DEST[95:64] > FFFFH) ? FFFFH : TMP[47:32] ;
TMP[63:48] < (DEST[127:96] < 0)? 0 : DEST[111:96];

DEST[63:48] < (DEST[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[63:48] < (DEST[127:96] < 0)? 0 : DEST[111:96];

DEST[63:48] < (DEST[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[79:64] < (SRC[31:0] < 0) 7 0 : SRC[15:0];

DEST[63:48] < (SRC[31:0] > FFFFH) ? FFFFH : TMP[79:64] ;
TMP[95:80] < (SRC[63:32] < 0)? 0 : SRC[47:32];

DEST[95:80] < (SRC[63:32] > FFFFH) ? FFFFH : TMP[95:80] ;
TMP[111:96] € (SRC[95:64] < 0)? 0 : SRC[79:64];

DEST[111:96] < (SRC[95:64] > FFFFH) ? FFFFH : TMP[111:96] ;
TMP[127:112] € (SRC[127:96] < 0)? 0: SRC[111:96];
DEST[128:112] € (SRC[127:96] > FFFFH) ? FEFFH : TMP[127:112] ;

Intel C/C++ Compiler Intrinsic Equivalent
PACKUSDW _ m128i _mm_packus_epi32(__m128i m1, _ m128i m2),

84



Flags Affected
None

SSE4 INSTRUCTION SET

Protected Mode and Compatibility Mode Exceptions

#GP(0)

#SS(0):
#PF(fault-code)
#NM

#UD

For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.
For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.SSE4_1(ECX bit 19) = 0.

If LOCK prefix is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

If any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.SSE4_1(ECX bit 19) = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

85



SSE4 INSTRUCTION SET

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM
#UD

86

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.



SSE4 INSTRUCTION SET

PBLENDVB — Variable Blend Packed Bytes

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 38 10 PBLENDVB xmm1, Valid Valid Select byte values from xmm1
Ir xmmZ2/m128, and xmmZ2/m128 from mask
<XMMO0> specified in the high bit of each

byte in XMMO and store the
values into xmm1.

Description

Bytes from the source operand (second operand) are conditionally written to the
destination operand (first operand) depending on mask bits defined in the implicit
third register argument, XMMO. The most significant bit in the corresponding byte of
XMMO determines whether the destination byte is copied from the source byte. The
presence of a "1" in the mask bit indicates that the byte is copied, else it is not copied
and destination byte remains unchanged. The register assignment of the implicit
third operand is defined to be the architectural register XMMO.

Operation

PBLENDVB with implicit XMMO register operand

MASK < XMMQ;

IF (MASK[7] == 1) THEN DEST[7:0] <« SRC[7:0];
ELSE DEST[7:0] < DEST[7:0];

IF (MASK[15] == 1) THEN DEST[15:8] < SRC[15:8];
ELSE DEST[15:8] < DEST[15:8];

IF (MASK[23] == 1) THEN DEST[23:16] €< SRC([23:16]
ELSE DEST[23:16] < DEST[23:16];

IF (MASK[31] == 1) THEN DEST[31:24] < SRC([31:24]
ELSE DEST[31:24] < DEST[31:24];

IF (MASK[39] == 1) THEN DEST[39:32] < SR([39:32]
ELSE DEST[39:32] < DEST[39:32];

IF (MASK[47] == 1) THEN DEST[47:40] < SRC([47:40]
ELSE DEST[47:40] < DEST[47:40];

IF (MASK[55] == 1) THEN DEST[55:48] < SR([55:48]
ELSE DEST[55:48] < DEST[55:48];

IF (MASK[63] == 1) THEN DEST[63:56] < SRC[63:56]
ELSE DEST[63:56] < DEST[63:56];

IF (MASK[71] == 1) THEN DEST[71:64] < SRC[71:64]
ELSE DEST[71:64] < DEST[71:64];

IF (MASK[79] == 1) THEN DEST[79:72] €< SR([79:72]

87



SSE4 INSTRUCTION SET

ELSE DEST[79:72] < DEST[79:72];

IF (MASK[87] == 1) THEN DEST[87:80] < SRC[87:80]
ELSE DEST[87:80] < DEST[87:80];

IF (MASK[95] == 1) THEN DEST[95:88] < SRC[95:88]
ELSE DEST[95:88] < DEST[95:88];

IF (MASK[103] == 1) THEN DEST[103:96] < SRC[103:96]
ELSE DEST[103:96] < DEST[103:96];

IF (MASK[111] == 1) THEN DEST[111:104] < SRC[111:104]
ELSE DEST[111:104] < DEST[111:104];

IF (MASK[119] == 1) THEN DEST[119:112] < SRC[119:112]
ELSE DEST[119:112] €« DEST[119:112];

IF (MASK[127] == 1) THEN DEST[127:120] < SRC[127:120]
ELSE DEST[127:120] €« DEST[127:120])

Intel C/C++ Compiler Intrinsic Equivalent

PBLENDVB __m128i _mm_blendv_epi8 (__m128iv1, _m128iv2, __m128i mask);

Flags Affected
None

Protected Mode and Compatibility Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.
For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

88

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If not aligned on 16-byte boundary, regardless of segment
If CRO.TS[bit 3] = 1.
If CRO.EM[bit 2] = 1.



SSE4 INSTRUCTION SET

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.

#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

89



SSE4 INSTRUCTION SET

PBLENDW — Blend Packed Words

Opcode Instruction 64-bit Compat/
Mode Leg Mode

66 OF 3A PBLENDW xmm1,  Valid Valid
OE/rib xmmZ2/m128, imm8

Description

Select words from xmm1 and
xmmZ2/m128 from mask specified in
imm8 and store the values into
xmm1.

Description

Words from the source operand (second operand) are conditionally written to the
destination operand (first operand) depending on bits in the immediate operand
(third operand). The immediate bits (bits 7-0) form a mask that determines whether
the corresponding word in the destination is copied from the source. If a bit in the
mask, corresponding to a word, is “1", then the word is copied, else the word is

unchanged.

Operation

PBLENDW

IF (imm8[0] == 1) THEN DEST[15:0] € SRC[15:0];
ELSE DEST[15:0] < DEST[15:0];

IF (mm8[1] == 1) THEN DEST[31:16] < SRC[31:16];
ELSE DEST[31:16] < DEST[31:16]);

IF (mm8[2] == 1) THEN DEST[47:32] < SRC[47:32];
ELSE DEST[47:32] < DEST[47:32];

IF (imm8[3] == 1) THEN DEST[63:48] < SRC[63:48];
ELSE DEST[63:48] < DEST[63:48];

IF (imm8[4] == 1) THEN DEST[79:64] < SRC[79:64];
ELSE DEST[79:64] < DEST[79:64];

IF (imm8[5] == 1) THEN DEST[95:80] < SRC[95:80];
ELSE DEST[95:80] < DEST[95:80];

IF (imm8[6] == 1) THEN DEST[111:96] < SRC[111:96];
ELSE DEST[111:96] < DEST[111:96];

IF (mm8[7] == 1) THEN DEST[127:112] € SRC[127:112];
ELSE DEST[127:112] € DEST[127:112];

Intel C/C++ Compiler Intrinsic Equivalent

PBLENDW __m128i _mm_blend_epi16 (__m128iv1, _m128iv2, const int mask);

90




Flags Affected
None

SSE4 INSTRUCTION SET

Protected Mode and Compatiblity Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.
For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

91



SSE4 INSTRUCTION SET

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM
#UD

92

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.



SSE4 INSTRUCTION SET

PCMPEQQ — Compare Packed Qword Data for Equal

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 38  PCMPEQQ xmm1, Valid Valid Compare packed qwords in
29 /r xmmZ2/m128 xmmZ2/m128 and xmm?1 for
equality.
Description

Performs an SIMD compare for equality of the packed quadwords in the destination
operand (first operand) and the source operand (second operand). If a pair of data
elements is equal, the corresponding data element in the destination is set to all 1s;
otherwise, it is set to Os.

Operation

PCMPEQQ

IF (DEST[63:0] == SRC[63:0]) THEN DEST[63:0] < FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] < O;

IF (DEST[127:64] == SRC[127:64]) THEN DEST[127:64] < FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] < C;

Intel C/C++ Compiler Intrinsic Equivalent

PCMPEQQ __m128i _mm_cmpeq_epi64(_m128ia, __m128ib);

Flags Affected
None

Protected Mode and Compatibility Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = O.

93




SSE4 INSTRUCTION SET

If LOCK prefix is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.

#UD If EM in CRO is set.
If OSFXSR in CR4 is O.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

94



SSE4 INSTRUCTION SET

PCMPESTRI — Packed Compare Explicit Length Strings, Return Index

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 3A61 /r PCMPESTRI Valid Valid Perform a packed
imm8 xmmT, comparison of string data
xmm2/m128, with explicit lengths,
imm8 generating an index, and
storing the result in ECX.

Description

The instruction compares and processes data from two string fragments based on the
encoded value in the Imm8 Control Byte (see Section 5.3), and generates an index
stored to ECX.

Each string fragment is represented by two values. The first value is an xmm (or
possibly m128 for the second operand) which contains the data elements of the
string (byte or word data). The second value is stored in EAX (for xmm1) or EDX (for
xmm2/m128) and represents the number of bytes/words which are valid for the
respective xmm/m128 data.

The length of each input is interpreted as being the absolute-value of the value in
EAX (EDX). The absolute-value computation saturates to 16 (for bytes) and 8 (for
words), based on the value of imm8[bit3] when the value in EAX (EDX) is greater
than 16 (8) or less than -16 (-8).

The comparison and aggregation operations are performed according to the encoded
value of Imm8 bit fields (see Section 5.3, “Imm8 Control Byte Operation for
PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”). The index of the first (or
last, according to imm8[6]) set bit of IntRes2 (see Section 5.3.1.4) is returned in
ECX. If no bits are set in IntRes2, ECX is set to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag - Reset if IntRes2 is equal to zero, set otherwise

ZFlag - Set if absolute-value of EDX is < 16 (8), reset otherwise
SFlag - Set if absolute-value of EAX is < 16 (8), reset otherwise
OFlag - IntRes2[0]

AFlag - Reset

PFlag - Reset

95



SSE4 INSTRUCTION SET

Effective Operand Size
Operating Operand 1 Operand 2 Length 1 Length 2 Result
mode/size
16 bit Xmm xmm/m128 EAX EDX ECX
32 bit Xmm xmm/m128 EAX EDX ECX
64 bit Xmm xmm/m128 EAX EDX ECX
64 bit + REX.W Xmm xmm/m128 RAX RDX RCX

Intel C/C++ Compiler Intrinsic Equivalent For Returning Index

int _mm_cmpestri (__m128i a, int la, __m128i b, int Ib, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpestra (__m128ia, intla, __m128ib, int Ib, const int mode);
int _mm_cmpestrc (__m128i 3, intla, __m128i b, int Ib, const int mode);
int _mm_cmpestro (__m128ia, intla, __m128i b, int Ib, const int mode);
int _mm_cmpestrs (__m128i 3, intla, __m128i b, int Ib, const int mode);
int _mm_cmpestrz (__m128i g, intla, __m128i b, int Ib, const int mode);

SIMD Floating-Point Exceptions
N/A.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.
#SS(0) For an illegal address in the SS segment
#UD If EM in CRO is set.

If OSFXSR in CR4 is 0.
If CPUID.0O1H:ECX.SSE4_2 [Bit 20] is O.
If LOCK prefix is used.

Real-Address Mode Exceptions

#GP(0) Interrupt 13 If any part of the operand lies outside the effective
address space from O to FFFFH.

96



#NM
#UD

SSE4 INSTRUCTION SET

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID.0O1H:ECX.SSE4_2 [Bit 20] is O.
If LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)

For a page fault

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)
#SS(0)

#PF (fault-code)
#NM
#UD

If the memory address is in a non-canonical form.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.
If LOCK prefix is used.

97



SSE4 INSTRUCTION SET

PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 3A 60 /r PCMPESTRM Valid Valid Perform a packed comparison
imm8 xmm1, of string data with explicit
xmm2/m128, lengths, generating a mask,
imm8 and storing the result in
XMMO
Description

The instruction compares data from two string fragments based on the encoded
value in the imm8 contol byte (see Section 5.3), and generates a mask stored to
XMMO.

Each string fragment is represented by two values. The first value is an xmm (or
possibly m128 for the second operand) which contains the data elements of the
string (byte or word data). The second value is stored in EAX (for xmmZ1) or EDX (for
xmm2/m128) and represents the number of bytes/words which are valid for the
respective xmm/m128 data.

The length of each input is interpreted as being the absolute-value of the value in
EAX (EDX). The absolute-value computation saturates to 16 (for bytes) and 8 (for
words), based on the value of imm8[bit3] when the value in EAX (EDX) is greater
than 16 (8) or less than -16 (-8).

The comparison and aggregation operations are performed according to the encoded
value of Imma8 bit fields (see Section 5.3, “Imma8 Control Byte Operation for
PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”). As defined by imm8[6],
IntRes2 is then either stored to the least significant bits of XMMO (zero extended to
128 bits) or expanded into a byte/word-mask and then stored to XMMO.

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag - Reset if IntRes?2 is equal to zero, set otherwise

ZFlag - Set if absolute-value of EDX is < 16 (8), reset otherwise
SFlag - Set if absolute-value of EAX is < 16 (8), reset otherwise
OFlag -IntRes2[0]

AFlag - Reset

PFlag - Reset

98




SSE4 INSTRUCTION SET

Effective Operand Size

Operating Operand1 Operand2 Length1 Length2 Result
mode/size

16 bit Xmm xmm/m128 EAX EDX XMMO
32 bit Xmm xmm/m128 EAX EDX XMMO
64 bit Xmm xmm/m128 EAX EDX XMMO
64 bit + REXW | xmm xmm/m128 RAX RDX XMMO

Intel C/C++ Compiler Intrinsic Equivalent For Returning Mask

__m128i _mm_cmpestrm (__m128i g, int la, __m128i b, int Ib, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpestra (__m128i a, int la, __m128i b, int Ib, const int mode);
int _mm_cmpestrc (__m128i a, int la, __m128i b, int Ib, const int mode);
int _mm_cmpestro (__m128i a, int la, __m128i b, int Ib, const int mode);
int _mm_cmpestrs (__m128i a, int la, __m128i b, int Ib, const int mode);
int  _mm_cmpestrz (_m128i 3, int la, __m128ib, int Ib, const int mode);

SIMD Floating-Point Exceptions
N/A.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.
#SS(0) For an illegal address in the SS segment
#UD If EM in CRO is set.

If OSFXSR in CR4 is 0.
If CPUID.O1H:ECX.SSE4_2 [Bit 20] is O.
If LOCK prefix is used.

Real-Address Mode Exceptions

#GP(0) Interrupt 13 If any part of the operand lies outside the effective
address space from O to FFFFH.

#NM If TS in CRO is set.

#UD If EM in CRO is set.

99



SSE4 INSTRUCTION SET

If OSFXSR in CR4 is O.
If CPUID.O1H:ECX.SSE4_2 [Bit 20] is O.
If LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF (fault-code) For a page fault.

#NM If TS in CRO is set.

#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID.0O1H:ECX.SSE4_2 [Bit 20] = 0.
If LOCK prefix is used.

100



SSE4 INSTRUCTION SET

PCMPISTRI — Packed Compare Implicit Length Strings, Return Index

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 3A PCMPISTRI xmm1, Valid Valid Perform a packed
63 /rimm8 xmmZ2/m128, imm8 comparison of string data

with implicit lengths,
generating an index, and
storing the result in ECX.

Description

The instruction compares data from two strings based on the encoded value in the
Imm8 Control Byte (see Section 5.3), and generates an index stored to ECX.

Each string is represented by a single value. The value is an xmm (or possibly m128
for the second operand) which contains the data elements of the string (byte or word
data). Each input byte/word is augmented with a valid/invalid tag. A byte/word is

considered valid only if it has a lower index than the least significant null byte/word.

(The least significant null byte/word is also considered invalid.)

The comparison and aggregation operations are performed according to the encoded
value of Imm8 bit fields (see Section 5.3, “Imm8 Control Byte Operation for
PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”). The index of the first (or
last, according to imm8[6] ) set bit of IntRes2 is returned in ECX. If no bits are setin
IntRes2, ECX is set to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag - Reset if IntRes2 is equal to zero, set otherwise

ZFlag - Set if any byte/word of xmm2/mem128 is null, reset otherwise
SFlag - Set if any byte/word of xmm1 is null, reset otherwise

OFlag -IntRes2[0]

AFlag - Reset

PFlag - Reset

101



SSE4 INSTRUCTION SET

Effective Operand Size
Operating mode/size | Operand1 Operand2 Result
16 bit xmm xmm/m128 ECX
32 bit Xmm xmm/m128 ECX
64 bit Xmm xmm/m128 ECX
64 bit + REX.W Xmm xmm/m128 RCX

Intel C/C++ Compiler Intrinsic Equivalent For Returning Index

int _mm_cmpistri (__m128ia, __m128i b, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpistra (__m128ia, __m128ib, const int mode);
int _mm_cmpistrc (__m128ia, __m128i b, const int mode);
int _mm_cmpistro (__m128ia, __m128i b, const int mode);
int _mm_cmpistrs (__m128ia, __m128i b, const int mode);
int _mm_cmpistrz (__m128ia, __m128i b, const int mode);

SIMD Floating-Point Exceptions
N/A.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.
#SS(0) For an illegal address in the SS segment.
#UD If EM in CRO is set.

If OSFXSR in CR4 is O.
If CPUID.0O1H:ECX.SSE4_2 [Bit 20] is O.
If LOCK prefix is used.

Real-Address Mode Exceptions

#GP(0) Interrupt 13 If any part of the operand lies outside the effective
address space from O to FFFFH.

102



#NM
#UD

SSE4 INSTRUCTION SET

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID.0O1H:ECX.SSE4_2 [Bit 20] is O.
If LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)
#SS(0)

#PF (fault-code)
#NM
#UD

If the memory address is in a non-canonical form.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is O.

If CPUID.0O1H:ECX.SSE4_2 [Bit 20] = 0.
If LOCK prefix is used.

103



SSE4 INSTRUCTION SET

PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask

Opcode Instruction 64-Bit Compat/ Description

Mode Leg Mode
66 0F3A62 PCMPISTRM xmm1, Valid Valid Perform a packed
/rimm8 xmm2/m128, imm8 comparison of string data

with implicit lengths,
generating a mask, and
storing the result in XMMO.

Description

The instruction compares data from two strings based on the encoded value in the
imma8 byte (see Section 5.3) generating a mask stored to XMMO.

Each string is represented by a single value. The The value is an xmm (or possibly
m128 for the second operand) which contains the data elements of the string (byte
or word data). Each input byte/word is augmented with a valid/invalid tag. A
byte/word is considered valid only if it has a lower index than the least significant null
byte/word. (The least significant null byte/word is also considered invalid.)

The comparison and aggregation operation are performed according to the encoded
value of Imm8 bit fields (see Section 5.3, “Imma8 Control Byte Operation for
PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”). As defined by imm8[6],
IntRes2 is then either stored to the least significant bits of XMMO (zero extended to
128 bits) or expanded into a byte/word-mask and then stored to XMMO.

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag - Reset if IntRes?2 is equal to zero, set otherwise

ZFlag - Set if any byte/word of xmm2/mem128 is null, reset otherwise
SFlag - Set if any byte/word of xmm1 is null, reset otherwise

OFlag - IntRes2[0]

AFlag - Reset

PFlag - Reset

Effective Operand Size

Operating mode/size Operand1 Operand2 Result
16 bit Xmm xmm/m128 XMMO
32 bit Xmm xmm/m128 XMMO
64 bit Xmm xmm/m128 XMMO
64 bit + REX.W Xmm xmm/m128 XMMO

104



SSE4 INSTRUCTION SET

Intel C/C++ Compiler Intrinsic Equivalent For Returning Mask

__m128i _mm_cmpistrm (__m128i a, __m128i b, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpistra (__m128ia, __m128i b, const int mode);
int _mm_cmpistrc (__m128ia, __m128i b, const int mode);
int _mm_cmpistro (__m128ia, __m128i b, const int mode);
int _mm_cmpistrs (__m128ia, __m128i b, const int mode);
int _mm_cmpistrz ( )

m128ia,__m128i b, const int mode);

SIMD Floating-Point Exceptions
N/A.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.
#SS(0) For an illegal address in the SS segment
#UD If EM in CRO is set.

If OSFXSR in CR4 is O.
If CPUID.O1H:ECX.SSE4_2 [Bit 20] is O.
If LOCK prefix is used.

Real-Address Mode Exceptions

#GP(0) Interrupt 13 If any part of the operand lies outside the effective
address space from O to FFFFH.

#NM If TS in CRO is set.

#UD If EM in CRO is set.

If OSFXSR in CR4 is 0.
If CPUID.01H:ECX.SSE4_2 [Bit 20] is O.
If LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

105



SSE4 INSTRUCTION SET

Compatibility Mode Exceptions

Same exceptions as

in Protected Mode.

64-Bit Mode Exceptions

#GP(0)
#SS(0)

#PF (fault-code)
#NM
#UD

106

If the memory address is in a nhon-canonical form.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID.0O1H:ECX.SSE4_2 [Bit 20] = 0.
If LOCK prefix is used.



SSE4 INSTRUCTION SET

PCMPGTQ — Compare Packed Data for Greater Than

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 0F 3837 PCMPGTQ Valid Valid Compare packed qwords in
/r xmm1,xmm2/m128 xmmZ2/m128and xmm1
for greater than.

Description

Performs an SIMD compare for the packed quadwords in the destination operand
(first operand) and the source operand (second operand). If the data element in the
first (destination) operand is greater than the corresponding element in the second
(source) operand, the corresponding data element in the destination is set to all 1s;
otherwise, it is set to Os.

Operation

IF (DEST[63-0] > SRC[63-0])
THEN DEST[63-0] < FFFFFFFFFFFFFFFFH;
ELSE DEST[63-0] < O;

Al

IF (DEST[127-64] > SRC[127-64])
THEN DEST[127-64] < FFFFFFFFFFFFFFFFH;
ELSE DEST[127-64] < 0;

Fi

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent

PCMPGTQ _m128i _mm_cmpgt_epi6b4(__m128ia, __m128ib)

Protected Mode and Compatibility Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

If not aligned on 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF (fault-code) For a page fault.
#UD If CRO.EM = 1.
If CR4.0SFXSR(bit 9) = 0.

107



SSE4 INSTRUCTION SET

If CPUID.0O1H:ECX.SSE4_2 [Bit 20] = 0.
If LOCK prefix is used.
#NM If TS bit in CRO is set.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

If not aligned on 16-byte boundary, regardless of segment.
#UD If CRO.EM = 1.

If CR4.0SFXSR(bit 9) = 0.

If CPUID.O1H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.
#NM If TS bit in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

If not aligned on 16-byte boundary, regardless of segment.
#UD If CRO.EM = 1.

If CR4.0SFXSR(bit 9) = 0.

If CPUID.0O1H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.
#NM If TS bit in CRO is set.
#PF (fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
If not aligned on 16-byte boundary, regardless of segment.
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#PF (fault-code) For a page fault.
#UD If CRO.EM = 1.
If CR4.0SFXSR(bit 9) = 0.
If CPUID.0O1H:ECX.SSE4_2 [Bit 20] = 0.
If LOCK prefix is used.
#NM If TS bit in CRO is set.

108



PEXTRB — Extract Byte

SSE4 INSTRUCTION SET

Opcode Instruction

66 OF 3A 14  PEXTRB r32/m8,
/rib xmmZ, imm8

66 REX.W OF PEXTRB r64/m8,
3A 14 /rib xmmZ, imm8

64-bit
Mode

Valid

Valid

Compat/
Leg Mode

Valid

N.E

Description

Extract a byte integer value from
xmmZ at the source byte offset
specified by imm8into r32/m8.

Extract a byte integer value from
xmmZ at the source byte offset
specified by imm8into r64/m8.

Description

Extract a byte integer value from the source xmm register (second argument) at a
byte offset determined from imm8[3:0]. The extracted integer value is stored into
the low 8 bits of the destination. If the destination is a register, the upper bits of the

register are zero extended.

Operation

PEXTRB ( dest=m8)
SRC_Offset € Imm8[3:0];
Mem8 < (Src >> Src_Offset*8);

PEXTRB ( dest=r32)

IF (64-Bit Mode and REX.W used and 64-bit destination GPR)

THEN
SRC_Offset < Imm8[3:0];

r64 < Zero_Extend64((Src >> Src_Offset*8) AND OFFh);

ELSE
SRC_Offset < Imm8[3:0];

r32 €« Zero_Extend32((Src >> Src_Offset*8) AND OFFh);

Intel C/C++ Compiler Intrinsic Equivalent

PEXTRB int _mm_extract_epi8 (__m128i src, const int ndx);

Flags Affected

None

Protected Mode and Compatibility Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

109




SSE4 INSTRUCTION SET

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = O.
If LOCK prefix is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.
If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.

#UD If EM in CRO is set.
If OSFXSR in CR4 is O.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

110



SSE4 INSTRUCTION SET

PEXTRD/PEXTRQ — Extract Dword/Qword

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 3A 16 PEXTRD r/m32, Valid Valid Extract a dword integer value
/rib xmmZ, imm8 from xmmZ at the source dword
offset specified by imm8into
r/m32.
66 REXW OF PEXTRQ r/m64, Valid N. E. Extract a qword integer value
3A 16 xmmZ, imm8 from xmmZ at the source dword
Irib offset specified by imm8into
r/mé4.
Description

PEXTRD extracts a dword integer value from the source xmm register (second argu-
ment) at a dword offset determined from imm8[1:0]. The extracted integer value is
stored into the low 32 bits of the destination. If the destination is a register, the
upper bits of the register are zero extended.

Operation

PEXTRTD/PEXTRQ
IF (64-Bit Mode and REX.W used and 64-bit destination operand)
THEN
Src_Offset < Imm8[0];
r/m64= (Src >> Src_Offset * 64);
ELSE
Src_Offset < Imm8[1:0];
r/m32 € ((Src >> Src_Offset *32) AND OFFFFFFFFh);
Fl;

Intel C/C++ Compiler Intrinsic Equivalent

PEXTRD int _mm_extract_epi32 (__m128i src, const int ndx);
PEXTRQ  __int64 _mm_extract_epi64 (__m128i src, const int ndx);

Flags Affected
None

1



SSE4 INSTRUCTION SET

Protected Mode and
#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

#AC(0)

Compatibility Mode Exceptions

For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

For an illegal address in the SS segment.
For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Real Mode Exceptions

#GP(0)

#UD

#NM

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

If CRO.TS[bit 3] = 1.

Virtual 8086 Mode Exceptions

Same exceptions as
#PF(fault-code)
#AC(0)

in Real Address Mode.
For a page fault.

If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Compatibility Mode Exceptions

Same exceptions as

112

in Protected Mode.



SSE4 INSTRUCTION SET

64-Bit Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#NM
#UD

#AC(0)

If the memory address is in a non-canonical form.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is O.

If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

113



SSE4 INSTRUCTION SET

PEXTRW — Extract Word

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 3A 15 PEXTRW r32/m16,  Valid Valid Extract a word integer value from
Irib xmmZ2, imm8 xmmZ at the source word offset
specified by imm8into r32/m16.
66 REX.W OF PEXTRW r64/m16,  Valid N.E+ Extract a word integer value from
3A15/rib xmmZ2, imm8 xmmZ at the source word offset

specified by imm8into r64/m16.

Description

Extract a word integer value from the source xmm register (second argument) at a
word offset determined from imm8[2:0]. The extracted integer value is stored into
the low 16 bits of the destination. If the destination is a register, the upper bits of the
register are zero extended.

Operation

PEXTRW ( dest=m16)
SRC_Offset < Imm8[2:0];
Mem16 € (Src >> Src_Offset*16);

PEXTRW ( dest=r32 or r64)
IF (64-Bit Mode and REX.W used and 64-bit destination GPR)
THEN

SRC_Offset < Imm8[2:0];

r64 < Zero_Extend64((Src >> Src_Offset*16) AND OFFFFh);
ELSE

SRC_Offset < Imm8[2:0];

r32 € Zero_Extend32((Src >> Src_Offset*16) AND OFFFFh);

Intel C/C++ Compiler Intrinsic Equivalent

PEXTRW  int _mm_extract_epi16 (__m128i src, int ndx);

Flags Affected

None
Protected Mode and Compatibility Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

114



#SS(0)
#PF(fault-code)
#NM

#UD

#AC(0)

SSE4 INSTRUCTION SET

For an illegal address in the SS segment.
For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)
#AC(0)

For a page fault.

If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

115



SSE4 INSTRUCTION SET

64-Bit Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#NM
#UD

#AC(0)

116

If the memory address is in a non-canonical form.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is O.

If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.



SSE4 INSTRUCTION SET

PHMINPOSUW — Packed Horizontal Word Minimum

Opcode Instruction 64-bit Compat/ Description

Mode Leg Mode
66 OF 38 PHMINPOSUW xmmT, Valid Valid Find the minimum unsigned word
41 /r xmm2/m128 in xmmZ2/m128 and place its

value in the low word of xmm1
and its index in the second-
lowest word of xmm1.

Description

Determine the minimum unsigned word value in the source operand (second
operand) and place the unsigned word in the low word (bits 0-15) of the destination
operand (first operand). The word index of the minimum value is stored in bits 16-
18 of the destination operand. The remaining upper bits of the destination are set to
zero.

Operation

PHMINPOSUW

INDEX €< O;

MIN € SRC[15:0]

IF (SRC[31:16] < MIN) THEN INDEX €« 1; MIN €« SRC[31:16];

IF (SRC[47:32] < MIN) THEN INDEX €« 2; MIN €« SRC[47:32];

* Repeat operation for words 3 through 6

IF (SRC[127:112] < MIN) THEN INDEX < 7; MIN € SRC[127:112];
DEST[15:0] € MIN;

DEST[18:16] < INDEX;

DEST[127:19] €« 0000000000000000000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent

PHMINPOSUW  __m128i _mm_minpos_epul16(__m128i packed_words);

Flags Affected

None

117



SSE4 INSTRUCTION SET

Protected Mode and Compatibility Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.
For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM

118

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.
If TS in CRO is set.



SSE4 INSTRUCTION SET

#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

119



SSE4 INSTRUCTION SET

PINSRB — Insert Byte

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 0F3A20 PINSRB xmm1, Valid Valid Insert a byte integer value from r32/m8
/rib r32/m8, imm8 into xmm1 at the destination element in
xmm1 specified by imm8.

Description

Copies a byte from the source operand (second operand) and inserts it into the desti-
nation operand (first operand) at the location specified with the immediate operand

(third operand). The other words in the destination register are left unchanged. The
byte select is specified by the 4 least-significant bits of the immediate.

Operation

PINSRB xmm1, m8, imm8

SEL € imm8[3:0];

MASK & (OFFH << (SEL * 8));  // Shift in zeros from right

DEST < (DEST AND NOT MASK) OR (((SRC << (SEL *8)) AND MASK);

Intel C/C++ Compiler Intrinsic Equivalent

PINSRB __m128i _mm_insert_epi8 (__m128is1, int s2, const int ndx);
Flags Affected
None

Protected Mode and Compatibility Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

120



SSE4 INSTRUCTION SET

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#NM
#UD

If the memory address is in a non-canonical form.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

121



SSE4 INSTRUCTION SET

PINSRD/PINSRQ — Insert Dword/Qword

Opcode Instruction Compat/ 64-bit  Description
Leg Mode Mode

66 OF 3A  PINSRD xmm1,  Valid Valid Insert a dword integer value from r/m32
22 Irib r/m32, imm8 into the xmm1 at the destination

elements specified by imm8.
66 REXW  PINSRQ xmm1, N.E. Valid Insert a qword integer value from r/m32
OF 3A 22 /r r/m64, imm8 into the xmm?1 at the destination
ib elements specified by imm8.
Description

Copies a dword from the source operand (second operand) and inserts it into the
destination operand (first operand) at the location specified by the immediate
operand ( third operand). The other dwords in the destination register are left
unchanged. The dword select is specified by the 2 least-significant bits of the imme-
diate.

Operation

PINSRD xmm1, m32, imm8
IF (64-Bit Mode and REX.W used )
THEN
SEL < imm8[0]
MASK € (OFFFFFFFFFFFFFFFFH << (SEL * 64));  // Shiftin zeros from right
DEST < (DEST AND NOT MASK) OR (((SRC << (SEL *64)) AND MASK);
ELSE
SEL < imm8[1:0]
MASK € (OFFFFFFFFH << (SEL * 32)); /1 Shift in zeros from right
DEST < (DEST AND NOT MASK) OR (((SRC << (SEL *32)) AND MASK);
Fl

Intel C/C++ Compiler Intrinsic Equivalent

PINSRD _m128i_mm_insert_epi32 (__m128is2, int s, const int ndx);
PINSRQ __m128i _mm_insert_epi64(__m128is2, __int64 s, const int ndx);

Flags Affected
None

122



SSE4 INSTRUCTION SET

Protected Mode and Compatibility Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

123



SSE4 INSTRUCTION SET

64-Bit Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#NM
#UD

#AC(0)

124

If the memory address is in a non-canonical form.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is O.

If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.



SSE4 INSTRUCTION SET

PMAXSB — Maximum of Packed Signed Byte Integers

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 38  PMAXSB xmm1, Valid Valid Compare packed signed byte integers
3C/r xmmZ2/m128 in xmm1 and xmm2/m128 and store
packed maximum values in xmm1.

Description

Compares packed signed byte integers in the destination operand (first operand) and
the source operand (second operand), and returns the maximum for each packed
value in the destination operand.

Operation

PMAXSB

IF (DEST[7:0] > SRC[7:0]) THEN DEST[7:0] < DEST[7:0];
ELSE DEST[7:0] < SRC[7:0];

IF (DEST[15:8] > SRC[15:8]) THEN DEST[15:8] < DEST[15:8];
ELSE DEST[15:8] < SRC[15:8];

IF (DEST[23:16] > SRC[23:16]) THEN DEST[23:16] < DEST[23:16];
ELSE DEST[23:16] < SRC[23:16];

IF (DEST[31:24] > SRC[31:24]) THEN DEST[31:24] < DEST[31:24];
ELSE DEST[31:24] < SRC[31:24];

IF (DEST[39:32] > SRC[39:32]) THEN DEST[39:32] < DEST[39:32];
ELSE DEST[39:32] < SRC[39:32];

IF (DEST[47:40] > SRC[47:40]) THEN DEST[47:40] < DEST[47:40];
ELSE DEST[47:40] < SRC[47:40];

IF (DEST[55:48] > SRC[55:48]) THEN DEST[55:48] < DEST[55:48];
ELSE DEST[55:48] < SRC[55:48];

IF (DEST[63:56] > SRC[63:56]) THEN DEST[63:56] < DEST[63:56];
ELSE DEST[63:56] < SRC[63:56];

IF (DEST[71:64] > SRC[71:64]) THEN DEST[71:64] < DEST[71:64];
ELSE DEST[71:64] < SRC[71:64];

IF (DEST[79:72] > SRC[79:72]) THEN DEST[79:72] < DEST[79:72];
ELSE DEST[79:72] < SRC[79:72];

IF (DEST[87:80] > SRC[87:80]) THEN DEST[87:80] < DEST[87:80];
ELSE DEST[87:80] < SRC[87:80];

IF (DEST[95:88] > SRC[95:88]) THEN DEST[95:88] < DEST[95:88];
ELSE DEST[95:88] < SRC[95:88];

IF (DEST[103:96] > SRC[103:96]) THEN DEST[103:96] < DEST[103:96];
ELSE DEST[103:96] < SRC[103:96];

125



SSE4 INSTRUCTION SET

IF (DEST[111:104] > SRC[111:104]) THEN DEST[111:104] €& DEST[111:104];
ELSE DEST[111:104] < SRC[111:104];

IF (DEST[119:112] > SRC[119:112]) THEN DEST[119:112] € DEST[119:112];
ELSE DEST[119:112] <« SRC[119:112];

IF (DEST[127:120] > SRC[127:120]) THEN DEST[127:120] & DEST[127:120];
ELSE DEST[127:120] < SRC[127:120];

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSB __m128i _mm_max_epi8 (_m128ia, __m128ib);

Flags Affected

None

Protected Mode and
#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

Compatibility Mode Exceptions

For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.
For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

126

If any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.



SSE4 INSTRUCTION SET

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.

#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

127



SSE4 INSTRUCTION SET

PMAXSD — Maximum of Packed Signed Dword Integers

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 38  PMAXSD xmm1, Valid Valid Compare packed signed dword integers in
3D/r xmmZ2/m128 xmm1 and xmmZ2/m128 and store
packed maximum values in xmm1.

Description

Compares packed signed dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the maximum for each
packed value in the destination operand.

Operation

PMAXSD

IF (DEST[31:0] > SRC[31:0]) THEN DEST[31:0] < DEST[31:0];
ELSE DEST[31:0] < SRC[31:0];

IF (DEST[63:32] > SRC[63:32]) THEN DEST[63:32] < DEST[63:32];
ELSE DEST[63:32] < SRC[63:32];

IF (DEST[95:64] > SRC[95:64]) THEN DEST[95:64] < DEST[95:64];
ELSE DEST[95:64] < SRC[95:64];

IF (DEST[127:96] > SRC[127:96]) THEN DEST[127:96] < DEST[127:96];
ELSE DEST[127:96] < SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSD __m128i _mm_max_epi32 (__m128ia,__m128ib);

Flags Affected

None

Protected Mode and Compatibility Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

128



#UD

SSE4 INSTRUCTION SET

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM
#UD

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is O.

If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

129



SSE4 INSTRUCTION SET

PMAXUD — Maximum of Packed Unsigned Dword Integers

Opcode Instruction 64-bit Mode Compat/ Description
Leg Mode
66 OF 38 PMAXUD xmm], Valid Valid Compare packed unsigned
3F/r xmm2/m128 dword integers in xmm1 and
xmmZ2/m128 and store packed
maximum values in xmm1.

Description

Compares packed unsigned dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the maximum for each
packed value in the destination operand.

Operation

PMAXUD

IF (DEST[31:0] > SRC[31:0]) THEN DEST[31:0] < DEST[31:0];
ELSE DEST[31:0] < SRC[31:0];

IF (DEST[63:32] > SRC[63:32]) THEN DEST[63:32] < DEST[63:32];
ELSE DEST[63:32] < SRC[63:32];

IF (DEST[95:64] > SRC[95:64]) THEN DEST[95:64] < DEST[95:64];
ELSE DEST[95:64] < SRC[95:64];

IF (DEST[127:96] > SRC[127:96]) THEN DEST[127:96] < DEST[127:96];
ELSE DEST[127:96] < SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalent

PMAXUD __m128i _mm_max_epu32 (_m128ia, __m128ib);

Flags Affected
None

Protected Mode and Compatibility Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

130



#UD

SSE4 INSTRUCTION SET

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM

#UD

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.
If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is O.

If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

131



SSE4 INSTRUCTION SET

PMAXUW — Maximum of Packed Word Integers

Opcode Instruction Compat/ 64-bit  Description
LegMode Mode
66 0F 38 PMAXUW xmmT, Valid Valid Compare packed unsigned word
3E/r xmm2/m128 integers in xmm1 and xmmZ2/m128
and store packed maximum values in
xmm1.
Description

Compares packed unsigned word integers in the destination operand (first operand)
and the source operand (second operand), and returns the maximum for each
packed value in the destination operand.

Operation

PMAXUW

IF (DEST[15:0] > SRC[15:0]) THEN DEST[15:0] < DEST[15:0];
ELSE DEST[15:0] < SRC[15:0];

IF (DEST[31:16] > SRC[31:16]) THEN DEST[31:16] < DEST[31:16];
ELSE DEST[31:16] < SRC[31:16];

IF (DEST[47:32] > SRC[47:32]) THEN DEST[47:32] < DEST[47:32];
ELSE DEST[47:32] < SRC[47:32];

IF (DEST[63:48] > SRC[63:48]) THEN DEST[63:48] < DEST[63:48];
ELSE DEST[63:48] < SRC[63:48];

IF (DEST[79:64] > SRC[79:64]) THEN DEST[79:64] < DEST[79:64];
ELSE DEST[79:64] < SRC[79:64];

IF (DEST[95:80] > SRC[95:80]) THEN DEST[95:80] < DEST[95:80];
ELSE DEST[95:80] < SRC[95:80];

IF (DEST[111:96] > SRC[111:96]) THEN DEST[111:96] < DEST[111:96];
ELSE DEST[111:96] < SRC[111:96];

IF (DEST[127:112] > SRC[127:112]) THEN DEST[127:112] €< DEST[127:112];
ELSE DEST[127:112] € SRC[127:112];

Intel C/C++ Compiler Intrinsic Equivalent

PMAXUW__m128i _mm_max_epu16 (_m128ia, __m128ib);

Flags Affected
None

132



SSE4 INSTRUCTION SET

Protected Mode and Compatibility Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = O.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

133



SSE4 INSTRUCTION SET

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM
#UD

134

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.



SSE4 INSTRUCTION SET

PMINSB — Minimum of Packed Signed Byte Integers

Opcode Instruction 64-bit Compat/ Description

Mode Leg Mode
66 OF 3838 PMINSB xmm1, Valid Valid Compare packed signed byte
Ir xmmZ2/m128 integers in xmm1 and

xmmZ2/m128 and store packed
minimum values in xmm71.

Description

Compares packed signed byte integers in the destination operand (first operand) and
the source operand (second operand), and returns the minimum for each packed
value in the destination operand.

Operation

PMINSB

IF (DEST[7:0] < SRC[7:0]) THEN DEST[7:0] < DEST[7:0];
ELSE DEST[7:0] < SRC[7:0];

IF (DEST[15:8] < SRC[15:8]) THEN DEST[15:8] < DEST[15:8];
ELSE DEST[15:8] < SRC[15:8];

IF (DEST[23:16] < SRC[23:16]) THEN DEST[23:16] < DEST[23:16];
ELSE DEST[23:16] < SRC[23:16];

IF (DEST[31:24] < SRC[31:24]) THEN DEST[31:24] < DEST[31:24];
ELSE DEST[31:24] < SRC[31:24];

IF (DEST[39:32] < SRC[39:32]) THEN DEST[39:32] < DEST[39:32];
ELSE DEST[39:32] < SRC[39:32];

IF (DEST[47:40] < SRC[47:40]) THEN DEST[47:40] < DEST[47:40];
ELSE DEST[47:40] < SRC[47:40];

IF (DEST[55:48] < SRC[55:48]) THEN DEST[55:48] < DEST[55:48];
ELSE DEST[55:48] < SRC[55:48];

IF (DEST[63:56] < SRC[63:56]) THEN DEST[63:56] < DEST[63:56];
ELSE DEST[63:56] < SRC[63:56];

IF (DEST[71:64] < SRC[71:64]) THEN DEST[71:64] < DEST[71:64];
ELSE DEST[71:64] < SRC[71:64];

IF (DEST[79:72] < SRC[79:72]) THEN DEST[79:72] < DEST[79:72];
ELSE DEST[79:72] € SRC[79:72];

IF (DEST[87:80] < SRC[87:80]) THEN DEST[87:80] < DEST[87:80];
ELSE DEST[87:80] < SRC[87:80];

IF (DEST[95:88] < SRC[95:88]) THEN DEST[95:88] < DEST[95:88];
ELSE DEST[95:88] < SRC[95:88];

IF (DEST[103:96] < SRC[103:96]) THEN DEST[103:96] < DEST[103:96];

135



SSE4 INSTRUCTION SET

ELSE DEST[103:96] < SRC[103:96];

IF (DEST[111:104] < SRC[111:104]) THEN DEST[111:104] < DEST[111:104];
ELSE DEST[111:104] €< SRC[111:104];

IF (DEST[119:112] < SRC[119:112]) THEN DEST[119:112] €« DEST[119:112];
ELSE DEST[119:112] € SRC[119:112];

IF (DEST[127:120] < SRC[127:120]) THEN DEST[127:120] €< DEST[127:120;
ELSE DEST[127:120] € SRC[127:120];

Intel C/C++ Compiler Intrinsic Equivalent

PMINSB __m128i _mm_min_epi8 (_m128ia, __m128ib);
Flags Affected
None

Protected Mode and Compatibility Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.
For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

136

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.



SSE4 INSTRUCTION SET

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.

#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

137



SSE4 INSTRUCTION SET

PMINSD — Minimum of Packed Dword Integers

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 0F38 PMINSD xmm1, Valid Valid Compare packed signed dword integers in
39/r xmm2/m128 xmm71 and xmmZ2/m128 and store packed
mimum values in xmm1.

Description

Compares packed signed dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the minimum for each packed
value in the destination operand.

Operation

PMINSD

IF (DEST[31:0] < SRC[31:0]) THEN DEST[31:0] < DEST[31:0];
ELSE DEST[31:0] < SRC[31:0];

IF (DEST[63:32] < SRC[63:32]) THEN DEST[63:32] < DEST[63:32];
ELSE DEST[63:32] < SRC[63:32];

IF (DEST[95:64] < SRC[95:64]) THEN DEST[95:64] < DEST[95:64];
ELSE DEST[95:64] < SRC[95:64];

IF (DEST[127:96] < SRC[127:96]) THEN DEST[127:96] < DEST[127:96];
ELSE DEST[127:96] < SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalent

PMINSD __m128i _mm_min_epi32 (_m128ia, __m128ib);
Flags Affected
None

Protected Mode and Compatibility Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

138




#UD

SSE4 INSTRUCTION SET

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM
#UD

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is O.

If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

139



SSE4 INSTRUCTION SET

PMINUD — Minimum of Packed Dword Integers

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 0F 38  PMINUD xmmT, Valid Valid Compare packed unsigned dword
3B/r xmm2/m128 integers in xmm1 and xmm2/m128
and store packed minimum values in
xmmT1.
Description

Compares packed unsigned dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the minimum for each packed
value in the destination operand.

Operation

PMINUD

IF (DEST[31:0] < SRC[31:0]) THEN DEST[31:0] < DEST[31:0];
ELSE DEST[31:0] < SRC[31:0];

IF (DEST[63:32] < SRC[63:32]) THEN DEST[63:32] < DEST[63:32];
ELSE DEST[63:32] < SRC[63:32];

IF (DEST[95:64] < SRC[95:64]) THEN DEST[95:64] < DEST[95:64];
ELSE DEST[95:64] < SRC[95:64];

IF (DEST[127:96] < SRC[127:96]) THEN DEST[127:96] < DEST[127:96];
ELSE DEST[127:96] < SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalent

PMINUD _m128i _mm_min_epu32 (_m128ia, __m128ib);

Flags Affected
None

Protected Mode and Compatibility Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

140



#UD

SSE4 INSTRUCTION SET

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM
#UD

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is O.

If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

141



SSE4 INSTRUCTION SET

PMINUW — Minimum of Packed Word Integers

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 38 3A PMINUW xmm1, Valid Valid Compare packed unsigned word
Ir xmm2/m128 integers in xmm1 and xmmZ2/m128
and store packed minimum values in
xmmT1.
Description

Compares packed unsigned word integers in the destination operand (first operand)
and the source operand (second operand), and returns the minimum for each packed
value in the destination operand.

Operation

PMINUW

IF (DEST[15:0] < SRC[15:0]) THEN DEST[15:0] < DEST[15:0];
ELSE DEST[15:0] < SRC[15:0];

IF (DEST[31:16] < SRC[31:16]) THEN DEST[31:16] < DEST[31:16];
ELSE DEST[31:16] < SRC[31:16];

IF (DEST[47:32] < SRC[47:32]) THEN DEST[47:32] < DEST[47:32];
ELSE DEST[47:32] < SRC[47:32];

IF (DEST[63:48] < SRC[63:48]) THEN DEST[63:48] < DEST[63:48];
ELSE DEST[63:48] < SRC[63:48];

IF (DEST[79:64] < SRC[79:64]) THEN DEST[79:64] < DEST[79:64];
ELSE DEST[79:64] < SRC[79:64];

IF (DEST[95:80] < SRC[95:80]) THEN DEST[95:80] < DEST[95:80];
ELSE DEST[95:80] < SRC[95:80];

IF (DEST[111:96] < SRC[111:96]) THEN DEST[111:96] < DEST[111:96];
ELSE DEST[111:96] < SRC[111:96];

IF (DEST[127:112] < SRC[127:112]) THEN DEST[127:112] < DEST[127:112];
ELSE DEST[127:112] € SRC[127:112];

Intel C/C++ Compiler Intrinsic Equivalent

PMINUW  _ m128i _mm_min_epul6 (_m128ia, __m128ib);

Flags Affected
None

142



SSE4 INSTRUCTION SET

Protected Mode and Compatibility Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

143



SSE4 INSTRUCTION SET

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM
#UD

144

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.



SSE4 INSTRUCTION SET

PMOVSX — Packed Move with Sign Extend

Opcode Instruction 64-bit Compat/  Description

Mode Leg Mode
66 0f38  PMOVSXBW xmm1, Valid Valid Sign extend 8 packed signed 8-bit
20 /r xmmZ2/m64 integers in the low 8 bytes of

xmmZ2/m64 to 8 packed signed 16-
bit integers in xmm71.

66 0f38  PMOVSXBD xmm1,  Valid Valid Sign extend 4 packed signed 8-bit

21 1/r xmmZ2/m32 integers in the low 4 bytes of
xmmZ2/m32 to 4 packed signed 32-
bit integers in xmm1.

66 0f 38 PMOVSXBQ xmm1,  Valid Valid Sign extend 2 packed signed 8-bit

22 1Ir xmmZ2/m16 integers in the low 2 bytes of
xmmZ2/m16 to 2 packed signed 64-
bit integers in xmm71.

66 0f 38 PMOVSXWD xmm1, Valid Valid Sign extend 4 packed signed 16-bit

231/r xmmZ2/m64 integers in the low 8 bytes of
xmmZ2/m64 to 4 packed signed 32-
bit integers in xmm71.

66 0f 38 PMOVSXwWQ xmm1, Valid Valid Sign extend 2 packed signed 16-bit

24 Ir xmmZ2/m32 integers in the low 4 bytes of
xmmZ2/m32 to 2 packed signed 64-
bit integers in xmm71.

66 0f 38 PMOVSXDQ xmm1,  Valid Valid Sign extend 2 packed signed 32-bit

25/r xmmZ2/m64 integers in the low 8 bytes of
xmmZ2/m64 to 2 packed signed 64-
bit integers in xmm71.

Description

Packed byte, word, or dword integers in the low bytes of the source operand (second
operand) are sign extended to word, dword, or quadword integers and stored as
packed data in the destination operand.

Operation

PMOVSXBW
DEST[15:0] < SignExtend(SRC[7:0]);
DEST[31:16] < SignExtend(SRC[15:8]);
DEST[47:32] < SignExtend(SRC[23:16]);
DEST[63:48] < SignExtend(SRC[31:24]);
DEST[79:64] < SignExtend(SRC[39:32]);

145



SSE4 INSTRUCTION SET

DEST[95:80] € SignExtend(SRC[47:40]);
DEST[111:96] < SignExtend(SRC[55:48]);
DEST[127:112] € SignExtend(SRC[63:56]);

PMOVSXBD

DEST[31:0] < SignExtend(SRC[7:0]);
DEST[63:32] < SignExtend(SRC[15:8]);
DEST[95:64] < SignExtend(SRC[23:16]);
DEST[127:96] < SignExtend(SRC[31:24]);

PMOVSXBQ
DEST[63:0] < SignExtend(SRC[7:0]);
DEST[127:64] €< Signextend(SRC[15:8]);

PMOVSXWD

DEST[31:0] € SignExtend(SRC[15:0]);
DEST[63:32] €< Signextend(SRC[31:16]);
DEST[95:64] € Signextend(SRC[47:32]);
DEST[127:96] < Signextend(SRC[63:48));

PMOVSXWQ
DEST[63:0] < SignExtend(SRC[15:0]);
DEST[127:64] < SignExtend(SRC[31:16]);

PMOVSXDQ
DEST[63:0] < SignExtend(SRC[31:0]);
DEST[127:64] < SignExtend(SRC[63:32]);

Flags Affected
None

Intel C/C++ Compiler Intrinsic Equivalent

PMOVSXBW __m128i _mm_ cvtepi8_epil16 (_m128i a);
PMOVSXBD __m128i _mm_ cvtepi8_epi32 (_m128i a);
PMOVSXBQ __m128i _mm_ cvtepi8_epi64 (_m128i a);
PMOVSXWD __m128i _mm_ cvtepi16_epi32 (_m128ia);
PMOVSXWQ __m128i _mm_ cvtepi16_epi64 (_m128i a);
PMOVSXDQ __m128i _mm_ cvtepi32_epib4 (_m128i a);

Protected Mode and Compatibility Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.
#SS(0) For an illegal address in the SS segment.

146



SSE4 INSTRUCTION SET

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.

#UD If EM in CRO is set.
If OSFXSR in CR4 is O.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

147



SSE4 INSTRUCTION SET

PMOVZX — Packed Move with Zero Extend

Opcode Instruction 64-bit Compat/ Description
Mode LegMode

66 0f 38 PMOVZXBW xmm1, Valid Valid Zero extend 8 packed 8-bit integers in the

30 /r xmmZ2/m64 low 8 bytes of xmm2/m64 to 8 packed
16-bit integers in xmm1.

66 0f 38 PMOVZXBD xmm1, Valid Valid Zero extend 4 packed 8-bit integers in the

31/r xmmZ2/m32 low 4 bytes of xmm2/m32 to 4 packed
32-bit integers in xmm1.

66 0f 38 PMOVZXBQ xmm1, Valid Valid Zero extend 2 packed 8-bit integers in the

321/r xmmZ2/m16 low 2 bytes of xmm2/m16 to 2 packed
64-bit integers in xmm1.

66 0f 38 PMOVZXWD xmm1, Valid Valid Zero extend 4 packed 16-bit integers in

33/r xmmZ2/m64 the low 8 bytes of xmm2/m64 to 4
packed 32-bit integers in xmm71.

66 0f 38 PMOVZXWQ xmm1, Valid Valid Zero extend 2 packed 16-bit integers in

34 /r xmm2/m32 the low 4 bytes of xmm2/m32 to 2
packed 64-bit integers in xmm71.

66 0f 38 PMOVZXDQ xmm1, Valid Valid Zero extend 2 packed 32-bit integers in

35/r xmm2/m64 the low 8 bytes of xmm2/m64 to 2
packed 64-bit integers in xmm1.

Description

Packed byte, word, or dword integers in the low bytes of the source operand (second
operand) are zero extended to word, dword, or quadword integers and stored as
packed data in the destination operand.

Operation

PMOVZXBW
DEST[15:0] & ZeroExtend(SRC[7:0]);

DEST[31:16] & ZeroExtend(SRC[15:8]);
DEST[47:32] €« ZeroExtend(SRC[23:16]

).
DEST[63:48] < ZeroExtend(SRC[31:24]);
DEST[79:64] €< ZeroExtend(SRC[39:32])
DEST[95:80] <« ZeroExtend(SRC[47:40]);
DEST[111:96] € ZeroExtend(SRC[55:48]);
DEST[127:112] € ZeroExtend(SRC[63:56]);

a

PMOVZXBD
DEST[31:0] €« ZeroExtend(SRC[7:0]);

148




DEST[63:32] €« ZeroExtend(SRC[15:8]);
DEST[95:64] € ZeroExtend(SRC[23:16]);
DEST[127:96] € ZeroExtend(SRC[31:24]);

PMOVZXQB
DEST[63:0] €« ZeroExtend(SRC[7:0]);
DEST[127:64] €« ZeroExtend(SRC[15:8]);

PMOVZXWD

DEST[31:0] € ZeroExtend(SRC[15:0]);
DEST[63:32] € ZeroExtend(SRC[31:16]);
DEST[95:64] € ZeroExtend(SRC[47:32]);
DEST[127:96] € ZeroExtend(SRC[63:48]);

PMOVZXWQ
DEST[63:0] €« ZeroExtend(SRC[15:01);
DEST[127:64] €« ZeroExtend(SRC[31:16]);

PMOVZXDQ
DEST[63:0] €« ZeroExtend(SRC[31:0]);
DEST[127:64] €« ZeroExtend(SRC[63:32]);

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent

PMOVZXBW __m128i _mm_ cvtepu8_epil16 (_m128ia);
PMOVZXBD __m128i _mm_ cvtepu8_epi32 (_m128ia);
PMOVZXBQ __m128i _mm_ cvtepu8_epi64 (_m128i a);
PMOVZXWD __m128i _mm_ cvtepul6_epi32 (_m128ia);
PMOVZXWQ __m128i _mm_ cvtepul6_epi64 (_m128ia);
PMOVZXDQ __m128i _mm_ cvtepu32_epi64 (_m128ia);
Flags Affected

None

Protected Mode and Compatibility Mode Exceptions

SSE4 INSTRUCTION SET

#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.
#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

149



SSE4 INSTRUCTION SET

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = O.
If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.

#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

150



SSE4 INSTRUCTION SET

PMULDQ — Multiply Packed Signed Dword Integers

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 38 PMULDQ xmm1, Valid Valid Multiply the packed signed dword
281/r xmm2/m128 integers in xmm1 and xmmZ2/m128 and
store the quadword product in xmm1.

Description

Performs a signed multiply of the first (low) and third packed signed dword integers
in the destination operand (first operand) and the first and third packed signed dword
integers in the source operand (second operand), and stores the 64 bit product in the
destination operand. If the source is a memory operand then all 128 bits will be
fetched from memory but the second and fourth dwords will not be used in the
computation.

Operation

PMULDQ
DEST[63:0] = DEST[31:0] * SRC[31:0];
DEST[127:64] = DEST[95:64] * SRC[95:64];

Intel C/C++ Compiler Intrinsic Equivalent

PMULDQ _ m128i _mm_mul_epi32(__m128ia,_m128ib);

Flags Affected
None

Protected Mode and Compatibility Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = O.

151




SSE4 INSTRUCTION SET

If LOCK prefix is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.

#UD If EM in CRO is set.
If OSFXSR in CR4 is O.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

152



SSE4 INSTRUCTION SET

PMULLD — Multiply Packed Signed Dword Integers and Store Low
Result

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 3840 /r PMULLD xmm1, Valid Valid Multiply the packed dword signed
xmm2/m128 integers in xmm1 and xmmZ2/m128
and store the low 32 bits of each
product in xmm1.

Description

Performs a multiply of the packed signed dword integers in the destination operand
(first operand) and the source operand (second operand), and stores the low 32 bits
of each intermediate 64-bit product in the destination operand.

Operation

PMULLD

Temp0[63:0] < DEST[31:0] * SRC[31:0];
Temp1[63:0] < DEST[63:32] * SRC[63:32];
Temp2[63:0] < DEST[95:64] * SRC[95:64];
Temp3[63:0] < DEST[127:96] * SRC[127:96];
DEST[31:0] € TempO[31:0];

DEST[63:32] <« Temp1[31:0];

DEST[95:64] < Temp2[31:0];

DEST[127:96] < Temp3[31:0];

Intel C/C++ Compiler Intrinsic Equivalent

PMULLUD _ m128i _mm_mullo_epi32(_m128ia, __m128ib);

Flags Affected

None

Protected Mode and Compatibility Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

153



SSE4 INSTRUCTION SET

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a hon-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.

#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

154



SSE4 INSTRUCTION SET

POPCNT — Return the Count of Number of Bits Set to 1

Opcode

F3 OFB8/r

F3 OFB8/r

F3 REX.W OF B8
/r

Instruction

POPCNT r16, r/m16
POPCNT r32, r/m32
POPCNT r64, r/m64

64-Bit
Mode
Valid
Valid
Valid

Compat/ Description

Leg Mode

Valid POPCNT on r/m16
Valid POPCNT on r/m32
N.E. POPCNT on r/m64

Description

This instruction calculates of number of bits set to 1 in the second operand (source)
and returns the count in the first operand (a destination register).

Operation

Count =0Q;

/116-bit case
For (i=0; i < (16);i++){
IF src16[i] ==

Then Count++

}
R16 € Count;

/132-bit case
For (i=0; i < (32);i++){
IF src32[i] ==

THEN Count++

}
R32 < Count;

//164-bit case
For (i=0; i < (64);i++){
IF src64[i] ==

THEN Count++

}
R64 < Count;

Flags Affected

OF, SF, ZF, AF, CF, PF are all cleared. ZF is set if SRC

= 0, otherwise ZF is cleared

155



SSE4 INSTRUCTION SET

Intel C/C++ Compiler Intrinsic Equivalent
POPCNT int _mm_popcnt_u32(unsigned int a);
POPCNT int64_t _mm_popcnt_u64(unsigned __int64 a);

Protected Mode and Compatibility Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.
#SS(0) If a memory operand effective address is outside the SS

segment limit.

#PF (fault-code) For a page fault.

#UD If CPUID.0O1H:ECX.POPCNT [Bit 23] = 0.
If LOCK prefix is used.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CPUID.0O1H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.
#SS(0) If a memory operand effective address is outside the SS

segment limit.

#PF (fault-code) For a page fault.

#UD If CPUID.0O1H:ECX.POPCNT [Bit 23] = 0.
If LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

156



SSE4 INSTRUCTION SET

#PF (fault-code) For a page fault.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.
If LOCK prefix is used.

157



SSE4 INSTRUCTION SET

PTEST- Logical Compare

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 38 17 /r PTEST xmm1, Valid Valid Set ZF if xmm2/m128 AND xmm1
xmm2/m128 resultis all Os. Set CF if xmm2/m128
AND NOT xmm1 result is all Os.

Description

PTEST sets the ZF flag only if all bits in the result are 0 of the bitwise AND of the
destination operand (first operand) and the source operand (second operand). PTEST
sets the CF flag if all bits in the result are 0 of the bitwise AND of the source operand
(second operand) and the logical NOT of the destination operand.

Operation

PTEST

IF (SRC[127:0] AND DEST[127:0] == 0) THEN ZF < 1;
ELSE ZF < O;

IF (SRC[127:0] AND NOT DEST[127:0] == 0) THEN CF <« 1;
ELSE CF < O;

DEST[127:0] Unmodified;

AF =0F =PF =SF <« Q;

Intel C/C++ Compiler Intrinsic Equivalent

PTEST int_mm_testz_si128 (_m128is1, __m128is2);
int _mm_testc_si128 (__m128is1, __m128is2);
int _mm_testnzc_si128 (__m128is1, __m128is2);

Flags Affected

The OF, AF, PF, SF flags are cleared and the ZF, CF flags are set according to the oper-
ation

Protected Mode and Compatibility Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

158



#NM
#UD

SSE4 INSTRUCTION SET

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM
#UD

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

159



SSE4 INSTRUCTION SET

ROUNDPD — Round Packed Double Precision Floating-Point Values

Opcode Instruction 64-bit Compat/ Description

Mode Leg Mode
66 OF 3A  ROUNDPD xmm1, Valid Valid Round packed double precision
09/rib xmm2/m128, imm8 floating-point values in

xmmZ2/m128 and place the result in
xmm1. The rounding mode is
determined by imm8.

Description

Round the 2 double precision floating-point values in the source operand (second
operand) by the rounding mode specified in the immediate operand (third operand)
and place the result in the destination operand (first operand). The rounding process
rounds each input value to an integer value. The immediate operand specifies control
fields for the rounding operation, three bit fields are defined and shown in Figure 5-2.
Bit 3 of the immediate byte controls processor behavior for a precision exception, bit
2 selects the source of rounding mode control. Bits 1:0 specify a non-sticky
rounding-mode value (Table 5-9 lists the encoded values for rounding-mode field).
The Precision Floating-Point Exception is signaled according to the immediate
operand. If any source operand is an SNaN then it will be converted to a QNaN. If
DAZ is set to ‘1 then denormals will be converted to zero before rounding.

8 3210

Reserved

P — Precision Mask; 0: normal, 1: inexact
RS — Rounding select; 1: MXCSR.RC, 0: Inm8.RC
RC — Rounding mode

Figure 5-2. Bit Control Fields of Immediate Byte for ROUNDXxx Instruction

160




SSE4 INSTRUCTION SET

Table 5-9. Rounding Modes and Encoding of Rounding Control (RC) Field

Rounding RC Field | Description
Mode Setting
Round to 00B Rounded result is the closest to the infinitely precise result. If two
nearest (even) values are equally close, the result is the even value (i.e., the integer
value with the least-significant bit of zero).

Round down 01B Rounded result is closest to but no greater than the infinitely precise
(toward —w) result.
Round up 10B Rounded result is closest to but no less than the infinitely precise
(toward +o) result.
Round toward | 11B Rounded result is closest to but no greater in absolute value than the
zero (Truncate) infinitely precise result.

Operation

ROUNDPD

IF (imm[2] =="1) THEN // rounding mode is determined by MXCSR.RC
DEST[63:0] €« ConvertDPFPTolnteger_M(SRC[63:0]);
DEST[127:64] € ConvertDPFPTolnteger_M(SRC[127:64));

ELSE // rounding mode is determined by IMM8.RC
DEST[63:0] €« ConvertDPFPTolnteger_I(SRC[63:0]);
DEST[127:64] € ConvertDPFPTolnteger_I(SRC[127:64]);

Fl //1f SRC == SNaN then RoundTolntegralValue will set DEST €< QNaN
// The Precision exception is signaled only if imm[3] == "0
// The Precision exception is not signaled if imm[3] == "1

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDPD __m128 mm_round_pd(__m128d s1, int iRoundMode);
__m128 mm_floor_pd(__m128ds1);
__m128 mm_ceil_pd(__m128d s1);

SIMD Floating-Point Exceptions
Invalid (signaled only if SRC = SNaN)

Precision (signaled only if imm[3] == ‘0; if imm[3] == ‘1, then the Precision Mask in
the MXSCSR is ignored and precision exception is not signaled.)

Note that Denormal is not signaled by ROUNDPD.

161



SSE4 INSTRUCTION SET

Protected Mode and Compatibility Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.
For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM

162

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.
If TS in CRO is set.



SSE4 INSTRUCTION SET

#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

163



SSE4 INSTRUCTION SET

ROUNDPS — Round Packed Single Precision Floating-Point Values

Opcode Instruction 64-bit Compat/ Description

Mode LegMode
66 OF 3A 08 ROUNDPS xmm1, Valid Valid Round packed single precision
Irib xmm2/m128, imm8 floating-point values in

xmmZ2/m128 and place the result
in xmm1. The rounding mode is
determined by imm8.

Description

Round the 4 single precision floating-point values in the source operand (second
operand) by the rounding mode specified in the immediate operand (third operand)
and place the result in the destination operand (first operand). The rounding process
rounds the input to an integral value and returns the result as a single precision
floating-point value. The immediate operand specifies control fields for the rounding
operation, three bit fields are defined and shown in Figure 5-2. Bit 3 of the immediate
byte controls processor behavior for a precision exception, bit 2 selects the source of
rounding mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 5-9
lists the encoded values for rounding-mode field). The Precision Floating-Point
Exception is signaled according to the immediate operand. If any source operand is
an SNaN then it will be converted to a QNaN. If DAZ is set to ‘1 then denormals will
be converted to zero before rounding.

Operation

ROUNDPS

IF (imm[2] == 1) THEN // rounding mode is determined by MXCSR.RC
DEST[31:0] €« ConvertSPFPTolnteger_M(SRC[31:0]);
DEST[63:32] € ConvertSPFPTolnteger_M(SRC[63:32]);
DEST[95:64] € ConvertSPFPTolnteger_M(SRC[95:64]);
DEST[127:96] €< ConvertSPFPTolnteger_M(SRC[127:96]));

ELSE // rounding mode is determined by IMM8.RC
DEST[31:0] € ConvertSPFPTolnteger_I(SRC[31:0]);
DEST[63:32] € ConvertSPFPTolnteger_I(SRC[63:32]);
DEST[95:64] € ConvertSPFPTolnteger_I(SRC[95:64]);
DEST[127:96] € ConvertSPFPTolnteger_I(SRC[127:96]);

Fl
// If SRC == SNaN then RoundTolntegralValue will set DEST < QNaN
// The Precision exception is signaled only if imm[3] == "0
// The Precision exception is not signaled if imm[3] == 1

164



SSE4 INSTRUCTION SET

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDPS __m128 mm_round_ps(__m128 s1, int iRoundMode);
__m128 mm_floor_ps(__m128s1);
__m128 mm_ceil_ps(__m128s1);

SIMD Floating-Point Exceptions
Invalid (signaled only if SRC = SNaN)

Precision (signaled only if imm[3] == ‘0; if imm[3] == ‘1, then the Precision Mask in
the MXSCSR is ignored and precision exception is not signaled.)

Note that Denormal is not signaled by ROUNDPS.

Protected Mode and Compatibility Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSR[bit 9] = 0.
If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

165



SSE4 INSTRUCTION SET

Compatibility Mode Exceptions

Same exceptions as

in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#SS(0)

#PF(fault-code)
#NM
#UD

166

If the memory address is in a nhon-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.



SSE4 INSTRUCTION SET

ROUNDSD — Round Scalar Double Precision Floating-Point Values

Opcode Instruction 64-bit Compat/ Description

Mode Leg Mode
66 OF 3A0OB  ROUNDSD xmm1, Valid Valid Round the low packed double
/rib xmmZ2/m64, imm8 precision floating-point value in

xmmZ2/m64 and place the result in
xmm1. The rounding mode is
determined by imm8.

Description

Round the DP FP value in the source operand (second operand) by the rounding
mode specified in the immediate operand (third operand) and place the result in the
destination operand (first operand). The rounding process rounds the lowest double
precision floating-point input to an integral value and returns the result as a double
precision floating-point value in the lowest position. The upper double precision
floating-point value in the destination is retained. The immediate operand specifies
control fields for the rounding operation, three bit fields are defined and shown in
Figure 5-2. Bit 3 of the immediate byte controls processor behavior for a precision
exception, bit 2 selects the source of rounding mode control. Bits 1:0 specify a non-
sticky rounding-mode value (Table 5-9 lists the encoded values for rounding-mode
field). The Precision Floating-Point Exception is signaled according to the immediate
operand. If any source operand is an SNaN then it will be converted to a QNaN. If
DAZ is set to ‘1 then denormals will be converted to zero before rounding.

Operation

ROUNDSD

IF (imm[2] =="1) THEN /1 rounding mode is determined by MXCSR.RC
DEST[63:0] < ConvertDPFPTolnteger_M(SRC[63:0]);

ELSE /1 rounding mode is determined by IMM8.RC
DEST[63:0] € ConvertDPFPTolnteger_I(SRC[63:0]);

Fl
/1 1f SRC == SNaN then RoundTolntegralValue will set DEST < QNaN
/1 The Precision exception is signaled only if imm[3] =="0
/1 The Precision exception is not signaled if imm[3] =="1
/1 DEST[127:63] remains unchanged ;

Intel C/C++ Compiler Intrinsic Equivalent

_ m128d s1, int iRoundMode);
__m128d mm_floor_sd(__m128d dst,__m128ds1);
__m128d mm_ceil_sd(__m128ddst, __m128ds1);

ROUNDSD m128d mm_round_sd(__m128d dst,

167




SSE4 INSTRUCTION SET

SIMD Floating-Point Exceptions
Invalid (signaled only if SRC = SNaN)

Precision (signaled only if imm[3] == ‘O; if imm[3] == ‘1, then the Precision Mask in
the MXSCSR is ignored and precision exception is not signaled.)

Note that Denormal is not signaled by ROUNDSD.

Protected Mode and Compatibility Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

168



#SS(0)

#PF(fault-code)
#NM
#UD

#AC(0)

SSE4 INSTRUCTION SET

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

169



SSE4 INSTRUCTION SET

ROUNDSS — Round Scalar Single Precision Floating-Point Values

Opcode Instruction 64-bit Compat/ Description

Mode Leg Mode
66 OF 3A0A /r ROUNDSS xmm1, Valid Valid Round the low packed single
ib xmmZ2/m32, imm8 precision floating-point value

in xmmZ2/m32 and place the
resultin xmm1. The rounding
mode is determined by imm8.

Description

Round the single precision floating-point value in the source operand (second
operand) by the rounding mode specified in the immediate operand (third operand)
and place the result in the destination operand (first operand). The rounding process
rounds the lowest single precision floating-point input to an integral value and
returns the result as a single precision floating-point value in the lowest position. The
upper three single precision floating-point values in the destination are retained. The
immediate operand specifies control fields for the rounding operation, three bit fields
are defined and shown in Figure 5-2. Bit 3 of the immediate byte controls processor
behavior for a precision exception, bit 2 selects the source of rounding mode control.
Bits 1:0 specify a non-sticky rounding-mode value (Table 5-9 lists the encoded
values for rounding-mode field). The Precision Floating-Point Exception is signaled
according to the immediate operand. If any source operand is an SNaN then it will be
converted to a QNaN. If DAZ is set to ‘1 then denormals will be converted to zero
before rounding.

Operation

ROUNDSS

IF (imm[2] =="1) THEN // rounding mode is determined by MXCSR.RC
DEST[31:0] €« ConvertSPFPTolnteger_M(SRC[31:0]);

ELSE // rounding mode is determined by IMM8.RC
DEST[31:0] €« ConvertSPFPTolnteger_I(SRC[31:0]);

Fl
// 1f SRC == SNaN then RoundTolntegralValue will set DEST €< QNaN
// The Precision exception is signaled only if imm[3] ==
// The Precision exception is not signaled if imm[3] =="
// DEST[127:32] remains unchanged ;

170



SSE4 INSTRUCTION SET

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDSS __m128 mm_round_ss(__m128 dst, __m128 s1, int iRoundMode);
__m128 mm_floor_ss(__m128dst,__m128s1);
__m128 mm_ceil_ss(__m128dst,__m128s1);

SIMD Floating-Point Exceptions
Invalid (signaled only if SRC = SNaN)

Precision (signaled only if imm[3] == ‘0; if imm[3] == ‘1, then the Precision Mask in
the MXSCSR is ignored and precision exception is not signaled.)

Note that Denormal is not signaled by ROUNDSS.

Protected Mode and Compatibility Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault:code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.

171



SSE4 INSTRUCTION SET

Compatibility Mode Exceptions

Same exceptions as

in Protected Mode.

64-Bit Mode Exceptions

#GP(0)
#SS(0)

#PF(fault-code)
#NM
#UD

#AC(0)

172

If the memory address is in a nhon-canonical form.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is O.
If LOCK prefix is used.

If alignment checking is enabled and an unaligned memory
reference is made while the current privelege level is 3.



INSTRUCTION SUMMARY AND ENCODINGS

APPENDIX A

INSTRUCTION SUMMARY AND ENCODINGS

1.1 SSE4.1 INSTRUCTION SUMMARY AND ENCODINGS
Table A-1. SSE4.1 Instruction Set Summary

Opcodes Instruction Description

66 OF 3A0D BLENDPD xmm1, xmm2/m128, | Blend Packed Double Precision Floating-Point
imm8 Values

66 OF 3A0C BLENDPS xmm1, xmm2/m128, | Blend Packed Single Precision Floating-Point
imm8 Values

66 OF 38 15 BLENDVPD xmm1, Variable Blend Packed Double Precsion
xmm2/m128, <XMM0> Floating-Point Values

66 OF 38 14 BLENDVPS xmm1, Variable Blend Packed Single Precision
xmm2/m128, <XMM0> Floating-Point Values

66 OF 3A 41 DPPD xmm1, xmm2/m128 Dot Product of Packed Double Precision
imm8 Floating Point Values

66 OF 3A 40 DPPS xmm1, xmm2/m128. Dot Product of Packed Single Precision
imm8 Floating Point Values

66 0OF 3A 17 EXTRACTPS r/m32, xmm imm8 | Extract Packed Single Precision Floating-Point

Value

66 OF 3A 21 INSERTPS xmm1, xmm2/m32, | Insert Packed Single Precision Floating-Point
imm8 Value

66 OF 38 2A MOVNTDQA xmm, m128 Load Double Quadword Non-Temporal Aligned

Hint

66 OF 3A 42 MPSADBW xmm1, Compute Multiple Packed Sums of Absolute
xmm2/m128, imm8 Difference

66 OF 38 2B PACKUSDW xmm1, Pack with Unsigned Saturation
xmm2/m128

66 0F 3810 PBLENDVB xmm1, Variable Blend Packed Bytes
xmm2/m128, <XMM0>

66 OF 3A OE PBLENDW xmm1, xmm2/m128, | Blend Packed Words
imm8

66 OF 38 29 PCMPEQQ xmm1, xmm2/m128 | Compare Packed Qword Data for Equal

66 0OF 3A 14 PEXTRB r32/m8, xmm, imm8 Extract Byte

66 OF 3A 16 PEXTRD r/m32, xmm, imm8 Extract Dword

173




INSTRUCTION SUMMARY AND ENCODINGS

Table A-1. SSE4.1 Instruction Set Summary

Opcodes Instruction Description

66 REX.w OF 3A | PEXTRQ r/m64, xmm, imm8 Extract Qword

16

66 OF 3A 15 PEXTRW r/m16, xmm, imm8 Extract Word

66 OF 38 41 PHMINPOSUW xmm1, Packed Horizontal Word Minimum

xmm2/m128

66 OF 3A 20 PINSRB xmm1, r32/m8, imm8 | Insert Byte

66 OF 3A 22 PINSRD xmm1, r/m32, imm8 Insert Dword

66 REX.w OF 3A | PINSRQ xmm1, r/m64, imm8 Insert Qword

22

66 OF 38 3C PMAXSB xmm1, xmm2/m128 | Maximum of Packed Signed Byte Integers

66 OF 38 3D PMAXSD xmm1, xmm2/m128 | Maximum of Packed Signed Dword Integers

66 OF 38 3F PMAXUD xmm1, xmm2/m128 | Maximum of Packed Unsigned Dword Integers

66 OF 38 3E PMAXUW xmm1, xmm2/m128 | Maximum of Packed Unsigned Word Integers

66 OF 38 38 PMINSB xmm1, xmm2/m128 Minimum of Packed Signed Byte Integers

66 OF 38 39 PMINSD xmm1, xmm2/m128 Minimum of Packed Signed Dword Integers

66 OF 38 3B PMINUD xmm1, xmm2/m128 Minimum of Packed Unsigned Dword Integers

66 OF 38 3A PMINUW xmm1, xmm2/m128 | Minimum of Packed Unsigned Word Integers

66 OF 38 21 PMOVSXBD xmm1, xmm2/m32 | Packed Move with Sign Extend - Byte to
Dword

66 OF 38 22 PMOVSXBQ xmm1, xmm2/m16 | Packed Move with Sign Extend - Byte to
Qword

66 OF 38 20 PMOVSXBW xmm1, xmm2/m64 | Packed Move with Sign Extend - Byte to Word

66 OF 38 23 PMOVSXWD xmm1, xmm2/m64 | Packed Move with Sign Extend - Word to
Dword

66 OF 38 24 PMOVSXWQ xmm1, xmm2/m32 | Packed Move with Sign Extend - Word to
Qword

66 OF 38 25 PMOVSXDQ xmm1, xmm2/m64 | Packed Move with Sign Extend - Dword to
Qword

66 OF 38 31 PMOVZXBD xmm1, xmm2/m32 | Packed Move with Zero Extend - Byte to
Dword

66 OF 38 32 PMOVZXBQ xmm1, xmm2/m16 | Packed Move with Zero Extend - Byte to
Qword

66 OF 38 30 PMOVZXBW xmm1, Packed Move with Zero Extend - Byte to Word

xmm2/m64

174




INSTRUCTION SUMMARY AND ENCODINGS

Table A-1. SSE4.1 Instruction Set Summary

Opcodes Instruction Description
66 OF 38 33 PMOVZXWD xmm1, Packed Move with Zero Extend - Word to
xmm2/m64 Dword
66 OF 38 34 PMOVZXWQ xmm1, Packed Move with Zero Extend - Word to
xmm2/m32 Qword
66 OF 38 35 PMOVZXDQ xmm1, xmm2/m64 | Packed Move with Zero Extend - Dword to
Qword
66 OF 38 28 PMULDQ xmm1, xmm2/m128 | Multiply Packed Signed Dword Integers
66 OF 3840 PMULLD xmm1, xmm2/m128 | Multiply Packed Signed Dword Integers and
Store Low Result
66 0F 3817 PTEST xmm1, xmm2/m128 Logical Compare
66 OF 3A 09 ROUNDPD xmm1,xmm2/m128, | Round Packed Double Precision Floating-Point
imm8 Values
66 OF 3A 08 ROUNDPS xmm1, xmm2/m128, | Round Packed Single Precision Floating-Point
imm8 Values
66 OF 3A OB ROUNDSD xmm1, xmm2/m64, | Round Scalar Double Precision Floating-Point
imm8 Values
66 OF 3A OA ROUNDSS xmm1, xmm2/m32, | Round Scalar Single Precision Floating-Point

imm8

Values

Table A-2 provides SSE4.1 formats and encodings. Some SSE4.1 instructions require
a mandatory prefix (66H, F2H, F3H) as part of the three-byte opcode. These prefixes
are included in the tables.

In 64-bit mode, some instructions requires REX.W, the byte sequence of REX.W
prefix in the opcode sequence is shown.

Table A-2. Encodings of SSE4.1 instructions

Instruction and Format

Encoding

BLENDPD — Blend Packed Double-
Precision Floats

xmmreg to xmmreg

01100110:0000 1111:0011 1010: 0000 1101:11
xmmreg1 xmmreg2

mem to xmmreg

01100110:0000 1111:0011 1010: 0000 1107: mod
Xmmreg r/m

BLENDPS — Blend Packed Single-
Precision Floats

175




INSTRUCTION SUMMARY AND ENCODINGS

Table A-2. Encodings of SSE4.1 instructions

Instruction and Format

Encoding

xmmreg to xmmreg

01100110:0000 1111:0011 1010: 0000 1100:11
xmmreg1 xmmreg2

mem to xmmreg

01100110:0000 1111:0011 1010: 0000 1100: mod
xmmreg r/m

BLENDVPD — Variable Blend Packed
Double-Precision Floats

xmmreg to xmmreg <xmm0>

01100110:0000 1111:0011 1000: 0001 0107:11
xmmreg1 xmmreg2

mem to xmmreg <xmmO0>

01100110:0000 1111:0011 1000: 0001 0101: mod
Xmmreg r/m

BLENDVPS — Variable Blend Packed
Single-Precision Floats

xmmreg to xmmreg <xmm0>

01100110:0000 1111:0011 1000: 0001 0100:11
xmmreg1 xmmreg2

mem to xmmreg <xmmQ>

01100110:0000 1111:0011 1000: 0001 0100: mod
xmmreg r/m

DPPD — Packed Double-Precision Dot
Products

xmmreg to xmmreg, imm8

01100110:00001111:0011 1010: 0100 0001:11
xmmreg1 xmmregZ2: imm8

mem to xmmreg, imm8

01100110:00001111:0011 1010: 0100 0001: mod
xmmreg r/m; imm8

DPPS — Packed Single-Precision Dot
Products

xmmreg to xmmreg, imm8

01100110:0000 1111:0011 1010: 0100 0000:11
xmmreg1 xmmreg2: imm8

mem to xmmreg, imm8

01100110:0000 1111:0011 1010: 0100 0000: mod
xmmreg r/m: imm8

EXTRACTPS — Extract From Packed
Single-Precision Floats

reg from xmmreg , imm8

01100110:00001111:0011 1010:0001 0111:11 reg
xmmreg: imm8

mem from xmmreg , imm8

01100110:0000 1111:0011 1010: 0001 0111: mod
r/m xmmreg: imm8

INSERTPS — Insert Into Packed
Single-Precision Floats

176




INSTRUCTION SUMMARY AND ENCODINGS

Table A-2. Encodings of SSE4.1 instructions

Instruction and Format

Encoding

xmmreg to xmmreg, imm8

01100110:0000 1111:0011 1010: 0010 0001:11
xmmreg1 xmmreg2: imm8

mem to xmmreg, imm8

01100110:0000 1111:0011 1010: 0010 0001: mod
xmmreg r/m: imm8

MOVNTDQA — Load Double Quadword
Non-temporal Aligned

m128 to xmmreg

01100110:00001111:0011 1000:0010 1010:11 r/m
Xmmreg2

MPSADBW — Multiple Packed Sums of
Absolute Difference

xmmreg to xmmreg, imm8

01100110:0000 1111:0011 1010: 0100 0010:11
xmmreg1 xmmreg2: imm8

mem to xmmreg, imm8

01100110:0000 1111:0011 1010: 0100 0010: mod
xmmreg r/m: imm8

PACKUSDW — Pack with Unsigned
Saturation

xmmreg to xmmreg

01100110:0000 1111:0011 1000: 0010 1011:11
xmmreg1 xmmreg2

mem to xmmreg

01100110:0000 1111:0011 1000: 0010 1011: mod
Xmmreg r/m

PBLENDVB — Variable Blend Packed
Bytes

xmmreg to xmmreg <xmm0>

01100110:0000 1111:0011 1000: 0001 0000:11
xmmreg1 xmmreg2

mem to xmmreg <xmmQ0>

01100110:0000 1111:0011 1000: 0001 0000: mod
xmmreg r/m

PBLENDW — Blend Packed Words

xmmreg to xmmreg, imm8

01100110:0000 1111:0011 1010: 0001 1110:11
xmmreg1 xmmreg2: imm8

mem to xmmreg, imm8

01100110:0000 1111:0011 1010: 0000 1110: mod
xmmreg r/m: imm8

PCMPEQQ — Compare Packed Qword
Data of Equal

xmmreg to xmmreg

01100110:0000 1111:0011 1000: 0010 1001:11
xmmreg1 xmmreg2

177



INSTRUCTION SUMMARY AND ENCODINGS

Table A-2. Encodings of SSE4.1 instructions

Instruction and Format

Encoding

mem to Xmmreg

01100110:0000 1111:0011 1000: 0010 1001: mod
xmmreg r/m

PEXTRB — Extract Byte

reg from xmmreg , imm8

01100110:00001111:0011 1010:0001 0100:11 reg
xmmreg: imm8

xmmreg to mem, imm8

01100110:0000 1111:0011 1010: 0001 0100: mod
r/m xmmreg: imm8

PEXTRD — Extract DWord

reg from xmmreg, imm8

01100110:00001111:0011 1010:0001 0110:11 reg
xmmreg: imm8

xmmreg to mem, imm8

01100110:0000 1111:0011 1010: 0001 0110: mod
r/m xmmreg: imm8

PEXTRQ — Extract QWord

r64 from xmmreg, imm8

0110 0110:REX.W:0000 1111:0011 1010: 0001
0110:11 reg xmmreg: imm8

m64 from xmmreg, imm8

0110 0110:REX.W:0000 1111:0011 1010: 0001
0110: mod r/m xmmreg: imm8

PEXTRW — Extract Word

reg from xmmreg, imm8

01100110:00001111:0011 1010: 0001 0101:11 reg
Xmmreg: imm8

mem from xmmreg, imm8

01100110:0000 1111:0011 1010: 0001 0101: mod
r/m xmmreg: imm8

PHMINPOSUW — Packed Horizontal
Word Minimum

Xmmreg to xmmreg

01100110:0000 1111:0011 1000: 0100 0001:11
xmmreg1 xmmreg2

mem to Xmmreg

01100110:0000 1111:0011 1000: 0100 0001: mod
Xmmreg r/m

PINSRB — Extract Byte

reg to xmmreg, imm8

01100110:00001111:0011 1010: 0010 0000:11
Xmmreg reg: imm8

mem to xmmreg, imm8

01100110:0000 1111:0011 1010: 0010 0000: mod
xmmreg r/m; imm8

PINSRD — Extract DWord

178




INSTRUCTION SUMMARY AND ENCODINGS

Table A-2. Encodings of SSE4.1 instructions

Instruction and Format

Encoding

reg to xmmreg, imm8

01100110:0000 1111:0011 1010: 0010 0010:11
Xmmreg reg: imm8

mem to xmmreg, imm8

01100110:0000 1111:0011 1010: 0010 0010: mod
xmmreg r/m: imm8

PINSRQ — Extract QWord

r64 to xmmreg, imm8

0110 0110:REX.W:0000 1111:0011 1010: 0010
0010:11 xmmreg reg: imm8

m64 to xmmreg, imm8

0110 0110:REX.W:0000 1111:0011 1010: 0010
0010: mod xmmreg r/m; imm8

PMAXSB — Maximum of Packed
Signed Byte Integers

Xmmreg to xmmreg 011700110:0000 1111:0011 1000: 0011 1100:11
xmmreg1 xmmreg2
mem to xmmreg 01100110:0000 1111:0011 1000: 0011 1100: mod
xmmreg r/m
PMAXSD — Maximum of Packed
Signed Dword Integers
xmmreg to xmmreg 01100110:0000 1111:0011 1000: 0011 1101:11
xmmreg1 xmmreg2
mem to xmmreg 01100110:0000 1111:0011 1000: 0011 1101: mod
Xmmreg r/m
PMAXUD — Maximum of Packed
Unsigned Dword Integers
xmmreg to xmmreg 011700110:0000 1111:0011 1000: 0011 1111:11
xmmreg1 xmmreg2
mem to xmmreg 01100110:0000 1111:0011 1000: 0011 1111: mod
xmmreg r/m
PMAXUW — Maximum of Packed
Unsigned Word Integers
xmmreg to xmmreg 01100110:0000 1111:0011 1000: 0011 1110:11
xmmreg1 xmmreg2
mem to xmmreg 01100110:0000 1111:0011 1000: 0011 1110: mod

Xmmreg r/m

PMINSB — Minimum of Packed Signed
Byte Integers

179



INSTRUCTION SUMMARY AND ENCODINGS

Table A-2. Encodings of SSE4.1 instructions

Instruction and Format

Encoding

xmmreg to xmmreg

01100110:0000 1111:0011
xmmreg1 xmmreg2

1000: 0011 1000:11

mem to xmmreg

01100110:0000 1111:0011
xmmreg r/m

1000: 0011 1000: mod

PMINSD — Minimum of Packed Signed

Dword Integers

Xmmreg to xmmreg

01100110:0000 1111:0011
xmmreg1 xmmreg2

1000: 0011 1001:11

mem to Xxmmreg

01100110:0000 1111:0011
xmmreg r/m

1000: 0011 1001: mod

PMINUD — Minimum of Packed
Unsigned Dword Integers

Xmmreg to xmmreg

01100110:0000 1111:0011
xmmreg1 xmmreg2

1000:0011 1011:11

mem to xmmreg

01100110:0000 1111:0011
Xmmreg r/m

1000:0011 1011: mod

PMINUW — Minimum of Packed
Unsigned Word Integers

xmmreg to xmmreg

01100110:0000 1111:0011
xmmreg1 xmmreg2

1000:0011 1010:11

mem to xmmreg

01100110:0000 1111:0011
xmmreg r/m

1000: 0011 1010: mod

PMOVSXBD — Packed Move Sign
Extend - Byte to Dword

Xmmreg to xmmreg

01100110:0000 1111:0011
xmmreg1 xmmreg2

1000: 0010 0001:11

mem to Xxmmreg

01100110:0000 1111:0011
xmmreg r/m

1000: 0010 0001: mod

PMOVSXBQ — Packed Move Sign
Extend - Byte to Qword

Xmmreg to xmmreg

01100110:0000 1111:0011
xmmreg1 xmmreg2

1000:00100010:11

mem to xmmreg

01100110:00001111:0011
Xmmreg r/m

1000: 0010 0010: mod

PMOVSXBW — Packed Move Sign
Extend - Byte to Word

180




INSTRUCTION SUMMARY AND ENCODINGS

Table A-2. Encodings of SSE4.1 instructions

Instruction and Format

Encoding

xmmreg to xmmreg

01100110:0000 1111:0011
xmmreg1 xmmreg2

1000: 0010 0000:11

mem to xmmreg

01100110:0000 1111:0011
xmmreg r/m

1000: 0010 0000: mod

PMOVSXWD — Packed Move Sign
Extend - Word to Dword

Xmmreg to xmmreg

01100110:0000 1111:0011
xmmreg1 xmmreg2

1000: 0010 0011:11

mem to xmmreg

01100110:0000 1111:0011
xmmreg r/m

1000: 0010 0011: mod

PMOVSXWQ — Packed Move Sign
Extend - Word to Qword

xmmreg to xmmreg

01100110:0000 1111:0011
xmmreg1 xmmreg2

1000: 0010 0100:11

mem to xmmreg

01100110:0000 1111:0011
Xmmreg r/m

1000: 0010 0100: mod

PMOVSXDQ — Packed Move Sign
Extend - Dword to Qword

xmmreg to xmmreg

01100110:0000 1111:0011
xmmreg1 xmmreg2

1000: 0010 0101:11

mem to xmmreg

01100110:0000 1111:0011
xmmreg r/m

1000: 0010 0101: mod

PMOVZXBD — Packed Move Zero
Extend - Byte to Dword

Xmmreg to xmmreg

01100110:0000 1111:0011
xmmreg1 xmmreg2

1000: 0011 0001:11

mem to xmmreg

01100110:0000 1111:0011
xmmreg r/m

1000: 0011 0001: mod

PMOVZXBQ — Packed Move Zero
Extend - Byte to Qword

Xmmreg to xmmreg

01100110:0000 1111:0011
xmmreg1 xmmreg2

1000: 0011 0010:11

mem to xmmreg

01100110:0000 1111:0011
Xmmreg r/m

1000: 0011 0010: mod

PMOVZXBW — Packed Move Zero
Extend - Byte to Word

181




INSTRUCTION SUMMARY AND ENCODINGS

Table A-2. Encodings of SSE4.1 instructions

Instruction and Format

Encoding

xmmreg to xmmreg

01100110:0000 1111:0011
xmmreg1 xmmreg2

1000: 0011 0000:11

mem to xmmreg

01100110:0000 1111:0011
xmmreg r/m

1000: 0011 0000: mod

PMOVZXWD — Packed Move Zero
Extend - Word to Dword

Xmmreg to xmmreg

01100110:0000 1111:0011
xmmreg1 xmmreg2

1000: 0011 0011:11

mem to Xxmmreg

01100110:0000 1111:0011
xmmreg r/m

1000:0011 0011: mod

PMOVZXWQ — Packed Move Zero
Extend - Word to Qword

Xmmreg to xmmreg

01100110:0000 1111:0011
xmmreg1 xmmreg2

1000:0011 0100:11

mem to xmmreg

01100110:0000 1111:0011
Xmmreg r/m

1000: 0011 0100: mod

PMOVZXDQ — Packed Move Zero
Extend - Dword to Qword

xmmreg to xmmreg

01100110:0000 1111:0011
xmmreg1 xmmreg2

1000:0011 0101:11

mem to xmmreg

01100110:0000 1111:0011
xmmreg r/m

1000: 0011 0101: mod

PMULDQ — Multiply Packed Signed
Dword Integers

Xmmreg to xmmreg

01100110:0000 1111:0011
xmmreg1 xmmreg2

1000: 0010 1000:11

mem to Xxmmreg

01100110:0000 1111:0011
xmmreg r/m

1000: 0010 1000: mod

PMULLD — Multiply Packed Signed
Dword Integers, Store low Result

Xmmreg to xmmreg

01100110:0000 1111:0011
xmmreg1 xmmreg2

1000: 0100 0000:11

mem to xmmreg

01100110:00001111:0011
Xmmreg r/m

1000: 0100 0000: mod

PTEST — Logical Compare

Xmmreg to xmmreg

01100110:0000 1111:0011
xmmreg1 xmmreg2

1000: 0001 0111:11

182




INSTRUCTION SUMMARY AND ENCODINGS

Table A-2. Encodings of SSE4.1 instructions

Instruction and Format

Encoding

mem to xmmreg

01100110:0000 1111:0011 1000: 0001 0111: mod
xmmreg r/m

ROUNDPD — Round Packed Double-
Precision Values

xmmreg to xmmreg, imm8

01100110:0000 1111:0011 1010: 0000 1001:11
xmmreg1 xmmreg2: imm8

mem to xmmreg, imm8

01100110:0000 1111:0011 1010: 0000 1001: mod
xmmreg r/m: imm8

ROUNDPS — Round Packed Single-
Precision Values

xmmreg to xmmreg, imm8

011700110:0000 1111:0011 1010: 0000 1000:11
xmmreg1 xmmregZ2: imm8

mem to xmmreg, imm8

01100110:0000 1111:0011 1010: 0000 1000: mod
xmmreg r/m: imm8

ROUNDSD — Round Scalar Double-
Precision Value

xmmreg to xmmreg, imm8

01100110:0000 1111:0011 1010: 0000 1011:11
xmmreg1 xmmreg2: imm8

mem to xmmreg, imm8

01100110:0000 1111:0011 1010: 0000 1011: mod
xmmreg r/m: imm8

ROUNDSS — Round Scalar Single-
Precision Value

xmmreg to xmmreg, imm8

01100110:0000 1111:0011 1010: 0000 1010:11
xmmreg1 xmmreg2: imm8

mem to xmmreg, imm8

01100110:0000 1111:0011 1010: 0000 1010: mod
xmmreg r/m: imm8

183




INSTRUCTION SUMMARY AND ENCODINGS

1.2 SSE4.2 INSTRUCTION SUMMARY AND ENCODINGS

Table A-3. SSE4.2 Instruction Set Summary

Opcodes Instruction Description

F20F38F0/r |CRC32r32,r/m8 Accumulate CRC32 on r/m8
F2 REX.W OF 38 | CRC32 r64, r/m8 Accumulate CRC32 on r/m8
FO/r

F2OF38F1/r

CRC32r32,r/m16

Accumulate CRC32 on r/m16

F20F38F1/r

CRC32r32,r/m32

Accumulate CRC32 on r/m32

F2 REX.W OF 38
F1/r

CRC32 r64, r/mb4

Accumulate CRC32 on r/m64

66 OF 3A 61 /r
imm8

PCMPESTRI xmmT1,
xmm2/m128, imm8

Perform a packed comparison of string data
with explicit lengths, generating an index in
ECX

66 OF 3A60/r | PCMPESTRM xmm1, Perform a packed comparison of string data

imm8 xmm2/m128, imm8 with explicit lengths, generating a mask in
XMMO

66 0F3A63/r | PCMPISTRI xmm1, Perform a packed comparison of string data

imm8 xmm2/m128, imm8 with implicit lengths, generating an index in
ECX

66 OF 3A62 /r | PCMPISTRM xmm1, Perform a packed comparison of string data

imm8 xmm2/m128, imm8 with implicit lengths, generating a mask in

XMMO

66 0F 3837 /r

PCMPGTQ xmm1, xmm2/m128

Compare packed qwords in xmm2/m128 and
xmm1 for greater than

F3 OF B8 /r POPCNT r16, r/m16 Calculate the number of bits set to 1 from
r/m16bb

F3 OF B8 /r POPCNT r32, r/m32 Calculate the number of bits set to 1 from
r/m32

F3 REX.W OF B8 | POPCNT r64, r/m64 Calculate the number of bits set to 1 from

Ir r/m64

Table A-4 provides SSE4.2 formats and encodings. Some SSE4.2 instructions require
a mandatory prefix (66H, F2H, F3H) as part of the three-byte opcode. These prefixes
are included in the tables. In 64-bit mode, some instructions requires REX.W, the
byte sequence of REX.W prefix in the opcode sequence is shown.

184




INSTRUCTION SUMMARY AND ENCODINGS

Table A-4. Encodings of SSE4.2 instructions

Instruction and Format

Encoding

CRC32 — Accumulate CRC32

reg2 toregl 1111 0010:0000 1111:00117 1000: 1111 000w :11
regl reg?

mem to reg 1111 0010:00001111:0011 1000: 1111 000w : mod
regr/m

bytereg? to reg1 1111 0010:0100 WR0OB:0000 1111:0011 1000: 1111
0000:11 reg1 bytereg?2

m8 to reg 1111 0010:0100 WROB:0000 1111:0011 1000: 1111

0000 : mod reg r/m

qwreg? to qwreg1

1111 0010:0100 1TROB:0000 1111:0011 1000: 1111
0000:11 qwreg1 qwreg2

mem64 to qwreg

1111 0010:0100 1ROB:0000 1111:0011 1000: 1111
0000 : mod qwreg r/m

PCMPESTRI— Packed Compare Explicit-
Length Strings To Index

xmmregZ2 to xmmreg1, imm8

01100110:0000 1111:0011 1010: 0110 0001:11
xmmreg1 xmmregZ2: imm8

mem to xmmreg

01100110:0000 1111:0011 1010: 0110 0001: mod
xmmreg r/m

PCMPESTRM— Packed Compare Explicit-
Length Strings To Mask

xmmreg2 to xmmreg1, imm8

01100110:0000 1111:0011 1010: 0110 0000:11
xmmreg1 xmmreg2: imm8

mem to xmmreg

01100110:0000 1111:0011 1010: 0110 0000: mod
Xmmreg r/m

PCMPISTRI— Packed Compare Implicit-
Length String To Index

xmmregZ2 to xmmreg1, imm8

01100110:0000 1111:0011 1010:01100011:11
xmmreg1 xmmregZ2: imm8

mem to xmmreg

01100110:0000 1111:0011 1010: 0110 0011: mod
xmmreg r/m

PCMPISTRM— Packed Compare Implicit-
Length Strings To Mask

xmmreg2 to xmmreg1, imm8

01100110:0000 1111:0011 1010: 0110 0010:11
xmmreg1 xmmreg2: imm8

185



INSTRUCTION SUMMARY AND ENCODINGS

Table A-4. Encodings of SSE4.2 instructions

Instruction and Format Encoding
mem to xmmreg 01100110:0000 1111:0011 1010: 0110 0010: mod
xmmreg r/m
PCMPGTQ— Packed Compare Greater
Than
xmmreg to xmmreg 01100110:00001111:0011 1000: 0011 0111:11
xmmreg1 xmmreg2
mem to xmmreg 01100110:00001111:0011 1000: 0011 0111: mod
xmmreg r/m
POPCNT— Return Number of Bits Set to
1
reg2 toregl 1111 0011:0000 1111:1011 1000:11 reg1 reg2
mem to reg1 1111 0011:0000 1111:1011 1000:mod reg1 r/m
qwreg?2 to qwreg1 1111 0011:0100 1ROB:0000 1111:1011 1000:11
regl regl
mem64 to qwreg1 1111 0011:0100 1ROB:0000 1111:1011 1000:mod
reg1 r/m

186



INSTRUCTION OPCODE MAP

APPENDIX B

INSTRUCTION OPCODE MAP

SSE4.1 opcodes are indicated by blue table cells. SSE4.1 are indicated by yellow

table cells.
Table B-1. Three-byte Opcode Map: 00H — 7FH (First Two Bytes are OF 38H)
0 1 2 3 4 5 6 7
0 pshufb phaddw phaddd phaddsw pmaddubsw phsubw phsubd phsubsw
Pa, Qq Pa, Qq Pa, Qq Pq, Qq Pa, Qq Pa, Qq Pa, Qq Pa, Qq
pshufb (66) phaddw (66) | phaddd (66) | phaddsw (66) | pmaddubsw | phsubw (66) phsubd (66) | phsubsw (66)
Vdq, Wdq Vdq, Wdq Vdq, Wdq Vdq, Wdq (66) Vdq, Wdq Vdq, Wdq Vdq, Wdq
Vdq, Wdq
1 pblendvb blendvps blendvpd ptest
(66) (66) (66) (66)
Vvdqg, Wdq Vdq, Wdq Vdq, Wdq Vvdq, Wdq
2 pmovsxbw pmovsxbd pmovsxbq pmovsxwd pmovsxwq pmovsxdq
(66) (66) (66) (66) (66) (66)
Vdq, Wdq Vdg, Wdq Vdg, Wdq Vdg, Wdq Vdqg, Wdq Vdqg, Wdq
3 pmovzxbw pmovzxbd pmovzxbq pmovzxwd pmovzxwq pmovzxdq pcmpgtq
(66) (66) (66) (66) (66) (66) (66)
Vdqg, Wdq Vdqg, Wdq Vdg, Wdq Vdqg, Wdq Vdqg, Wdq Vdqg, Wdq Vdq, Wdq
4 pmulld phminposuw
(66) (66)
Vvdq, Wdq Vdq, Wdq
5-E ...No changes or additions...
F crc32 crc32
(F2) (F2)
Gv, Eb Gv, Ev
Table B-2. Three-byte Opcode Map: 08H — FFH (First Two Bytes are OF 38H)
8 9 A B C D E F
0 psignb psignw psignd pmulhrsw
Pa, Qq Pa, Qq Pq, Qq Pq, Qq
psignb (66) psignw (66) psignd (66) pmulhrsw
Vdq, Wdq Vdq, Wdq Vdq, Wdq (66)
Vdq, Wdq
1 psabsb psabsw psabsd
Pq, Qq Pq, Qq Pa, Qq
pabsb (66) pabsw (66) pabsd (66)
Vdq, Wdq Vdq, Wdq Vdq, Wdq

187




INSTRUCTION OPCODE MAP

Table B-2. Three-byte Opcode Map: 08H — FFH (First Two Bytes are OF 38H) (Contd.)

8 9 A B C D E F
2 pmuldq pcmpeqq movntdga packusdw
(66) (66) (66) (66)
Vdg, Wdq Vdqg, Wdq Mdg,Vdqg Vdq, Wdq
3 pminsb pminsd pminuw pminud (66) pmaxsh pmaxsd pmaxuw pmaxud (66)
(66) (66) (66) Vvdq, Wdq (66) (66) (66) Vdq, Wdq
Vdq, Wdq Vdq, Wdq Vdq, Wdq Vvdq, Wdq Vdq, Wdq Vdq, Wdq
4-F ...No changes or additions...

Table B-3. Three-byte Opcode Map: 00H — 7FH (First Two Bytes are OF 3AH)

0 1 2 3 4 5 6 7
0
1 pextrb pextrw pextrd/pextr extractps
(66) (66) q (66)
Rd/Mb, Vdq, | Rd/Mw, Vdq, (66) Ed, vdq, Ib
b Ib Ed/q, Vdq, Ib
2 pinsrb insertps pinsrd/pinsr
(66) (66) q
Vvdq, Eb, Ib vdq, (66)
Udg/Md, Ib | Vdq, Ed/q, Ib
3
4 dpps dppd mpsadbw
(66) (66) (66)
Vdq, Wdq, Ib | Vdg, Wdq, Ib | Vdq, Wdq, Ib
5
6 pcmpestrm pcmpestri pcmpistrm pcmpistrm
(66) (66) (66) (66)
Vdg,wdgq,lb | Vdq,Wdgq,lb | Vvdg,wdg,lb | Vdq,wdg,lb
7-F ....No changes or additions...

NOTE: Instructions pinsrg and pextrg require a REX.w prefix. If the REX.w prefix is
not present then these instructions will be treated as pinsrd and pextrd.

Table B-4. Three-byte Opcode Map: 80H — FFH (First Two Bytes are OF 3AH)

8 9 A B C D E F
0 roundps roundpd roundss roundsd blendps blendpd pblendw palign
(66) (66) (66) (66) (66) (66) (66) Pq, Qq, Ib
Vdg, Wdq, Ib | Vdq, Wdq, Ib | Vss, Wss, Ib | Vsd, Wsd, Ib | Vdq, Wdq, Ib | Vdqg, Wdq, Ib | Vdq, Wdq, Ib palign (66)
Vdq, Wdq, Ib
1-F ...No changes or additions...

188



INSTRUCTION OPCODE MAP

Table B-5. Two-byte Opcode Map: B8H (First Byte is OFH)

8

B JMPE
(reserved for emulator on IPF)

POPCNT
Gv, Ev

189



INSTRUCTION OPCODE MAP

190



	Title Page
	Chapter 1 Streaming SIMD Extensions 4
	1.1 Introduction
	1.2 SSE4 Overview

	Chapter 2 SSE4 Features
	2.1 New Data Types
	2.2 SSE4.1 Instruction Set
	2.2.1 Dword Multiply Instructions
	2.2.2 Floating-Point Dot Product Instructions
	2.2.3 Streaming Load Hint Instruction
	2.2.4 Packed Blending Instructions
	2.2.5 Packed Integer MIN/MAX Instructions
	2.2.6 Floating-Point Round Instructions with Selectable Rounding Mode
	2.2.7 Insertion and Extractions from XMM Registers
	2.2.8 Packed Integer Format Conversions
	2.2.9 Improved Sums of Absolute Differences (SAD) for 4-Byte Blocks
	2.2.10 Horizontal Search
	2.2.11 Packed Test
	2.2.12 Packed Qword Equality Comparisons
	2.2.13 Dword Packing With Unsigned Saturation
	2.2.14 IEEE 754 Compliance

	2.3 SSE4.2 Instruction Set
	2.3.1 String and Text Processing Instructions
	2.3.1.1 Memory Operand Alignment

	2.3.2 Packed Comparison SIMD integer Instruction
	2.3.3 Application-Targeted Accelerator Instructions


	Chapter 3 APPLICATION PROGRAMMING MODEL
	3.1 CPUID
	3.2 Detecting SSE4 Instructions
	3.2.1 Detecting SSE4.1 Instructions Using CPUID
	3.2.2 Detecting SSE4.2 Instructions Using CPUID

	3.3 Exceptions and SSE4

	Chapter 4 System Programming Model
	4.1 Enabling SSE4
	4.2 Device Not Available (DNA) Exceptions
	4.3 SSE4 Emulation

	Chapter 5 SSE4 Instruction Set
	5.1 Instruction Formats
	5.2 Notations
	5.3 Imm8 Control Byte Operation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM
	5.3.1 General Description
	5.3.1.1 Source Data Format
	5.3.1.2 Aggregation Operation
	5.3.1.3 Polarity
	5.3.1.4 Output Selection
	5.3.1.5 Valid/Invalid Override of Comparisons
	5.3.1.6 Summary of Im8 Control byte
	5.3.1.7 Diagram Comparison and Aggregation Process


	5.4 Instruction Reference
	BLENDPD - Blend Packed Double Precision Floating-Point Values
	BLENDPS - Blend Packed Single Precision Floating-Point Values
	BLENDVPD - Variable Blend Packed Double Precision Floating-Point Values
	BLENDVPS - Variable Blend Packed Single Precision Floating-Point Values
	CRC32 - Accumulate CRC32 Value
	DPPD - Dot Product of Packed Double Precision Floating-Point Values
	DPPS - Dot Product of Packed Single Precision Floating-Point Values
	EXTRACTPS - Extract Packed Single Precision Floating-Point Value
	INSERTPS - Insert Packed Single Precision Floating-Point Value
	MOVNTDQA - Load Double Quadword Non-Temporal Aligned Hint
	MPSADBW - Compute Multiple Packed Sums of Absolute Difference
	PACKUSDW - Pack with Unsigned Saturation
	PBLENDVB - Variable Blend Packed Bytes
	PBLENDW - Blend Packed Words
	PCMPEQQ - Compare Packed Qword Data for Equal
	PCMPESTRI - Packed Compare Explicit Length Strings, Return Index
	PCMPESTRM - Packed Compare Explicit Length Strings, Return Mask
	PCMPISTRI - Packed Compare Implicit Length Strings, Return Index
	PCMPISTRM - Packed Compare Implicit Length Strings, Return Mask
	PCMPGTQ - Compare Packed Data for Greater Than
	PEXTRB - Extract Byte
	PEXTRD/PEXTRQ - Extract Dword/Qword
	PEXTRW - Extract Word
	PHMINPOSUW - Packed Horizontal Word Minimum
	PINSRB - Insert Byte
	PINSRD/PINSRQ - Insert Dword/Qword
	PMAXSB - Maximum of Packed Signed Byte Integers
	PMAXSD - Maximum of Packed Signed Dword Integers
	PMAXUD - Maximum of Packed Unsigned Dword Integers
	PMAXUW - Maximum of Packed Word Integers
	PMINSB - Minimum of Packed Signed Byte Integers
	PMINSD - Minimum of Packed Dword Integers
	PMINUD - Minimum of Packed Dword Integers
	PMINUW - Minimum of Packed Word Integers
	PMOVSX - Packed Move with Sign Extend
	PMOVZX - Packed Move with Zero Extend
	PMULDQ - Multiply Packed Signed Dword Integers
	PMULLD - Multiply Packed Signed Dword Integers and Store Low Result
	POPCNT - Return the Count of Number of Bits Set to 1
	PTEST- Logical Compare
	ROUNDPD - Round Packed Double Precision Floating-Point Values
	ROUNDPS - Round Packed Single Precision Floating-Point Values
	ROUNDSD - Round Scalar Double Precision Floating-Point Values
	ROUNDSS - Round Scalar Single Precision Floating-Point Values


	Appendix A Instruction Summary and Encodings
	1.1 SSE4.1 Instruction Summary and Encodings
	1.2 SSE4.2 Instruction Summary and Encodings

	Appendix B Instruction Opcode Map



