
Intel® C++
Intrinsic Reference

Document Number: 312482-003US

Disclaimer and Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL®
PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE
NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF
THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR
DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time,
without notice. Designers must not rely on the absence or characteristics of any
features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them. The information here is subject
to change without notice. Do not finalize a design with this information.
The products described in this document may contain design defects or errors known
as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest
specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this
document, or other Intel literature, may be obtained by calling 1-800-548-4725, or
by visiting Intel's Web Site.

Intel processor numbers are not a measure of performance. Processor numbers
differentiate features within each processor family, not across different processor
families. See http://www.intel.com/products/processor_number for details.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino logo, Core Inside, FlashFile,
i960, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4,
IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap
ahead. logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver,
Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, IPLink, Itanium,
Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium Inside,
skoool, Sound Mark, The Journey Inside, VTune, Xeon, and Xeon Inside are
trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright (C) 1996–2007, Intel Corporation. All rights reserved.

Portions Copyright (C) 2001, Hewlett-Packard Development Company, L.P.

http://www.intel.com/
http://www.intel.com/products/processor_number

iii

Table Of Contents

Overview: Intrinsics Reference... 1

Intrinsics for Intel® C++ Compilers... 1

Availability of Intrinsics on Intel Processors ... 1

Details about Intrinsics ... 2

Registers ... 2

Data Types... 2

New Data Types Available.. 2

__m64 Data Type... 3

__m128 Data Types.. 3

Data Types Usage Guidelines ... 3

Accessing __m128i Data.. 3

Naming and Usage Syntax .. 5

References.. 7

Intrinsics for Use across All IA.. 8

Overview: Intrinsics for All IA.. 8

Integer Arithmetic Intrinsics ... 8

Floating-point Intrinsics.. 9

String and Block Copy Intrinsics ...11

Miscellaneous Intrinsics...12

MMX(TM) Technology Intrinsics...15

Overview: MMX(TM) Technology Intrinsics ...15

The EMMS Instruction: Why You Need It..15

Why You Need EMMS to Reset After an MMX(TM) Instruction15

EMMS Usage Guidelines ..16

Table Of Contents

iv

MMX(TM) Technology General Support Intrinsics...16

MMX(TM) Technology Packed Arithmetic Intrinsics ..18

MMX(TM) Technology Shift Intrinsics...20

MMX(TM) Technology Logical Intrinsics..23

MMX(TM) Technology Compare Intrinsics...23

MMX(TM) Technology Set Intrinsics...24

MMX(TM) Technology Intrinsics on IA-64 Architecture27

Data Types..27

Streaming SIMD Extensions..28

Overview: Streaming SIMD Extensions..28

Floating-point Intrinsics for Streaming SIMD Extensions...................................28

Arithmetic Operations for Streaming SIMD Extensions28

Logical Operations for Streaming SIMD Extensions..32

Comparisons for Streaming SIMD Extensions ...33

Conversion Operations for Streaming SIMD Extensions42

Load Operations for Streaming SIMD Extensions...46

Set Operations for Streaming SIMD Extensions...47

Store Operations for Streaming SIMD Extensions..49

Cacheability Support Using Streaming SIMD Extensions...................................50

Integer Intrinsics Using Streaming SIMD Extensions..51

Intrinsics to Read and Write Registers for Streaming SIMD Extensions54

Miscellaneous Intrinsics Using Streaming SIMD Extensions55

Using Streaming SIMD Extensions on IA-64 Architecture..................................56

Data Types ...57

Compatibility versus Performance ..57

Table Of Contents

v

Macro Functions..59

Macro Function for Shuffle Using Streaming SIMD Extensions59

Shuffle Function Macro ...59

View of Original and Result Words with Shuffle Function Macro.......................59

Macro Functions to Read and Write the Control Registers59

Exception State Macros with _MM_EXCEPT_DIV_ZERO..................................60

Macro Function for Matrix Transposition...61

Matrix Transposition Using _MM_TRANSPOSE4_PS Macro61

Streaming SIMD Extensions 2 ...62

Overview: Streaming SIMD Extensions 2 ...62

Floating-point Intrinsics...63

Floating-point Arithmetic Operations for Streaming SIMD Extensions 2............63

Floating-point Logical Operations for Streaming SIMD Extensions 266

Floating-point Comparison Operations for Streaming SIMD Extensions 2..........67

Floating-point Conversion Operations for Streaming SIMD Extensions 2...........74

Floating-point Load Operations for Streaming SIMD Extensions 278

Floating-point Set Operations for Streaming SIMD Extensions 280

Floating-point Store Operations for Streaming SIMD Extensions 281

Integer Intrinsics..83

Integer Arithmetic Operations for Streaming SIMD Extensions 2.....................83

Integer Logical Operations for Streaming SIMD Extensions 290

Integer Shift Operations for Streaming SIMD Extensions 291

Integer Comparison Operations for Streaming SIMD Extensions 2...................95

Integer Conversion Operations for Streaming SIMD Extensions 2....................98

Integer Move Operations for Streaming SIMD Extensions 2............................99

Table Of Contents

vi

Integer Load Operations for Streaming SIMD Extensions 2100

Integer Set Operations for SSE2 ..101

Integer Store Operations for Streaming SIMD Extensions 2104

Miscellaneous Functions and Intrinsics ...106

Cacheability Support Operations for Streaming SIMD Extensions 2106

Miscellaneous Operations for Streaming SIMD Extensions 2107

Intrinsics for Casting Support ..112

Pause Intrinsic for Streaming SIMD Extensions 2..112

Macro Function for Shuffle ..113

Shuffle Function Macro ...113

View of Original and Result Words with Shuffle Function Macro.....................113

Streaming SIMD Extensions 3 ...115

Overview: Streaming SIMD Extensions 3 ...115

Integer Vector Intrinsics for Streaming SIMD Extensions 3115

Single-precision Floating-point Vector Intrinsics for Streaming SIMD Extensions 3
...115

Double-precision Floating-point Vector Intrinsics for Streaming SIMD Extensions 3
...117

Macro Functions for Streaming SIMD Extensions 3 ..118

Miscellaneous Intrinsics for Streaming SIMD Extensions 3118

Supplemental Streaming SIMD Extensions 3 ...120

Overview: Supplemental Streaming SIMD Extensions 3120

Addition Intrinsics ..120

Subtraction Intrinsics..122

Multiplication Intrinsics..123

Absolute Value Intrinsics ...124

Table Of Contents

vii

Shuffle Intrinsics for Streaming SIMD Extensions 3126

Concatenate Intrinsics ..127

Negation Intrinsics ...127

Streaming SIMD Extensions 4 ...131

Overview: Streaming SIMD Extensions 4 ...131

Streaming SIMD Extensions 4 Vectorizing Compiler and Media Accelerators131

Overview: Streaming SIMD Extensions 4 Vectorizing Compiler and Media
Accelerators..131

Packed Blending Intrinsics for Streaming SIMD Extensions 4........................131

Floating Point Dot Product Intrinsics for Streaming SIMD Extensions 4132

Packed Format Conversion Intrinsics for Streaming SIMD Extensions 4..........132

Packed Integer Min/Max Intrinsics for Streaming SIMD Extensions 4134

Floating Point Rounding Intrinsics for Streaming SIMD Extensions 4..............135

DWORD Multiply Intrinsics for Streaming SIMD Extensions 4........................136

Register Insertion/Extraction Intrinsics for Streaming SIMD Extensions 4136

Test Intrinsics for Streaming SIMD Extensions 4 ..137

Packed DWORD to Unsigned WORD Intrinsic for Streaming SIMD Extensions 4
..138

Packed Compare for Equal for Streaming SIMD Extensions 4138

Cacheability Support Intrinsic for Streaming SIMD Extensions 4138

Streaming SIMD Extensions 4 Efficient Accelerated String and Text Processing..138

Overview: Streaming SIMD Extensions 4 Efficient Accelerated String and Text
Processing ..138

Packed Comparison Intrinsics for Streaming SIMD Extensions 4139

Application Targeted Accelerators Intrinsics...141

Intrinsics for IA-64 Instructions...143

Table Of Contents

viii

Overview: Intrinsics for IA-64 Instructions...143

Native Intrinsics for IA-64 Instructions ..143

Integer Operations ..143

FSR Operations ...144

Lock and Atomic Operation Related Intrinsics ...145

Lock and Atomic Operation Related Intrinsics ...148

Load and Store ..151

Operating System Related Intrinsics..152

Conversion Intrinsics ..155

Register Names for getReg() and setReg() ...155

General Integer Registers ...156

Application Registers..156

Control Registers ...157

Indirect Registers for getIndReg() and setIndReg()158

Multimedia Additions...158

Table 1. Values of n for m64_mux1 Operation ...161

Synchronization Primitives...164

Atomic Fetch-and-op Operations..164

Atomic Op-and-fetch Operations ..164

Atomic Compare-and-swap Operations ...165

Atomic Synchronize Operation ...165

Atomic Lock-test-and-set Operation ...165

Atomic Lock-release Operation ..165

Miscellaneous Intrinsics...165

Intrinsics for Dual-Core Intel® Itanium® 2 processor 9000 series...................166

Table Of Contents

ix

Examples ..168

Microsoft-compatible Intrinsics for Dual-Core Intel® Itanium® 2 processor 9000
series ...170

Data Alignment, Memory Allocation Intrinsics, and Inline Assembly174

Overview: Data Alignment, Memory Allocation Intrinsics, and Inline Assembly ..174

Alignment Support ...174

Allocating and Freeing Aligned Memory Blocks ..175

Inline Assembly ...176

Microsoft Style Inline Assembly ...176

GNU*-like Style Inline Assembly (IA-32 architecture and Intel® 64 architecture
only) ...176

Example ...178

Example ...178

Intrinsics Cross-processor Implementation ...182

Overview: Intrinsics Cross-processor Implementation....................................182

Intrinsics For Implementation Across All IA ..182

MMX(TM) Technology Intrinsics Implementation ...185

Key to the table entries ..185

Streaming SIMD Extensions Intrinsics Implementation187

Key to the table entries ..187

Streaming SIMD Extensions 2 Intrinsics Implementation................................191

Index ..193

 Intel(R) C++ Intrinsic Reference

1

Overview: Intrinsics Reference

Intrinsics are assembly-coded functions that allow you to use C++ function calls and
variables in place of assembly instructions.

Intrinsics are expanded inline eliminating function call overhead. Providing the same
benefit as using inline assembly, intrinsics improve code readability, assist
instruction scheduling, and help reduce debugging.

Intrinsics provide access to instructions that cannot be generated using the standard
constructs of the C and C++ languages.

Intrinsics for Intel® C++ Compilers

The Intel® C++ Compiler enables easy implementation of assembly instructions
through the use of intrinsics. Intrinsics are provided for Intel® Streaming SIMD
Extensions 4 (SSE4), Supplemental Streaming SIMD Extensions 3 (SSSE3),
Streaming SIMD Extensions 3 (SSE3), Streaming SIMD Extensions 2 (SSE2), and
Streaming SIMD Extensions (SSE) instructions. The Intel C++ Compiler for IA-64
architecture also provides architecture-specific intrinsics.

The Intel C++ Compiler provides intrinsics that work on specific architectures and
intrinsics that work across IA-32, Intel® 64, and IA-64 architectures. Most intrinsics
map directly to a corresponding assembly instruction, some map to several assembly
instructions.

The Intel C++ Compiler also supports Microsoft* Visual Studio 2005 intrinsics (for
x86 and x64 architectures) to generate instructions on Intel processors based on IA-
32 and Intel® 64 architectures. For more information on these Microsoft* intrinsics,
visit http://msdn2.microsoft.com/en-us/library/26td21ds.aspx.

Availability of Intrinsics on Intel Processors

Not all Intel processors support all intrinsics. For information on which intrinsics are
supported on Intel processors, visit http://processorfinder.intel.com. The Processor
Spec Finder tool links directly to all processor documentation and the data sheets list
the features, including intrinsics, supported by each processor.

Intel(R) C++ Intrinsics Reference

2

Details about Intrinsics

The MMX(TM) technology and Streaming SIMD Extension (SSE) instructions use the
following features:

• Registers--Enable packed data of up to 128 bits in length for optimal SIMD
processing

• Data Types--Enable packing of up to 16 elements of data in one register

Registers

Intel processors provide special register sets.

The MMX instructions use eight 64-bit registers (mm0 to mm7) which are aliased on the
floating-point stack registers.

The Streaming SIMD Extensions use eight 128-bit registers (xmm0 to xmm7).

Because each of these registers can hold more than one data element, the processor
can process more than one data element simultaneously. This processing capability
is also known as single-instruction multiple data processing (SIMD).

For each computational and data manipulation instruction in the new extension sets,
there is a corresponding C intrinsic that implements that instruction directly. This
frees you from managing registers and assembly programming. Further, the
compiler optimizes the instruction scheduling so that your executable runs faster.

Note

The MM and XMM registers are the SIMD registers used by the IA-32 platforms to
implement MMX technology and SSE or SSE2 intrinsics. On the IA-64 architecture,
the MMX and SSE intrinsics use the 64-bit general registers and the 64-bit
significand of the 80-bit floating-point register.

Data Types

Intrinsic functions use four new C data types as operands, representing the new
registers that are used as the operands to these intrinsic functions.

New Data Types Available

The following table details for which instructions each of the new data types are
available.

New Data
Type

MMX(TM)
Technology

Streaming SIMD
Extensions

Streaming SIMD
Extensions 2

Streaming SIMD
Extensions 3

__m64 Available Available Available Available

__m128 Not available Available Available Available

Intel(R) C++ Intrinsics Reference

3

__m128d Not available Not available Available Available

__m128i Not available Not available Available Available

__m64 Data Type

The __m64 data type is used to represent the contents of an MMX register, which is
the register that is used by the MMX technology intrinsics. The __m64 data type can
hold eight 8-bit values, four 16-bit values, two 32-bit values, or one 64-bit value.

__m128 Data Types

The __m128 data type is used to represent the contents of a Streaming SIMD
Extension register used by the Streaming SIMD Extension intrinsics. The __m128 data
type can hold four 32-bit floating-point values.

The __m128d data type can hold two 64-bit floating-point values.

The __m128i data type can hold sixteen 8-bit, eight 16-bit, four 32-bit, or two 64-bit
integer values.

The compiler aligns __m128d and _m128i local and global data to 16-byte
boundaries on the stack. To align integer, float, or double arrays, you can use the
declspec align statement.

Data Types Usage Guidelines

These data types are not basic ANSI C data types. You must observe the following
usage restrictions:

• Use data types only on either side of an assignment, as a return value, or as
a parameter. You cannot use it with other arithmetic expressions (+, -, etc).

• Use data types as objects in aggregates, such as unions, to access the byte
elements and structures.

• Use data types only with the respective intrinsics described in this
documentation.

Accessing __m128i Data

To access 8-bit data:

#define _mm_extract_epi8(x, imm) \

 ((((imm) & 0x1) == 0) ? \

 _mm_extract_epi16((x), (imm) >> 1) & 0xff : \

 _mm_extract_epi16(_mm_srli_epi16((x), 8), (imm) >> 1))

Intel(R) C++ Intrinsics Reference

4

For 16-bit data, use the following intrinsic:

int _mm_extract_epi16(__m128i a, int imm)

To access 32-bit data:

#define _mm_extract_epi32(x, imm) \

 _mm_cvtsi128_si32(_mm_srli_si128((x), 4 * (imm)))

To access 64-bit data (Intel® 64 architecture only):

#define _mm_extract_epi64(x, imm) \

 _mm_cvtsi128_si64(_mm_srli_si128((x), 8 * (imm)))

Intel(R) C++ Intrinsics Reference

5

Naming and Usage Syntax

Most intrinsic names use the following notational convention:

mm<intrin_op>_<suffix>

The following table explains each item in the syntax.

<intrin_op> Indicates the basic operation of the intrinsic; for example, add for
addition and sub for subtraction.

<suffix> Denotes the type of data the instruction operates on. The first one or
two letters of each suffix denote whether the data is packed (p),
extended packed (ep), or scalar (s). The remaining letters and
numbers denote the type, with notation as follows:

• s single-precision floating point
• d double-precision floating point
• i128 signed 128-bit integer
• i64 signed 64-bit integer
• u64 unsigned 64-bit integer
• i32 signed 32-bit integer
• u32 unsigned 32-bit integer
• i16 signed 16-bit integer
• u16 unsigned 16-bit integer
• i8 signed 8-bit integer
• u8 unsigned 8-bit integer

A number appended to a variable name indicates the element of a packed object. For
example, r0 is the lowest word of r. Some intrinsics are "composites" because they
require more than one instruction to implement them.

The packed values are represented in right-to-left order, with the lowest value being
used for scalar operations. Consider the following example operation:

double a[2] = {1.0, 2.0};

__m128d t = _mm_load_pd(a);

The result is the same as either of the following:

__m128d t = _mm_set_pd(2.0, 1.0);

__m128d t = _mm_setr_pd(1.0, 2.0);

In other words, the xmm register that holds the value t appears as follows:

Intel(R) C++ Intrinsics Reference

6

The "scalar" element is 1.0. Due to the nature of the instruction, some intrinsics
require their arguments to be immediates (constant integer literals).

Intel(R) C++ Intrinsics Reference

7

References

See the following publications and internet locations for more information about
intrinsics and the Intel architectures that support them. You can find all publications
on the Intel website.

Internet Location or Publication Description

developer.intel.com Technical resource center for hardware
designers and developers; contains links to
product pages and documentation.

Intel® Itanium® Architecture
Software Developer's Manuals, Volume
3: Instruction Set Reference

Contains information and details about
Itanium instructions.

IA-32 Intel® Architecture Software
Developer's Manual, Volume 2A:
Instruction Set Reference, A-M

Describes the format of the instruction set
of IA-32 Intel Architecture and covers the
reference pages of instructions from A to M

IA-32 Intel® Architecture Software
Developer's Manual, Volume 2B:
Instruction Set Reference, N-Z

Describes the format of the instruction set
of IA-32 Intel Architecture and covers the
reference pages of instructions from N to Z

Intel® Itanium® 2 processor website Intel website for the Itanium 2 processor;
select the "Documentation" tab for
documentation.

Intel(R) C++ Intrinsics Reference

8

Intrinsics for Use across All IA

Overview: Intrinsics for All IA

The intrinsics in this section function across all IA-32 and IA-64-based platforms.
They are offered as a convenience to the programmer. They are grouped as follows:

• Integer Arithmetic Intrinsics
• Floating-Point Intrinsics
• String and Block Copy Intrinsics
• Miscellaneous Intrinsics

Integer Arithmetic Intrinsics

The following table lists and describes integer arithmetic intrinsics that you can use
across all Intel architectures.

Intrinsic Description
int abs(int) Returns the absolute value of an

integer.

long labs(long) Returns the absolute value of a long
integer.

unsigned long _lrotl(unsigned long
value, int shift)

Implements 64-bit left rotate of value
by shift positions.

unsigned long _lrotr(unsigned long
value, int shift)

Implements 64-bit right rotate of
value by shift positions.

unsigned int _rotl(unsigned int
value, int shift)

Implements 32-bit left rotate of value
by shift positions.

unsigned int _rotr(unsigned int
value, int shift)

Implements 32-bit right rotate of
value by shift positions.

unsigned short _rotwl(unsigned short
val, int shift)

Implements 16-bit left rotate of value
by shift positions.

These intrinsics are not supported on
IA-64 platforms.

unsigned short _rotwr(unsigned short
val, int shift)

Implements 16-bit right rotate of
value by shift positions.

These intrinsics are not supported on
IA-64 platforms.

Intel(R) C++ Intrinsics Reference

9

Note

Passing a constant shift value in the rotate intrinsics results in higher
performance.

Floating-point Intrinsics

The following table lists and describes floating point intrinsics that you can use
across all Intel architectures.

Intrinsic Description
double fabs(double) Returns the absolute value of a floating-point

value.

double log(double) Returns the natural logarithm ln(x), x>0, with
double precision.

float logf(float) Returns the natural logarithm ln(x), x>0, with
single precision.

double log10(double) Returns the base 10 logarithm log10(x), x>0,
with double precision.

float log10f(float) Returns the base 10 logarithm log10(x), x>0,
with single precision.

double exp(double) Returns the exponential function with double
precision.

float expf(float) Returns the exponential function with single
precision.

double pow(double, double) Returns the value of x to the power y with
double precision.

float powf(float, float) Returns the value of x to the power y with
single precision.

double sin(double) Returns the sine of x with double precision.

float sinf(float) Returns the sine of x with single precision.

double cos(double) Returns the cosine of x with double precision.

float cosf(float) Returns the cosine of x with single precision.

double tan(double) Returns the tangent of x with double
precision.

float tanf(float) Returns the tangent of x with single precision.

double acos(double) Returns the inverse cosine of x with double
precision

float acosf(float) Returns the inverse cosine of x with single
precision

Intel(R) C++ Intrinsics Reference

10

double acosh(double) Compute the inverse hyperbolic cosine of the
argument with double precision.

float acoshf(float) Compute the inverse hyperbolic cosine of the
argument with single precision.

double asin(double) Compute inverse sine of the argument with
double precision.

float asinf(float) Compute inverse sine of the argument with
single precision.

double asinh(double) Compute inverse hyperbolic sine of the
argument with double precision.

float asinhf(float) Compute inverse hyperbolic sine of the
argument with single precision.

double atan(double) Compute inverse tangent of the argument
with double precision.

float atanf(float) Compute inverse tangent of the argument
with single precision.

double atanh(double) Compute inverse hyperbolic tangent of the
argument with double precision.

float atanhf(float) Compute inverse hyperbolic tangent of the
argument with single precision.

double cabs(double complex z) Computes absolute value of complex number.
The intrinsic argument complex is a complex
number made up of two double precision
elements, one real and one imaginary. The
input parameter z is made up of two values of
double precision type passed together as a
single argument.

float cabsf(float complex z) Computes absolute value of complex number.
The intrinsic argument complex is a complex
number made up of two single precision
elements, one real and one imaginary. The
input parameter z is made up of two values of
single precision type passed together as a
single argument.

double ceil(double) Computes smallest integral value of double
precision argument not less than the
argument.

float ceilf(float) Computes smallest integral value of single
precision argument not less than the
argument.

double cosh(double) Computes the hyperbolic cosine of double
precision argument.

Intel(R) C++ Intrinsics Reference

11

float coshf(float) Computes the hyperbolic cosine of single
precision argument.

float fabsf(float) Computes absolute value of single precision
argument.

double floor(double) Computes the largest integral value of the
double precision argument not greater than
the argument.

float floorf(float) Computes the largest integral value of the
single precision argument not greater than the
argument.

double fmod(double) Computes the floating-point remainder of the
division of the first argument by the second
argument with double precision.

float fmodf(float) Computes the floating-point remainder of the
division of the first argument by the second
argument with single precision.

double hypot(double, double) Computes the length of the hypotenuse of a
right angled triangle with double precision.

float hypotf(float, float) Computes the length of the hypotenuse of a
right angled triangle with single precision.

double rint(double) Computes the integral value represented as
double using the IEEE rounding mode.

float rintf(float) Computes the integral value represented with
single precision using the IEEE rounding
mode.

double sinh(double) Computes the hyperbolic sine of the double
precision argument.

float sinhf(float) Computes the hyperbolic sine of the single
precision argument.

float sqrtf(float) Computes the square root of the single
precision argument.

double tanh(double) Computes the hyperbolic tangent of the
double precision argument.

float tanhf(float) Computes the hyperbolic tangent of the single
precision argument.

String and Block Copy Intrinsics

The following table lists and describes string and block copy intrinsics that you can
use across all Intel architectures.

Intel(R) C++ Intrinsics Reference

12

The string and block copy intrinsics are not implemented as intrinsics on IA-64
architecture.

Intrinsic Description
char *_strset(char *, _int32) Sets all characters in

a string to a fixed
value.

int memcmp(const void *cs, const void *ct, size_t n) Compares two
regions of memory.
Return <0 if cs<ct,
0 if cs=ct, or >0 if
cs>ct.

void *memcpy(void *s, const void *ct, size_t n) Copies from
memory. Returns s.

void *memset(void * s, int c, size_t n) Sets memory to a
fixed value. Returns
s.

char *strcat(char * s, const char * ct) Appends to a string.
Returns s.

int strcmp(const char *, const char *) Compares two
strings. Return <0 if
cs<ct, 0 if cs=ct,
or >0 if cs>ct.

char *strcpy(char * s, const char * ct) Copies a string.
Returns s.

size_t strlen(const char * cs) Returns the length
of string cs.

int strncmp(char *, char *, int) Compare two
strings, but only
specified number of
characters.

int strncpy(char *, char *, int) Copies a string, but
only specified
number of
characters.

Miscellaneous Intrinsics

The following table lists and describes intrinsics that you can use across all Intel
architectures, except where noted.

Intrinsic Description
_abnormal_termination(void) Can be invoked only by termination handlers.

Returns TRUE if the termination handler is

Intel(R) C++ Intrinsics Reference

13

invoked as a result of a premature exit of the
corresponding try-finally region.

__cpuid Queries the processor for information about
processor type and supported features. The
Intel® C++ Compiler supports the Microsoft*
implementation of this intrinsic. See the
Microsoft documentation for details.

void *_alloca(int) Allocates memory in the local stack frame. The
memory is automatically freed upon return from
the function.

int _bit_scan_forward(int x) Returns the bit index of the least significant set
bit of x. If x is 0, the result is undefined.

int _bit_scan_reverse(int) Returns the bit index of the most significant set
bit of x. If x is 0, the result is undefined.

int _bswap(int) Reverses the byte order of x. Bits 0-7 are
swapped with bits 24-31, and bits 8-15 are
swapped with bits 16-23.

_exception_code(void) Returns the exception code.

_exception_info(void) Returns the exception information.

void _enable(void) Enables the interrupt.

void _disable(void) Disables the interrupt.

int _in_byte(int) Intrinsic that maps to the IA-32 instruction IN.
Transfer data byte from port specified by
argument.

int _in_dword(int) Intrinsic that maps to the IA-32 instruction IN.
Transfer double word from port specified by
argument.

int _in_word(int) Intrinsic that maps to the IA-32 instruction IN.
Transfer word from port specified by argument.

int _inp(int) Same as _in_byte

int _inpd(int) Same as _in_dword

int _inpw(int) Same as _in_word

int _out_byte(int, int) Intrinsic that maps to the IA-32 instruction OUT.
Transfer data byte in second argument to port
specified by first argument.

int _out_dword(int, int) Intrinsic that maps to the IA-32 instruction OUT.
Transfer double word in second argument to port
specified by first argument.

int _out_word(int, int) Intrinsic that maps to the IA-32 instruction OUT.
Transfer word in second argument to port

Intel(R) C++ Intrinsics Reference

14

specified by first argument.

int _outp(int, int) Same as _out_byte

int _outpd(int, int) Same as _out_dword

int _outpw(int, int) Same as _out_word

int _popcnt32(int x) Returns the number of set bits in x.

__int64 _rdtsc(void) Returns the current value of the processor's 64-
bit time stamp counter.
This intrinsic is not implemented on systems
based on IA-64 architecture. See Time Stamp for
an example of using this intrinsic.

__int64 _rdpmc(int p) Returns the current value of the 40-bit
performance monitoring counter specified by p.

int _setjmp(jmp_buf) A fast version of setjmp(), which bypasses the
termination handling. Saves the callee-save
registers, stack pointer and return address. This
intrinsic is not implemented on systems based on
IA-64 architecture.

Intel(R) C++ Intrinsics Reference

15

MMX(TM) Technology Intrinsics

Overview: MMX(TM) Technology Intrinsics

MMX™ technology is an extension to the Intel architecture (IA) instruction set. The
MMX instruction set adds 57 opcodes and a 64-bit quadword data type, and eight 64-
bit registers. Each of the eight registers can be directly addressed using the register
names mm0 to mm7.

The prototypes for MMX technology intrinsics are in the mmintrin.h header file.

The EMMS Instruction: Why You Need It

Using EMMS is like emptying a container to accommodate new content. The EMMS
instruction clears the MMX™ registers and sets the value of the floating-point tag
word to empty. Because floating-point convention specifies that the floating-point
stack be cleared after use, you should clear the MMX registers before issuing a
floating-point instruction. You should insert the EMMS instruction at the end of all
MMX code segments to avoid a floating-point overflow exception.

Why You Need EMMS to Reset After an MMX(TM) Instruction

Caution

Failure to empty the multimedia state after using an MMX instruction and before
using a floating-point instruction can result in unexpected execution or poor
performance.

Intel(R) C++ Intrinsics Reference

16

EMMS Usage Guidelines

Here are guidelines for when to use the EMMS instruction:

• Use _mm_empty() after an MMX™ instruction if the next instruction is a
floating-point (FP) instruction. For example, you should use the EMMS
instruction before performing calculations on float, double or long double.
You must be aware of all situations in which your code generates an MMX
instruction:

• when using an MMX technology intrinsic
• when using Streaming SIMD Extension integer intrinsics that use the

__m64 data type
• when referencing an __m64 data type variable
• when using an MMX instruction through inline assembly

• Use different functions for operations that use floating point instructions and
those that use MMX instructions. This action eliminates the need to empty the
multimedia state within the body of a critical loop.

• Use _mm_empty() during runtime initialization of __m64 and FP data types.
This ensures resetting the register between data type transitions.

• Do not use _mm_empty() before an MMX instruction, since using _mm_empty()
before an MMX instruction incurs an operation with no benefit (no-op).

• Do not use on systems based on IA-64 architecture. There are no special
registers (or overlay) for the MMX(TM) instructions or Streaming SIMD
Extensions on systems based on IA-64 architecture even though the intrinsics
are supported.

• See the Correct Usage and Incorrect Usage coding examples in the following
table.

Incorrect Usage Correct Usage
__m64 x = _m_paddd(y, z);
float f = init();

__m64 x = _m_paddd(y, z);
float f = (_mm_empty(), init());

MMX(TM) Technology General Support Intrinsics

The prototypes for MMX™ technology intrinsics are in the mmintrin.h header file.

Details about each intrinsic follows the table below.

Intrinsic Name Operation Corresponding MMX Instruction
_mm_empty Empty MM state EMMS

_mm_cvtsi32_si64 Convert from int MOVD

_mm_cvtsi64_si32 Convert to int MOVD

_mm_cvtsi64_m64 Convert from __int64 MOVQ

_mm_cvtm64_si64 Convert to __int64 MOVQ

_mm_packs_pi16 Pack PACKSSWB

_mm_packs_pi32 Pack PACKSSDW

Intel(R) C++ Intrinsics Reference

17

_mm_packs_pu16 Pack PACKUSWB

_mm_unpackhi_pi8 Interleave PUNPCKHBW

_mm_unpackhi_pi16 Interleave PUNPCKHWD

_mm_unpackhi_pi32 Interleave PUNPCKHDQ

_mm_unpacklo_pi8 Interleave PUNPCKLBW

_mm_unpacklo_pi16 Interleave PUNPCKLWD

_mm_unpacklo_pi32 Interleave PUNPCKLDQ

void _mm_empty(void)

Empty the multimedia state.

__m64 _mm_cvtsi32_si64(int i)

Convert the integer object i to a 64-bit __m64 object. The integer value is zero-
extended to 64 bits.

int _mm_cvtsi64_si32(__m64 m)

Convert the lower 32 bits of the __m64 object m to an integer.

__m64 _mm_cvtsi64_m64(__int64 i)

Move the 64-bit integer object i to a __mm64 object

__int64 _mm_cvtm64_si64(__m64 m)

Move the __m64 object m to a 64-bit integer

__m64 _mm_packs_pi16(__m64 m1, __m64 m2)

Pack the four 16-bit values from m1 into the lower four 8-bit values of the result with
signed saturation, and pack the four 16-bit values from m2 into the upper four 8-bit
values of the result with signed saturation.

__m64 _mm_packs_pi32(__m64 m1, __m64 m2)

Pack the two 32-bit values from m1 into the lower two 16-bit values of the result with
signed saturation, and pack the two 32-bit values from m2 into the upper two 16-bit
values of the result with signed saturation.

__m64 _mm_packs_pu16(__m64 m1, __m64 m2)

Intel(R) C++ Intrinsics Reference

18

Pack the four 16-bit values from m1 into the lower four 8-bit values of the result with
unsigned saturation, and pack the four 16-bit values from m2 into the upper four 8-
bit values of the result with unsigned saturation.

__m64 _mm_unpackhi_pi8(__m64 m1, __m64 m2)

Interleave the four 8-bit values from the high half of m1 with the four values from the
high half of m2. The interleaving begins with the data from m1.

__m64 _mm_unpackhi_pi16(__m64 m1, __m64 m2)

Interleave the two 16-bit values from the high half of m1 with the two values from
the high half of m2. The interleaving begins with the data from m1.

__m64 _mm_unpackhi_pi32(__m64 m1, __m64 m2)

Interleave the 32-bit value from the high half of m1 with the 32-bit value from the
high half of m2. The interleaving begins with the data from m1.

__m64 _mm_unpacklo_pi8(__m64 m1, __m64 m2)

Interleave the four 8-bit values from the low half of m1 with the four values from the
low half of m2. The interleaving begins with the data from m1.

__m64 _mm_unpacklo_pi16(__m64 m1, __m64 m2)

Interleave the two 16-bit values from the low half of m1 with the two values from the
low half of m2. The interleaving begins with the data from m1.

__m64 _mm_unpacklo_pi32(__m64 m1, __m64 m2)

Interleave the 32-bit value from the low half of m1 with the 32-bit value from the low
half of m2. The interleaving begins with the data from m1.

MMX(TM) Technology Packed Arithmetic Intrinsics

The prototypes for MMX™ technology intrinsics are in the mmintrin.h header file.

Details about each intrinsic follows the table below.

Intrinsic Name Operation Corresponding MMX Instruction
_mm_add_pi8 Addition PADDB

_mm_add_pi16 Addition PADDW

_mm_add_pi32 Addition PADDD

_mm_adds_pi8 Addition PADDSB

_mm_adds_pi16 Addition PADDSW

Intel(R) C++ Intrinsics Reference

19

_mm_adds_pu8 Addition PADDUSB

_mm_adds_pu16 Addition PADDUSW

_mm_sub_pi8 Subtraction PSUBB

_mm_sub_pi16 Subtraction PSUBW

_mm_sub_pi32 Subtraction PSUBD

_mm_subs_pi8 Subtraction PSUBSB

_mm_subs_pi16 Subtraction PSUBSW

_mm_subs_pu8 Subtraction PSUBUSB

_mm_subs_pu16 Subtraction PSUBUSW

_mm_madd_pi16 Multiply and add PMADDWD

_mm_mulhi_pi16 Multiplication PMULHW

_mm_mullo_pi16 Multiplication PMULLW

__m64 _mm_add_pi8(__m64 m1, __m64 m2)

Add the eight 8-bit values in m1 to the eight 8-bit values in m2.

__m64 _mm_add_pi16(__m64 m1, __m64 m2)

Add the four 16-bit values in m1 to the four 16-bit values in m2.

__m64 _mm_add_pi32(__m64 m1, __m64 m2)

Add the two 32-bit values in m1 to the two 32-bit values in m2.

__m64 _mm_adds_pi8(__m64 m1, __m64 m2)

Add the eight signed 8-bit values in m1 to the eight signed 8-bit values in m2 using
saturating arithmetic.

__m64 _mm_adds_pi16(__m64 m1, __m64 m2)

Add the four signed 16-bit values in m1 to the four signed 16-bit values in m2 using
saturating arithmetic.

__m64 _mm_adds_pu8(__m64 m1, __m64 m2)

Add the eight unsigned 8-bit values in m1 to the eight unsigned 8-bit values in m2 and
using saturating arithmetic.

__m64 _mm_adds_pu16(__m64 m1, __m64 m2)

Add the four unsigned 16-bit values in m1 to the four unsigned 16-bit values in m2
using saturating arithmetic.

Intel(R) C++ Intrinsics Reference

20

__m64 _mm_sub_pi8(__m64 m1, __m64 m2)

Subtract the eight 8-bit values in m2 from the eight 8-bit values in m1.

__m64 _mm_sub_pi16(__m64 m1, __m64 m2)

Subtract the four 16-bit values in m2 from the four 16-bit values in m1.

__m64 _mm_sub_pi32(__m64 m1, __m64 m2)

Subtract the two 32-bit values in m2 from the two 32-bit values in m1.

__m64 _mm_subs_pi8(__m64 m1, __m64 m2)

Subtract the eight signed 8-bit values in m2 from the eight signed 8-bit values in m1
using saturating arithmetic.

__m64 _mm_subs_pi16(__m64 m1, __m64 m2)

Subtract the four signed 16-bit values in m2 from the four signed 16-bit values in m1
using saturating arithmetic.

__m64 _mm_subs_pu8(__m64 m1, __m64 m2)

Subtract the eight unsigned 8-bit values in m2 from the eight unsigned 8-bit values in
m1 using saturating arithmetic.

__m64 _mm_subs_pu16(__m64 m1, __m64 m2)

Subtract the four unsigned 16-bit values in m2 from the four unsigned 16-bit values
in m1 using saturating arithmetic.

__m64 _mm_madd_pi16(__m64 m1, __m64 m2)

Multiply four 16-bit values in m1 by four 16-bit values in m2 producing four 32-bit
intermediate results, which are then summed by pairs to produce two 32-bit results.

__m64 _mm_mulhi_pi16(__m64 m1, __m64 m2)

Multiply four signed 16-bit values in m1 by four signed 16-bit values in m2 and
produce the high 16 bits of the four results.

__m64 _mm_mullo_pi16(__m64 m1, __m64 m2)

Multiply four 16-bit values in m1 by four 16-bit values in m2 and produce the low 16
bits of the four results.

MMX(TM) Technology Shift Intrinsics

The prototypes for MMX™ technology intrinsics are in the mmintrin.h header file.

Intel(R) C++ Intrinsics Reference

21

Details about each intrinsic follows the table below.

Intrinsic
Name

Operation Corresponding MMX
Instruction

_mm_sll_pi16 Logical shift left PSLLW

_mm_slli_pi16 Logical shift left PSLLWI

_mm_sll_pi32 Logical shift left PSLLD

_mm_slli_pi32 Logical shift left PSLLDI

_mm_sll_pi64 Logical shift left PSLLQ

_mm_slli_pi64 Logical shift left PSLLQI

_mm_sra_pi16 Arithmetic shift right PSRAW

_mm_srai_pi16 Arithmetic shift right PSRAWI

_mm_sra_pi32 Arithmetic shift right PSRAD

_mm_srai_pi32 Arithmetic shift right PSRADI

_mm_srl_pi16 Logical shift right PSRLW

_mm_srli_pi16 Logical shift right PSRLWI

_mm_srl_pi32 Logical shift right PSRLD

_mm_srli_pi32 Logical shift right PSRLDI

_mm_srl_pi64 Logical shift right PSRLQ

_mm_srli_pi64 Logical shift right PSRLQI

__m64 _mm_sll_pi16(__m64 m, __m64 count)

Shift four 16-bit values in m left the amount specified by count while shifting in zeros.

__m64 _mm_slli_pi16(__m64 m, int count)

Shift four 16-bit values in m left the amount specified by count while shifting in zeros.
For the best performance, count should be a constant.

__m64 _mm_sll_pi32(__m64 m, __m64 count)

Shift two 32-bit values in m left the amount specified by count while shifting in zeros.

__m64 _mm_slli_pi32(__m64 m, int count)

Shift two 32-bit values in m left the amount specified by count while shifting in zeros.
For the best performance, count should be a constant.

Intel(R) C++ Intrinsics Reference

22

__m64 _mm_sll_pi64(__m64 m, __m64 count)

Shift the 64-bit value in m left the amount specified by count while shifting in zeros.

__m64 _mm_slli_pi64(__m64 m, int count)

Shift the 64-bit value in m left the amount specified by count while shifting in zeros.
For the best performance, count should be a constant.

__m64 _mm_sra_pi16(__m64 m, __m64 count)

Shift four 16-bit values in m right the amount specified by count while shifting in the
sign bit.

__m64 _mm_srai_pi16(__m64 m, int count)

Shift four 16-bit values in m right the amount specified by count while shifting in the
sign bit. For the best performance, count should be a constant.

__m64 _mm_sra_pi32(__m64 m, __m64 count)

Shift two 32-bit values in m right the amount specified by count while shifting in the
sign bit.

__m64 _mm_srai_pi32(__m64 m, int count)

Shift two 32-bit values in m right the amount specified by count while shifting in the
sign bit. For the best performance, count should be a constant.

__m64 _mm_srl_pi16(__m64 m, __m64 count)

Shift four 16-bit values in m right the amount specified by count while shifting in
zeros.

__m64 _mm_srli_pi16(__m64 m, int count)

Shift four 16-bit values in m right the amount specified by count while shifting in
zeros. For the best performance, count should be a constant.

__m64 _mm_srl_pi32(__m64 m, __m64 count)

Shift two 32-bit values in m right the amount specified by count while shifting in
zeros.

__m64 _mm_srli_pi32(__m64 m, int count)

Shift two 32-bit values in m right the amount specified by count while shifting in
zeros. For the best performance, count should be a constant.

__m64 _mm_srl_pi64(__m64 m, __m64 count)

Shift the 64-bit value in m right the amount specified by count while shifting in zeros.

Intel(R) C++ Intrinsics Reference

23

__m64 _mm_srli_pi64(__m64 m, int count)

Shift the 64-bit value in m right the amount specified by count while shifting in zeros.
For the best performance, count should be a constant.

MMX(TM) Technology Logical Intrinsics

The prototypes for MMX™ technology intrinsics are in the mmintrin.h header file.

Details about each intrinsic follows the table below.

Intrinsic
Name

Operation Corresponding MMX
Instruction

_mm_and_si64 Bitwise AND PAND

_mm_andnot_si64 Bitwise ANDNOT PANDN

_mm_or_si64 Bitwise OR POR

_mm_xor_si64 Bitwise Exclusive OR PXOR

__m64 _mm_and_si64(__m64 m1, __m64 m2)

Perform a bitwise AND of the 64-bit value in m1 with the 64-bit value in m2.

__m64 _mm_andnot_si64(__m64 m1, __m64 m2)

Perform a bitwise NOT on the 64-bit value in m1 and use the result in a bitwise AND
with the 64-bit value in m2.

__m64 _mm_or_si64(__m64 m1, __m64 m2)

Perform a bitwise OR of the 64-bit value in m1 with the 64-bit value in m2.

__m64 _mm_xor_si64(__m64 m1, __m64 m2)

Perform a bitwise XOR of the 64-bit value in m1 with the 64-bit value in m2.

MMX(TM) Technology Compare Intrinsics

The prototypes for MMX™ technology intrinsics are in the mmintrin.h header file.

The intrinsics in the following table perform compare operations. Details about each
intrinsic follows the table below.

Intrinsic
Name

Operation Corresponding MMX
Instruction

_mm_cmpeq_pi8 Equal PCMPEQB

Intel(R) C++ Intrinsics Reference

24

_mm_cmpeq_pi16 Equal PCMPEQW

_mm_cmpeq_pi32 Equal PCMPEQD

_mm_cmpgt_pi8 Greater Than PCMPGTB

_mm_cmpgt_pi16 Greater Than PCMPGTW

_mm_cmpgt_pi32 Greater Than PCMPGTD

__m64 _mm_cmpeq_pi8(__m64 m1, __m64 m2)

If the respective 8-bit values in m1 are equal to the respective 8-bit values in m2 set
the respective 8-bit resulting values to all ones, otherwise set them to all zeros.

__m64 _mm_cmpeq_pi16(__m64 m1, __m64 m2)

If the respective 16-bit values in m1 are equal to the respective 16-bit values in m2
set the respective 16-bit resulting values to all ones, otherwise set them to all zeros.

__m64 _mm_cmpeq_pi32(__m64 m1, __m64 m2)

If the respective 32-bit values in m1 are equal to the respective 32-bit values in m2
set the respective 32-bit resulting values to all ones, otherwise set them to all zeros.

__m64 _mm_cmpgt_pi8(__m64 m1, __m64 m2)

If the respective 8-bit signed values in m1 are greater than the respective 8-bit
signed values in m2 set the respective 8-bit resulting values to all ones, otherwise set
them to all zeros.

__m64 _mm_cmpgt_pi16(__m64 m1, __m64 m2)

If the respective 16-bit signed values in m1 are greater than the respective 16-bit
signed values in m2 set the respective 16-bit resulting values to all ones, otherwise
set them to all zeros.

__m64 _mm_cmpgt_pi32(__m64 m1, __m64 m2)

If the respective 32-bit signed values in m1 are greater than the respective 32-bit
signed values in m2 set the respective 32-bit resulting values to all ones, otherwise
set them all to zeros.

MMX(TM) Technology Set Intrinsics

The prototypes for MMX™ technology intrinsics are in the mmintrin.h header file.

Details about each intrinsic follows the table below.

Intel(R) C++ Intrinsics Reference

25

Note

In the descriptions regarding the bits of the MMX register, bit 0 is the least
significant and bit 63 is the most significant.

Intrinsic
Name

Operation Corresponding MMX Instruction

_mm_setzero_si64 set to zero PXOR

_mm_set_pi32 set integer values Composite

_mm_set_pi16 set integer values Composite

_mm_set_pi8 set integer values Composite

_mm_set1_pi32 set integer values

_mm_set1_pi16 set integer values Composite

_mm_set1_pi8 set integer values Composite

_mm_setr_pi32 set integer values Composite

_mm_setr_pi16 set integer values Composite

_mm_setr_pi8 set integer values Composite

__m64 _mm_setzero_si64()
Sets the 64-bit value to zero.

R
0x0

__m64 _mm_set_pi32(int i1, int i0)

Sets the 2 signed 32-bit integer values.

R0 R1
i0 i1

__m64 _mm_set_pi16(short s3, short s2, short s1, short s0)

Sets the 4 signed 16-bit integer values.

R0 R1 R2 R3
w0 w1 w2 w3

__m64 _mm_set_pi8(char b7, char b6, char b5, char b4, char b3, char b2,
char b1, char b0)

Intel(R) C++ Intrinsics Reference

26

Sets the 8 signed 8-bit integer values.

R0 R1 ... R7
b0 b1 ... b7

__m64 _mm_set1_pi32(int i)

Sets the 2 signed 32-bit integer values to i.

R0 R1

i i

__m64 _mm_set1_pi16(short s)

Sets the 4 signed 16-bit integer values to w.

R0 R1 R2 R3
w w w w

__m64 _mm_set1_pi8(char b)

Sets the 8 signed 8-bit integer values to b

R0 R1 ... R7

b b ... b

__m64 _mm_setr_pi32(int i1, int i0)

Sets the 2 signed 32-bit integer values in reverse order.

R0 R1
i1 i0

__m64 _mm_setr_pi16(short s3, short s2, short s1, short s0)

Sets the 4 signed 16-bit integer values in reverse order.

R0 R1 R2 R3
w3 w2 w1 w0

__m64 _mm_setr_pi8(char b7, char b6, char b5, char b4, char b3, char b2,
char b1, char b0)

Sets the 8 signed 8-bit integer values in reverse order.

R0 R1 ... R7

Intel(R) C++ Intrinsics Reference

27

b7 b6 ... b0

MMX(TM) Technology Intrinsics on IA-64 Architecture

MMX™ technology intrinsics provide access to the MMX technology instruction set on
systems based on IA-64 architecture. To provide source compatibility with the IA-32
architecture, these intrinsics are equivalent both in name and functionality to the set
of IA-32-based MMX intrinsics.

The prototypes for MMX technology intrinsics are in the mmintrin.h header file.

Data Types

The C data type __m64 is used when using MMX technology intrinsics. It can hold
eight 8-bit values, four 16-bit values, two 32-bit values, or one 64-bit value.

The __m64 data type is not a basic ANSI C data type. Therefore, observe the
following usage restrictions:

• Use the new data type only on the left-hand side of an assignment, as a
return value, or as a parameter. You cannot use it with other arithmetic
expressions (" + ", " - ", and so on).

• Use the new data type as objects in aggregates, such as unions, to access the
byte elements and structures; the address of an __m64 object may be taken.

• Use new data types only with the respective intrinsics described in this
documentation.

For complete details of the hardware instructions, see the Intel® Architecture MMX™
Technology Programmer's Reference Manual. For descriptions of data types, see the
Intel® Architecture Software Developer's Manual, Volume 2.

Intel(R) C++ Intrinsics Reference

28

Streaming SIMD Extensions

Overview: Streaming SIMD Extensions

This section describes the C++ language-level features supporting the Streaming
SIMD Extensions (SSE) in the Intel® C++ Compiler. These topics explain the
following features of the intrinsics:

• Floating Point Intrinsics
• Arithmetic Operation Intrinsics
• Logical Operation Intrinsics
• Comparison Intrinsics
• Conversion Intrinsics
• Load Operations
• Set Operations
• Store Operations
• Cacheability Support
• Integer Intrinsics
• Intrinsics to Read and Write Registers
• Miscellaneous Intrinsics
• Using Streaming SIMD Extensions on Itanium® Architecture

The prototypes for SSE intrinsics are in the xmmintrin.h header file.

Note

You can also use the single ia32intrin.h header file for any IA-32 intrinsics.

Floating-point Intrinsics for Streaming SIMD Extensions

You should be familiar with the hardware features provided by the Streaming SIMD
Extensions (SSE) when writing programs with the intrinsics. The following are four
important issues to keep in mind:

• Certain intrinsics, such as _mm_loadr_ps and _mm_cmpgt_ss, are not directly
supported by the instruction set. While these intrinsics are convenient
programming aids, be mindful that they may consist of more than one
machine-language instruction.

• Floating-point data loaded or stored as __m128 objects must be generally 16-
byte-aligned.

• Some intrinsics require that their argument be immediates, that is, constant
integers (literals), due to the nature of the instruction.

• The result of arithmetic operations acting on two NaN (Not a Number)
arguments is undefined. Therefore, FP operations using NaN arguments will
not match the expected behavior of the corresponding assembly instructions.

Arithmetic Operations for Streaming SIMD Extensions

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the
xmmintrin.h header file.

Intel(R) C++ Intrinsics Reference

29

The results of each intrinsic operation are placed in a register. This register is
illustrated for each intrinsic with R0-R3. R0, R1, R2 and R3 each represent one of the
4 32-bit pieces of the result register.

Details about each intrinsic follows the table below.

Intrinsic Operation Corresponding SSE Instruction
_mm_add_ss Addition ADDSS

_mm_add_ps Addition ADDPS

_mm_sub_ss Subtraction SUBSS

_mm_sub_ps Subtraction SUBPS

_mm_mul_ss Multiplication MULSS

_mm_mul_ps Multiplication MULPS

_mm_div_ss Division DIVSS

_mm_div_ps Division DIVPS

_mm_sqrt_ss Squared Root SQRTSS

_mm_sqrt_ps Squared Root SQRTPS

_mm_rcp_ss Reciprocal RCPSS

_mm_rcp_ps Reciprocal RCPPS

_mm_rsqrt_ss Reciprocal Squared Root RSQRTSS

_mm_rsqrt_ps Reciprocal Squared Root RSQRTPS

_mm_min_ss Computes Minimum MINSS

_mm_min_ps Computes Minimum MINPS

_mm_max_ss Computes Maximum MAXSS

_mm_max_ps Computes Maximum MAXPS

__m128 _mm_add_ss(__m128 a, __m128 b)

Adds the lower single-precision, floating-point (SP FP) values of a and b; the upper 3
SP FP values are passed through from a.

R0 R1 R2 R3

a0 + b0 a1 a2 a3

__m128 _mm_add_ps(__m128 a, __m128 b)

Adds the four SP FP values of a and b.

Intel(R) C++ Intrinsics Reference

30

R0 R1 R2 R3

a0 +b0 a1 + b1 a2 + b2 a3 + b3

__m128 _mm_sub_ss(__m128 a, __m128 b)

Subtracts the lower SP FP values of a and b. The upper 3 SP FP values are passed
through from a.

R0 R1 R2 R3

a0 - b0 a1 a2 a3

__m128 _mm_sub_ps(__m128 a, __m128 b)

Subtracts the four SP FP values of a and b.

R0 R1 R2 R3

a0 - b0 a1 - b1 a2 - b2 a3 - b3

__m128 _mm_mul_ss(__m128 a, __m128 b)

Multiplies the lower SP FP values of a and b; the upper 3 SP FP values are passed
through from a.

R0 R1 R2 R3

a0 * b0 a1 a2 a3

__m128 _mm_mul_ps(__m128 a, __m128 b)

Multiplies the four SP FP values of a and b.

R0 R1 R2 R3

a0 * b0 a1 * b1 a2 * b2 a3 * b3

__m128 _mm_div_ss(__m128 a, __m128 b)

Divides the lower SP FP values of a and b; the upper 3 SP FP values are passed
through from a.

R0 R1 R2 R3

a0 / b0 a1 a2 a3

__m128 _mm_div_ps(__m128 a, __m128 b)

Divides the four SP FP values of a and b.

Intel(R) C++ Intrinsics Reference

31

R0 R1 R2 R3

a0 / b0 a1 / b1 a2 / b2 a3 / b3

__m128 _mm_sqrt_ss(__m128 a)

Computes the square root of the lower SP FP value of a ; the upper 3 SP FP values
are passed through.

R0 R1 R2 R3
sqrt(a0) a1 a2 a3

__m128 _mm_sqrt_ps(__m128 a)

Computes the square roots of the four SP FP values of a.

R0 R1 R2 R3
sqrt(a0) sqrt(a1) sqrt(a2) sqrt(a3)

__m128 _mm_rcp_ss(__m128 a)

Computes the approximation of the reciprocal of the lower SP FP value of a; the
upper 3 SP FP values are passed through.

R0 R1 R2 R3
recip(a0) a1 a2 a3

__m128 _mm_rcp_ps(__m128 a)

Computes the approximations of reciprocals of the four SP FP values of a.

R0 R1 R2 R3
recip(a0) recip(a1) recip(a2) recip(a3)

__m128 _mm_rsqrt_ss(__m128 a)

Computes the approximation of the reciprocal of the square root of the lower SP FP
value of a; the upper 3 SP FP values are passed through.

R0 R1 R2 R3
recip(sqrt(a0)) a1 a2 a3

__m128 _mm_rsqrt_ps(__m128 a)

Computes the approximations of the reciprocals of the square roots of the four SP FP
values of a.

Intel(R) C++ Intrinsics Reference

32

R0 R1 R2 R3
recip(sqrt(a0)) recip(sqrt(a1)) recip(sqrt(a2)) recip(sqrt(a3))

__m128 _mm_min_ss(__m128 a, __m128 b)

Computes the minimum of the lower SP FP values of a and b; the upper 3 SP FP
values are passed through from a.

R0 R1 R2 R3
min(a0, b0) a1 a2 a3

__m128 _mm_min_ps(__m128 a, __m128 b)

Computes the minimum of the four SP FP values of a and b.

R0 R1 R2 R3
min(a0, b0) min(a1, b1) min(a2, b2) min(a3, b3)

__m128 _mm_max_ss(__m128 a, __m128 b)

Computes the maximum of the lower SP FP values of a and b; the upper 3 SP FP
values are passed through from a.

R0 R1 R2 R3
max(a0, b0) a1 a2 a3

__m128 _mm_max_ps(__m128 a, __m128 b)

Computes the maximum of the four SP FP values of a and b.

R0 R1 R2 R3
max(a0, b0) max(a1, b1) max(a2, b2) max(a3, b3)

Logical Operations for Streaming SIMD Extensions

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the
xmmintrin.h header file.

The results of each intrinsic operation are placed in a register. This register is
illustrated for each intrinsic with R0-R3. R0, R1, R2 and R3 each represent one of the
4 32-bit pieces of the result register.

Details about each intrinsic follows the table below.

Intrinsic
Name

Operation Corresponding SSE
Instruction

Intel(R) C++ Intrinsics Reference

33

_mm_and_ps Bitwise AND ANDPS

_mm_andnot_ps Bitwise ANDNOT ANDNPS

_mm_or_ps Bitwise OR ORPS

_mm_xor_ps Bitwise Exclusive OR XORPS

__m128 _mm_and_ps(__m128 a, __m128 b)

Computes the bitwise AND of the four SP FP values of a and b.

R0 R1 R2 R3
a0 & b0 a1 & b1 a2 & b2 a3 & b3

__m128 _mm_andnot_ps(__m128 a, __m128 b)

Computes the bitwise AND-NOT of the four SP FP values of a and b.

R0 R1 R2 R3
~a0 & b0 ~a1 & b1 ~a2 & b2 ~a3 & b3

__m128 _mm_or_ps(__m128 a, __m128 b)

Computes the bitwise OR of the four SP FP values of a and b.

R0 R1 R2 R3
a0 | b0 a1 | b1 a2 | b2 a3 | b3

__m128 _mm_xor_ps(__m128 a, __m128 b)

Computes bitwise XOR (exclusive-or) of the four SP FP values of a and b.

R0 R1 R2 R3
a0 ^ b0 a1 ^ b1 a2 ^ b2 a3 ^ b3

Comparisons for Streaming SIMD Extensions

Each comparison intrinsic performs a comparison of a and b. For the packed form,
the four SP FP values of a and b are compared, and a 128-bit mask is returned. For
the scalar form, the lower SP FP values of a and b are compared, and a 32-bit mask
is returned; the upper three SP FP values are passed through from a. The mask is
set to 0xffffffff for each element where the comparison is true and 0x0 where the
comparison is false.

Details about each intrinsic follows the table below.

Intel(R) C++ Intrinsics Reference

34

The results of each intrinsic operation are placed in a register. This register is
illustrated for each intrinsic with R or R0-R3. R0, R1, R2 and R3 each represent one
of the 4 32-bit pieces of the result register.

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the
xmmintrin.h header file.

Intrinsic
Name

Operation Corresponding SSE
Instruction

_mm_cmpeq_ss Equal CMPEQSS

_mm_cmpeq_ps Equal CMPEQPS

_mm_cmplt_ss Less Than CMPLTSS

_mm_cmplt_ps Less Than CMPLTPS

_mm_cmple_ss Less Than or Equal CMPLESS

_mm_cmple_ps Less Than or Equal CMPLEPS

_mm_cmpgt_ss Greater Than CMPLTSS

_mm_cmpgt_ps Greater Than CMPLTPS

_mm_cmpge_ss Greater Than or Equal CMPLESS

_mm_cmpge_ps Greater Than or Equal CMPLEPS

_mm_cmpneq_ss Not Equal CMPNEQSS

_mm_cmpneq_ps Not Equal CMPNEQPS

_mm_cmpnlt_ss Not Less Than CMPNLTSS

Intel(R) C++ Intrinsics Reference

35

_mm_cmpnlt_ps Not Less Than CMPNLTPS

_mm_cmpnle_ss Not Less Than or Equal CMPNLESS

_mm_cmpnle_ps Not Less Than or Equal CMPNLEPS

_mm_cmpngt_ss Not Greater Than CMPNLTSS

_mm_cmpngt_ps Not Greater Than CMPNLTPS

_mm_cmpnge_ss Not Greater Than or Equal CMPNLESS

_mm_cmpnge_ps Not Greater Than or Equal CMPNLEPS

_mm_cmpord_ss Ordered CMPORDSS

_mm_cmpord_ps Ordered CMPORDPS

_mm_cmpunord_ss Unordered CMPUNORDSS

_mm_cmpunord_ps Unordered CMPUNORDPS

_mm_comieq_ss Equal COMISS

_mm_comilt_ss Less Than COMISS

_mm_comile_ss Less Than or Equal COMISS

_mm_comigt_ss Greater Than COMISS

_mm_comige_ss Greater Than or Equal COMISS

_mm_comineq_ss Not Equal COMISS

Intel(R) C++ Intrinsics Reference

36

_mm_ucomieq_ss Equal UCOMISS

_mm_ucomilt_ss Less Than UCOMISS

_mm_ucomile_ss Less Than or Equal UCOMISS

_mm_ucomigt_ss Greater Than UCOMISS

_mm_ucomige_ss Greater Than or Equal UCOMISS

_mm_ucomineq_ss Not Equal UCOMISS

__m128 _mm_cmpeq_ss(__m128 a, __m128 b)

Compare for equality.

R0 R1 R2 R3
(a0 == b0) ? 0xffffffff : 0x0 a1 a2 a3

__m128 _mm_cmpeq_ps(__m128 a, __m128 b)

Compare for equality.

R0 R1 R2 R3
(a0 == b0) ?
0xffffffff : 0x0

(a1 == b1) ?
0xffffffff : 0x0

(a2 == b2) ?
0xffffffff : 0x0

(a3 == b3) ?
0xffffffff : 0x0

__m128 _mm_cmplt_ss(__m128 a, __m128 b)

Compare for less-than.

R0 R1 R2 R3
(a0 < b0) ? 0xffffffff : 0x0 a1 a2 a3

__m128 _mm_cmplt_ps(__m128 a, __m128 b)

Compare for less-than

Intel(R) C++ Intrinsics Reference

37

R0 R1 R2 R3
(a0 < b0) ?
0xffffffff : 0x0

(a1 < b1) ?
0xffffffff : 0x0

(a2 < b2) ?
0xffffffff : 0x0

(a3 < b3) ?
0xffffffff : 0x0

__m128 _mm_cmple_ss(__m128 a, __m128 b)

Compare for less-than-or-equal.

R0 R1 R2 R3
(a0 <= b0) ? 0xffffffff : 0x0 a1 a2 a3

__m128 _mm_cmple_ps(__m128 a, __m128 b)

Compare for less-than-or-equal.

R0 R1 R2 R3
(a0 <= b0) ?
0xffffffff : 0x0

(a1 <= b1) ?
0xffffffff : 0x0

(a2 <= b2) ?
0xffffffff : 0x0

(a3 <= b3) ?
0xffffffff : 0x0

__m128 _mm_cmpgt_ss(__m128 a, __m128 b)

Compare for greater-than.

R0 R1 R2 R3
(a0 > b0) ? 0xffffffff : 0x0 a1 a2 a3

__m128 _mm_cmpgt_ps(__m128 a, __m128 b)

Compare for greater-than.

R0 R1 R2 R3
(a0 > b0) ?
0xffffffff : 0x0

(a1 > b1) ?
0xffffffff : 0x0

(a2 > b2) ?
0xffffffff : 0x0

(a3 > b3) ?
0xffffffff : 0x0

__m128 _mm_cmpge_ss(__m128 a, __m128 b)

Compare for greater-than-or-equal.

R0 R1 R2 R3
(a0 >= b0) ? 0xffffffff : 0x0 a1 a2 a3

__m128 _mm_cmpge_ps(__m128 a, __m128 b)

Compare for greater-than-or-equal.

Intel(R) C++ Intrinsics Reference

38

R0 R1 R2 R3
(a0 >= b0) ?
0xffffffff : 0x0

(a1 >= b1) ?
0xffffffff : 0x0

(a2 >= b2) ?
0xffffffff : 0x0

(a3 >= b3) ?
0xffffffff : 0x0

__m128 _mm_cmpneq_ss(__m128 a, __m128 b)

Compare for inequality.

R0 R1 R2 R3
(a0 != b0) ? 0xffffffff : 0x0 a1 a2 a3

__m128 _mm_cmpneq_ps(__m128 a, __m128 b)

Compare for inequality.

R0 R1 R2 R3
(a0 != b0) ?
0xffffffff : 0x0

(a1 != b1) ?
0xffffffff : 0x0

(a2 != b2) ?
0xffffffff : 0x0

(a3 != b3) ?
0xffffffff : 0x0

__m128 _mm_cmpnlt_ss(__m128 a, __m128 b)

Compare for not-less-than.

R0 R1 R2 R3
!(a0 < b0) ? 0xffffffff : 0x0 a1 a2 a3

__m128 _mm_cmpnlt_ps(__m128 a, __m128 b)

Compare for not-less-than.

R0 R1 R2 R3
!(a0 < b0) ?
0xffffffff : 0x0

!(a1 < b1) ?
0xffffffff : 0x0

!(a2 < b2) ?
0xffffffff : 0x0

!(a3 < b3) ?
0xffffffff : 0x0

__m128 _mm_cmpnle_ss(__m128 a, __m128 b)

Compare for not-less-than-or-equal.

R0 R1 R2 R3
!(a0 <= b0) ? 0xffffffff : 0x0 a1 a2 a3

__m128 _mm_cmpnle_ps(__m128 a, __m128 b)

Compare for not-less-than-or-equal.

Intel(R) C++ Intrinsics Reference

39

R0 R1 R2 R3
!(a0 <= b0) ?
0xffffffff : 0x0

!(a1 <= b1) ?
0xffffffff : 0x0

!(a2 <= b2) ?
0xffffffff : 0x0

!(a3 <= b3) ?
0xffffffff : 0x0

__m128 _mm_cmpngt_ss(__m128 a, __m128 b)

Compare for not-greater-than.

R0 R1 R2 R3
!(a0 > b0) ? 0xffffffff : 0x0 a1 a2 a3

__m128 _mm_cmpngt_ps(__m128 a, __m128 b)

Compare for not-greater-than.

R0 R1 R2 R3
!(a0 > b0) ?
0xffffffff : 0x0

!(a1 > b1) ?
0xffffffff : 0x0

!(a2 > b2) ?
0xffffffff : 0x0

!(a3 > b3) ?
0xffffffff : 0x0

__m128 _mm_cmpnge_ss(__m128 a, __m128 b)

Compare for not-greater-than-or-equal.

R0 R1 R2 R3
!(a0 >= b0) ? 0xffffffff : 0x0 a1 a2 a3

__m128 _mm_cmpnge_ps(__m128 a, __m128 b)

Compare for not-greater-than-or-equal.

R0 R1 R2 R3
!(a0 >= b0) ?
0xffffffff : 0x0

!(a1 >= b1) ?
0xffffffff : 0x0

!(a2 >= b2) ?
0xffffffff : 0x0

!(a3 >= b3) ?
0xffffffff : 0x0

__m128 _mm_cmpord_ss(__m128 a, __m128 b)

Compare for ordered.

R0 R1 R2 R3
(a0 ord? b0) ? 0xffffffff : 0x0 a1 a2 a3

__m128 _mm_cmpord_ps(__m128 a, __m128 b)

Compare for ordered.

Intel(R) C++ Intrinsics Reference

40

R0 R1 R2 R3
(a0 ord? b0) ?
0xffffffff : 0x0

(a1 ord? b1) ?
0xffffffff : 0x0

(a2 ord? b2) ?
0xffffffff : 0x0

(a3 ord? b3) ?
0xffffffff : 0x0

__m128 _mm_cmpunord_ss(__m128 a, __m128 b)

Compare for unordered.

R0 R1 R2 R3
(a0 unord? b0) ? 0xffffffff : 0x0 a1 a2 a3

__m128 _mm_cmpunord_ps(__m128 a, __m128 b)

Compare for unordered.

R0 R1 R2 R3
(a0 unord? b0) ?
0xffffffff : 0x0

(a1 unord? b1) ?
0xffffffff : 0x0

(a2 unord? b2) ?
0xffffffff : 0x0

(a3 unord? b3) ?
0xffffffff : 0x0

int _mm_comieq_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a equal to b. If a and b are equal, 1 is
returned. Otherwise 0 is returned.

R
(a0 == b0) ? 0x1 : 0x0

int _mm_comilt_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a less than b. If a is less than b, 1 is
returned. Otherwise 0 is returned.

R
(a0 < b0) ? 0x1 : 0x0

int _mm_comile_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a less than or equal to b. If a is less
than or equal to b, 1 is returned. Otherwise 0 is returned.

R
(a0 <= b0) ? 0x1 : 0x0

int _mm_comigt_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a greater than b. If a is greater than b
are equal, 1 is returned. Otherwise 0 is returned.

Intel(R) C++ Intrinsics Reference

41

R
(a0 > b0) ? 0x1 : 0x0

int _mm_comige_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a greater than or equal to b. If a is
greater than or equal to b, 1 is returned. Otherwise 0 is returned.

R
(a0 >= b0) ? 0x1 : 0x0

int _mm_comineq_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a not equal to b. If a and b are not
equal, 1 is returned. Otherwise 0 is returned.

R
(a0 != b0) ? 0x1 : 0x0

int _mm_ucomieq_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a equal to b. If a and b are equal, 1 is
returned. Otherwise 0 is returned.

R
(a0 == b0) ? 0x1 : 0x0

int _mm_ucomilt_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a less than b. If a is less than b, 1 is
returned. Otherwise 0 is returned.

R
(a0 < b0) ? 0x1 : 0x0

int _mm_ucomile_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a less than or equal to b. If a is less
than or equal to b, 1 is returned. Otherwise 0 is returned.

R
(a0 <= b0) ? 0x1 : 0x0

int _mm_ucomigt_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a greater than b. If a is greater than
or equal to b, 1 is returned. Otherwise 0 is returned.

Intel(R) C++ Intrinsics Reference

42

R
(a0 > b0) ? 0x1 : 0x0

int _mm_ucomige_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a greater than or equal to b. If a is
greater than or equal to b, 1 is returned. Otherwise 0 is returned.

R
(a0 >= b0) ? 0x1 : 0x0

int _mm_ucomineq_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a not equal to b. If a and b are not
equal, 1 is returned. Otherwise 0 is returned.

R
r := (a0 != b0) ? 0x1 : 0x0

Conversion Operations for Streaming SIMD Extensions

Details about each intrinsic follows the table below.

The results of each intrinsic operation are placed in a register. This register is
illustrated for each intrinsic with R or R0-R3. R0, R1, R2 and R3 each represent one
of the 4 32-bit pieces of the result register.

Details about each intrinsic follows the table below.

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the
xmmintrin.h header file.

Intrinsic
Name

Operation Corresponding SSE
Instruction

_mm_cvtss_si32 Convert to 32-bit integer CVTSS2SI

_mm_cvtss_si64 Convert to 64-bit integer CVTSS2SI

_mm_cvtps_pi32 Convert to two 32-bit integers CVTPS2PI

_mm_cvttss_si32 Convert to 32-bit integer CVTTSS2SI

_mm_cvttss_si64 Convert to 64-bit integer CVTTSS2SI

_mm_cvttps_pi32 Convert to two 32-bit integers CVTTPS2PI

_mm_cvtsi32_ss Convert from 32-bit integer CVTSI2SS

_mm_cvtsi64_ss Convert from 64-bit integer CVTSI2SS

_mm_cvtpi32_ps Convert from two 32-bit integers CVTTPI2PS

Intel(R) C++ Intrinsics Reference

43

_mm_cvtpi16_ps Convert from four 16-bit integers composite

_mm_cvtpu16_ps Convert from four 16-bit integers composite

_mm_cvtpi8_ps Convert from four 8-bit integers composite

_mm_cvtpu8_ps Convert from four 8-bit integers composite

_mm_cvtpi32x2_ps Convert from four 32-bit integers composite

_mm_cvtps_pi16 Convert to four 16-bit integers composite

_mm_cvtps_pi8 Convert to four 8-bit integers composite

_mm_cvtss_f32 Extract composite

int _mm_cvtss_si32(__m128 a)

Convert the lower SP FP value of a to a 32-bit integer according to the current
rounding mode.

R
(int)a0

__int64 _mm_cvtss_si64(__m128 a)

Convert the lower SP FP value of a to a 64-bit signed integer according to the current
rounding mode.

R
(__int64)a0

__m64 _mm_cvtps_pi32(__m128 a)

Convert the two lower SP FP values of a to two 32-bit integers according to the
current rounding mode, returning the integers in packed form.

R0 R1
(int)a0 (int)a1

int _mm_cvttss_si32(__m128 a)

Convert the lower SP FP value of a to a 32-bit integer with truncation.

R
(int)a0

Intel(R) C++ Intrinsics Reference

44

__int64 _mm_cvttss_si64(__m128 a)
Convert the lower SP FP value of a to a 64-bit signed integer with truncation.

R
(__int64)a0

__m64 _mm_cvttps_pi32(__m128 a)

Convert the two lower SP FP values of a to two 32-bit integer with truncation,
returning the integers in packed form.

R0 R1
(int)a0 (int)a1

__m128 _mm_cvtsi32_ss(__m128 a, int b)

Convert the 32-bit integer value b to an SP FP value; the upper three SP FP values
are passed through from a.

R0 R1 R2 R3
(float)b a1 a2 a3

__m128 _mm_cvtsi64_ss(__m128 a, __int64 b)

Convert the signed 64-bit integer value b to an SP FP value; the upper three SP FP
values are passed through from a.

R0 R1 R2 R3
(float)b a1 a2 a3

__m128 _mm_cvtpi32_ps(__m128 a, __m64 b)

Convert the two 32-bit integer values in packed form in b to two SP FP values; the
upper two SP FP values are passed through from a.

R0 R1 R2 R3
(float)b0 (float)b1 a2 a3

__m128 _mm_cvtpi16_ps(__m64 a)

Convert the four 16-bit signed integer values in a to four single precision FP values.

R0 R1 R2 R3
(float)a0 (float)a1 (float)a2 (float)a3

__m128 _mm_cvtpu16_ps(__m64 a)

Intel(R) C++ Intrinsics Reference

45

Convert the four 16-bit unsigned integer values in a to four single precision FP values.

R0 R1 R2 R3
(float)a0 (float)a1 (float)a2 (float)a3

__m128 _mm_cvtpi8_ps(__m64 a)

Convert the lower four 8-bit signed integer values in a to four single precision FP
values.

R0 R1 R2 R3
(float)a0 (float)a1 (float)a2 (float)a3

__m128 _mm_cvtpu8_ps(__m64 a)

Convert the lower four 8-bit unsigned integer values in a to four single precision FP
values.

R0 R1 R2 R3
(float)a0 (float)a1 (float)a2 (float)a3

__m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b)

Convert the two 32-bit signed integer values in a and the two 32-bit signed integer
values in b to four single precision FP values.

R0 R1 R2 R3
(float)a0 (float)a1 (float)b0 (float)b1

__m64 _mm_cvtps_pi16(__m128 a)

Convert the four single precision FP values in a to four signed 16-bit integer values.

R0 R1 R2 R3
(short)a0 (short)a1 (short)a2 (short)a3

__m64 _mm_cvtps_pi8(__m128 a)

Convert the four single precision FP values in a to the lower four signed 8-bit integer
values of the result.

R0 R1 R2 R3
(char)a0 (char)a1 (char)a2 (char)a3

float _mm_cvtss_f32(__m128 a)

Intel(R) C++ Intrinsics Reference

46

This intrinsic extracts a single precision floating point value from the first vector
element of an __m128. It does so in the most efficient manner possible in the context
used.

Load Operations for Streaming SIMD Extensions

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the
xmmintrin.h header file.

Details about each intrinsic follows the table below.

The results of each intrinsic operation are placed in a register. This register is
illustrated for each intrinsic with R0-R3. R0, R1, R2 and R3 each represent one of the
4 32-bit pieces of the result register.

Intrinsic
Name

Operation Corresponding SSE
Instruction

_mm_loadh_pi Load high MOVHPS reg, mem

_mm_loadl_pi Load low MOVLPS reg, mem

_mm_load_ss Load the low value and clear the three high
values

MOVSS

_mm_load1_ps Load one value into all four words MOVSS + Shuffling

_mm_load_ps Load four values, address aligned MOVAPS

_mm_loadu_ps Load four values, address unaligned MOVUPS

_mm_loadr_ps Load four values in reverse MOVAPS +
Shuffling

__m128 _mm_loadh_pi(__m128 a, __m64 const *p)

Sets the upper two SP FP values with 64 bits of data loaded from the address p.

R0 R1 R2 R3
a0 a1 *p0 *p1

__m128 _mm_loadl_pi(__m128 a, __m64 const *p)

Sets the lower two SP FP values with 64 bits of data loaded from the address p; the
upper two values are passed through from a.

R0 R1 R2 R3
*p0 *p1 a2 a3

Intel(R) C++ Intrinsics Reference

47

__m128 _mm_load_ss(float * p)

Loads an SP FP value into the low word and clears the upper three words.

R0 R1 R2 R3

*p 0.0 0.0 0.0

__m128 _mm_load1_ps(float * p)

Loads a single SP FP value, copying it into all four words.

R0 R1 R2 R3

*p *p *p *p

__m128 _mm_load_ps(float * p)

Loads four SP FP values. The address must be 16-byte-aligned.

R0 R1 R2 R3

p[0] p[1] p[2] p[3]

__m128 _mm_loadu_ps(float * p)

Loads four SP FP values. The address need not be 16-byte-aligned.

R0 R1 R2 R3

p[0] p[1] p[2] p[3]

__m128 _mm_loadr_ps(float * p)

Loads four SP FP values in reverse order. The address must be 16-byte-aligned.

R0 R1 R2 R3

p[3] p[2] p[1] p[0]

Set Operations for Streaming SIMD Extensions

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the
xmmintrin.h header file.

Details about each intrinsic follows the table below.

The results of each intrinsic operation are placed in registers. The information about
what is placed in each register appears in the tables below, in the detailed
explanation of each intrinsic. R0, R1, R2 and R3 represent the registers in which
results are placed.

Intel(R) C++ Intrinsics Reference

48

Intrinsic
Name

Operation Corresponding
SSE
Instruction

_mm_set_ss Set the low value and clear the three high
values

Composite

_mm_set1_ps Set all four words with the same value Composite

_mm_set_ps Set four values, address aligned Composite

_mm_setr_ps Set four values, in reverse order Composite

_mm_setzero_ps Clear all four values Composite

__m128 _mm_set_ss(float w)

Sets the low word of an SP FP value to w and clears the upper three words.

R0 R1 R2 R3

w 0.0 0.0 0.0

__m128 _mm_set1_ps(float w)

Sets the four SP FP values to w.

R0 R1 R2 R3

w w w w

__m128 _mm_set_ps(float z, float y, float x, float w)

Sets the four SP FP values to the four inputs.

R0 R1 R2 R3

w x y z

__m128 _mm_setr_ps (float z, float y, float x, float w)

Sets the four SP FP values to the four inputs in reverse order.

R0 R1 R2 R3

z y x w

__m128 _mm_setzero_ps (void)

Clears the four SP FP values.

Intel(R) C++ Intrinsics Reference

49

R0 R1 R2 R3

0.0 0.0 0.0 0.0

Store Operations for Streaming SIMD Extensions

Details about each intrinsic follows the table below.

The detailed description of each intrinsic contains a table detailing the returns. In
these tables, p[n] is an access to the n element of the result.

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the
xmmintrin.h header file.

Intrinsic
Name

Operation Corresponding
SSE
Instruction

_mm_storeh_pi Store high MOVHPS mem, reg

_mm_storel_pi Store low MOVLPS mem, reg

_mm_store_ss Store the low value MOVSS

_mm_store1_ps Store the low value across all four words,
address aligned

Shuffling +
MOVSS

_mm_store_ps Store four values, address aligned MOVAPS

_mm_storeu_ps Store four values, address unaligned MOVUPS

_mm_storer_ps Store four values, in reverse order MOVAPS +
Shuffling

void _mm_storeh_pi(__m64 *p, __m128 a)

Stores the upper two SP FP values to the address p.

*p0 *p1
a2 a3

void _mm_storel_pi(__m64 *p, __m128 a)

Stores the lower two SP FP values of a to the address p.

*p0 *p1
a0 a1

void _mm_store_ss(float * p, __m128 a)

Stores the lower SP FP value.

Intel(R) C++ Intrinsics Reference

50

*p
a0

void _mm_store1_ps(float * p, __m128 a)

Stores the lower SP FP value across four words.

p[0] p[1] p[2] p[3]
a0 a0 a0 a0

void _mm_store_ps(float *p, __m128 a)

Stores four SP FP values. The address must be 16-byte-aligned.

p[0] p[1] p[2] p[3]
a0 a1 a2 a3

void _mm_storeu_ps(float *p, __m128 a)

Stores four SP FP values. The address need not be 16-byte-aligned.

p[0] p[1] p[2] p[3]
a0 a1 a2 a3

void _mm_storer_ps(float * p, __m128 a)

Stores four SP FP values in reverse order. The address must be 16-byte-aligned.

p[0] p[1] p[2] p[3]
a3 a2 a1 a0

Cacheability Support Using Streaming SIMD Extensions

Details about each intrinsic follows the table below.

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the
xmmintrin.h header file.

Intrinsic
Name

Operation Corresponding SSE
Instruction

_mm_prefetch Load PREFETCH

_mm_stream_pi Store MOVNTQ

_mm_stream_ps Store MOVNTPS

_mm_sfence Store fence SFENCE

Intel(R) C++ Intrinsics Reference

51

void _mm_prefetch(char const*a, int sel)

Loads one cache line of data from address a to a location "closer" to the processor.
The value sel specifies the type of prefetch operation: the constants _MM_HINT_T0,
_MM_HINT_T1, _MM_HINT_T2, and _MM_HINT_NTA should be used for IA-32,
corresponding to the type of prefetch instruction. The constants _MM_HINT_T1,
_MM_HINT_NT1, _MM_HINT_NT2, and _MM_HINT_NTA should be used for systems based
on IA-64 architecture.

void _mm_stream_pi(__m64 *p, __m64 a)

Stores the data in a to the address p without polluting the caches. This intrinsic
requires you to empty the multimedia state for the mmx register. See The EMMS
Instruction: Why You Need It.

void _mm_stream_ps(float *p, __m128 a)

Stores the data in a to the address p without polluting the caches. The address must
be 16-byte-aligned.

void _mm_sfence(void)

Guarantees that every preceding store is globally visible before any subsequent store.

Integer Intrinsics Using Streaming SIMD Extensions

The results of each intrinsic operation are placed in registers. The information about
what is placed in each register appears in the tables below, in the detailed
explanation of each intrinsic. R, R0, R1...R7 represent the registers in which results
are placed.

Details about each intrinsic follows the table below.

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the
xmmintrin.h header file.The prototypes for Streaming SIMD Extensions (SSE)
intrinsics are in the xmmintrin.h header file.

Before using these intrinsics, you must empty the multimedia state for the MMX(TM)
technology register. See The EMMS Instruction: Why You Need It for more details.

Intrinsic
Name

Operation Corresponding SSE
Instruction

_mm_extract_pi16 Extract one of four words PEXTRW

_mm_insert_pi16 Insert word PINSRW

_mm_max_pi16 Compute maximum PMAXSW

_mm_max_pu8 Compute maximum, unsigned PMAXUB

_mm_min_pi16 Compute minimum PMINSW

Intel(R) C++ Intrinsics Reference

52

_mm_min_pu8 Compute minimum, unsigned PMINUB

_mm_movemask_pi8 Create eight-bit mask PMOVMSKB

_mm_mulhi_pu16 Multiply, return high bits PMULHUW

_mm_shuffle_pi16 Return a combination of four words PSHUFW

_mm_maskmove_si64 Conditional Store MASKMOVQ

_mm_avg_pu8 Compute rounded average PAVGB

_mm_avg_pu16 Compute rounded average PAVGW

_mm_sad_pu8 Compute sum of absolute differences PSADBW

int _mm_extract_pi16(__m64 a, int n)

Extracts one of the four words of a. The selector n must be an immediate.

R
(n==0) ? a0 : ((n==1) ? a1 : ((n==2) ? a2 : a3))

__m64 _mm_insert_pi16(__m64 a, int d, int n)

Inserts word d into one of four words of a. The selector n must be an immediate.

R0 R1 R2 R3
(n==0) ? d : a0; (n==1) ? d : a1; (n==2) ? d : a2; (n==3) ? d : a3;

__m64 _mm_max_pi16(__m64 a, __m64 b)

Computes the element-wise maximum of the words in a and b.

R0 R1 R2 R3
min(a0, b0) min(a1, b1) min(a2, b2) min(a3, b3)

__m64 _mm_max_pu8(__m64 a, __m64 b)

Computes the element-wise maximum of the unsigned bytes in a and b.

R0 R1 ... R7
min(a0, b0) min(a1, b1) ... min(a7, b7)

__m64 _mm_min_pi16(__m64 a, __m64 b)

Computes the element-wise minimum of the words in a and b.

Intel(R) C++ Intrinsics Reference

53

R0 R1 R2 R3
min(a0, b0) min(a1, b1) min(a2, b2) min(a3, b3)

__m64 _mm_min_pu8(__m64 a, __m64 b)

Computes the element-wise minimum of the unsigned bytes in a and b.

R0 R1 ... R7
min(a0, b0) min(a1, b1) ... min(a7, b7)

__m64 _mm_movemask_pi8(__m64 b)

Creates an 8-bit mask from the most significant bits of the bytes in a.

R
sign(a7)<<7 | sign(a6)<<6 |... | sign(a0)

__m64 _mm_mulhi_pu16(__m64 a, __m64 b)

Multiplies the unsigned words in a and b, returning the upper 16 bits of the 32-bit
intermediate results.

R0 R1 R2 R3
hiword(a0 * b0) hiword(a1 * b1) hiword(a2 * b2) hiword(a3 * b3)

__m64 _mm_shuffle_pi16(__m64 a, int n)

Returns a combination of the four words of a. The selector n must be an immediate.

R0 R1 R2 R3
word (n&0x3)
of a

word ((n>>2)&0x3)
of a

word ((n>>4)&0x3)
of a

word ((n>>6)&0x3)
of a

void _mm_maskmove_si64(__m64 d, __m64 n, char *p)

Conditionally store byte elements of d to address p. The high bit of each byte in the
selector n determines whether the corresponding byte in d will be stored.

if (sign(n0)) if (sign(n1)) ... if (sign(n7))

p[0] := d0 p[1] := d1 ... p[7] := d7

__m64 _mm_avg_pu8(__m64 a, __m64 b)

Computes the (rounded) averages of the unsigned bytes in a and b.

R0 R1 ... R7
(t >> 1) | (t & (t >> 1) | (t & ... ((t >> 1) | (t &

Intel(R) C++ Intrinsics Reference

54

0x01), where t =
(unsigned char)a0 +
(unsigned char)b0

0x01), where t =
(unsigned char)a1 +
(unsigned char)b1

0x01)), where t =
(unsigned char)a7 +
(unsigned char)b7

__m64 _mm_avg_pu16(__m64 a, __m64 b)

Computes the (rounded) averages of the unsigned short in a and b.

R0 R1 ... R7

(t >> 1) | (t & 0x01),
where t = (unsigned
int)a0 + (unsigned int)b0

(t >> 1) | (t & 0x01),
where t = (unsigned
int)a1 + (unsigned int)b1

... (t >> 1) | (t & 0x01),
where t = (unsigned
int)a7 + (unsigned int)b7

__m64 _mm_sad_pu8(__m64 a, __m64 b)

Computes the sum of the absolute differences of the unsigned bytes in a and b,
returning the value in the lower word. The upper three words are cleared.

R0 R1 R2 R3

abs(a0-b0) +... + abs(a7-b7) 0 0 0

Intrinsics to Read and Write Registers for Streaming SIMD
Extensions

Details about each intrinsic follows the table below.

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the
xmmintrin.h header file.

Intrinsic
Name

Operation Corresponding SSE
Instruction

_mm_getcsr Return control register STMXCSR

_mm_setcsr Set control register LDMXCSR

unsigned int _mm_getcsr(void)

Returns the contents of the control register.

void _mm_setcsr(unsigned int i)

Sets the control register to the value specified.

Intel(R) C++ Intrinsics Reference

55

Miscellaneous Intrinsics Using Streaming SIMD Extensions

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the
xmmintrin.h header file.

The results of each intrinsic operation are placed in registers. The information about
what is placed in each register appears in the tables below, in the detailed
explanation of each intrinsic. R, R0, R1, R2 and R3 represent the registers in which
results are placed.

Details about each intrinsic follows the table below.

Intrinsic
Name

Operation Corresponding SSE
Instruction

_mm_shuffle_ps Shuffle SHUFPS

_mm_unpackhi_ps Unpack High UNPCKHPS

_mm_unpacklo_ps Unpack Low UNPCKLPS

_mm_move_ss Set low word, pass in three high values MOVSS

_mm_movehl_ps Move High to Low MOVHLPS

_mm_movelh_ps Move Low to High MOVLHPS

_mm_movemask_ps Create four-bit mask MOVMSKPS

__m128 _mm_shuffle_ps(__m128 a, __m128 b, unsigned int imm8)

Selects four specific SP FP values from a and b, based on the mask imm8. The mask
must be an immediate. See Macro Function for Shuffle Using Streaming SIMD
Extensions for a description of the shuffle semantics.

__m128 _mm_unpackhi_ps(__m128 a, __m128 b)

Selects and interleaves the upper two SP FP values from a and b.

R0 R1 R2 R3
a2 b2 a3 b3

__m128 _mm_unpacklo_ps(__m128 a, __m128 b)

Selects and interleaves the lower two SP FP values from a and b.

R0 R1 R2 R3
a0 b0 a1 b1

Intel(R) C++ Intrinsics Reference

56

__m128 _mm_move_ss(__m128 a, __m128 b)

Sets the low word to the SP FP value of b. The upper 3 SP FP values are
passed through from a.

R0 R1 R2 R3
b0 a1 a2 a3

__m128 _mm_movehl_ps(__m128 a, __m128 b)

Moves the upper 2 SP FP values of b to the lower 2 SP FP values of the result. The
upper 2 SP FP values of a are passed through to the result.

R0 R1 R2 R3
b2 b3 a2 a3

__m128 _mm_movelh_ps(__m128 a, __m128 b)

Moves the lower 2 SP FP values of b to the upper 2 SP FP values of the result. The
lower 2 SP FP values of a are passed through to the result.

R0 R1 R2 R3
a0 a1 b0 b1

int _mm_movemask_ps(__m128 a)

Creates a 4-bit mask from the most significant bits of the four SP FP values.

R
sign(a3)<<3 | sign(a2)<<2 | sign(a1)<<1 | sign(a0)

Using Streaming SIMD Extensions on IA-64 Architecture

The Streaming SIMD Extensions (SSE) intrinsics provide access to IA-64 instructions
for Streaming SIMD Extensions. To provide source compatibility with the IA-32
architecture, these intrinsics are equivalent both in name and functionality to the set
of IA-32-based SSE intrinsics.

To write programs with the intrinsics, you should be familiar with the hardware
features provided by SSE. Keep the following issues in mind:

• Certain intrinsics are provided only for compatibility with previously-defined
IA-32 intrinsics. Using them on systems based on IA-64 architecture probably
leads to performance degradation.

• Floating-point (FP) data loaded stored as __m128 objects must be 16-byte-
aligned.

• Some intrinsics require that their arguments be immediates -- that is,
constant integers (literals), due to the nature of the instruction.

Intel(R) C++ Intrinsics Reference

57

Data Types

The new data type __m128 is used with the SSE intrinsics. It represents a 128-bit
quantity composed of four single-precision FP values. This corresponds to the 128-bit
IA-32 Streaming SIMD Extensions register.

The compiler aligns __m128 local data to 16-byte boundaries on the stack. Global
data of these types is also 16 byte-aligned. To align integer, float, or double
arrays, you can use the declspec alignment.

Because IA-64 instructions treat the SSE registers in the same way whether you are
using packed or scalar data, there is no __m32 data type to represent scalar data.
For scalar operations, use the __m128 objects and the "scalar" forms of the intrinsics;
the compiler and the processor implement these operations with 32-bit memory
references. But, for better performance the packed form should be substituting for
the scalar form whenever possible.

The address of a __m128 object may be taken.

For more information, see Intel Architecture Software Developer's Manual, Volume 2:
Instruction Set Reference Manual, Intel Corporation, doc. number 243191.

Implementation on systems based on IA-64 architecture

SSE intrinsics are defined for the __m128 data type, a 128-bit quantity consisting of
four single-precision FP values. SIMD instructions for systems based on IA-64
architecture operate on 64-bit FP register quantities containing two single-precision
floating-point values. Thus, each __m128 operand is actually a pair of FP registers
and therefore each intrinsic corresponds to at least one pair of IA-64 instructions
operating on the pair of FP register operands.

Compatibility versus Performance

Many of the SSE intrinsics for systems based on IA-64 architecture were created for
compatibility with existing IA-32 intrinsics and not for performance. In some
situations, intrinsic usage that improved performance on IA-32 architecture will not
do so on systems based on IA-64 architecture. One reason for this is that some
intrinsics map nicely into the IA-32 instruction set but not into the IA-64 instruction
set. Thus, it is important to differentiate between intrinsics which were implemented
for a performance advantage on systems based on IA-64 architecture, and those
implemented simply to provide compatibility with existing IA-32 code.

The following intrinsics are likely to reduce performance and should only be used to
initially port legacy code or in non-critical code sections:

• Any SSE scalar intrinsic (_ss variety) - use packed (_ps) version if possible
• comi and ucomi SSE comparisons - these correspond to IA-32 COMISS and

UCOMISS instructions only. A sequence of IA-64 instructions are required to
implement these.

Intel(R) C++ Intrinsics Reference

58

• Conversions in general are multi-instruction operations. These are particularly
expensive: _mm_cvtpi16_ps, _mm_cvtpu16_ps, _mm_cvtpi8_ps,
_mm_cvtpu8_ps, _mm_cvtpi32x2_ps, _mm_cvtps_pi16, _mm_cvtps_pi8

• SSE utility intrinsic _mm_movemask_ps

If the inaccuracy is acceptable, the SIMD reciprocal and reciprocal square root
approximation intrinsics (rcp and rsqrt) are much faster than the true div and sqrt
intrinsics.

Intel(R) C++ Intrinsics Reference

59

Macro Functions

Macro Function for Shuffle Using Streaming SIMD Extensions

The Streaming SIMD Extensions (SSE) provide a macro function to help create
constants that describe shuffle operations. The macro takes four small integers (in
the range of 0 to 3) and combines them into an 8-bit immediate value used by the
SHUFPS instruction.

Shuffle Function Macro

You can view the four integers as selectors for choosing which two words from the
first input operand and which two words from the second are to be put into the result
word.

View of Original and Result Words with Shuffle Function Macro

Macro Functions to Read and Write the Control Registers

The following macro functions enable you to read and write bits to and from the
control register. For details, see Intrinsics to Read and Write Registers. For
Itanium®-based systems, these macros do not allow you to access all of the bits of
the FPSR. See the descriptions for the getfpsr() and setfpsr() intrinsics in the
Native Intrinsics for IA-64 Instructions topic.

Exception State Macros Macro Arguments
_MM_SET_EXCEPTION_STATE(x) _MM_EXCEPT_INVALID

_MM_GET_EXCEPTION_STATE() _MM_EXCEPT_DIV_ZERO

 _MM_EXCEPT_DENORM

Macro Definitions
Write to and read from the six least significant control
register bits, respectively.

_MM_EXCEPT_OVERFLOW

Intel(R) C++ Intrinsics Reference

60

 _MM_EXCEPT_UNDERFLOW

 _MM_EXCEPT_INEXACT

The following example tests for a divide-by-zero exception.

Exception State Macros with _MM_EXCEPT_DIV_ZERO

Exception Mask Macros Macro Arguments
_MM_SET_EXCEPTION_MASK(x) _MM_MASK_INVALID

_MM_GET_EXCEPTION_MASK () _MM_MASK_DIV_ZERO

 _MM_MASK_DENORM

Macro Definitions
Write to and read from the seventh through twelfth
control register bits, respectively.
Note: All six exception mask bits are always affected.
Bits not set explicitly are cleared.

_MM_MASK_OVERFLOW

 _MM_MASK_UNDERFLOW

 _MM_MASK_INEXACT

The following example masks the overflow and underflow exceptions and unmasks all
other exceptions.

Exception Mask with _MM_MASK_OVERFLOW and _MM_MASK_UNDERFLOW
_MM_SET_EXCEPTION_MASK(MM_MASK_OVERFLOW | _MM_MASK_UNDERFLOW)

Rounding Mode Macro Arguments
_MM_SET_ROUNDING_MODE(x) _MM_ROUND_NEAREST

_MM_GET_ROUNDING_MODE() _MM_ROUND_DOWN

Macro Definition
Write to and read from bits thirteen and fourteen of the
control register.

_MM_ROUND_UP

 _MM_ROUND_TOWARD_ZERO

The following example tests the rounding mode for round toward zero.

Intel(R) C++ Intrinsics Reference

61

Rounding Mode with _MM_ROUND_TOWARD_ZERO
if (_MM_GET_ROUNDING_MODE() == _MM_ROUND_TOWARD_ZERO) {
/* Rounding mode is round toward zero */
}

Flush-to-Zero Mode Macro Arguments
_MM_SET_FLUSH_ZERO_MODE(x) _MM_FLUSH_ZERO_ON

_MM_GET_FLUSH_ZERO_MODE() _MM_FLUSH_ZERO_OFF

Macro Definition
Write to and read from bit fifteen of the control register.

The following example disables flush-to-zero mode.

Flush-to-Zero Mode with _MM_FLUSH_ZERO_OFF
_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_OFF)

Macro Function for Matrix Transposition

The Streaming SIMD Extensions (SSE) provide the following macro function to
transpose a 4 by 4 matrix of single precision floating point values.

_MM_TRANSPOSE4_PS(row0, row1, row2, row3)

The arguments row0, row1, row2, and row3 are __m128 values whose elements form
the corresponding rows of a 4 by 4 matrix. The matrix transposition is returned in
arguments row0, row1, row2, and row3 where row0 now holds column 0 of the
original matrix, row1 now holds column 1 of the original matrix, and so on.

The transposition function of this macro is illustrated in the "Matrix Transposition
Using the _MM_TRANSPOSE4_PS" figure.

Matrix Transposition Using _MM_TRANSPOSE4_PS Macro

Intel(R) C++ Intrinsics Reference

62

Streaming SIMD Extensions 2

Overview: Streaming SIMD Extensions 2

This section describes the C++ language-level features supporting the Intel®
Pentium® 4 processor Streaming SIMD Extensions 2 (SSE2) in the Intel® C++
Compiler, which are divided into two categories:

• Floating-Point Intrinsics -- describes the arithmetic, logical, compare,
conversion, memory, and initialization intrinsics for the double-precision
floating-point data type (__m128d).

• Integer Intrinsics -- describes the arithmetic, logical, compare, conversion,
memory, and initialization intrinsics for the extended-precision integer data
type (__m128i).

Note

There are no intrinsics for floating-point move operations. To move data from
one register to another, a simple assignment, A = B, suffices, where A and B are
the source and target registers for the move operation.

Note

On processors that do not support SSE2 instructions but do support MMX
Technology, you can use the sse2mmx.h emulation pack to enable support for
SSE2 instructions. You can use the sse2mmx.h header file for the following
processors:

• Itanium® Processor
• Pentium® III Processor
• Pentium® II Processor
• Pentium® with MMX™ Technology

You should be familiar with the hardware features provided by the SSE2 when
writing programs with the intrinsics. The following are three important issues to keep
in mind:

• Certain intrinsics, such as _mm_loadr_pd and _mm_cmpgt_sd, are not directly
supported by the instruction set. While these intrinsics are convenient
programming aids, be mindful of their implementation cost.

• Data loaded or stored as __m128d objects must be generally 16-byte-aligned.
• Some intrinsics require that their argument be immediates, that is, constant

integers (literals), due to the nature of the instruction.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Note

You can also use the single ia32intrin.h header file for any IA-32 intrinsics.

Intel(R) C++ Intrinsics Reference

63

Floating-point Intrinsics

Floating-point Arithmetic Operations for Streaming SIMD Extensions 2

The arithmetic operations for the Streaming SIMD Extensions 2 (SSE2) are listed in
the following table. The prototypes for SSE2 intrinsics are in the emmintrin.h header
file.

Details about each intrinsic follows the table below.

The results of each intrinsic operation are placed in a register. This register is
illustrated for each intrinsic with R0 and R1. R0 and R1 each represent one piece of
the result register.

The Double Complex code sample contains examples of how to use several of these
intrinsics.

Intrinsic
Name

Operation Corresponding SSE2
Instruction

_mm_add_sd Addition ADDSD

_mm_add_pd Addition ADDPD

_mm_sub_sd Subtraction SUBSD

_mm_sub_pd Subtraction SUBPD

_mm_mul_sd Multiplication MULSD

_mm_mul_pd Multiplication MULPD

_mm_div_sd Division DIVSD

_mm_div_pd Division DIVPD

_mm_sqrt_sd Computes Square Root SQRTSD

_mm_sqrt_pd Computes Square Root SQRTPD

_mm_min_sd Computes Minimum MINSD

_mm_min_pd Computes Minimum MINPD

_mm_max_sd Computes Maximum MAXSD

_mm_max_pd Computes Maximum MAXPD

__m128d _mm_add_sd(__m128d a, __m128d b)

Adds the lower DP FP (double-precision, floating-point) values of a and b ; the upper
DP FP value is passed through from a.

Intel(R) C++ Intrinsics Reference

64

R0 R1
a0 + b0 a1

__m128d _mm_add_pd(__m128d a, __m128d b)

Adds the two DP FP values of a and b.

R0 R1
a0 + b0 a1 + b1

__m128d _mm_sub_sd(__m128d a, __m128d b)

Subtracts the lower DP FP value of b from a. The upper DP FP value is passed
through from a.

R0 R1
a0 - b0 a1

__m128d _mm_sub_pd(__m128d a, __m128d b)

Subtracts the two DP FP values of b from a.

R0 R1
a0 - b0 a1 - b1

__m128d _mm_mul_sd(__m128d a, __m128d b)

Multiplies the lower DP FP values of a and b. The upper DP FP is passed through from
a.

R0 R1
a0 * b0 a1

__m128d _mm_mul_pd(__m128d a, __m128d b)

Multiplies the two DP FP values of a and b.

R0 R1
a0 * b0 a1 * b1

__m128d _mm_div_sd(__m128d a, __m128d b)

Divides the lower DP FP values of a and b. The upper DP FP value is passed through
from a.

Intel(R) C++ Intrinsics Reference

65

R0 R1
a0 / b0 a1

__m128d _mm_div_pd(__m128d a, __m128d b)

Divides the two DP FP values of a and b.

R0 R1
a0 / b0 a1 / b1

__m128d _mm_sqrt_sd(__m128d a, __m128d b)

Computes the square root of the lower DP FP value of b. The upper DP FP value is
passed through from a.

R0 R1
sqrt(b0) A1

__m128d _mm_sqrt_pd(__m128d a)

Computes the square roots of the two DP FP values of a.

R0 R1
sqrt(a0) sqrt(a1)

__m128d _mm_min_sd(__m128d a, __m128d b)

Computes the minimum of the lower DP FP values of a and b. The upper DP FP value
is passed through from a.

R0 R1
min (a0, b0) a1

__m128d _mm_min_pd(__m128d a, __m128d b)

Computes the minima of the two DP FP values of a and b.

R0 R1
min (a0, b0) min(a1, b1)

__m128d _mm_max_sd(__m128d a, __m128d b)

Computes the maximum of the lower DP FP values of a and b. The upper DP FP value
is passed through from a.

Intel(R) C++ Intrinsics Reference

66

R0 R1
max (a0, b0) a1

__m128d _mm_max_pd(__m128d a, __m128d b)

Computes the maxima of the two DP FP values of a and b.

R0 R1
max (a0, b0) max (a1, b1)

Floating-point Logical Operations for Streaming SIMD Extensions 2

The prototypes for Streaming SIMD Extensions 2 (SSE2) intrinsics are in the
emmintrin.h header file.

Details about each intrinsic follows the table below.

The results of each intrinsic operation are placed in registers. The information about
what is placed in each register appears in the tables below, in the detailed
explanation of each intrinsic. R0 and R1 represent the registers in which results are
placed.

Intrinsic
Name

Operation Corresponding SSE2
Instruction

_mm_and_pd Computes AND ANDPD

_mm_andnot_pd Computes AND and NOT ANDNPD

_mm_or_pd Computes OR ORPD

_mm_xor_pd Computes XOR XORPD

__m128d _mm_and_pd(__m128d a, __m128d b)

Computes the bitwise AND of the two DP FP values of a and b.

R0 R1
a0 & b0 a1 & b1

__m128d _mm_andnot_pd(__m128d a, __m128d b)

Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the 128-bit
value in a.

R0 R1
(~a0) & b0 (~a1) & b1

Intel(R) C++ Intrinsics Reference

67

__m128d _mm_or_pd(__m128d a, __m128d b)

Computes the bitwise OR of the two DP FP values of a and b.

R0 R1
a0 | b0 a1 | b1

__m128d _mm_xor_pd(__m128d a, __m128d b)

Computes the bitwise XOR of the two DP FP values of a and b.

R0 R1
a0 ^ b0 a1 ^ b1

Floating-point Comparison Operations for Streaming SIMD Extensions 2

Each comparison intrinsic performs a comparison of a and b. For the packed form,
the two DP FP values of a and b are compared, and a 128-bit mask is returned. For
the scalar form, the lower DP FP values of a and b are compared, and a 64-bit mask
is returned; the upper DP FP value is passed through from a. The mask is set to
0xffffffffffffffff for each element where the comparison is true and 0x0 where
the comparison is false. The r following the instruction name indicates that the
operands to the instruction are reversed in the actual implementation. The
comparison intrinsics for the Streaming SIMD Extensions 2 (SSE2) are listed in the
following table followed by detailed descriptions.

Details about each intrinsic follows the table below.

The results of each intrinsic operation are placed in a register. This register is
illustrated for each intrinsic with R, R0 and R1. R, R0 and R1 each represent one
piece of the result register.

 The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic
Name

Operation Corresponding SSE2
Instruction

_mm_cmpeq_pd Equality CMPEQPD

_mm_cmplt_pd Less Than CMPLTPD

_mm_cmple_pd Less Than or Equal CMPLEPD

_mm_cmpgt_pd Greater Than CMPLTPDr

_mm_cmpge_pd Greater Than or Equal CMPLEPDr

_mm_cmpord_pd Ordered CMPORDPD

_mm_cmpunord_pd Unordered CMPUNORDPD

_mm_cmpneq_pd Inequality CMPNEQPD

Intel(R) C++ Intrinsics Reference

68

_mm_cmpnlt_pd Not Less Than CMPNLTPD

_mm_cmpnle_pd Not Less Than or Equal CMPNLEPD

_mm_cmpngt_pd Not Greater Than CMPNLTPDr

_mm_cmpnge_pd Not Greater Than or Equal CMPNLEPDr

_mm_cmpeq_sd Equality CMPEQSD

_mm_cmplt_sd Less Than CMPLTSD

_mm_cmple_sd Less Than or Equal CMPLESD

_mm_cmpgt_sd Greater Than CMPLTSDr

_mm_cmpge_sd Greater Than or Equal CMPLESDr

_mm_cmpord_sd Ordered CMPORDSD

_mm_cmpunord_sd Unordered CMPUNORDSD

_mm_cmpneq_sd Inequality CMPNEQSD

_mm_cmpnlt_sd Not Less Than CMPNLTSD

_mm_cmpnle_sd Not Less Than or Equal CMPNLESD

_mm_cmpngt_sd Not Greater Than CMPNLTSDr

_mm_cmpnge_sd Not Greater Than or Equal CMPNLESDr

_mm_comieq_sd Equality COMISD

_mm_comilt_sd Less Than COMISD

_mm_comile_sd Less Than or Equal COMISD

_mm_comigt_sd Greater Than COMISD

_mm_comige_sd Greater Than or Equal COMISD

_mm_comineq_sd Not Equal COMISD

_mm_ucomieq_sd Equality UCOMISD

_mm_ucomilt_sd Less Than UCOMISD

_mm_ucomile_sd Less Than or Equal UCOMISD

_mm_ucomigt_sd Greater Than UCOMISD

_mm_ucomige_sd Greater Than or Equal UCOMISD

_mm_ucomineq_sd Not Equal UCOMISD

__m128d _mm_cmpeq_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for equality.

Intel(R) C++ Intrinsics Reference

69

R0 R1
(a0 == b0) ? 0xffffffffffffffff :
0x0

(a1 == b1) ? 0xffffffffffffffff :
0x0

__m128d _mm_cmplt_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a less than b.

R0 R1
(a0 < b0) ? 0xffffffffffffffff :
0x0

(a1 < b1) ? 0xffffffffffffffff :
0x0

__m128d _mm_cmple_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a less than or equal to b.

R0 R1
(a0 <= b0) ? 0xffffffffffffffff :
0x0

(a1 <= b1) ? 0xffffffffffffffff :
0x0

__m128d _mm_cmpgt_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a greater than b.

R0 R1
(a0 > b0) ? 0xffffffffffffffff :
0x0

(a1 > b1) ? 0xffffffffffffffff :
0x0

__m128d _mm_cmpge_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a greater than or equal to b.

R0 R1
(a0 >= b0) ? 0xffffffffffffffff :
0x0

(a1 >= b1) ? 0xffffffffffffffff :
0x0

__m128d _mm_cmpord_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for ordered.

R0 R1
(a0 ord b0) ? 0xffffffffffffffff :
0x0

(a1 ord b1) ? 0xffffffffffffffff :
0x0

__m128d _mm_cmpunord_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for unordered.

Intel(R) C++ Intrinsics Reference

70

R0 R1
(a0 unord b0) ?
0xffffffffffffffff : 0x0

(a1 unord b1) ?
0xffffffffffffffff : 0x0

__m128d _mm_cmpneq_pd (__m128d a, __m128d b)

Compares the two DP FP values of a and b for inequality.

R0 R1
(a0 != b0) ? 0xffffffffffffffff :
0x0

(a1 != b1) ? 0xffffffffffffffff :
0x0

__m128d _mm_cmpnlt_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a not less than b.

R0 R1
!(a0 < b0) ? 0xffffffffffffffff :
0x0

!(a1 < b1) ? 0xffffffffffffffff :
0x0

__m128d _mm_cmpnle_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a not less than or equal to b.

R0 R1
!(a0 <= b0) ? 0xffffffffffffffff :
0x0

!(a1 <= b1) ? 0xffffffffffffffff :
0x0

__m128d _mm_cmpngt_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a not greater than b.

R0 R1
!(a0 > b0) ? 0xffffffffffffffff :
0x0

!(a1 > b1) ? 0xffffffffffffffff :
0x0

__m128d _mm_cmpnge_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a not greater than or equal to b.

R0 R1
!(a0 >= b0) ? 0xffffffffffffffff :
0x0

!(a1 >= b1) ? 0xffffffffffffffff :
0x0

__m128d _mm_cmpeq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for equality. The upper DP FP value is
passed through from a.

Intel(R) C++ Intrinsics Reference

71

R0 R1
(a0 == b0) ? 0xffffffffffffffff : 0x0 a1

__m128d _mm_cmplt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than b. The upper DP FP value
is passed through from a.

R0 R1
(a0 < b0) ? 0xffffffffffffffff : 0x0 a1

__m128d _mm_cmple_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than or equal to b. The upper
DP FP value is passed through from a.

R0 R1
(a0 <= b0) ? 0xffffffffffffffff : 0x0 a1

__m128d _mm_cmpgt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than b. The upper DP FP
value is passed through from a.

R0 R1
(a0 > b0) ? 0xffffffffffffffff : 0x0 a1

__m128d _mm_cmpge_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than or equal to b. The
upper DP FP value is passed through from a.

R0 R1
(a0 >= b0) ? 0xffffffffffffffff : 0x0 a1

__m128d _mm_cmpord_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for ordered. The upper DP FP value is
passed through from a.

R0 R1
(a0 ord b0) ? 0xffffffffffffffff : 0x0 a1

__m128d _mm_cmpunord_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for unordered. The upper DP FP value is
passed through from a.

Intel(R) C++ Intrinsics Reference

72

R0 R1
(a0 unord b0) ? 0xffffffffffffffff : 0x0 a1

__m128d _mm_cmpneq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for inequality. The upper DP FP value is
passed through from a.

R0 R1
(a0 != b0) ? 0xffffffffffffffff : 0x0 a1

__m128d _mm_cmpnlt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not less than b. The upper DP FP
value is passed through from a.

R0 R1
!(a0 < b0) ? 0xffffffffffffffff : 0x0 a1

__m128d _mm_cmpnle_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not less than or equal to b. The
upper DP FP value is passed through from a.

R0 R1

!(a0 <= b0) ? 0xffffffffffffffff : 0x0 a1

__m128d _mm_cmpngt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not greater than b. The upper DP FP
value is passed through from a.

R0 R1
!(a0 > b0) ? 0xffffffffffffffff : 0x0 a1

__m128d _mm_cmpnge_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not greater than or
equal to b. The upper DP FP value is passed through from a.

R0 R1
!(a0 >= b0) ? 0xffffffffffffffff : 0x0 a1

int _mm_comieq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a equal to b. If a and b
are equal, 1 is returned. Otherwise 0 is returned.

Intel(R) C++ Intrinsics Reference

73

R
(a0 == b0) ? 0x1 : 0x0

int _mm_comilt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than b. If a is
less than b, 1 is returned. Otherwise 0 is returned.

R
(a0 < b0) ? 0x1 : 0x0

int _mm_comile_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than or equal to b.
If a is less than or equal to b, 1 is returned. Otherwise 0 is returned.

R
(a0 <= b0) ? 0x1 : 0x0

int _mm_comigt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than b. If a is
greater than b are equal, 1 is returned. Otherwise 0 is returned.

R
(a0 > b0) ? 0x1 : 0x0

int _mm_comige_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than or equal to
b. If a is greater than or equal to b, 1 is returned. Otherwise 0 is
returned.

R
(a0 >= b0) ? 0x1 : 0x0

int _mm_comineq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not equal to b. If a and
b are not equal, 1 is returned. Otherwise 0 is returned.

R
(a0 != b0) ? 0x1 : 0x0

int _mm_ucomieq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a equal to b. If a and b
are equal, 1 is returned. Otherwise 0 is returned.

Intel(R) C++ Intrinsics Reference

74

R
(a0 == b0) ? 0x1 : 0x0

int _mm_ucomilt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than b. If a is
less than b, 1 is returned. Otherwise 0 is returned.

R
(a0 < b0) ? 0x1 : 0x0

int _mm_ucomile_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than or equal to b.
If a is less than or equal to b, 1 is returned. Otherwise 0 is returned.

R
(a0 <= b0) ? 0x1 : 0x0

int _mm_ucomigt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than b. If a is
greater than b are equal, 1 is returned. Otherwise 0 is returned.

R
(a0 > b0) ? 0x1 : 0x0

int _mm_ucomige_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than or equal to
b. If a is greater than or equal to b, 1 is returned. Otherwise 0 is
returned.

R
(a0 >= b0) ? 0x1 : 0x0

int _mm_ucomineq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not equal to b. If a and
b are not equal, 1 is returned. Otherwise 0 is returned.

R
(a0 != b0) ? 0x1 : 0x0

Floating-point Conversion Operations for Streaming SIMD Extensions 2

Each conversion intrinsic takes one data type and performs a conversion to a
different type. Some conversions such as _mm_cvtpd_ps result in a loss of precision.
The rounding mode used in such cases is determined by the value in the MXCSR

Intel(R) C++ Intrinsics Reference

75

register. The default rounding mode is round-to-nearest. Note that the rounding
mode used by the C and C++ languages when performing a type conversion is to
truncate. The _mm_cvttpd_epi32 and _mm_cvttsd_si32 intrinsics use the truncate
rounding mode regardless of the mode specified by the MXCSR register.

The conversion-operation intrinsics for Streaming SIMD Extensions 2 (SSE2) are
listed in the following table followed by detailed descriptions.

Details about each intrinsic follows the table below.

The results of each intrinsic operation are placed in registers. The information about
what is placed in each register appears in the tables below, in the detailed
explanation of each intrinsic. R, R0, R1, R2 and R3 represent the registers in which
results are placed.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic
Name

Operation Corresponding
SSE2
Instruction

_mm_cvtpd_ps Convert DP FP to SP FP CVTPD2PS

_mm_cvtps_pd Convert from SP FP to DP FP CVTPS2PD

_mm_cvtepi32_pd Convert lower integer values to DP FP CVTDQ2PD

_mm_cvtpd_epi32 Convert DP FP values to integer values CVTPD2DQ

_mm_cvtsd_si32 Convert lower DP FP value to integer value CVTSD2SI

_mm_cvtsd_ss Convert lower DP FP value to SP FP CVTSD2SS

_mm_cvtsi32_sd Convert signed integer value to DP FP CVTSI2SD

_mm_cvtss_sd Convert lower SP FP value to DP FP CVTSS2SD

_mm_cvttpd_epi32 Convert DP FP values to signed integers CVTTPD2DQ

_mm_cvttsd_si32 Convert lower DP FP to signed integer CVTTSD2SI

_mm_cvtpd_pi32 Convert two DP FP values to signed
integer values

CVTPD2PI

_mm_cvttpd_pi32 Convert two DP FP values to signed
integer values using truncate

CVTTPD2PI

_mm_cvtpi32_pd Convert two signed integer values to DP
FP

CVTPI2PD

_mm_cvtsd_f64 Extract DP FP value from first vector
element

None

__m128 _mm_cvtpd_ps(__m128d a)

Intel(R) C++ Intrinsics Reference

76

Converts the two DP FP values of a to SP FP values.

R0 R1 R2 R3
(float) a0 (float) a1 0.0 0.0

__m128d _mm_cvtps_pd(__m128 a)

Converts the lower two SP FP values of a to DP FP values.

R0 R1
(double) a0 (double) a1

__m128d _mm_cvtepi32_pd(__m128i a)

Converts the lower two signed 32-bit integer values of a to DP FP values.

R0 R1
(double) a0 (double) a1

__m128i _mm_cvtpd_epi32(__m128d a)

Converts the two DP FP values of a to 32-bit signed integer values.

R0 R1 R2 R3
(int) a0 (int) a1 0x0 0x0

int _mm_cvtsd_si32(__m128d a)

Converts the lower DP FP value of a to a 32-bit signed integer value.

R
(int) a0

__m128 _mm_cvtsd_ss(__m128 a, __m128d b)

Converts the lower DP FP value of b to an SP FP value. The upper SP FP values in a
are passed through.

R0 R1 R2 R3
(float) b0 a1 a2 a3

__m128d _mm_cvtsi32_sd(__m128d a, int b)

Converts the signed integer value in b to a DP FP value. The upper DP FP value in a
is passed through.

Intel(R) C++ Intrinsics Reference

77

R0 R1
(double) b a1

__m128d _mm_cvtss_sd(__m128d a, __m128 b)

Converts the lower SP FP value of b to a DP FP value. The upper value DP FP value in
a is passed through.

R0 R1
(double) b0 a1

__m128i _mm_cvttpd_epi32(__m128d a)

Converts the two DP FP values of a to 32-bit signed integers using truncate.

R0 R1 R2 R3

(int) a0 (int) a1 0x0 0x0

int _mm_cvttsd_si32(__m128d a)

Converts the lower DP FP value of a to a 32-bit signed integer using truncate.

R

(int) a0

__m64 _mm_cvtpd_pi32(__m128d a)

Converts the two DP FP values of a to 32-bit signed integer values.

R0 R1
(int)a0 (int) a1

__m64 _mm_cvttpd_pi32(__m128d a)

Converts the two DP FP values of a to 32-bit signed integer values using truncate.

R0 R1
(int)a0 (int) a1

__m128d _mm_cvtpi32_pd(__m64 a)

Converts the two 32-bit signed integer values of a to DP FP values.

R0 R1
(double)a0 (double)a1

Intel(R) C++ Intrinsics Reference

78

_mm_cvtsd_f64(__m128d a)

This intrinsic extracts a double precision floating point value from the first vector
element of an __m128d. It does so in the most efficient manner possible in the
context used. This intrinsic does not map to any specific SSE2 instruction.

Floating-point Load Operations for Streaming SIMD Extensions 2

The following load operation intrinsics and their respective instructions are functional
in the Streaming SIMD Extensions 2 (SSE2).

The load and set operations are similar in that both initialize __m128d data. However,
the set operations take a double argument and are intended for initialization with
constants, while the load operations take a double pointer argument and are
intended to mimic the instructions for loading data from memory.

Details about each intrinsic follows the table below.

The results of each intrinsic operation are placed in registers. The information about
what is placed in each register appears in the tables below, in the detailed
explanation of each intrinsic. R0 and R1 represent the registers in which results are
placed.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

The Double Complex code sample contains examples of how to use several of these
intrinsics.

Intrinsic
Name

Operation Corresponding
SSE2
Instruction

_mm_load_pd Loads two DP FP values MOVAPD

_mm_load1_pd Loads a single DP FP value, copying to both
elements

MOVSD + shuffling

_mm_loadr_pd Loads two DP FP values in reverse order MOVAPD + shuffling

_mm_loadu_pd Loads two DP FP values MOVUPD

_mm_load_sd Loads a DP FP value, sets upper DP FP to zero MOVSD

_mm_loadh_pd Loads a DP FP value as the upper DP FP value
of the result

MOVHPD

_mm_loadl_pd Loads a DP FP value as the lower DP FP value
of the result

MOVLPD

__m128d _mm_load_pd(double const*dp)

Loads two DP FP values. The address p must be 16-byte aligned.

Intel(R) C++ Intrinsics Reference

79

R0 R1
p[0] p[1]

__m128d _mm_load1_pd(double const*dp)

 Loads a single DP FP value, copying to both elements. The address p need not be
16-byte aligned.

R0 R1
*p *p

__m128d _mm_loadr_pd(double const*dp)

Loads two DP FP values in reverse order. The address p must be 16-byte aligned.

R0 R1
p[1] p[0]

__m128d _mm_loadu_pd(double const*dp)

Loads two DP FP values. The address p need not be 16-byte aligned.

R0 R1
p[0] p[1]

__m128d _mm_load_sd(double const*dp)

Loads a DP FP value. The upper DP FP is set to zero. The address p need not be 16-
byte aligned.

R0 R1
*p 0.0

__m128d _mm_loadh_pd(__m128d a, double const*dp)

Loads a DP FP value as the upper DP FP value of the result. The lower DP FP value is
passed through from a. The address p need not be 16-byte aligned.

R0 R1
a0 *p

__m128d _mm_loadl_pd(__m128d a, double const*dp)

Loads a DP FP value as the lower DP FP value of the result. The upper DP FP value is
passed through from a. The address p need not be 16-byte aligned.

Intel(R) C++ Intrinsics Reference

80

R0 R1
*p a1

Floating-point Set Operations for Streaming SIMD Extensions 2

The following set operation intrinsics and their respective instructions are functional
in the Streaming SIMD Extensions 2 (SSE2).

The load and set operations are similar in that both initialize __m128d data. However,
the set operations take a double argument and are intended for initialization with
constants, while the load operations take a double pointer argument and are
intended to mimic the instructions for loading data from memory.

Details about each intrinsic follows the table below.

The results of each intrinsic operation are placed in registers. The information about
what is placed in each register appears in the tables below, in the detailed
explanation of each intrinsic. R0 and R1 represent the registers in which results are
placed.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic
Name

Operation Corresponding
SSE2
Instruction

_mm_set_sd Sets lower DP FP value to w and upper to
zero

Composite

_mm_set1_pd Sets two DP FP valus to w Composite

_mm_set_pd Sets lower DP FP to x and upper to w Composite

_mm_setr_pd Sets lower DP FP to w and upper to x Composite

_mm_setzero_pd Sets two DP FP values to zero XORPD

_mm_move_sd Sets lower DP FP value to the lower DP FP
value of b

MOVSD

__m128d _mm_set_sd(double w)

Sets the lower DP FP value to w and sets the upper DP FP value to zero.

R0 R1
w 0.0

__m128d _mm_set1_pd(double w)

Sets the 2 DP FP values to w.

Intel(R) C++ Intrinsics Reference

81

R0 R1
w W

__m128d _mm_set_pd(double w, double x)

Sets the lower DP FP value to x and sets the upper DP FP value to w.

R0 R1
x W

__m128d _mm_setr_pd(double w, double x)

Sets the lower DP FP value to w and sets the upper DP FP value to x.
r0 := w
r1 := x

R0 R1
w X

__m128d _mm_setzero_pd(void)

Sets the 2 DP FP values to zero.

R0 R1
0.0 0.0

__m128d _mm_move_sd(__m128d a, __m128d b)

Sets the lower DP FP value to the lower DP FP value of b. The upper DP FP value is
passed through from a.

R0 R1
b0 A1

Floating-point Store Operations for Streaming SIMD Extensions 2

The following store operation intrinsics and their respective instructions are
functional in the Streaming SIMD Extensions 2 (SSE2).

The store operations assign the initialized data to the address.

Details about each intrinsic follows the table below.

The detailed description of each intrinsic contains a table detailing the returns. In
these tables, dp[n] is an access to the n element of the result.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intel(R) C++ Intrinsics Reference

82

The Double Complex code sample contains an example of how to use the
_mm_store_pd intrinsic.

Intrinsic
Name

Operation Corresponding SSE2
Instruction

_mm_stream_pd Store MOVNTPD

_mm_store_sd Stores lower DP FP value of a MOVSD

_mm_store1_pd Stores lower DP FP value of a twice MOVAPD + shuffling

_mm_store_pd Stores two DP FP values MOVAPD

_mm_storeu_pd Stores two DP FP values MOVUPD

_mm_storer_pd Stores two DP FP values in reverse order MOVAPD + shuffling

_mm_storeh_pd Stores upper DP FP value of a MOVHPD

_mm_storel_pd Stores lower DP FP value of a MOVLPD

void _mm_store_sd(double *dp, __m128d a)

Stores the lower DP FP value of a. The address dp need not be 16-byte aligned.

*dp
a0

void _mm_store1_pd(double *dp, __m128d a)

Stores the lower DP FP value of a twice. The address dp must be 16-byte aligned.

dp[0] dp[1]
a0 a0

void _mm_store_pd(double *dp, __m128d a)

Stores two DP FP values. The address dp must be 16-byte aligned.

dp[0] dp[1]
a0 a1

void _mm_storeu_pd(double *dp, __m128d a)

Stores two DP FP values. The address dp need not be 16-byte aligned.

dp[0] dp[1]
a0 a1

Intel(R) C++ Intrinsics Reference

83

void _mm_storer_pd(double *dp, __m128d a)

Stores two DP FP values in reverse order. The address dp must be 16-byte aligned.

dp[0] dp[1]
a1 a0

void _mm_storeh_pd(double *dp, __m128d a)

Stores the upper DP FP value of a.

*dp
a1

void _mm_storel_pd(double *dp, __m128d a)

Stores the lower DP FP value of a.

*dp
a0

Integer Intrinsics

Integer Arithmetic Operations for Streaming SIMD Extensions 2

The integer arithmetic operations for Streaming SIMD Extensions 2 (SSE2) are listed
in the following table followed by their descriptions. The floating point packed
arithmetic intrinsics for SSE2 are listed in the Floating-point Arithmetic Operations
topic.

Details about each intrinsic follows the table below.

The results of each intrinsic operation are placed in registers. The information about
what is placed in each register appears in the tables below, in the detailed
explanation of each intrinsic. R, R0, R1...R15 represent the registers in which results
are placed.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic Operation Instruction
_mm_add_epi8 Addition PADDB

_mm_add_epi16 Addition PADDW

_mm_add_epi32 Addition PADDD

_mm_add_si64 Addition PADDQ

_mm_add_epi64 Addition PADDQ

Intel(R) C++ Intrinsics Reference

84

_mm_adds_epi8 Addition PADDSB

_mm_adds_epi16 Addition PADDSW

_mm_adds_epu8 Addition PADDUSB

_mm_adds_epu16 Addition PADDUSW

_mm_avg_epu8 Computes Average PAVGB

_mm_avg_epu16 Computes Average PAVGW

_mm_madd_epi16 Multiplication and Addition PMADDWD

_mm_max_epi16 Computes Maxima PMAXSW

_mm_max_epu8 Computes Maxima PMAXUB

_mm_min_epi16 Computes Minima PMINSW

_mm_min_epu8 Computes Minima PMINUB

_mm_mulhi_epi16 Multiplication PMULHW

_mm_mulhi_epu16 Multiplication PMULHUW

_mm_mullo_epi16 Multiplication PMULLW

_mm_mul_su32 Multiplication PMULUDQ

_mm_mul_epu32 Multiplication PMULUDQ

_mm_sad_epu8 Computes Difference/Adds PSADBW

_mm_sub_epi8 Subtraction PSUBB

_mm_sub_epi16 Subtraction PSUBW

_mm_sub_epi32 Subtraction PSUBD

_mm_sub_si64 Subtraction PSUBQ

_mm_sub_epi64 Subtraction PSUBQ

_mm_subs_epi8 Subtraction PSUBSB

_mm_subs_epi16 Subtraction PSUBSW

_mm_subs_epu8 Subtraction PSUBUSB

_mm_subs_epu16 Subtraction PSUBUSW

__mm128i _mm_add_epi8(__m128i a, __m128i b)

Adds the 16 signed or unsigned 8-bit integers in a to the 16 signed or unsigned 8-bit
integers in b.

Intel(R) C++ Intrinsics Reference

85

R0 R1 ... R15
a0 + b0 a1 + b1; ... a15 + b15

__mm128i _mm_add_epi16(__m128i a, __m128i b)

Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or unsigned 16-bit
integers in b.

R0 R1 ... R7
a0 + b0 a1 + b1 ... a7 + b7

__m128i _mm_add_epi32(__m128i a, __m128i b)

Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or unsigned 32-bit
integers in b.

R0 R1 R2 R3
a0 + b0 a1 + b1 a2 + b2 a3 + b3

__m64 _mm_add_si64(__m64 a, __m64 b)

Adds the signed or unsigned 64-bit integer a to the signed or unsigned 64-bit integer
b.

R0
a + b

__m128i _mm_add_epi64(__m128i a, __m128i b)

Adds the 2 signed or unsigned 64-bit integers in a to the 2 signed or unsigned 64-bit
integers in b.

R0 R1
a0 + b0 a1 + b1

__m128i _mm_adds_epi8(__m128i a, __m128i b)

Adds the 16 signed 8-bit integers in a to the 16 signed 8-bit integers in b using
saturating arithmetic.

R0 R1 ... R15
SignedSaturate (a0 +
b0)

SignedSaturate (a1 +
b1)

... SignedSaturate (a15 +
b15)

__m128i _mm_adds_epi16(__m128i a, __m128i b)

Intel(R) C++ Intrinsics Reference

86

Adds the 8 signed 16-bit integers in a to the 8 signed 16-bit integers in b using
saturating arithmetic.

R0 R1 ... R7
SignedSaturate (a0 +
b0)

SignedSaturate (a1 +
b1)

... SignedSaturate (a7 +
b7)

__m128i _mm_adds_epu8(__m128i a, __m128i b)

Adds the 16 unsigned 8-bit integers in a to the 16 unsigned 8-bit integers in b using
saturating arithmetic.

R0 R1 ... R15
UnsignedSaturate (a0
+ b0)

UnsignedSaturate (a1
+ b1)

... UnsignedSaturate (a15
+ b15)

__m128i _mm_adds_epu16(__m128i a, __m128i b)

Adds the 8 unsigned 16-bit integers in a to the 8 unsigned 16-bit integers in b using
saturating arithmetic.

R0 R1 ... R7
UnsignedSaturate (a0
+ b0)

UnsignedSaturate (a1
+ b1)

... UnsignedSaturate (a7
+ b7)

__m128i _mm_avg_epu8(__m128i a, __m128i b)

Computes the average of the 16 unsigned 8-bit integers in a and the 16 unsigned 8-
bit integers in b and rounds.

R0 R1 ... R15
(a0 + b0) / 2 (a1 + b1) / 2 ... (a15 + b15) / 2

__m128i _mm_avg_epu16(__m128i a, __m128i b)

Computes the average of the 8 unsigned 16-bit integers in a and the 8 unsigned 16-
bit integers in b and rounds.

R0 R1 ... R7
(a0 + b0) / 2 (a1 + b1) / 2 ... (a7 + b7) / 2

__m128i _mm_madd_epi16(__m128i a, __m128i b)

Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit integers from b.
Adds the signed 32-bit integer results pairwise and packs the 4 signed 32-bit integer
results.

Intel(R) C++ Intrinsics Reference

87

R0 R1 R2 R3
(a0 * b0) + (a1
* b1)

(a2 * b2) + (a3
* b3)

(a4 * b4) + (a5
* b5)

(a6 * b6) + (a7
* b7)

__m128i _mm_max_epi16(__m128i a, __m128i b)

Computes the pairwise maxima of the 8 signed 16-bit integers from a and the 8
signed 16-bit integers from b.

R0 R1 ... R7
max(a0, b0) max(a1, b1) ... max(a7, b7)

__m128i _mm_max_epu8(__m128i a, __m128i b)

Computes the pairwise maxima of the 16 unsigned 8-bit integers from a and the 16
unsigned 8-bit integers from b.

R0 R1 ... R15
max(a0, b0) max(a1, b1) ... max(a15, b15)

__m128i _mm_min_epi16(__m128i a, __m128i b)

Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8
signed 16-bit integers from b.

R0 R1 ... R7
min(a0, b0) min(a1, b1) ... min(a7, b7)

__m128i _mm_min_epu8(__m128i a, __m128i b)

Computes the pairwise minima of the 16 unsigned 8-bit integers from a and the 16
unsigned 8-bit integers from b.

R0 R1 ... R15
min(a0, b0) min(a1, b1) ... min(a15, b15)

__m128i _mm_mulhi_epi16(__m128i a, __m128i b)

Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit integers from b.
Packs the upper 16-bits of the 8 signed 32-bit results.

R0 R1 ... R7
(a0 * b0)[31:16] (a1 * b1)[31:16] ... (a7 * b7)[31:16]

Intel(R) C++ Intrinsics Reference

88

__m128i _mm_mulhi_epu16(__m128i a, __m128i b)

Multiplies the 8 unsigned 16-bit integers from a by the 8 unsigned 16-bit integers
from b. Packs the upper 16-bits of the 8 unsigned 32-bit results.

R0 R1 ... R7
(a0 * b0)[31:16] (a1 * b1)[31:16] ... (a7 * b7)[31:16]

__m128i_mm_mullo_epi16(__m128i a, __m128i b)

Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or
unsigned 16-bit integers from b. Packs the lower 16-bits of the 8 signed or unsigned
32-bit results.

R0 R1 ... R7
(a0 * b0)[15:0] (a1 * b1)[15:0] ... (a7 * b7)[15:0]

__m64 _mm_mul_su32(__m64 a, __m64 b)

Multiplies the lower 32-bit integer from a by the lower 32-bit integer from b, and
returns the 64-bit integer result.

R0
a0 * b0

__m128i _mm_mul_epu32(__m128i a, __m128i b)

Multiplies 2 unsigned 32-bit integers from a by 2 unsigned 32-bit integers from b.
Packs the 2 unsigned 64-bit integer results.

R0 R1
a0 * b0 a2 * b2

__m128i _mm_sad_epu8(__m128i a, __m128i b)

Computes the absolute difference of the 16 unsigned 8-bit integers from a and the
16 unsigned 8-bit integers from b. Sums the upper 8 differences and lower 8
differences, and packs the resulting 2 unsigned 16-bit integers into the upper and
lower 64-bit elements.

R0 R1 R2 R3 R4 R5 R6 R7
abs(a0 - b0) + abs(a1
- b1) +...+ abs(a7 -
b7)

0x0 0x0 0x0 abs(a8 - b8) + abs(a9
- b9) +...+ abs(a15 -
b15)

0x0 0x0 0x0

__m128i _mm_sub_epi8(__m128i a, __m128i b)

Intel(R) C++ Intrinsics Reference

89

Subtracts the 16 signed or unsigned 8-bit integers of b from the 16 signed or
unsigned 8-bit integers of a.

R0 R1 ... R15
a0 - b0 a1 – b1 ... a15 - b15

__m128i_mm_sub_epi16(__m128i a, __m128i b)

Subtracts the 8 signed or unsigned 16-bit integers of b from the 8 signed or
unsigned 16-bit integers of a.

R0 R1 ... R7
a0 - b0 a1 – b1 ... a7 - b7

__m128i _mm_sub_epi32(__m128i a, __m128i b)

Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or
unsigned 32-bit integers of a.

R0 R1 R2 R3
a0 - b0 a1 – b1 a2 - b2 a3 - b3

__m64 _mm_sub_si64 (__m64 a, __m64 b)

Subtracts the signed or unsigned 64-bit integer b from the signed or unsigned 64-bit
integer a.

R
a - b

__m128i _mm_sub_epi64(__m128i a, __m128i b)

Subtracts the 2 signed or unsigned 64-bit integers in b from the 2 signed or
unsigned 64-bit integers in a.

R0 R1
a0 - b0 a1 – b1

__m128i _mm_subs_epi8(__m128i a, __m128i b)

Subtracts the 16 signed 8-bit integers of b from the 16 signed 8-bit integers of a
using saturating arithmetic.

R0 R1 ... R15
SignedSaturate (a0 -
b0)

SignedSaturate (a1 -
b1)

... SignedSaturate (a15 -
b15)

Intel(R) C++ Intrinsics Reference

90

__m128i _mm_subs_epi16(__m128i a, __m128i b)

Subtracts the 8 signed 16-bit integers of b from the 8 signed 16-bit integers of a
using saturating arithmetic.

R0 R1 ... R15
SignedSaturate (a0 -
b0)

SignedSaturate (a1 -
b1)

... SignedSaturate (a7 -
b7)

__m128i _mm_subs_epu8 (__m128i a, __m128i b)

Subtracts the 16 unsigned 8-bit integers of b from the 16 unsigned 8-bit integers of
a using saturating arithmetic.

R0 R1 ... R15
UnsignedSaturate (a0
- b0)

UnsignedSaturate (a1
- b1)

... UnsignedSaturate (a15
- b15)

__m128i _mm_subs_epu16 (__m128i a, __m128i b)

Subtracts the 8 unsigned 16-bit integers of b from the 8 unsigned 16-bit integers of
a using saturating arithmetic.

R0 R1 ... R7
UnsignedSaturate (a0
- b0)

UnsignedSaturate (a1
- b1)

... UnsignedSaturate (a7
- b7)

Integer Logical Operations for Streaming SIMD Extensions 2

The following four logical-operation intrinsics and their respective instructions are
functional as part of Streaming SIMD Extensions 2 (SSE2).

Details about each intrinsic follows the table below.

The results of each intrinsic operation are placed in register R. The information about
what is placed in each register appears in the tables below, in the detailed
explanation of each intrinsic.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic
Name

Operation Corresponding SSE2
Instruction

_mm_and_si128 Computes AND PAND

_mm_andnot_si128 Computes AND and NOT PANDN

_mm_or_si128 Computes OR POR

_mm_xor_si128 Computes XOR PXOR

Intel(R) C++ Intrinsics Reference

91

__m128i _mm_and_si128(__m128i a, __m128i b)

Computes the bitwise AND of the 128-bit value in a and the 128-bit value in b.

R0
a & b

__m128i _mm_andnot_si128(__m128i a, __m128i b)

Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the 128-
bit value in a.

R0
(~a) & b

__m128i _mm_or_si128(__m128i a, __m128i b)

Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b.

R0
a | b

__m128i _mm_xor_si128(__m128i a, __m128i b)

Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in b.

R0
a ^ b

Integer Shift Operations for Streaming SIMD Extensions 2

The shift-operation intrinsics for Streaming SIMD Extensions 2 (SSE2) and the
description for each are listed in the following table.

Details about each intrinsic follows the table below.

The results of each intrinsic operation are placed in a register. This register is
illustrated for each intrinsic with R and R0-R7. R and R0 R7 each represent one of
the pieces of the result register.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Note

The count argument is one shift count that applies to all elements of the operand
being shifted. It is not a vector shift count that shifts each element by a different
amount.

Intel(R) C++ Intrinsics Reference

92

Intrinsic Operation Shift
Type

Corresponding
Instruction

_mm_slli_si128 Shift left Logical PSLLDQ

_mm_slli_epi16 Shift left Logical PSLLW

_mm_sll_epi16 Shift left Logical PSLLW

_mm_slli_epi32 Shift left Logical PSLLD

_mm_sll_epi32 Shift left Logical PSLLD

_mm_slli_epi64 Shift left Logical PSLLQ

_mm_sll_epi64 Shift left Logical PSLLQ

_mm_srai_epi16 Shift right Arithmetic PSRAW

_mm_sra_epi16 Shift right Arithmetic PSRAW

_mm_srai_epi32 Shift right Arithmetic PSRAD

_mm_sra_epi32 Shift right Arithmetic PSRAD

_mm_srli_si128 Shift right Logical PSRLDQ

_mm_srli_epi16 Shift right Logical PSRLW

_mm_srl_epi16 Shift right Logical PSRLW

_mm_srli_epi32 Shift right Logical PSRLD

_mm_srl_epi32 Shift right Logical PSRLD

_mm_srli_epi64 Shift right Logical PSRLQ

_mm_srl_epi64 Shift right Logical PSRLQ

__m128i _mm_slli_si128(__m128i a, int imm)

Shifts the 128-bit value in a left by imm bytes while shifting in zeros. imm must be an
immediate.

R

a << (imm * 8)

__m128i _mm_slli_epi16(__m128i a, int count)

Shifts the 8 signed or unsigned 16-bit integers in a left by count bits
while shifting in zeros.

R0 R1 ... R7
a0 << count a1 << count ... a7 << count

Intel(R) C++ Intrinsics Reference

93

__m128i _mm_sll_epi16(__m128i a, __m128i count)

Shifts the 8 signed or unsigned 16-bit integers in a left by count bits
while shifting in zeros.

R0 R1 ... R7
a0 << count a1 << count ... a7 << count

__m128i _mm_slli_epi32(__m128i a, int count)

Shifts the 4 signed or unsigned 32-bit integers in a left by count bits
while shifting in zeros.

R0 R1 R2 R3
a0 << count a1 << count a2 << count a3 << count

__m128i _mm_sll_epi32(__m128i a, __m128i count)

Shifts the 4 signed or unsigned 32-bit integers in a left by count bits
while shifting in zeros.

R0 R1 R2 R3
a0 << count a1 << count a2 << count a3 << count

__m128i _mm_slli_epi64(__m128i a, int count)

Shifts the 2 signed or unsigned 64-bit integers in a left by count bits
while shifting in zeros.

R0 R1
a0 << count a1 << count

__m128i _mm_sll_epi64(__m128i a, __m128i count)

Shifts the 2 signed or unsigned 64-bit integers in a left by count bits
while shifting in zeros.

R0 R1
a0 << count a1 << count

__m128i _mm_srai_epi16(__m128i a, int count)

Shifts the 8 signed 16-bit integers in a right by count bits while
shifting in the sign bit.

R0 R1 ... R7
a0 >> count a1 >> count ... a7 >> count

Intel(R) C++ Intrinsics Reference

94

__m128i _mm_sra_epi16(__m128i a, __m128i count)

Shifts the 8 signed 16-bit integers in a right by count bits while
shifting in the sign bit.

R0 R1 ... R7
a0 >> count a1 >> count ... a7 >> count

__m128i _mm_srai_epi32(__m128i a, int count)

Shifts the 4 signed 32-bit integers in a right by count bits while
shifting in the sign bit.

R0 R1 R2 R3
a0 >> count a1 >> count a2 >> count a3 >> count

__m128i _mm_sra_epi32(__m128i a, __m128i count)

Shifts the 4 signed 32-bit integers in a right by count bits while
shifting in the sign bit.

R0 R1 R2 R3
a0 >> count a1 >> count a2 >> count a3 >> count

__m128i _mm_srli_si128(__m128i a, int imm)

Shifts the 128-bit value in a right by imm bytes while shifting in zeros.
imm must be an immediate.

R
srl(a, imm*8)

__m128i _mm_srli_epi16(__m128i a, int count)

Shifts the 8 signed or unsigned 16-bit integers in a right by count bits
while shifting in zeros.

R0 R1 ... R7
srl(a0, count) srl(a1, count) ... srl(a7, count)

__m128i _mm_srl_epi16(__m128i a, __m128i count)

Shifts the 8 signed or unsigned 16-bit integers in a right by count bits
while shifting in zeros.

R0 R1 ... R7
srl(a0, count) srl(a1, count) ... srl(a7, count)

__m128i _mm_srli_epi32(__m128i a, int count)

Intel(R) C++ Intrinsics Reference

95

Shifts the 4 signed or unsigned 32-bit integers in a right by count bits
while shifting in zeros.

R0 R1 R2 R3
srl(a0, count) srl(a1, count) srl(a2, count) srl(a3, count)

__m128i _mm_srl_epi32(__m128i a, __m128i count)

Shifts the 4 signed or unsigned 32-bit integers in a right by count bits
while shifting in zeros.

R0 R1 R2 R3
srl(a0, count) srl(a1, count) srl(a2, count) srl(a3, count)

__m128i _mm_srli_epi64(__m128i a, int count)

Shifts the 2 signed or unsigned 64-bit integers in a right by count bits
while shifting in zeros.

R0 R1
srl(a0, count) srl(a1, count)

__m128i _mm_srl_epi64(__m128i a, __m128i count)

Shifts the 2 signed or unsigned 64-bit integers in a right by count bits
while shifting in zeros.

R0 R1
srl(a0, count) srl(a1, count)

Integer Comparison Operations for Streaming SIMD Extensions 2

The comparison intrinsics for Streaming SIMD Extensions 2 (SSE2) and descriptions
for each are listed in the following table.

Details about each intrinsic follows the table below.

The results of each intrinsic operation are placed in registers. The information about
what is placed in each register appears in the tables below, in the detailed
explanation of each intrinsic. R, R0, R1...R15 represent the registers in which results
are placed.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic Name Operation Instruction
_mm_cmpeq_epi8 Equality PCMPEQB

_mm_cmpeq_epi16 Equality PCMPEQW

Intel(R) C++ Intrinsics Reference

96

_mm_cmpeq_epi32 Equality PCMPEQD

_mm_cmpgt_epi8 Greater Than PCMPGTB

_mm_cmpgt_epi16 Greater Than PCMPGTW

_mm_cmpgt_epi32 Greater Than PCMPGTD

_mm_cmplt_epi8 Less Than PCMPGTBr

_mm_cmplt_epi16 Less Than PCMPGTWr

_mm_cmplt_epi32 Less Than PCMPGTDr

__m128i _mm_cmpeq_epi8(__m128i a, __m128i b)

Compares the 16 signed or unsigned 8-bit integers in a and the 16 signed or
unsigned 8-bit integers in b for equality.

R0 R1 ... R15
(a0 == b0) ? 0xff :
0x0

(a1 == b1) ? 0xff :
0x0

... (a15 == b15) ? 0xff :
0x0

__m128i _mm_cmpeq_epi16(__m128i a, __m128i b)

Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or unsigned
16-bit integers in b for equality.

R0 R1 ... R7
(a0 == b0) ? 0xffff :
0x0

(a1 == b1) ? 0xffff :
0x0

... (a7 == b7) ? 0xffff :
0x0

__m128i _mm_cmpeq_epi32(__m128i a, __m128i b)

Compares the 4 signed or unsigned 32-bit integers in a and the 4 signed or unsigned
32-bit integers in b for equality.

R0 R1 R2 R3
(a0 == b0) ?
0xffffffff : 0x0

(a1 == b1) ?
0xffffffff : 0x0

(a2 == b2) ?
0xffffffff : 0x0

(a3 == b3) ?
0xffffffff : 0x0

__m128i _mm_cmpgt_epi8(__m128i a, __m128i b)

Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers in b for
greater than.

Intel(R) C++ Intrinsics Reference

97

R0 R1 ... R15
(a0 > b0) ? 0xff :
0x0

(a1 > b1) ? 0xff :
0x0

... (a15 > b15) ? 0xff :
0x0

__m128i _mm_cmpgt_epi16(__m128i a, __m128i b)

Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers in b for
greater than.

R0 R1 ... R7
(a0 > b0) ? 0xffff :
0x0

(a1 > b1) ? 0xffff :
0x0

... (a7 > b7) ? 0xffff :
0x0

__m128i _mm_cmpgt_epi32(__m128i a, __m128i b)

Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers in b for
greater than.

R0 R1 R2 R3
(a0 > b0) ?
0xffffffff : 0x0

(a1 > b1) ?
0xffffffff : 0x0

(a2 > b2) ?
0xffffffff : 0x0

(a3 > b3) ?
0xffffffff : 0x0

__m128i _mm_cmplt_epi8(__m128i a, __m128i b)

Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers in b for
less than.

R0 R1 ... R15
(a0 < b0) ? 0xff :
0x0

(a1 < b1) ? 0xff :
0x0

... (a15 < b15) ? 0xff :
0x0

__m128i _mm_cmplt_epi16(__m128i a, __m128i b)

Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers in b for
less than.

R0 R1 ... R7
(a0 < b0) ? 0xffff :
0x0

(a1 < b1) ? 0xffff :
0x0

... (a7 < b7) ? 0xffff :
0x0

__m128i _mm_cmplt_epi32(__m128i a, __m128i b)

Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers in b for
less than.

R0 R1 R2 R3
(a0 < b0) ?
0xffffffff : 0x0

(a1 < b1) ?
0xffffffff : 0x0

(a2 < b2) ?
0xffffffff : 0x0

(a3 < b3) ?
0xffffffff : 0x0

Intel(R) C++ Intrinsics Reference

98

Integer Conversion Operations for Streaming SIMD Extensions 2

The following conversion intrinsics and their respective instructions are functional in
the Streaming SIMD Extensions 2 (SSE2).

Details about each intrinsic follows the table below.

The results of each intrinsic operation are placed in registers. The information about
what is placed in each register appears in the tables below, in the detailed
explanation of each intrinsic. R, R0, R1, R2 and R3 represent the registers in which
results are placed.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic Name Operation Instruction
_mm_cvtsi64_sd Convert and pass through CVTSI2SD

_mm_cvtsd_si64 Convert according to rounding CVTSD2SI

_mm_cvttsd_si64 Convert using truncation CVTTSD2SI

_mm_cvtepi32_ps Convert to SP FP None

_mm_cvtps_epi32 Convert from SP FP None

_mm_cvttps_epi32 Convert from SP FP using truncate None

__m128d _mm_cvtsi64_sd(__m128d a, __int64 b)

Converts the signed 64-bit integer value in b to a DP FP value. The upper DP FP
value in a is passed through.

R0 R1
(double)b a1

__int64 _mm_cvtsd_si64(__m128d a)

Converts the lower DP FP value of a to a 64-bit signed integer value according to the
current rounding mode.

R
(__int64) a0

__int64 _mm_cvttsd_si64(__m128d a)

Converts the lower DP FP value of a to a 64-bit signed integer value using truncation.

Intel(R) C++ Intrinsics Reference

99

R
(__int64) a0

__m128 _mm_cvtepi32_ps(__m128i a)

Converts the 4 signed 32-bit integer values of a to SP FP values.

R0 R1 R2 R3
(float) a0 (float) a1 (float) a2 (float) a3

__m128i _mm_cvtps_epi32(__m128 a)

Converts the 4 SP FP values of a to signed 32-bit integer values.

R0 R1 R2 R3
(int) a0 (int) a1 (int) a2 (int) a3

__m128i _mm_cvttps_epi32(__m128 a)

Converts the 4 SP FP values of a to signed 32 bit integer values using truncate.

R0 R1 R2 R3
(int) a0 (int) a1 (int) a2 (int) a3

Integer Move Operations for Streaming SIMD Extensions 2

The following conversion intrinsics and their respective instructions are functional in
the Streaming SIMD Extensions 2 (SSE2).

Details about each intrinsic follows the table below.

The results of each intrinsic operation are placed in registers. The information about
what is placed in each register appears in the tables below, in the detailed
explanation of each intrinsic. R, R0, R1, R2 and R3 represent the registers in which
results are placed.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic Name Operation Instruction
_mm_cvtsi32_si128 Move and zero MOVD

_mm_cvtsi64_si128 Move and zero MOVQ

_mm_cvtsi128_si32 Move lowest 32 bits MOVD

_mm_cvtsi128_si64 Move lowest 64 bits MOVQ

Intel(R) C++ Intrinsics Reference

100

__m128i _mm_cvtsi32_si128(int a)

Moves 32-bit integer a to the least significant 32 bits of an __m128i object. Zeroes
the upper 96 bits of the __m128i object.

R0 R1 R2 R3
a 0x0 0x0 0x0

__m128i _mm_cvtsi64_si128(__int64 a)

Moves 64-bit integer a to the lower 64 bits of an __m128i object, zeroing the upper
bits.

R0 R1
a 0x0

int _mm_cvtsi128_si32(__m128i a)

Moves the least significant 32 bits of a to a 32-bit integer.

R
a0

__int64 _mm_cvtsi128_si64(__m128i a)

Moves the lower 64 bits of a to a 64-bit integer.

R
a0

Integer Load Operations for Streaming SIMD Extensions 2

The following load operation intrinsics and their respective instructions are functional
in the Streaming SIMD Extensions 2 (SSE2).

Details about each intrinsic follows the table below.

The results of each intrinsic operation are placed in registers. The information about
what is placed in each register appears in the tables below, in the detailed
explanation of each intrinsic. R, R0 and R1 represent the registers in which results
are placed.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic Name Operation Instruction
mm_load_si128 Load MOVDQA

_mm_loadu_si128 Load MOVDQU

Intel(R) C++ Intrinsics Reference

101

_mm_loadl_epi64 Load and zero MOVQ

__m128i _mm_load_si128(__m128i const*p)

Loads 128-bit value. Address p must be 16-byte aligned.

R
*p

__m128i _mm_loadu_si128(__m128i const*p)

Loads 128-bit value. Address p not need be 16-byte aligned.

R
*p

__m128i _mm_loadl_epi64(__m128i const*p)

Load the lower 64 bits of the value pointed to by p into the lower 64 bits of the result,
zeroing the upper 64 bits of the result.

R0 R1
*p[63:0] 0x0

Integer Set Operations for SSE2

The following set operation intrinsics and their respective instructions are functional
in the Streaming SIMD Extensions 2 (SSE2).

Details about each intrinsic follows the table below.

The results of each intrinsic operation are placed in registers. The information about
what is placed in each register appears in the tables below, in the detailed
explanation of each intrinsic. R, R0, R1...R15 represent the registers in which results
are placed.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic Name Operation Corresponding SSE2
Instruction

_mm_set_epi64 Set two integer values

_mm_set_epi32 Set four integer values

_mm_set_epi16 Set eight integer values

Intel(R) C++ Intrinsics Reference

102

_mm_set_epi8 Set sixteen integer values

_mm_set1_epi64 Set two integer values

_mm_set1_epi32 Set four integer values

_mm_set1_epi16 Set eight integer values

_mm_set1_epi8 Set sixteen integer values

_mm_setr_epi64 Set two integer values in reverse
order

_mm_setr_epi32 Set four integer values in
reverse order

_mm_setr_epi16 Set eight integer values in
reverse order

_mm_setr_epi8 Set sixteen integer values in
reverse order

_mm_setzero_si128 Set to zero

__m128i _mm_set_epi64(__m64 q1, __m64 q0)

Sets the 2 64-bit integer values.

R0 R1
q0 q1

__m128i _mm_set_epi32(int i3, int i2, int i1, int i0)

Sets the 4 signed 32-bit integer values.

R0 R1 R2 R3
i0 i1 i2 i3

__m128i _mm_set_epi16(short w7, short w6, short w5, short w4, short w3,
short w2, short w1, short w0)

Sets the 8 signed 16-bit integer values.

R0 R1 ... R7
w0 w1 ... w7

__m128i _mm_set_epi8(char b15, char b14, char b13, char b12, char b11,
char b10, char b9, char b8, char b7, char b6, char b5, char b4, char b3,
char b2, char b1, char b0)

Sets the 16 signed 8-bit integer values.

Intel(R) C++ Intrinsics Reference

103

R0 R1 ... R15
b0 b1 ... b15

__m128i _mm_set1_epi64(__m64 q)

Sets the 2 64-bit integer values to q.

R0 R1
q q

__m128i _mm_set1_epi32(int i)

Sets the 4 signed 32-bit integer values to i.

R0 R1 R2 R3
i i i i

__m128i _mm_set1_epi16(short w)

Sets the 8 signed 16-bit integer values to w.

R0 R1 ... R7
w w w w

__m128i _mm_set1_epi8(char b)

Sets the 16 signed 8-bit integer values to b.

R0 R1 ... R15
b b b b

__m128i _mm_setr_epi64(__m64 q0, __m64 q1)

Sets the 2 64-bit integer values in reverse order.

R0 R1
q0 q1

__m128i _mm_setr_epi32(int i0, int i1, int i2, int i3)

Sets the 4 signed 32-bit integer values in reverse order.

R0 R1 R2 R3
i0 i1 i2 i3

__m128i _mm_setr_epi16(short w0, short w1, short w2, short w3, short w4,
short w5, short w6, short w7)

Intel(R) C++ Intrinsics Reference

104

Sets the 8 signed 16-bit integer values in reverse order.

R0 R1 ... R7
w0 w1 ... w7

__m128i _mm_setr_epi8(char b15, char b14, char b13, char b12, char b11,
char b10, char b9, char b8, char b7, char b6, char b5, char b4, char b3,
char b2, char b1, char b0)

Sets the 16 signed 8-bit integer values in reverse order.

R0 R1 ... R15
b0 b1 ... b15

__m128i _mm_setzero_si128()

Sets the 128-bit value to zero.

R
0x0

Integer Store Operations for Streaming SIMD Extensions 2

The following store operation intrinsics and their respective instructions are
functional in the Streaming SIMD Extensions 2 (SSE2).

The detailed description of each intrinsic contains a table detailing the returns. In
these tables, p is an access to the result.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic Name Operation Corresponding SSE2 Instruction
_mm_stream_si128 Store MOVNTDQ

_mm_stream_si32 Store MOVNTI

_mm_store_si128 Store MOVDQA

_mm_storeu_si128 Store MOVDQU

_mm_maskmoveu_si128 Conditional store MASKMOVDQU

_mm_storel_epi64 Store lowest MOVQ

Intel(R) C++ Intrinsics Reference

105

void _mm_stream_si128(__m128i *p, __m128i a)

Stores the data in a to the address p without polluting the caches. If the cache line
containing address p is already in the cache, the cache will be updated. Address p
must be 16 byte aligned.

*p
a

void _mm_stream_si32(int *p, int a)

Stores the data in a to the address p without polluting the caches. If the cache line
containing address p is already in the cache, the cache will be updated.

*p
a

void _mm_store_si128(__m128i *p, __m128i b)

Stores 128-bit value. Address p must be 16 byte aligned.

*p
a

void _mm_storeu_si128(__m128i *p, __m128i b)

Stores 128-bit value. Address p need not be 16-byte aligned.

*p
a

void _mm_maskmoveu_si128(__m128i d, __m128i n, char *p)

Conditionally store byte elements of d to address p. The high bit of each byte in the
selector n determines whether the corresponding byte in d will be stored. Address p
need not be 16-byte aligned.

if (n0[7]) if (n1[7] ... if (n15[7])
p[0] := d0 p[1] := d1 ... p[15] := d15

void _mm_storel_epi64(__m128i *p, __m128i a)

Stores the lower 64 bits of the value pointed to by p.

*p[63:0]
a0

Intel(R) C++ Intrinsics Reference

106

Miscellaneous Functions and Intrinsics

Cacheability Support Operations for Streaming SIMD Extensions
2

The prototypes for Streaming SIMD Extensions 2 (SSE2) intrinsics are in the
emmintrin.h header file.

Intrinsic Name Operation Corresponding SSE2 Instruction
_mm_stream_pd Store MOVNTPD

_mm_stream_si128 Store MOVNTDQ

_mm_stream_si32 Store MOVNTI

_mm_clflush Flush CLFLUSH

_mm_lfence Guarantee visibility LFENCE

_mm_mfence Guarantee visibility MFENCE

void _mm_stream_pd(double *p, __m128d a)

Stores the data in a to the address p without polluting caches. The address p must
be 16-byte aligned. If the cache line containing address p is already in the cache, the
cache will be updated.
p[0] := a0
p[1] := a1

p[0] p[1]
a0 a1

void _mm_stream_si128(__m128i *p, __m128i a)

Stores the data in a to the address p without polluting the caches. If the cache line
containing address p is already in the cache, the cache will be updated. Address p
must be 16-byte aligned.

*p
a

void _mm_stream_si32(int *p, int a)

Stores the data in a to the address p without polluting the caches. If the cache line
containing address p is already in the cache, the cache will be updated.

*p

Intel(R) C++ Intrinsics Reference

107

a

void _mm_clflush(void const*p)

Cache line containing p is flushed and invalidated from all caches in the coherency
domain.

void _mm_lfence(void)

Guarantees that every load instruction that precedes, in program order, the load
fence instruction is globally visible before any load instruction which follows the fence
in program order.

void _mm_mfence(void)

Guarantees that every memory access that precedes, in program order, the memory
fence instruction is globally visible before any memory instruction which follows the
fence in program order.

Miscellaneous Operations for Streaming SIMD Extensions 2

The miscellaneous intrinsics for Streaming SIMD Extensions 2 (SSE2) are listed in
the following table followed by their descriptions.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic Operation Corresponding
Instruction

_mm_packs_epi16 Packed Saturation PACKSSWB

_mm_packs_epi32 Packed Saturation PACKSSDW

_mm_packus_epi16 Packed Saturation PACKUSWB

_mm_extract_epi16 Extraction PEXTRW

_mm_insert_epi16 Insertion PINSRW

_mm_movemask_epi8 Mask Creation PMOVMSKB

_mm_shuffle_epi32 Shuffle PSHUFD

_mm_shufflehi_epi16 Shuffle PSHUFHW

_mm_shufflelo_epi16 Shuffle PSHUFLW

_mm_unpackhi_epi8 Interleave PUNPCKHBW

_mm_unpackhi_epi16 Interleave PUNPCKHWD

_mm_unpackhi_epi32 Interleave PUNPCKHDQ

_mm_unpackhi_epi64 Interleave PUNPCKHQDQ

_mm_unpacklo_epi8 Interleave PUNPCKLBW

Intel(R) C++ Intrinsics Reference

108

_mm_unpacklo_epi16 Interleave PUNPCKLWD

_mm_unpacklo_epi32 Interleave PUNPCKLDQ

_mm_unpacklo_epi64 Interleave PUNPCKLQDQ

_mm_movepi64_pi64 Move MOVDQ2Q

_mm_movpi64_epi64 Move MOVDQ2Q

_mm_move_epi64 Move MOVQ

_mm_unpackhi_pd Interleave UNPCKHPD

_mm_unpacklo_pd Interleave UNPCKLPD

_mm_movemask_pd Create mask MOVMSKPD

_mm_shuffle_pd Select values SHUFPD

__m128i _mm_packs_epi16(__m128i a, __m128i b)

Packs the 16 signed 16-bit integers from a and b into 8-bit integers and saturates.

R0 ... R7 R8 ... R15
Signed
Saturate(a0)

... Signed
Saturate(a7)

Signed
Saturate(b0)

... Signed
Saturate(b7)

__m128i _mm_packs_epi32(__m128i a, __m128i b)

Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers and
saturates.

R0 ... R3 R4 ... R7
Signed
Saturate(a0)

... Signed
Saturate(a3)

Signed
Saturate(b0)

... Signed
Saturate(b3)

__m128i _mm_packus_epi16(__m128i a, __m128i b)

Packs the 16 signed 16-bit integers from a and b into 8-bit unsigned integers and
saturates.

R0 ... R7 R8 ... R15
Unsigned
Saturate(a0)

... Unsigned
Saturate(a7)

Unsigned
Saturate(b0)

... Unsigned
Saturate(b15)

int _mm_extract_epi16(__m128i a, int imm)

Extracts the selected signed or unsigned 16-bit integer from a and zero extends. The
selector imm must be an immediate.

Intel(R) C++ Intrinsics Reference

109

R0
(imm == 0) ? a0: ((imm == 1) ? a1: ... (imm==7) ? a7)

__m128i _mm_insert_epi16(__m128i a, int b, int imm)

Inserts the least significant 16 bits of b into the selected 16-bit integer of a. The
selector imm must be an immediate.

R0 R1 ... R7
(imm == 0) ? b : a0; (imm == 1) ? b : a1; ... (imm == 7) ? b : a7;

int _mm_movemask_epi8(__m128i a)

Creates a 16-bit mask from the most significant bits of the 16 signed or unsigned 8-
bit integers in a and zero extends the upper bits.

R0
a15[7] << 15 | a14[7] << 14 | ... a1[7] << 1 | a0[7]

__m128i _mm_shuffle_epi32(__m128i a, int imm)

Shuffles the 4 signed or unsigned 32-bit integers in a as specified by imm. The shuffle
value, imm, must be an immediate. See Macro Function for Shuffle for a description
of shuffle semantics.

__m128i _mm_shufflehi_epi16(__m128i a, int imm)

Shuffles the upper 4 signed or unsigned 16-bit integers in a as specified by imm. The
shuffle value, imm, must be an immediate. See Macro Function for Shuffle for a
description of shuffle semantics.

__m128i _mm_shufflelo_epi16(__m128i a, int imm)

Shuffles the lower 4 signed or unsigned 16-bit integers in a as specified by imm. The
shuffle value, imm, must be an immediate. See Macro Function for Shuffle for a
description of shuffle semantics.

__m128i _mm_unpackhi_epi8(__m128i a, __m128i b)

Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper 8
signed or unsigned 8-bit integers in b.

R0 R1 R2 R3 ... R14 R15
a8 b8 a9 b9 ... a15 b15

__m128i _mm_unpackhi_epi16(__m128i a, __m128i b)

Interleaves the upper 4 signed or unsigned 16-bit integers in a with the upper 4
signed or unsigned 16-bit integers in b.

Intel(R) C++ Intrinsics Reference

110

R0 R1 R2 R3 R4 R5 R6 R7
a4 b4 a5 b5 a6 b6 a7 b7

__m128i _mm_unpackhi_epi32(__m128i a, __m128i b)

Interleaves the upper 2 signed or unsigned 32-bit integers in a with the upper 2
signed or unsigned 32-bit integers in b.

R0 R1 R2 R3
a2 b2 a3 b3

__m128i _mm_unpackhi_epi64(__m128i a, __m128i b)

Interleaves the upper signed or unsigned 64-bit integer in a with the upper signed or
unsigned 64-bit integer in b.

R0 R1
a1 b1

__m128i _mm_unpacklo_epi8(__m128i a, __m128i b)

Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower 8 signed
or unsigned 8-bit integers in b.

R0 R1 R2 R3 ... R14 R15
a0 b0 a1 b1 ... a7 b7

__m128i _mm_unpacklo_epi16(__m128i a, __m128i b)

Interleaves the lower 4 signed or unsigned 16-bit integers in a with the lower 4
signed or unsigned 16-bit integers in b.

R0 R1 R2 R3 R4 R5 R6 R7
a0 b0 a1 b1 a2 b2 a3 b3

__m128i _mm_unpacklo_epi32(__m128i a, __m128i b)

Interleaves the lower 2 signed or unsigned 32-bit integers in a with the lower 2
signed or unsigned 32-bit integers in b.

R0 R1 R2 R3
a0 b0 a1 b1

__m128i _mm_unpacklo_epi64(__m128i a, __m128i b)

Interleaves the lower signed or unsigned 64-bit integer in a with the lower signed or
unsigned 64-bit integer in b.

Intel(R) C++ Intrinsics Reference

111

R0 R1
a0 b0

__m64 _mm_movepi64_pi64(__m128i a)

Returns the lower 64 bits of a as an __m64 type.

R0
a0

__128i _mm_movpi64_pi64(__m64 a)

Moves the 64 bits of a to the lower 64 bits of the result, zeroing the upper bits.

R0 R1
a0 0X0

__128i _mm_move_epi64(__m128i a)

Moves the lower 64 bits of a to the lower 64 bits of the result, zeroing the upper bits.

R0 R1
a0 0X0

__m128d _mm_unpackhi_pd(__m128d a, __m128d b)

Interleaves the upper DP FP values of a and b.

R0 R1
a1 b1

__m128d _mm_unpacklo_pd(__m128d a, __m128d b)

Interleaves the lower DP FP values of a and b.

R0 R1
a0 b0

int _mm_movemask_pd(__m128d a)

Creates a two-bit mask from the sign bits of the two DP FP values of a.

R
sign(a1) << 1 | sign(a0)

__m128d _mm_shuffle_pd(__m128d a, __m128d b, int i)

Intel(R) C++ Intrinsics Reference

112

Selects two specific DP FP values from a and b, based on the mask i. The mask must
be an immediate. See Macro Function for Shuffle for a description of the shuffle
semantics.

Intrinsics for Casting Support

This version of the Intel® C++ Compiler supports casting between various SP, DP,
and INT vector types. These intrinsics do not convert values; they change one data
type to another without changing the value.

The intrinsics for casting support do not correspond to any Streaming SIMD
Extensions 2 (SSE2) instructions.

 __m128 _mm_castpd_ps(__m128d in);

__m128i _mm_castpd_si128(__m128d in);

__m128d _mm_castps_pd(__m128 in);

__m128i _mm_castps_si128(__m128 in);

__m128 _mm_castsi128_ps(__m128i in);

__m128d _mm_castsi128_pd(__m128i in);

Pause Intrinsic for Streaming SIMD Extensions 2

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the
xmmintrin.h header file.

void _mm_pause(void)

The execution of the next instruction is delayed an implementation specific amount
of time. The instruction does not modify the architectural state. This intrinsic
provides especially significant performance gain.

PAUSE Intrinsic

The PAUSE intrinsic is used in spin-wait loops with the processors implementing
dynamic execution (especially out-of-order execution). In the spin-wait loop, PAUSE
improves the speed at which the code detects the release of the lock. For dynamic
scheduling, the PAUSE instruction reduces the penalty of exiting from the spin-loop.

Example of loop with the PAUSE instruction:

spin loop:pause
cmp eax, A
jne spin_loop

Intel(R) C++ Intrinsics Reference

113

In this example, the program spins until memory location A matches the value in
register eax. The code sequence that follows shows a test-and-test-and-set. In this
example, the spin occurs only after the attempt to get a lock has failed.

get_lock: mov eax, 1
xchg eax, A ; Try to get lock
cmp eax, 0 ; Test if successful
jne spin_loop

Critical Section

// critical_section code
mov A, 0 ; Release lock
jmp continue
spin_loop: pause;
// spin-loop hint
cmp 0, A ;
// check lock availability
jne spin_loop
jmp get_lock
// continue: other code

Note that the first branch is predicted to fall-through to the critical section in
anticipation of successfully gaining access to the lock. It is highly recommended that
all spin-wait loops include the PAUSE instruction. Since PAUSE is backwards
compatible to all existing IA-32 processor generations, a test for processor type (a
CPUID test) is not needed. All legacy processors will execute PAUSE as a NOP, but in
processors which use the PAUSE as a hint there can be significant performance
benefit.

Macro Function for Shuffle

The Streaming SIMD Extensions 2 (SSE2) provide a macro function to help create
constants that describe shuffle operations. The macro takes two small integers (in
the range of 0 to 1) and combines them into an 2-bit immediate value used by the
SHUFPD instruction. See the following example.

Shuffle Function Macro

You can view the two integers as selectors for choosing which two words from the
first input operand and which two words from the second are to be put into the result
word.

View of Original and Result Words with Shuffle Function Macro

Intel(R) C++ Intrinsics Reference

114

Intel(R) C++ Intrinsics Reference

115

Streaming SIMD Extensions 3

Overview: Streaming SIMD Extensions 3

The Intel C++ intrinsics listed in this section are designed for the Intel® Pentium® 4
processor with Streaming SIMD Extensions 3 (SSE3). They will not function correctly
on other IA-32 processors. New SSE3 intrinsics include:

• Floating-point Vector Intrinsics
• Integer Vector Intrinsics
• Miscellaneous Intrinsics
• Macro Functions

The prototypes for these intrinsics are in the pmmintrin.h header file.

Note

You can also use the single ia32intrin.h header file for any IA-32 intrinsics.

Integer Vector Intrinsics for Streaming SIMD Extensions 3

The integer vector intrinsic listed here is designed for the Intel® Pentium® 4
processor with Streaming SIMD Extensions 3 (SSE3).

The prototype for this intrinsic is in the pmmintrin.h header file.

R represents the register into which the returns are placed.

__m128i _mm_lddqu_si128(__m128i const *p);

Loads an unaligned 128-bit value. This differs from movdqu in that it can provide
higher performance in some cases. However, it also may provide lower performance
than movdqu if the memory value being read was just previously written.

R
*p;

Single-precision Floating-point Vector Intrinsics for Streaming
SIMD Extensions 3

The single-precision floating-point vector intrinsics listed here are designed for the
Intel® Pentium® 4 processor with Streaming SIMD Extensions 3 (SSE3).

The results of each intrinsic operation are placed in the registers R0, R1, R2, and R3.

Details about each intrinsic follows the table below.

The prototypes for these intrinsics are in the pmmintrin.h header file.

Intel(R) C++ Intrinsics Reference

116

Intrinsic
Name

Operation Corresponding SSE3
Instruction

_mm_addsub_ps Subtract and add ADDSUBPS

_mm_hadd_ps Add HADDPS

_mm_hsub_ps Subtracts HSUBPS

_mm_movehdup_ps Duplicates MOVSHDUP

_mm_moveldup_ps Duplicates MOVSLDUP

extern __m128 _mm_addsub_ps(__m128 a, __m128 b);

Subtracts even vector elements while adding odd vector elements.

R0 R1 R2 R3
a0 - b0; a1 + b1; a2 - b2; a3 + b3;

extern __m128 _mm_hadd_ps(__m128 a, __m128 b);

Adds adjacent vector elements.

R0 R1 R2 R3
a0 + a1; a2 + a3; b0 + b1; b2 + b3;

extern __m128 _mm_hsub_ps(__m128 a, __m128 b);

Subtracts adjacent vector elements.

R0 R1 R2 R3
a0 - a1; a2 - a3; b0 - b1; b2 - b3;

extern __m128 _mm_movehdup_ps(__m128 a);

Duplicates odd vector elements into even vector elements.

R0 R1 R2 R3
a1; a1; a3; a3;

extern __m128 _mm_moveldup_ps(__m128 a);

Duplicates even vector elements into odd vector elements.

R0 R1 R2 R3
a0; a0; a2; a2;

Intel(R) C++ Intrinsics Reference

117

Double-precision Floating-point Vector Intrinsics for Streaming
SIMD Extensions 3

The floating-point intrinsics listed here are designed for the Intel® Pentium® 4 processor with
Streaming SIMD Extensions 3 (SSE3).

The results of each intrinsic operation are placed in the registers R0 and R1.

Details about each intrinsic follows the table below.

The prototypes for these intrinsics are in the pmmintrin.h header file.

Intrinsic
Name

Operation Corresponding SSE3
Instruction

_mm_addsub_pd Subtract and add ADDSUBPD

_mm_hadd_pd Add HADDPD

_mm_hsub_pd Subtract HSUBPD

_mm_loaddup_pd Duplicate MOVDDUP

_mm_movedup_pd Duplicate MOVDDUP

extern __m128d _mm_addsub_pd(__m128d a, __m128d b);

Adds upper vector element while subtracting lower vector element.

R0 R1
a0 - b0; a1 + b1;

extern __m128d _mm_hadd_pd(__m128d a, __m128d b);

Adds adjacent vector elements.

R0 R1
a0 + a1; b0 + b1;

extern __m128d _mm_hsub_pd(__m128d a, __m128d b);

Subtracts adjacent vector elements.

R0 R1
a0 - a1; b0 - b1;

extern __m128d _mm_loaddup_pd(double const * dp);

Intel(R) C++ Intrinsics Reference

118

Duplicates a double value into upper and lower vector elements.

R0 R1
*dp; *dp;

extern __m128d _mm_movedup_pd(__m128d a);

Duplicates lower vector element into upper vector element.

R0 R1
a0; a0;

Macro Functions for Streaming SIMD Extensions 3

The macro function intrinsics listed here are designed for the Intel® Pentium® 4
processor with Streaming SIMD Extensions 3 (SSE3).

The prototypes for these intrinsics are in the pmmintrin.h header file.

_MM_SET_DENORMALS_ZERO_MODE(x)

Macro arguments: one of __MM_DENORMALS_ZERO_ON, _MM_DENORMALS_ZERO_OFF
This causes "denormals are zero" mode to be turned on or off by setting the
appropriate bit of the control register.

_MM_GET_DENORMALS_ZERO_MODE()

No arguments. This returns the current value of the denormals are zero mode bit of
the control register.

Miscellaneous Intrinsics for Streaming SIMD Extensions 3

The miscellaneous intrinsics listed here are designed for the Intel® Pentium® 4
processor with Streaming SIMD Extensions 3 (SSE3).

The prototypes for these intrinsics are in the pmmintrin.h header file.

extern void _mm_monitor(void const *p, unsigned extensions, unsigned
hints);

Generates the MONITOR instruction. This sets up an address range for the monitor
hardware using p to provide the logical address, and will be passed to the monitor
instruction in register eax. The extensions parameter contains optional extensions to
the monitor hardware which will be passed in ecx. The hints parameter will contain
hints to the monitor hardware, which will be passed in edx. A non-zero value for
extensions will cause a general protection fault.

extern void _mm_mwait(unsigned extensions, unsigned hints);

Intel(R) C++ Intrinsics Reference

119

Generates the MWAIT instruction. This instruction is a hint that allows the processor
to stop execution and enter an implementation-dependent optimized state until
occurrence of a class of events. In future processor designs extensions and hints
parameters may be used to convey additional information to the processor. All non-
zero values of extensions and hints are reserved. A non-zero value for extensions will
cause a general protection fault.

Intel(R) C++ Intrinsics Reference

120

Supplemental Streaming SIMD Extensions 3

Overview: Supplemental Streaming SIMD Extensions 3

The Intel C++ intrinsics listed in this section are supported in the Supplemental
Streaming SIMD Extensions 3. The prototypes for these intrinsics are in tmmintrin.h.
You can also use the ia32intrin.h header file for these intrinsics.

• Addition Intrinsics
• Subtraction Intrinsics
• Multiplication Intrinsics
• Absolute Value Intrinsics
• Shuffle Intrinsics
• Concatenate Intrinsics
• Negation Intrinsics

Addition Intrinsics

Use the following SSSE3 intrinsics for horizontal addition.

extern __m128i _mm_hadd_epi16 (__m128i a, __m128i b);

Add horizontally packed signed words.

Interpreting a, b, and r as arrays of 16-bit signed integers:

for (i = 0; i < 4; i++) {

 r[i] = a[2*i] + a[2i+1];

 r[i+4] = b[2*i] + b[2*i+1];

}

extern __m128i _mm_hadd_epi32 (__m128i a, __m128i b);

Add horizontally packed signed dwords.

Interpreting a, b, and r as arrays of 32-bit signed integers:

for (i = 0; i < 2; i++) {

 r[i] = a[2*i] + a[2i+1];

 r[i+2] = b[2*i] + b[2*i+1];

}

extern __m128i _mm_hadds_epi16 (__m128i a, __m128i b);

Intel(R) C++ Intrinsics Reference

121

Add horizontally packed signed words with signed saturation.

Interpreting a, b, and r as arrays of 16-bit signed integers:

for (i = 0; i < 4; i++) {

 r[i] = signed_saturate_to_word(a[2*i] + a[2i+1]);

 r[i+4] = signed_saturate_to_word(b[2*i] + b[2*i+1]);

}

extern __m64 _mm_hadd_pi16 (__m64 a, __m64 b);

Add horizontally packed signed words.

Interpreting a, b, and r as arrays of 16-bit signed integers:

for (i = 0; i < 2; i++) {

 r[i] = a[2*i] + a[2i+1];

 r[i+2] = b[2*i] + b[2*i+1];

}

extern __m64 _mm_hadd_pi32 (__m64 a, __m64 b);

Add horizontally packed signed dwords.

Interpreting a, b, and r as arrays of 32-bit signed integers:

r[0] = a[1] + a[0];

r[1] = b[1] + b[0];

extern __m64 _mm_hadds_pi16 (__m64 a, __m64 b);

Add horizontally packed signed words with signed saturation.

Interpreting a, b, and r as arrays of 16-bit signed integers:

for (i = 0; i < 2; i++) {

 r[i] = signed_saturate_to_word(a[2*i] + a[2i+1]);

 r[i+2] = signed_saturate_to_word(b[2*i] + b[2*i+1]);

}

Intel(R) C++ Intrinsics Reference

122

Subtraction Intrinsics

Use the following SSSE3 intrinsics for horizontal subtraction.

extern __m128i _mm_hsub_epi16 (__m128i a, __m128i b);

Subtract horizontally packed signed words.

Interpreting a, b, and r as arrays of 16-bit signed integers:

for (i = 0; i < 4; i++) {

 r[i] = a[2*i] - a[2i+1];

 r[i+4] = b[2*i] - b[2*i+1];

}

extern __m128i _mm_hsub_epi32 (__m128i a, __m128i b);

Subtract horiztonally packed signed dwords.

Interpreting a, b, and r as arrays of 32-bit signed integers:

for (i = 0; i < 2; i++) {

 r[i] = a[2*i] - a[2i+1];

 r[i+2] = b[2*i] - b[2*i+1];

}

extern __m128i _mm_hsubs_epi16 (__m128i a, __m128i b);

Subract horizontally packed signed words with signed saturation.

Interpreting a, b, and r as arrays of 16-bit signed integers:

for (i = 0; i < 4; i++) {

 r[i] = signed_saturate_to_word(a[2*i] - a[2i+1]);

 r[i+4] = signed_saturate_to_word(b[2*i] - b[2*i+1]);

}

extern __m64 _mm_hsub_pi16 (__m64 a, __m64 b);

Subtract horizontally packed signed words.

Interpreting a, b, and r as arrays of 16-bit signed integers:

Intel(R) C++ Intrinsics Reference

123

for (i = 0; i < 2; i++) {

 r[i] = a[2*i] - a[2i+1];

 r[i+2] = b[2*i] - b[2*i+1];

}

extern __m64 _mm_hsub_pi32 (__m64 a, __m64 b);

Subtract horizontally packed signed dwords.

Interpreting a, b, and r as arrays of 32-bit signed integers:

r[0] = a[0] - a[1];

r[1] = b[0] - b[1];

extern __m64 _mm_hsubs_pi16 (__m64 a, __m64 b);

Subtract horizontally packed signed words with signed saturation.

Interpreting a, b, and r as arrays of 16-bit signed integers:

for (i = 0; i < 2; i++) {

 r[i] = signed_saturate_to_word(a[2*i] - a[2i+1]);

 r[i+2] = signed_saturate_to_word(b[2*i] - b[2*i+1]);

}

Multiplication Intrinsics

Use the following SSSE3 intrinsics for multiplication.

extern __m128i _mm_maddubs_epi16 (__m128i a, __m128i b);

Multiply signed and unsigned bytes, add horizontal pair of signed words, pack
saturated signed words.

Interpreting a as array of unsigned 8-bit integers, b as arrays of signed 8-bit integers,
and r as arrays of 16-bit signed integers:

for (i = 0; i < 8; i++) {

 r[i] = signed_saturate_to_word(a[2*i+1] * b[2*i+1] + a[2*i]*b[2*i]);

}

extern __m64 _mm_maddubs_pi16 (__m64 a, __m64 b);

Intel(R) C++ Intrinsics Reference

124

Multiply signed and unsigned bytes, add horizontal pair of signed words, pack
saturated signed words.

Interpreting a as array of unsigned 8-bit integers, b as arrays of signed 8-bit integers,
and r as arrays of 16-bit signed integers:

for (i = 0; i < 4; i++) {

 r[i] = signed_saturate_to_word(a[2*i+1] * b[2*i+1] + a[2*i]*b[2*i]);

}

extern __m128i _mm_mulhrs_epi16 (__m128i a, __m128i b);

Multiply signed words, scale and round signed dwords, pack high 16-bits.

Interpreting a, b, and r as arrays of signed 16-bit integers:

for (i = 0; i < 8; i++) {

 r[i] = (((int32)((a[i] * b[i]) >> 14) + 1) >> 1) & 0xFFFF;

}

extern __m64 _mm_mulhrs_pi16 (__m64 a, __m64 b);

Multiply signed words, scale and round signed dwords, pack high 16-bits.

Interpreting a, b, and r as arrays of signed 16-bit integers:

for (i = 0; i < 4; i++) {

 r[i] = (((int32)((a[i] * b[i]) >> 14) + 1) >> 1) & 0xFFFF;

}

Absolute Value Intrinsics

Use the following SSSE3 intrinsics to compute absolute values.

extern __m128i _mm_abs_epi8 (__m128i a);

Compute absolute value of signed bytes.

Interpreting a and r as arrays of signed 8-bit integers:

for (i = 0; i < 16; i++) {

 r[i] = abs(a[i]);

}

Intel(R) C++ Intrinsics Reference

125

extern __m128i _mm_abs_epi16 (__m128i a);

Compute absolute value of signed words.

Interpreting a and r as arrays of signed 16-bit integers:

for (i = 0; i < 8; i++) {

 r[i] = abs(a[i]);

}

extern __m128i _mm_abs_epi32 (__m128i a);

Compute absolute value of signed dwords.

Interpreting a and r as arrays of signed 32-bit integers:

for (i = 0; i < 4; i++) {

 r[i] = abs(a[i]);

}

extern __m64 _mm_abs_pi8 (__m64 a);

Compute absolute value of signed bytes.

Interpreting a and r as arrays of signed 8-bit integers:

for (i = 0; i < 8; i++) {

 r[i] = abs(a[i]);

}

extern __m64 _mm_abs_pi16 (__m64 a);

Compute absolute value of signed words.

Interpreting a and r as arrays of signed 16-bit integers:

for (i = 0; i < 4; i++) {

 r[i] = abs(a[i]);

}

extern __m64 _mm_abs_pi32 (__m64 a);

Compute absolute value of signed dwords.

Intel(R) C++ Intrinsics Reference

126

Interpreting a and r as arrays of signed 32-bit integers:

for (i = 0; i < 2; i++) {

 r[i] = abs(a[i]);

}

Shuffle Intrinsics for Streaming SIMD Extensions 3

Use the following SSSE3 intrinsics for shuffle.

extern __m128i _mm_shuffle_epi8 (__m128i a, __m128i b);

Shuffle bytes from a according to contents of b.

Interpreting a, b, and r as arrays of unsigned 8-bit integers:

for (i = 0; i < 16; i++) {

 if (b[i] & 0x80) {

 r[i] = 0;

 }

 else {

 r[i] = a[b[i] & 0x0F];

 }

}

extern __m64 _mm_shuffle_pi8 (__m64 a, __m64 b);

Shuffle bytes from a according to contents of b.

Interpreting a, b, and r as arrays of unsigned 8-bit integers:

for (i = 0; i < 8; i++) {

 if (b[i] & 0x80) {

 r[i] = 0;

 }

 else {

 r[i] = a[b[i] & 0x07];

Intel(R) C++ Intrinsics Reference

127

 }

}

Concatenate Intrinsics

Use the following SSSE3 intrinsics for concatenation.

extern __m128i _mm_alignr_epi8 (__m128i a, __m128i b, int n);

Concatenate a and b, extract byte-aligned result shifted to the right by n.

Interpreting t1 as 256-bit unsigned integer, a, b, and r as 128-bit unsigned
integers:

t1[255:128] = a;

t1[127:0] = b;

t1[255:0] = t1[255:0] >> (8 * n); // unsigned shift

r[127:0] = t1[127:0];

extern __m64 _mm_alignr_pi8 (__m64 a, __m64 b, int n);

Concatenate a and b, extract byte-aligned result shifted to the right by n.

Interpreting t1 as 127-bit unsigned integer, a, b and r as 64-bit unsigned integers:

t1[127:64] = a;

t1[63:0] = b;

t1[127:0] = t1[127:0] >> (8 * n); // unsigned shift

r[63:0] = t1[63:0];

Negation Intrinsics

Use the following SSSE3 intrinsics for negation.

extern __m128i _mm_sign_epi8 (__m128i a, __m128i b);

Negate packed bytes in a if corresponding sign in b is less than zero.

Interpreting a, b, and r as arrays of signed 8-bit integers:

for (i = 0; i < 16; i++) {

 if (b[i] < 0) {

Intel(R) C++ Intrinsics Reference

128

 r[i] = -a[i];

 }

 else if (b[i] == 0) {

 r[i] = 0;

 }

 else {

 r[i] = a[i];

 }

}

extern __m128i _mm_sign_epi16 (__m128i a, __m128i b);

Negate packed words in a if corresponding sign in b is less than zero.

Interpreting a, b, and r as arrays of signed 16-bit integers:

for (i = 0; i < 8; i++) {

 if (b[i] < 0) {

 r[i] = -a[i];

 }

 else if (b[i] == 0) {

 r[i] = 0;

 }

 else {

 r[i] = a[i];

 }

}

extern __m128i _mm_sign_epi32 (__m128i a, __m128i b);

Negate packed dwords in a if corresponding sign in b is less than zero.

Interpreting a, b, and r as arrays of signed 32-bit integers:

for (i = 0; i < 4; i++) {

Intel(R) C++ Intrinsics Reference

129

 if (b[i] < 0) {

 r[i] = -a[i];

 }

 else if (b[i] == 0) {

 r[i] = 0;

 }

 else {

 r[i] = a[i];

 }

}

extern __m64 _mm_sign_pi8 (__m64 a, __m64 b);

Negate packed bytes in a if corresponding sign in b is less than zero.

Interpreting a, b, and r as arrays of signed 8-bit integers:

for (i = 0; i < 16; i++) {

 if (b[i] < 0) {

 r[i] = -a[i];

 }

 else if (b[i] == 0) {

 r[i] = 0;

 }

 else {

 r[i] = a[i];

 }

}

extern __m64 _mm_sign_pi16 (__m64 a, __m64 b);

Negate packed words in a if corresponding sign in b is less than zero.

Interpreting a, b, and r as arrays of signed 16-bit integers:

Intel(R) C++ Intrinsics Reference

130

for (i = 0; i < 8; i++) {

 if (b[i] < 0) {

 r[i] = -a[i];

 }

 else if (b[i] == 0) {

 r[i] = 0;

 }

 else {

 r[i] = a[i];

 }

}

extern __m64 _mm_sign_pi32 (__m64 a, __m64 b);

Negate packed dwords in a if corresponding sign in b is less than zero.

Interpreting a, b, and r as arrays of signed 32-bit integers:

for (i = 0; i < 2; i++) {

 if (b[i] < 0) {

 r[i] = -a[i];

 }

 else if (b[i] == 0) {

 r[i] = 0;

 }

 else {

 r[i] = a[i];

 }

}

Intel(R) C++ Intrinsics Reference

131

Streaming SIMD Extensions 4

Overview: Streaming SIMD Extensions 4

The intrinsics in this section correspond to Intel® Streaming SIMD Extensions 4
(SSE4) instructions. SSE4 includes the following categories:

• Streaming SIMD Extensions 4 (SSE4) Vectorizing Compiler and Media
Accelerators
The prototypes for these intrinsics are in the smmitnrin.h file.

• Streaming SIMD Extensions 4 (SSE4) Efficient Accelerated String and Text
Processing
The prototypes for these intrinsics are in the nmmintrin.h file.

Streaming SIMD Extensions 4 Vectorizing Compiler and Media
Accelerators

Overview: Streaming SIMD Extensions 4 Vectorizing Compiler and Media
Accelerators

The intrinsics in this section correspond to Streaming SIMD Extensions 4 (SSE4)
Vectorizing Compiler and Media Accelerators instructions.

• Packed Blending Intrinsics for Streaming SIMD Extensions 4
• Floating Point Dot Product Intrinsics for Streaming SIMD Extensions 4
• Packed Format Conversion Intrinsics for Streaming SIMD Extensions 4
• Packed Integer Min/Max Intrinsics for Streaming SIMD Extensions 4
• Floating Point Rounding Intrinsics for Streaming SIMD Extensions 4
• DWORD Multiply Intrinsics for Streaming SIMD Extensions 4
• Register Insertion/Extraction Intrinsics for Streaming SIMD Extensions 4
• Test Intrinsics for Streaming SIMD Extensions 4
• Packed DWORD to Unsigned WORD Intrinsic for Streaming SIMD Extensions 4
• Packed Compare for Equal Intrinsics for Streaming SIMD Extensions 4
• Cacheability Support Intrinsic for Streaming SIMD Extension 4

The prototypes for these intrinsics are in the smmintrin.h file.

Packed Blending Intrinsics for Streaming SIMD Extensions 4

These intrinsics pack multiple operations in a single instruction. Blending
conditionally copies one field in the source onto the corresponding field in the
destination.

Intrinsic
Name

Operation Corresponding
SSE4
Instruction

_mm_blend_ps Select float single precision data from 2
sources using constant mask

BLENDPS

Intel(R) C++ Intrinsics Reference

132

_mm_blend_pd Select float double precision data from 2
sources using constant mask

BLENDPD

_mm_blendv_ps Select float single precision data from 2
sources using variable mask

BLENDVPS

_mm_blendv_pd Select float double precision data from 2
sources using variable mask

BLENDVPD

_mm_blendv_epi8 Select integer bytes from 2 sources using
variable mask

PBLENDVB

_mm_blend_epi16 Select integer words from 2 sources using
constant mask

PBLENDW

__m128d _mm_blend_pd (__m128d v1, __m128d v2, const int mask)

__m128 _mm_blend_ps (__m128 v1, __m128 v2, const int mask)

__m128d _mm_blendv_pd (__m128d v1, __m128d v2, __m128d v3)

__m128 _mm_blendv_ps (__m128 v1, __m128 v2, __m128 v3)

__m128i _mm_blendv_epi8 (__m128i v1, __m128i v2, __m128i mask)

__m128i _mm_blend_epi16 (__m128i v1, __m128i v2, const int mask)

Floating Point Dot Product Intrinsics for Streaming SIMD Extensions 4

These intrinsics enable floating point single precision and double precision dot
products.

Intrinsic
Name

Operation Corresponding SSE4
Instruction

_mm_dp_pd Double precision dot product DPPD

_mm_dp_ps Single precision dot product DPPS

__m128d _mm_dp_pd (__m128d a, __m128d b, const int mask)

This intrinsic calculates the dot product of double precision packed values with mask-
defined summing and zeroing of the parts of the result.

__m128 _mm_dp_ps (__m128 a, __m128 b, const int mask)

This intrinsic calculates the dot product of single precision packed values with mask-
defined summing and zeroing of the parts of the result.

Packed Format Conversion Intrinsics for Streaming SIMD Extensions 4

Intel(R) C++ Intrinsics Reference

133

These intrinsics convert from a packed integer to a zero-extended or sign-extended
integer with wider type.

Intrinsic
Name

Operation Corresponding
SSE4
Instruction

mm cvtepi8_epi32 Sign extend 4 bytes into 4 double
words

PMOVSXBD

mm cvtepi8_epi64 Sign extend 2 bytes into 2 quad words PMOVSXBQ

mm cvtepi8_epi16 Sign extend 8 bytes into 8 words PMOVSXBW

mm
cvtepi32_epi64

Sign extend 2 double words into 2
quad words

PMOVSXDQ

mm
cvtepi16_epi32

Sign extend 4 words into 4 double
words

PMOVSXWD

mm
cvtepi16_epi64

Sign extend 2 words into 2 quad words PMOVSXWQ

mm cvtepu8_epi32 Zero extend 4 bytes into 4 double
words

PMOVZXBD

mm cvtepu8_epi64 Zero extend 2 bytes into 2 quad words PMOVZXBQ

mm cvtepu8_epi16 Zero extend 8 bytes into 8 word PMOVZXBW

mm
cvtepu32_epi64

Zero extend 2 double words into 2
quad words

PMOVZXDQ

mm
cvtepu16_epi32

Zero extend 4 words into 4 double
words

PMOVZXWD

mm
cvtepu16_epi64

Zero extend 2 words into 2 quad words PMOVZXWQ

__m128i _mm_ cvtepi8_epi32 (__m128i a)

__m128i _mm_ cvtepi8_epi64 (__m128i a)

__m128i _mm_ cvtepi8_epi16 (__m128i a)

__m128i _mm_ cvtepi32_epi64 (__m128i a)

__m128i _mm_ cvtepi16_epi32 (__m128i a)

__m128i _mm_ cvtepi16_epi64 (__m128i a)

__m128i _mm_ cvtepu8_epi32 (__m128i a)

__m128i _mm_ cvtepu8_epi64 (__m128i a)

Intel(R) C++ Intrinsics Reference

134

__m128i _mm_ cvtepu8_epi16 (__m128i a)

__m128i _mm_ cvtepu32_epi64 (__m128i a)

__m128i _mm_ cvtepu16_epi32 (__m128i a)

__m128i _mm_ cvtepu16_epi64 (__m128i a)

Packed Integer Min/Max Intrinsics for Streaming SIMD Extensions 4

These intrinsics compare packed integers in the destination operand and the source
operand, and return the minimum or maximum for each packed operand in the
destination operand.

Intrinsic
Name

Operation Corresponding
SSE4
Instruction

_mm_max_epi8 Calculate maximum of signed packed integer
bytes

PMAXSB

_mm_max_epi32 Calculate maximum of signed packed integer
double words

PMAXSD

_mm_max_epu32 Calculate maximum of unsigned packed
integer double words

PMAXUD

_mm_max_epu16 Calculate maximum of unsigned packed
integer words

PMAXUW

_mm_min_epi8 Calculate minimum of signed packed integer
bytes

PMINSB

_mm_min_epi32 Calculate minimum of signed packed integer
double words

PMINSD

_mm_min_epu32 Calculate minimum of unsigned packed
integer double words

PMINUD

_mm_min_epu16 Calculate minimum of unsigned packed
integer words

PMINUW

__m128i _mm_max_epi8 (__m128i a, __m128i b)

__m128i _mm_max_epi32 (__m128i a, __m128i b)

__m128i _mm_max_epu32 (__m128i a, __m128i b)

__m128i _mm_max_epu16 (__m128i a, __m128i b)

__m128i _mm_min_epi8 (__m128i a, __m128i b)

__m128i _mm_min_epi32 (__m128i a, __m128i b)

Intel(R) C++ Intrinsics Reference

135

__m128i _mm_min_epu32 (__m128i a, __m128i b)

__m128i _mm_min_epu16 (__m128i a, __m128i b)

Floating Point Rounding Intrinsics for Streaming SIMD Extensions 4

These rounding intrinsics cover scalar and packed single-precision and double
precision floating-point operands.

The floor and ceil intrinsics correspond to the definitions of floor and ceil in the
ISO 9899:1999 standard for the C programming language.

Intrinsic
Name

Operation Corresponding SSE4
Instruction

_mm_round_pd

mm_floor_pd

mm_ceil_pd

Packed float double precision rounding ROUNDPD

_mm_round_ps

mm_floor_ps

mm_ceil_ps

Packed float single precision rounding ROUNDPS

_mm_round_sd

mm_floor_sd

mm_ceil_sd

Single float double precision rounding ROUNDSD

_mm_round_ss

mm_floor_ss

mm_ceil_ss

Single float single precision rounding ROUNDSS

__m128d _mm_round_pd(__m128d s1, int iRoundMode)

__m128d mm_floor_pd(__m128d s1)

__m128d mm_ceil_pd(__m128d s1)

__m128 _mm_round_ps(__m128 s1, int iRoundMode)

__m128 mm_floor_ps(__m128 s1)

__m128 mm_ceil_ps(__m128 s1)

__m128d _mm_round_sd(__m128d dst, __m128d s1, int iRoundMode)

Intel(R) C++ Intrinsics Reference

136

__m128d mm_floor_sd(__m128d dst, __m128d s1)

__m128d mm_ceil_sd(__m128d dst, __m128d s1)

__m128 _mm_round_ss(__m128 dst, __m128 s1, int iRoundMode)

__m128 mm_floor_ss(__m128 dst, __m128 s1)

__m128 mm_ceil_ss(__m128 dst, __m128 s1)

DWORD Multiply Intrinsics for Streaming SIMD Extensions 4

These DWORD multiply intrinsics are designed to aid vectorization. They enable four
simultaneous 32 bit by 32 bit multiplies.

Intrinsic
Name

Operation Corresponding
SSE4
Instruction

_mm_mul_epi32 Packed integer 32-bit multiplication of 2 low
pairs of operands producing two 64-bit
results

PMULDQ

_mm_mullo_epi32 Packed integer 32-bit multiplication with
truncation of upper halves of results

PMULLD

__m128i _mm_mul_epi32(__m128i a, __m128i b)

__m128i _mm_mullo_epi32(__m128i a, __m128i b)

Register Insertion/Extraction Intrinsics for Streaming SIMD Extensions 4

These intrinsics enable data insertion and extraction between general purpose
registers and XMM registers.

Intrinsic
Name

Operation Corresponding
SSE4
Instruction

_mm_insert_ps Insert single precision float into packed
single precision array element selected by
index

INSERTPS

_mm_extract_ps Extract single precision float from packed
single precision array element selected by
index

EXTRACTPS

_mm_extract_epi8 Extract integer byte from packed integer
array element selected by index

PEXTRB

_mm_extract_epi32 Extract integer double word from packed
integer array element selected by index

PEXTRD

Intel(R) C++ Intrinsics Reference

137

_mm_extract_epi64 Extract integer quad word from packed
integer array element selected by index

PEXTRQ

_mm_extract_epi16 Extract integer word from packed integer
array element selected by index

PEXTRW

_mm_insert_epi8 Insert integer byte into packed integer
array element selected by index

PINSRB

_mm_insert_epi32 Insert integer double word into packed
integer array element selected by index

PINSRD

_mm_insert_epi64 Insert integer quad word into packed
integer array element selected by index

PINSRQ

__m128 _mm_insert_ps(__m128 dst, __m128 src, const int ndx);

int _mm_extract_ps(__m128 src, const int ndx);

int _mm_extract_epi8 (__m128i src, const int ndx);

int _mm_extract_epi32 (__m128i src, const int ndx);

__int64 _mm_extract_epi64 (__m128i src, const int ndx);

int _mm_extract_epi16 (__m128i src, int ndx);

__m128i _mm_insert_epi8 (__m128i s1, int s2, const int ndx)

__m128i _mm_insert_epi32 (__m128i s2, int s, const int ndx)

__m128i _mm_insert_epi64(__m128i s2, __int64 s, const int ndx)

Test Intrinsics for Streaming SIMD Extensions 4

These intrinsics perform packed integer 128-bit comparisons.

Intrinsic
Name

Operation Corresponding
SSE4
Instruction

_mm_testc_si128 Check for all ones in specified bits of a
128-bit value

PTEST

_mm_testz_si128 Check for all zeros in specified bits of a
128-bit value

PTEST

_mm_testnzc_si128 Check for at least one zero and at least
one one in specified bits of a 128-bit value

PTEST

Intel(R) C++ Intrinsics Reference

138

int _mm_testz_si128 (__m128i s1, __m128i s2)

Returns 1 if the bitwise AND of s1 and s2 is all zero, else returns 0

int _mm_testc_si128 (__m128i s1, __m128i s2)

Returns 1 if the bitwise AND of s2 ANDNOT of s1 is all ones, else returns 0.

int _mm_testnzc_si128 (__m128i s1, __m128i s2)

Same as (!_mm)testz) && (!_mm_testc)

Packed DWORD to Unsigned WORD Intrinsic for Streaming SIMD Extensions
4

__m128i _mm_packus_epi32(__m128i m1, __m128i m2);

Corresponding SSE4 instruction: PACKUSDW

Converts 8 packed signed DWORDs into 8 packed unsigned WORDs, using unsigned
saturation to handle overflow condition.

Packed Compare for Equal for Streaming SIMD Extensions 4

__m128i _mm_cmpeq_epi64(__m128i a, __m128i b)

Corresponding SSE4 instruction: PCMPEQQ

Performs a packed integer 64-bit comparison for equality. The intrinsic zeroes or fills
with ones the corresponding parts of the result.

Cacheability Support Intrinsic for Streaming SIMD Extensions 4

extern __m128i _mm_stream_load_si128(__m128i* v1);

Corresponding SSE4 instruction: MOVNTDQA

Loads _m128 data from a 16-byte aligned address (v1) to the destination operand
(m128i) without polluting the caches.

Streaming SIMD Extensions 4 Efficient Accelerated String and
Text Processing

Overview: Streaming SIMD Extensions 4 Efficient Accelerated String and
Text Processing

The intrinsics in this section correspond to Streaming SIMD Extensions 4 (SSE4)
Efficient Accelerated String and Text Processing instructions. These instructions
include:

Intel(R) C++ Intrinsics Reference

139

• Packed Comparison Intrinsics for Streaming SIMD Extensions 4
• Application Targeted Accelerators Intrinsics

The prototypes for these intrinsics are in the nmmintrin.h file.

Packed Comparison Intrinsics for Streaming SIMD Extensions 4

These intrinsics perform packed comparisons. They correspond to SSE4 instructions.
For intrinsics that could map to more than one instruction, the Intel(R) C++
Compiler selects the instruction to generate.

Intrinsic
Name

Operation Corresponding SSE4
Instruction

_mm_cmpestri Packed comparison, generates index PCMPESTRI

_mm_cmpestrm Packed comparison, generates mask PCMPESTRM

_mm_cmpistri Packed comparison, generates index PCMPISTRI

_mm_cmpistrm Packed comparison, generates mask PCMPISTRM

_mm_cmpestrz Packed comparison PCMPESTRM or PCMPESTRI

_mm_cmpestrc Packed comparison PCMPESTRM or PCMPESTRI

_mm_cmpestrs Packed comparison PCMPESTRM or PCMPESTRI

_mm_cmpestro Packed comparison PCMPESTRM or PCMPESTRI

_mm_cmpestra Packed comparison PCMPESTRM or PCMPESTRI

_mm_cmpistrz Packed comparison PCMPISTRM or PCMPISTRI

_mm_cmpistrc Packed comparison PCMPISTRM or PCMPISTRI

_mm_cmpistrs Packed comparison PCMPISTRM or PCMPISTRI

_mm_cmpistro Packed comparison PCMPISTRM or PCMPISTRI

_mm_cmpistra Packed comparison PCMPISTRM or PCMPISTRI

int _mm_cmpestri(__m128i src1, int len1, __m128i src2, int len2, const
int mode)

This intrinsic performs a packed comparison of string data with explicit lengths,
generating an index and storing the result in ECX.

__m128i _mm_cmpestrm(__m128i src1, int len1, __m128i src2, int
len2, const int mode)

This intrinsic performs a packed comparison of string data with explicit lengths,
generating a mask and storing the result in XMM0.

int _mm_cmpistri(__m128i src1, __m128i src2, const int mode)

Intel(R) C++ Intrinsics Reference

140

This intrinsic performs a packed comparison of string data with implicit lengths,
generating an index and storing the result in ECX.

__m128i _mm_cmpistrm(__m128i src1, __m128i src2, const int mode)

This intrinsic performs a packed comparison of string data with implicit lengths,
generating a mask and storing the result in XMM0.

int _mm_cmpestrz(__m128i src1, int len1, __m128i src2, int len2, const
int mode);

This intrinsic performs a packed comparison of string data with explicit lengths.
Returns 1 if ZFlag == 1, otherwise 0.

int _mm_cmpestrc(__m128i src1, int len1, __m128i src2, int len2, const
int mode);

This intrinsic performs a packed comparison of string data with explicit lengths.
Returns 1 if CFlag == 1, otherwise 0.

int _mm_cmpestrs(__m128i src1, int len1, __m128i src2, int len2, const
int mode);

This intrinsic performs a packed comparison of string data with explicit lengths.
Returns 1 if SFlag == 1, otherwise 0.

int _mm_cmpestro(__m128i src1, int len1, __m128i src2, int len2, const
int mode);

This intrinsic performs a packed comparison of string data with explicit lengths.
Returns 1 if OFlag == 1, otherwise 0.

int _mm_cmpestra(__m128i src1, int len1, __m128i src2, int len2, const
int mode);

This intrinsic performs a packed comparison of string data with explicit lengths.
Returns 1 if CFlag == 0 and ZFlag == 0, otherwise 0.

int _mm_cmpistrz(__m128i src1, __m128i src2, const int mode);

This intrinsic performs a packed comparison of string data with implicit lengths.
Returns 1 if (ZFlag == 1), otherwise 0.

int _mm_cmpistrc(__m128i src1, __m128i src2, const int mode);

This intrinsic performs a packed comparison of string data with implicit lengths.
Returns 1 if (CFlag == 1), otherwise 0.

int _mm_cmpistrs(__m128i src1, __m128i src2, const int mode);

This intrinsic performs a packed comparison of string data with implicit lengths.
Returns 1 if (SFlag == 1), otherwise 0.

Intel(R) C++ Intrinsics Reference

141

int _mm_cmpistro(__m128i src1, __m128i src2, const int mode);

This intrinsic performs a packed comparison of string data with implicit lengths.
Returns 1 if (OFlag == 1), otherwise 0.

int _mm_cmpistra(__m128i src1, __m128i src2, const int mode);

This intrinsic performs a packed comparison of string data with implicit lengths.
Returns 1 if (ZFlag == 0 and CFlag == 0), otherwise 0.

Application Targeted Accelerators Intrinsics

Application Targeted Accelerators extend the capabilities of Intel architecture by
adding performance-optimized, low-latency, lower power fixed-function accelerators
on the processor die to benefit specific applications.

The primitives for these intrinsics are in the file nmmintrin.h.

Intrinsic
Name

Operation Corresponding
SSE4
Instruction

_mm_popcnt_u32 Counts number of set bits in a data
operation

POPCNT

_mm_popcnt_u64 Counts number of set bits in a data
operation

POPCNT

_mm_crc32_u8 Accumulate cyclic redundancy check CRC32

_mm_crc32_u16 Cyclic redundancy check CRC32

_mm_crc32_u32 Cyclic redundancy check CRC32

_mm_crc32_u64 Cyclic redundancy check CRC32

int _mm_popcnt_u32(unsigned int v);

int _mm_popcnt_u64(unsigned __int64 v);

unsigned int _mm_crc32_u8 (unsigned int crc, unsigned char v);

Starting with an initial value in the first operand, accumulates a CRC32 value for the
second operand and stores the result in the destination operand. Accumulates CRC32
on r/m8.

unsigned int _mm_crc32_u16(unsigned int crc, unsigned short v);

Starting with an initial value in the first operand, accumulates a CRC32 value for the
second operand and stores the result in the destination operand. Accumulates CRC32
on r/m16.

Intel(R) C++ Intrinsics Reference

142

unsigned int _mm_crc32_u32(unsigned int crc, unsigned int v);

Starting with an initial value in the first operand, accumulates a CRC32 value for the
second operand and stores the result in the destination operand. Accumulates CRC32
on r/m32.

unsigned __int64 _mm_crc32_u64(unsigned __int64 crc, unsigned __int64
v);

Starting with an initial value in the first operand, accumulates a CRC32 value for the
second operand and stores the result in the destination operand. Accumulates CRC32
on r/m64.

Intel(R) C++ Intrinsics Reference

143

Intrinsics for IA-64 Instructions

Overview: Intrinsics for IA-64 Instructions

This section lists and describes the native intrinsics for IA-64 instructions. These
intrinsics cannot be used on the IA-32 architecture. These intrinsics give
programmers access to IA-64 instructions that cannot be generated using the
standard constructs of the C and C++ languages.

The prototypes for these intrinsics are in the ia64intrin.h header file.

The Intel® Itanium® processor does not support SSE2 intrinsics. However, you can
use the sse2mmx.h emulation pack to enable support for SSE2 instructions on IA-64
architecture.

For information on how to use SSE intrinsics on IA-64 architecture, see Using
Streaming SIMD Extensions on IA-64 Architecture.

For information on how to use MMX (TM) technology intrinsics on IA-64 architecture,
see MMX(TM) Technology Intrinsics on IA-64 Architecture

Native Intrinsics for IA-64 Instructions

The prototypes for these intrinsics are in the ia64intrin.h header file.

Integer Operations
Intrinsic Operation Corresponding IA-64

Instruction
_m64_dep_mr Deposit dep

_m64_dep_mi Deposit dep

_m64_dep_zr Deposit dep.z

_m64_dep_zi Deposit dep.z

_m64_extr Extract extr

_m64_extru Extract extr.u

_m64_xmal Multiply and add xma.l

_m64_xmalu Multiply and add xma.lu

_m64_xmah Multiply and add xma.h

_m64_xmahu Multiply and add xma.hu

_m64_popcnt Population Count popcnt

_m64_shladd Shift left and add shladd

_m64_shrp Shift right pair shrp

Intel(R) C++ Intrinsics Reference

144

FSR Operations
Intrinsic Description
void _fsetc(unsigned int
amask, unsigned int
omask)

Sets the control bits of FPSR.sf0. Maps to the
fsetc.sf0 r, r instruction. There is no
corresponding instruction to read the control bits.
Use _mm_getfpsr().

void _fclrf(void) Clears the floating point status flags (the 6-bit flags
of FPSR.sf0). Maps to the fclrf.sf0 instruction.

__int64 _m64_dep_mr(__int64 r, __int64 s, const int pos, const int len)

The right-justified 64-bit value r is deposited into the value in s at an arbitrary bit
position and the result is returned. The deposited bit field begins at bit position pos
and extends to the left (toward the most significant bit) the number of bits specified
by len.

__int64 _m64_dep_mi(const int v, __int64 s, const int p, const int len)

The sign-extended value v (either all 1s or all 0s) is deposited into the value in s at
an arbitrary bit position and the result is returned. The deposited bit field begins at
bit position p and extends to the left (toward the most significant bit) the number of
bits specified by len.

__int64 _m64_dep_zr(__int64 s, const int pos, const int len)

The right-justified 64-bit value s is deposited into a 64-bit field of all zeros at an
arbitrary bit position and the result is returned. The deposited bit field begins at bit
position pos and extends to the left (toward the most significant bit) the number of
bits specified by len.

__int64 _m64_dep_zi(const int v, const int pos, const int len)

The sign-extended value v (either all 1s or all 0s) is deposited into a 64-bit field of all
zeros at an arbitrary bit position and the result is returned. The deposited bit field
begins at bit position pos and extends to the left (toward the most significant bit) the
number of bits specified by len.

__int64 _m64_extr(__int64 r, const int pos, const int len)

A field is extracted from the 64-bit value r and is returned right-justified and sign
extended. The extracted field begins at position pos and extends len bits to the left.
The sign is taken from the most significant bit of the extracted field.

__int64 _m64_extru(__int64 r, const int pos, const int len)

A field is extracted from the 64-bit value r and is returned right-justified and zero
extended. The extracted field begins at position pos and extends len bits to the left.

__int64 _m64_xmal(__int64 a, __int64 b, __int64 c)

Intel(R) C++ Intrinsics Reference

145

The 64-bit values a and b are treated as signed integers and multiplied to produce a
full 128-bit signed result. The 64-bit value c is zero-extended and added to the
product. The least significant 64 bits of the sum are then returned.

__int64 _m64_xmalu(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as signed integers and multiplied to produce a
full 128-bit unsigned result. The 64-bit value c is zero-extended and added to the
product. The least significant 64 bits of the sum are then returned.

__int64 _m64_xmah(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as signed integers and multiplied to produce a
full 128-bit signed result. The 64-bit value c is zero-extended and added to the
product. The most significant 64 bits of the sum are then returned.

__int64 _m64_xmahu(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as unsigned integers and multiplied to produce
a full 128-bit unsigned result. The 64-bit value c is zero-extended and added to the
product. The most significant 64 bits of the sum are then returned.

__int64 _m64_popcnt(__int64 a)

The number of bits in the 64-bit integer a that have the value 1 are counted, and the
resulting sum is returned.

__int64 _m64_shladd(__int64 a, const int count, __int64 b)

a is shifted to the left by count bits and then added to b. The result is returned.

__int64 _m64_shrp(__int64 a, __int64 b, const int count)

a and b are concatenated to form a 128-bit value and shifted to the right count bits.
The least significant 64 bits of the result are returned.

Lock and Atomic Operation Related Intrinsics

The prototypes for these intrinsics are in the ia64intrin.h header file.

Intrinsic Description
unsigned __int64
_InterlockedExchange8(volatile unsigned char
*Target, unsigned __int64 value)

Map to the xchg1 instruction.
Atomically write the least
significant byte of its 2nd
argument to address
specified by its 1st
argument.

unsigned __int64
_InterlockedCompareExchange8_rel(volatile
unsigned char *Destination, unsigned __int64

Compare and exchange
atomically the least
significant byte at the

Intel(R) C++ Intrinsics Reference

146

Exchange, unsigned __int64 Comparand) address specified by its 1st
argument. Maps to the
cmpxchg1.rel instruction
with appropriate setup.

unsigned __int64
_InterlockedCompareExchange8_acq(volatile
unsigned char *Destination, unsigned __int64
Exchange, unsigned __int64 Comparand)

Same as the previous
intrinsic, but using acquire
semantic.

unsigned __int64
_InterlockedExchange16(volatile unsigned
short *Target, unsigned __int64 value)

Map to the xchg2 instruction.
Atomically write the least
significant word of its 2nd
argument to address
specified by its 1st
argument.

unsigned __int64
_InterlockedCompareExchange16_rel(volatile
unsigned short *Destination, unsigned int64
Exchange, unsigned __int64 Comparand)

Compare and exchange
atomically the least
significant word at the
address specified by its 1st
argument. Maps to the
cmpxchg2.rel instruction
with appropriate setup.

unsigned __int64
_InterlockedCompareExchange16_acq(volatile
unsigned short *Destination, unsigned int64
Exchange, unsigned __int64 Comparand)

Same as the previous
intrinsic, but using acquire
semantic.

int _InterlockedIncrement(volatile int
*addend

Atomically increment by one
the value specified by its
argument. Maps to the
fetchadd4 instruction.

int _InterlockedDecrement(volatile int
*addend

Atomically decrement by one
the value specified by its
argument. Maps to the
fetchadd4 instruction.

int _InterlockedExchange(volatile int
*Target, long value

Do an exchange operation
atomically. Maps to the
xchg4 instruction.

int _InterlockedCompareExchange(volatile int
*Destination, int Exchange, int Comparand

Do a compare and exchange
operation atomically. Maps
to the cmpxchg4 instruction
with appropriate setup.

int _InterlockedExchangeAdd(volatile int
*addend, int increment

Use compare and exchange
to do an atomic add of the
increment value to the
addend. Maps to a loop with
the cmpxchg4 instruction to
guarantee atomicity.

int InterlockedAdd(volatile int *addend, int Same as the previous

Intel(R) C++ Intrinsics Reference

147

increment) intrinsic, but returns new
value, not the original one.

void *
_InterlockedCompareExchangePointer(void *
volatile *Destination, void *Exchange, void
*Comparand)

Map the exch8 instruction;
Atomically compare and
exchange the pointer value
specified by its first
argument (all arguments are
pointers)

unsigned __int64
_InterlockedExchangeU(volatile unsigned int
*Target, unsigned __int64 value)

Atomically exchange the 32-
bit quantity specified by the
1st argument. Maps to the
xchg4 instruction.

unsigned __int64
_InterlockedCompareExchange_rel(volatile
unsigned int *Destination, unsigned __int64
Exchange, unsigned __int64 Comparand)

Maps to the cmpxchg4.rel
instruction with appropriate
setup. Atomically compare
and exchange the value
specified by the first
argument (a 64-bit pointer).

unsigned __int64
_InterlockedCompareExchange_acq(volatile
unsigned int *Destination, unsigned __int64
Exchange, unsigned __int64 Comparand)

Same as the previous
intrinsic, but map the
cmpxchg4.acq instruction.

void _ReleaseSpinLock(volatile int *x) Release spin lock.

__int64 _InterlockedIncrement64(volatile
__int64 *addend)

Increment by one the value
specified by its argument.
Maps to the fetchadd
instruction.

__int64 _InterlockedDecrement64(volatile
__int64 *addend)

Decrement by one the value
specified by its argument.
Maps to the fetchadd
instruction.

__int64 _InterlockedExchange64(volatile
__int64 *Target, __int64 value)

Do an exchange operation
atomically. Maps to the xchg
instruction.

unsigned __int64
_InterlockedExchangeU64(volatile unsigned
__int64 *Target, unsigned __int64 value)

Same as
InterlockedExchange64
(for unsigned quantities).

unsigned __int64
_InterlockedCompareExchange64_rel(volatile
unsigned __int64 *Destination, unsigned
__int64 Exchange, unsigned __int64 Comparand)

Maps to the cmpxchg.rel
instruction with appropriate
setup. Atomically compare
and exchange the value
specified by the first
argument (a 64-bit pointer).

unsigned __int64
_InterlockedCompareExchange64_acq(volatile
unsigned __int64 *Destination, unsigned

Maps to the cmpxchg.acq
instruction with appropriate
setup. Atomically compare

Intel(R) C++ Intrinsics Reference

148

__int64 Exchange, unsigned __int64 Comparand) and exchange the value
specified by the first
argument (a 64-bit pointer).

__int64
_InterlockedCompareExchange64(volatile
__int64 *Destination, __int64 Exchange,
__int64 Comparand)

Same as the previous
intrinsic for signed
quantities.

__int64 _InterlockedExchangeAdd64(volatile
__int64 *addend, __int64 increment)

Use compare and exchange
to do an atomic add of the
increment value to the
addend. Maps to a loop with
the cmpxchg instruction to
guarantee atomicity

__int64 _InterlockedAdd64(volatile __int64
*addend, __int64 increment);

Same as the previous
intrinsic, but returns the new
value, not the original value.
See Note.

Note

_InterlockedSub64 is provided as a macro definition based on
_InterlockedAdd64.

#define _InterlockedSub64(target, incr)
_InterlockedAdd64((target),(-(incr))).

Uses cmpxchg to do an atomic sub of the incr value to the target. Maps to a
loop with the cmpxchg instruction to guarantee atomicity.

Lock and Atomic Operation Related Intrinsics

The prototypes for these intrinsics are in the ia64intrin.h header file.

Intrinsic Description
unsigned __int64
_InterlockedExchange8(volatile unsigned char
*Target, unsigned __int64 value)

Map to the xchg1 instruction.
Atomically write the least
significant byte of its 2nd
argument to address
specified by its 1st
argument.

unsigned __int64
_InterlockedCompareExchange8_rel(volatile
unsigned char *Destination, unsigned __int64
Exchange, unsigned __int64 Comparand)

Compare and exchange
atomically the least
significant byte at the
address specified by its 1st
argument. Maps to the
cmpxchg1.rel instruction
with appropriate setup.

Intel(R) C++ Intrinsics Reference

149

unsigned __int64
_InterlockedCompareExchange8_acq(volatile
unsigned char *Destination, unsigned __int64
Exchange, unsigned __int64 Comparand)

Same as the previous
intrinsic, but using acquire
semantic.

unsigned __int64
_InterlockedExchange16(volatile unsigned
short *Target, unsigned __int64 value)

Map to the xchg2 instruction.
Atomically write the least
significant word of its 2nd
argument to address
specified by its 1st
argument.

unsigned __int64
_InterlockedCompareExchange16_rel(volatile
unsigned short *Destination, unsigned int64
Exchange, unsigned __int64 Comparand)

Compare and exchange
atomically the least
significant word at the
address specified by its 1st
argument. Maps to the
cmpxchg2.rel instruction
with appropriate setup.

unsigned __int64
_InterlockedCompareExchange16_acq(volatile
unsigned short *Destination, unsigned int64
Exchange, unsigned __int64 Comparand)

Same the previous intrinsic,
but using acquire semantic.

long _InterlockedIncrement(volatile long
*addend

Atomically increment by one
the value specified by its
argument. Maps to the
fetchadd4 instruction.

long _InterlockedDecrement(volatile long
*addend

Atomically decrement by one
the value specified by its
argument. Maps to the
fetchadd4 instruction.

long _InterlockedExchange(volatile long
*Target, long value

Do an exchange operation
atomically. Maps to the
xchg4 instruction.

long _InterlockedCompareExchange(volatile
long *Destination, long Exchange, long
Comparand

Do a compare and exchange
operation atomically. Maps
to the cmpxchg4 instruction
with appropriate setup.

long _InterlockedExchangeAdd(volatile long
*addend, long increment

Use compare and exchange
to do an atomic add of the
increment value to the
addend. Maps to a loop with
the cmpxchg4 instruction to
guarantee atomicity.

long _InterlockedAdd(volatile long *addend,
long increment)

Same the previous intrinsic,
but returns new value, not
the original one.

void *
_InterlockedCompareExchangePointer(void *

Map the cmpxchg8.acq
instruction; Atomically

Intel(R) C++ Intrinsics Reference

150

volatile *Destination, void *Exchange, void
*Comparand)

compare and exchange the
pointer value specified by its
first argument (all
arguments are pointers)

unsigned __int64
_InterlockedExchangeU(volatile unsigned int
*Target, unsigned __int64 value)

Atomically exchange the 32-
bit quantity specified by the
1st argument. Maps to the
xchg4 instruction.

unsigned __int64
_InterlockedCompareExchange_rel(volatile
unsigned int *Destination, unsigned __int64
Exchange, unsigned __int64 Comparand)

Maps to the cmpxchg4.rel
instruction with appropriate
setup. Atomically compare
and exchange the value
specified by the first
argument (a 64-bit pointer).

unsigned __int64
_InterlockedCompareExchange_acq(volatile
unsigned int *Destination, unsigned __int64
Exchange, unsigned __int64 Comparand)

Same the previous intrinsic
but map the cmpxchg4.acq
instruction.

void _ReleaseSpinLock(volatile int *x) Release spin lock.

__int64 _InterlockedIncrement64(volatile
__int64 *addend)

Increment by one the value
specified by its argument.
Maps to the fetchadd
instruction.

__int64 _InterlockedDecrement64(volatile
__int64 *addend)

Decrement by one the value
specified by its argument.
Maps to the fetchadd
instruction.

__int64 _InterlockedExchange64(volatile
__int64 *Target, __int64 value)

Do an exchange operation
atomically. Maps to the xchg
instruction.

unsigned __int64
_InterlockedExchangeU64(volatile unsigned
__int64 *Target, unsigned __int64 value)

Same as
InterlockedExchange64
(for unsigned quantities).

unsigned __int64
_InterlockedCompareExchange64_rel(volatile
unsigned __int64 *Destination, unsigned
__int64 Exchange, unsigned __int64 Comparand)

Maps to the cmpxchg.rel
instruction with appropriate
setup. Atomically compare
and exchange the value
specified by the first
argument (a 64-bit pointer).

unsigned __int64
_InterlockedCompareExchange64_acq(volatile
unsigned __int64 *Destination, unsigned
__int64 Exchange, unsigned __int64 Comparand)

Maps to the cmpxchg.acq
instruction with appropriate
setup. Atomically compare
and exchange the value
specified by the first
argument (a 64-bit pointer).

__int64 Same as the previous

Intel(R) C++ Intrinsics Reference

151

_InterlockedCompareExchange64(volatile
__int64 *Destination, __int64 Exchange,
__int64 Comparand)

intrinsic for signed
quantities.

__int64 _InterlockedExchangeAdd64(volatile
__int64 *addend, __int64 increment)

Use compare and exchange
to do an atomic add of the
increment value to the
addend. Maps to a loop with
the cmpxchg instruction to
guarantee atomicity

__int64 _InterlockedAdd64(volatile __int64
*addend, __int64 increment);

Same as the previous
intrinsic, but returns the new
value, not the original value.
See Note.

Note

_InterlockedSub64 is provided as a macro definition based on
_InterlockedAdd64.

#define _InterlockedSub64(target, incr)
_InterlockedAdd64((target),(-(incr))).

Uses cmpxchg to do an atomic sub of the incr value to the target. Maps to a
loop with the cmpxchg instruction to guarantee atomicity.

Load and Store

You can use the load and store intrinsic to force the strict memory access ordering of
specific data objects. This intended use is for the case when the user suppresses the
strict memory access ordering by using the -serialize-volatile- option.

Intrinsic Prototype Description
__st1_rel void __st1_rel(void *dst, const char

value);
Generates an st1.rel
instruction.

__st2_rel void __st2_rel(void *dst, const
short value);

Generates an st2.rel
instruction.

__st4_rel void __st4_rel(void *dst, const int
value);

Generates an st4.rel
instruction.

__st8_rel void __st8_rel(void *dst, const
__int64 value);

Generates an st8.rel
instruction.

__ld1_acq unsigned char __ld1_acq(void *src); Generates an ld1.acq
instruction.

__ld2_acq unsigned short __ld2_acq(void *src); Generates an ld2.acq
instruction.

__ld4_acq unsigned int __ld4_acq(void *src); Generates an ld4.acq

Intel(R) C++ Intrinsics Reference

152

instruction.

__ld8_acq unsigned __int64 __ld8_acq(void
*src);

Generates an ld8.acq
instruction.

Operating System Related Intrinsics

The prototypes for these intrinsics are in the ia64intrin.h header file.

Intrinsic Description
unsigned __int64
__getReg(const int whichReg)

Gets the value from a hardware register based
on the index passed in. Produces a
corresponding mov = r instruction. Provides
access to the following registers:
See Register Names for getReg() and setReg().

void __setReg(const int
whichReg, unsigned __int64
value)

Sets the value for a hardware register based on
the index passed in. Produces a corresponding
mov = r instruction.
See Register Names for getReg() and setReg().

unsigned __int64
__getIndReg(const int
whichIndReg, __int64 index)

Return the value of an indexed register. The
index is the 2nd argument; the register file is
the first argument.

void __setIndReg(const int
whichIndReg, __int64 index,
unsigned __int64 value)

Copy a value in an indexed register. The index is
the 2nd argument; the register file is the first
argument.

void *__ptr64 _rdteb(void) Gets TEB address. The TEB address is kept in
r13 and maps to the move r=tp instruction

void __isrlz(void) Executes the serialize instruction. Maps to the
srlz.i instruction.

void __dsrlz(void) Serializes the data. Maps to the srlz.d
instruction.

unsigned __int64
__fetchadd4_acq(unsigned int
*addend, const int
increment)

Map the fetchadd4.acq instruction.

unsigned __int64
__fetchadd4_rel(unsigned int
*addend, const int
increment)

Map the fetchadd4.rel instruction.

unsigned __int64
__fetchadd8_acq(unsigned
__int64 *addend, const int
increment)

Map the fetchadd8.acq instruction.

unsigned __int64
__fetchadd8_rel(unsigned
__int64 *addend, const int
increment)

Map the fetchadd8.rel instruction.

Intel(R) C++ Intrinsics Reference

153

void __fwb(void) Flushes the write buffers. Maps to the fwb
instruction.

void __ldfs(const int
whichFloatReg, void *src)

Map the ldfs instruction. Load a single precision
value to the specified register.

void __ldfd(const int
whichFloatReg, void *src)

Map the ldfd instruction. Load a double
precision value to the specified register.

void __ldfe(const int
whichFloatReg, void *src)

Map the ldfe instruction. Load an extended
precision value to the specified register.

void __ldf8(const int
whichFloatReg, void *src)

Map the ldf8 instruction.

void __ldf_fill(const int
whichFloatReg, void *src)

Map the ldf.fill instruction.

void __stfs(void *dst, const
int whichFloatReg)

Map the sfts instruction.

void __stfd(void *dst, const
int whichFloatReg)

Map the stfd instruction.

void __stfe(void *dst, const
int whichFloatReg)

Map the stfe instruction.

void __stf8(void *dst, const
int whichFloatReg)

Map the stf8 instruction.

void __stf_spill(void *dst,
const int whichFloatReg)

Map the stf.spill instruction.

void __mf(void) Executes a memory fence instruction. Maps to
the mf instruction.

void __mfa(void) Executes a memory fence, acceptance form
instruction. Maps to the mf.a instruction.

void __synci(void) Enables memory synchronization. Maps to the
sync.i instruction.

unsigned __int64
__thash(__int64)

Generates a translation hash entry address.
Maps to the thash r = r instruction.

unsigned __int64
__ttag(__int64)

Generates a translation hash entry tag. Maps to
the ttag r=r instruction.

void __itcd(__int64 pa) Insert an entry into the data translation cache
(Map itc.d instruction).

void __itci(__int64 pa) Insert an entry into the instruction translation
cache (Map itc.i).

void __itrd(__int64
whichTransReg, __int64 pa)

Map the itr.d instruction.

void __itri(__int64
whichTransReg, __int64 pa)

Map the itr.i instruction.

void __ptce(__int64 va) Map the ptc.e instruction.

Intel(R) C++ Intrinsics Reference

154

void __ptcl(__int64 va,
__int64 pagesz)

Purges the local translation cache. Maps to the
ptc.l r, r instruction.

void __ptcg(__int64 va,
__int64 pagesz)

Purges the global translation cache. Maps to the
ptc.g r, r instruction.

void __ptcga(__int64 va,
__int64 pagesz)

Purges the global translation cache and ALAT.
Maps to the ptc.ga r, r instruction.

void __ptri(__int64 va,
__int64 pagesz)

Purges the translation register. Maps to the
ptr.i r, r instruction.

void __ptrd(__int64 va,
__int64 pagesz)

Purges the translation register. Maps to the
ptr.d r, r instruction.

__int64 __tpa(__int64 va) Map the tpa instruction.

void __invalat(void) Invalidates ALAT. Maps to the invala
instruction.

void __invala (void) Same as void __invalat(void)

void __invala_gr(const int
whichGeneralReg)

whichGeneralReg = 0-127

void __invala_fr(const int
whichFloatReg)

whichFloatReg = 0-127

void __break(const int) Generates a break instruction with an
immediate.

void __nop(const int) Generate a nop instruction.

void __debugbreak(void) Generates a Debug Break Instruction fault.

void __fc(void*) Flushes a cache line associated with the address
given by the argument. Maps to the fc
instruction.

void __sum(int mask) Sets the user mask bits of PSR. Maps to the sum
imm24 instruction.

void __rum(int mask) Resets the user mask.

__int64 _ReturnAddress(void) Get the caller's address.

void __lfetch(int lfhint,
const *y)

Generate the lfetch.lfhint instruction. The
value of the first argument specifies the hint
type.

void __lfetch_fault(int
lfhint, const *y)

Generate the lfetch.fault.lfhint instruction.
The value of the first argument specifies the hint
type.

void __lfetch_excl(int
lfhint, const *y)

Generate the lfetch.excl.lfhint instruction.
The value {0|1|2|3} of the first argument
specifies the hint type.

void __lfetch_fault_excl(int
lfhint, void const *y)

Generate the lfetch.fault.excl.lfhint
instruction. The value of the first argument

Intel(R) C++ Intrinsics Reference

155

specifies the hint type.

unsigned int
__cacheSize(unsigned int
cacheLevel)

__cacheSize(n) returns the size in bytes of the
cache at level n. 1 represents the first-level
cache. 0 is returned for a non-existent cache
level. For example, an application may query
the cache size and use it to select block sizes in
algorithms that operate on matrices.

void __memory_barrier(void) Creates a barrier across which the compiler will
not schedule any data access instruction. The
compiler may allocate local data in registers
across a memory barrier, but not global data.

void __ssm(int mask) Sets the system mask. Maps to the ssm imm24
instruction.

void __rsm(int mask) Resets the system mask bits of PSR. Maps to
the rsm imm24 instruction.

Conversion Intrinsics

The prototypes for these intrinsics are in the ia64intrin.h header file.

Intrinsic Description
__int64 _m_to_int64(__m64 a) Convert a of type __m64 to type __int64.

Translates to nop since both types reside in
the same register for systems based on IA-
64 architecture.

__m64 _m_from_int64(__int64 a) Convert a of type __int64 to type __m64.
Translates to nop since both types reside in
the same register for systems based on IA-
64 architecture.

__int64
__round_double_to_int64(double
d)

Convert its double precision argument to a
signed integer.

unsigned __int64
__getf_exp(double d)

Map the getf.exp instruction and return
the 16-bit exponent and the sign of its
operand.

Register Names for getReg() and setReg()

The prototypes for getReg() and setReg() intrinsics are in the ia64regs.h header
file.

Name whichReg
_IA64_REG_IP 1016

_IA64_REG_PSR 1019

Intel(R) C++ Intrinsics Reference

156

_IA64_REG_PSR_L 1019

General Integer Registers
Name whichReg
_IA64_REG_GP 1025

_IA64_REG_SP 1036

_IA64_REG_TP 1037

Application Registers
Name whichReg
_IA64_REG_AR_KR0 3072

_IA64_REG_AR_KR1 3073

_IA64_REG_AR_KR2 3074

_IA64_REG_AR_KR3 3075

_IA64_REG_AR_KR4 3076

_IA64_REG_AR_KR5 3077

_IA64_REG_AR_KR6 3078

_IA64_REG_AR_KR7 3079

_IA64_REG_AR_RSC 3088

_IA64_REG_AR_BSP 3089

_IA64_REG_AR_BSPSTORE 3090

_IA64_REG_AR_RNAT 3091

_IA64_REG_AR_FCR 3093

_IA64_REG_AR_EFLAG 3096

_IA64_REG_AR_CSD 3097

_IA64_REG_AR_SSD 3098

_IA64_REG_AR_CFLAG 3099

_IA64_REG_AR_FSR 3100

_IA64_REG_AR_FIR 3101

_IA64_REG_AR_FDR 3102

_IA64_REG_AR_CCV 3104

_IA64_REG_AR_UNAT 3108

_IA64_REG_AR_FPSR 3112

_IA64_REG_AR_ITC 3116

Intel(R) C++ Intrinsics Reference

157

_IA64_REG_AR_PFS 3136

_IA64_REG_AR_LC 3137

_IA64_REG_AR_EC 3138

Control Registers
Name whichReg
_IA64_REG_CR_DCR 4096

_IA64_REG_CR_ITM 4097

_IA64_REG_CR_IVA 4098

_IA64_REG_CR_PTA 4104

_IA64_REG_CR_IPSR 4112

_IA64_REG_CR_ISR 4113

_IA64_REG_CR_IIP 4115

_IA64_REG_CR_IFA 4116

_IA64_REG_CR_ITIR 4117

_IA64_REG_CR_IIPA 4118

_IA64_REG_CR_IFS 4119

_IA64_REG_CR_IIM 4120

_IA64_REG_CR_IHA 4121

_IA64_REG_CR_LID 4160

_IA64_REG_CR_IVR 4161 ^

_IA64_REG_CR_TPR 4162

_IA64_REG_CR_EOI 4163

_IA64_REG_CR_IRR0 4164 ^

_IA64_REG_CR_IRR1 4165 ^

_IA64_REG_CR_IRR2 4166 ^

_IA64_REG_CR_IRR3 4167 ^

_IA64_REG_CR_ITV 4168

_IA64_REG_CR_PMV 4169

_IA64_REG_CR_CMCV 4170

_IA64_REG_CR_LRR0 4176

_IA64_REG_CR_LRR1 4177

Intel(R) C++ Intrinsics Reference

158

Indirect Registers for getIndReg() and setIndReg()
Name whichReg
_IA64_REG_INDR_CPUID 9000 ^

_IA64_REG_INDR_DBR 9001

_IA64_REG_INDR_IBR 9002

_IA64_REG_INDR_PKR 9003

_IA64_REG_INDR_PMC 9004

_IA64_REG_INDR_PMD 9005

_IA64_REG_INDR_RR 9006

_IA64_REG_INDR_RESERVED 9007

Multimedia Additions

The prototypes for these intrinsics are in the ia64intrin.h header file.

Details about each intrinsic follows the table below.

Intrinsic Operation Corresponding IA-64
Instruction

_m64_czx1l Compute Zero Index czx1.l

_m64_czx1r Compute Zero Index czx1.r

_m64_czx2l Compute Zero Index czx2.l

_m64_czx2r Compute Zero Index czx2.r

_m64_mix1l Mix mix1.l

_m64_mix1r Mix mix1.r

_m64_mix2l Mix mix2.l

_m64_mix2r Mix mix2.r

_m64_mix4l Mix mix4.l

_m64_mix4r Mix mix4.r

_m64_mux1 Permutation mux1

_m64_mux2 Permutation mux2

_m64_padd1uus Parallel add padd1.uus

_m64_padd2uus Parallel add padd2.uus

_m64_pavg1_nraz Parallel average pavg1

_m64_pavg2_nraz Parallel average pavg2

Intel(R) C++ Intrinsics Reference

159

_m64_pavgsub1 Parallel average subtract pavgsub1

_m64_pavgsub2 Parallel average subtract pavgsub2

_m64_pmpy2r Parallel multiply pmpy2.r

_m64_pmpy2l Parallel multiply pmpy2.l

_m64_pmpyshr2 Parallel multiply and shift
right

pmpyshr2

_m64_pmpyshr2u Parallel multiply and shift
right

pmpyshr2.u

_m64_pshladd2 Parallel shift left and add pshladd2

_m64_pshradd2 Parallel shift right and add pshradd2

_m64_psub1uus Parallel subtract psub1.uus

_m64_psub2uus Parallel subtract psub2.uus

__int64 _m64_czx1l(__m64 a)

The 64-bit value a is scanned for a zero element from the most significant element to
the least significant element, and the index of the first zero element is returned. The
element width is 8 bits, so the range of the result is from 0 - 7. If no zero element is
found, the default result is 8.

__int64 _m64_czx1r(__m64 a)

The 64-bit value a is scanned for a zero element from the least significant element to
the most significant element, and the index of the first zero element is returned. The
element width is 8 bits, so the range of the result is from 0 - 7. If no zero element is
found, the default result is 8.

__int64 _m64_czx2l(__m64 a)

The 64-bit value a is scanned for a zero element from the most significant element to
the least significant element, and the index of the first zero element is returned. The
element width is 16 bits, so the range of the result is from 0 - 3. If no zero element
is found, the default result is 4.

__int64 _m64_czx2r(__m64 a)

The 64-bit value a is scanned for a zero element from the least significant element to
the most significant element, and the index of the first zero element is returned. The
element width is 16 bits, so the range of the result is from 0 - 3. If no zero element
is found, the default result is 4.

Intel(R) C++ Intrinsics Reference

160

__m64 _m64_mix1l(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 1-byte groups, starting from the left, as
shown in Figure 1, and return the result.

__m64 _m64_mix1r(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 1-byte groups, starting from the right, as
shown in Figure 2, and return the result.

__m64 _m64_mix2l(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 2-byte groups, starting from the left, as
shown in Figure 3, and return the result.

__m64 _m64_mix2r(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 2-byte groups, starting from the right, as
shown in Figure 4, and return the result.

__m64 _m64_mix4l(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 4-byte groups, starting from the left, as
shown in Figure 5, and return the result.

Intel(R) C++ Intrinsics Reference

161

__m64 _m64_mix4r(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 4-byte groups, starting from the right, as
shown in Figure 6, and return the result.

__m64 _m64_mux1(__m64 a, const int n)

Based on the value of n, a permutation is performed on a as shown in Figure 7, and
the result is returned. Table 1 shows the possible values of n.

Table 1. Values of n for m64_mux1 Operation
 n
@brcst 0

@mix 8

@shuf 9

@alt 0xA

@rev 0xB

__m64 _m64_mux2(__m64 a, const int n)

Based on the value of n, a permutation is performed on a as shown in Figure 8, and
the result is returned.

Intel(R) C++ Intrinsics Reference

162

__m64 _m64_pavgsub1(__m64 a, __m64 b)

The unsigned data elements (bytes) of b are subtracted from the unsigned data
elements (bytes) of a and the results of the subtraction are then each independently
shifted to the right by one position. The high-order bits of each element are filled
with the borrow bits of the subtraction.

__m64 _m64_pavgsub2(__m64 a, __m64 b)

The unsigned data elements (double bytes) of b are subtracted from the unsigned
data elements (double bytes) of a and the results of the subtraction are then each
independently shifted to the right by one position. The high-order bits of each
element are filled with the borrow bits of the subtraction.

__m64 _m64_pmpy2l(__m64 a, __m64 b)

Two signed 16-bit data elements of a, starting with the most significant data element,
are multiplied by the corresponding two signed 16-bit data elements of b, and the
two 32-bit results are returned as shown in Figure 9.

Intel(R) C++ Intrinsics Reference

163

__m64 _m64_pmpy2r(__m64 a, __m64 b)

Two signed 16-bit data elements of a, starting with the least significant data element,
are multiplied by the corresponding two signed 16-bit data elements of b, and the
two 32-bit results are returned as shown in Figure 10.

__m64 _m64_pmpyshr2(__m64 a, __m64 b, const int count)

The four signed 16-bit data elements of a are multiplied by the corresponding signed
16-bit data elements of b, yielding four 32-bit products. Each product is then shifted
to the right count bits and the least significant 16 bits of each shifted product form 4
16-bit results, which are returned as one 64-bit word.

__m64 _m64_pmpyshr2u(__m64 a, __m64 b, const int count)

The four unsigned 16-bit data elements of a are multiplied by the corresponding
unsigned 16-bit data elements of b, yielding four 32-bit products. Each product is
then shifted to the right count bits and the least significant 16 bits of each shifted
product form 4 16-bit results, which are returned as one 64-bit word.

__m64 _m64_pshladd2(__m64 a, const int count, __m64 b)

a is shifted to the left by count bits and then is added to b. The upper 32 bits of the
result are forced to 0, and then bits [31:30] of b are copied to bits [62:61] of the
result. The result is returned.

__m64 _m64_pshradd2(__m64 a, const int count, __m64 b)

The four signed 16-bit data elements of a are each independently shifted to the right
by count bits (the high order bits of each element are filled with the initial value of
the sign bits of the data elements in a); they are then added to the four signed 16-
bit data elements of b. The result is returned.

__m64 _m64_padd1uus(__m64 a, __m64 b)

a is added to b as eight separate byte-wide elements. The elements of a are treated
as unsigned, while the elements of b are treated as signed. The results are treated
as unsigned and are returned as one 64-bit word.

__m64 _m64_padd2uus(__m64 a, __m64 b)

Intel(R) C++ Intrinsics Reference

164

a is added to b as four separate 16-bit wide elements. The elements of a are treated
as unsigned, while the elements of b are treated as signed. The results are treated
as unsigned and are returned as one 64-bit word.

__m64 _m64_psub1uus(__m64 a, __m64 b)

a is subtracted from b as eight separate byte-wide elements. The elements of a are
treated as unsigned, while the elements of b are treated as signed. The results are
treated as unsigned and are returned as one 64-bit word.

__m64 _m64_psub2uus(__m64 a, __m64 b)

a is subtracted from b as four separate 16-bit wide elements. The elements of a are
treated as unsigned, while the elements of b are treated as signed. The results are
treated as unsigned and are returned as one 64-bit word.

__m64 _m64_pavg1_nraz(__m64 a, __m64 b)

The unsigned byte-wide data elements of a are added to the unsigned byte-wide
data elements of b and the results of each add are then independently shifted to the
right by one position. The high-order bits of each element are filled with the carry
bits of the sums.

__m64 _m64_pavg2_nraz(__m64 a, __m64 b)

The unsigned 16-bit wide data elements of a are added to the unsigned 16-bit wide
data elements of b and the results of each add are then independently shifted to the
right by one position. The high-order bits of each element are filled with the carry
bits of the sums.

Synchronization Primitives

The synchronization primitive intrinsics provide a variety of operations. Besides
performing these operations, each intrinsic has two key properties:

• the function performed is guaranteed to be atomic
• associated with each intrinsic are certain memory barrier properties that

restrict the movement of memory references to visible data across the
intrinsic operation by either the compiler or the processor

For the following intrinsics, <type> is either a 32-bit or 64-bit integer.

Atomic Fetch-and-op Operations

<type> __sync_fetch_and_add(<type> *ptr,<type> val)
<type> __sync_fetch_and_and(<type> *ptr,<type> val)
<type> __sync_fetch_and_nand(<type> *ptr,<type> val)
<type> __sync_fetch_and_or(<type> *ptr,<type> val)
<type> __sync_fetch_and_sub(<type> *ptr,<type> val)
<type> __sync_fetch_and_xor(<type> *ptr,<type> val)

Atomic Op-and-fetch Operations

Intel(R) C++ Intrinsics Reference

165

<type> __sync_add_and_fetch(<type> *ptr,<type> val)
<type> __sync_sub_and_fetch(<type> *ptr,<type> val)
<type> __sync_or_and_fetch(<type> *ptr,<type> val)
<type> __sync_and_and_fetch(<type> *ptr,<type> val)
<type> __sync_nand_and_fetch(<type> *ptr,<type> val)
<type> __sync_xor_and_fetch(<type> *ptr,<type> val)

Atomic Compare-and-swap Operations

<type> __sync_val_compare_and_swap(<type> *ptr, <type> old_val, <type>
new_val)
int __sync_bool_compare_and_swap(<type> *ptr, <type> old_val, <type>
new_val)

Atomic Synchronize Operation

void __sync_synchronize (void);

Atomic Lock-test-and-set Operation

<type> __sync_lock_test_and_set(<type> *ptr,<type> val)

Atomic Lock-release Operation

void __sync_lock_release(<type> *ptr)

Miscellaneous Intrinsics

void* __get_return_address(unsigned int level);

This intrinsic yields the return address of the current function. The level argument
must be a constant value. A value of 0 yields the return address of the current
function. Any other value yields a zero return address. On Linux systems, this
intrinsic is synonymous with __builtin_return_address. The name and the
argument are provided for compatibility with gcc*.

void __set_return_address(void* addr);

This intrinsic overwrites the default return address of the current function with the
address indicated by its argument. On return from the current invocation, program
execution continues at the address provided.

void* __get_frame_address(unsigned int level);

This intrinsic returns the frame address of the current function. The level argument
must be a constant value. A value of 0 yields the frame address of the current
function. Any other value yields a zero return value. On Linux systems, this intrinsic
is synonymous with __builtin_frame_address. The name and the argument are
provided for compatibility with gcc.

Intel(R) C++ Intrinsics Reference

166

Intrinsics for Dual-Core Intel® Itanium® 2 processor 9000 series

The Dual-Core Intel® Itanium® 2 processor 9000 series supports the intrinsics listed
in the table below.

These intrinsics each generate IA-64 instructions. The first alpha-numerical chain in
the intrinsic name represents the return type, and the second alpha-numerical chain
in the intrinsic name represents the instruction the intrinsic generates. For example,
the intrinsic _int64_cmp8xchg generates the _int64 return type and the cmp8xchg
IA-64 instruction.

Detailed information about each intrinsic follows the table.

Click here for Examples of several of these intrinsics.

For more information about the instructions these intrinsics generate, please see the
documentation area of the Itanium 2 processor website at
http://developer.intel.com/products/processor/itanium2/index.htm

Note

Calling these intrinsics on any previous Itanium® processor causes an illegal
instruction fault.

Intrinsic Name Operation
__cmp8xchg16 Compare and Exchange

__ld16 Load

__fc_i Flush cache

__hint Provide performance hints

__st16 Store

__int64 __cmp8xchg16(const int <sem>, const int <ldhint>, void *<addr>,
__int64 <xchg_lo>)

Generates the 16-byte form of the IA-64 compare and exchange instruction.

Returns the original 64-bit value read from memory at the specified address.

The following table describes each argument for this intrinsic.

sem ldhint addr xchg_lo

Literal value between 0 Literal value between 0 The The least

Intel(R) C++ Intrinsics Reference

167

and 1 that specifies the
semaphore completer
(0==.acq, 1==.rel)

and 2 that specifies the
load hint completer
(0==.none, 1==.nt1,
2==.nta).

address of
the value to
read.

significant 8
bytes of the
exchange value.

The following table describes each implicit argument for this intrinsic.

xchg_hi cmpnd

Highest 8 bytes of the exchange
value. Use the setReg intrinsic to set
the <xchg_hi> value in the register
AR[CSD]. [__setReg
(_IA64_REG_AR_CSD,
<xchg_hi>);].

The 64-bit compare value. Use the __setReg
intrinsic to set the <cmpnd> value in the
register AR[CCV]. [__setReg
(_IA64_REG_AR_CCV,<cmpnd>);]

__int64 __ld16(const int <ldtype>, const int <ldhint>, void *<addr>)

Generates the IA-64 instruction that loads 16 bytes from the given address.

Returns the lower 8 bytes of the quantity loaded from <addr>. The higher 8 bytes
are loaded in register AR[CSD].

Generates implicit return of the higher 8 bytes to the register AR[CSD]. You can use
the __getReg intrinsic to copy the value into a user variable. [foo =
__getReg(_IA64_REG_AR_CSD);]

The following table describes each argument for this intrinsic.

ldtype ldhint addr

A literal value between 0 and 1
that specifies the load type
(0==none, 1==.acq).

A literal value between 0 and 2 that
specifies the hint completer
(0==none, 1==.nt1, 2== .nta).

The address
to load from.

void __fc_i(void *<addr>)

Generates the IA-64 instruction that flushes the cache line associated with the
specified address and ensures coherency between instruction cache and data cache.

The following table describes the argument for this intrinsic.

cache_line

An address associated with the cache line you want to flush

void __hint(const int <hint_value>)

Generates the IA-64 instruction that provides performance hints about the program
being executed.

Intel(R) C++ Intrinsics Reference

168

The following table describes the argument for this intrinsic.

hint_value

A literal value that specifies the hint. Currently, zero is the only legal value.
__hint(0) generates the IA-64 hint@pause instruction.

void __st16(const int <sttype>, const int <sthint>, void *<addr>,
__int64 <src_lo>)

Generates the IA-64 instruction to store 16 bytes at the given address.

The following table describes each argument for this intrinsic.

sttype sthint addr src_lo

A literal value between 0
and 1 that specifies the
store type completer
(0==.none, 1==.rel).

A literal value between 0
and 1 that specifies the
store hint completer
(0==.none, 1==.nta).

The address
where the 16-
byte value is
stored.

The lowest 8
bytes of the
16-byte
value to
store.

The following table describes the implicit argument for this intrinsic.

src_hi

The highest 8 bytes of the 16-byte value to store. Use the setReg intrinsic to set
the <src_hi> value in the register AR[CSD]. [__setReg(_IA64_REG_AR_CSD,
<src_hi>);]

Examples

The following examples show how to use the intrinsics listed above to generate the
corresponding instructions. In all cases, use the __setReg (resp. __getReg) intrinsic
to set up implicit arguments (resp. retrieve implicit return values).

// file foo.c

//

#include <ia64intrin.h>

void foo_ld16(__int64* lo, __int64* hi, void* addr)

{

 /**/

Intel(R) C++ Intrinsics Reference

169

 // The following two calls load the 16-byte value at the given
address

 // into two (2) 64-bit integers

 // The higher 8 bytes are returned implicitly in the CSD register;

// The call to __getReg moves that value into a user variable (hi).

// The instruction generated is a plain ld16

// ld16 Ra,ar.csd=[Rb]

 *lo = __ld16(__ldtype_none, __ldhint_none, addr);

 *hi = __getReg(_IA64_REG_AR_CSD);

 /**/

}

void foo_ld16_acq(__int64* lo, __int64* hi, void* addr)

{

 /**/

 // This is the same as the previous example, except that it uses the

 // __ldtype_acq completer to generate the acquire_from of the ld16:

 // ld16.acq Ra,ar.csd=[Rb]

 //

 *lo = __ld16(__ldtype_acq, __ldhint_none, addr);

 *hi = __getReg(_IA64_REG_AR_CSD);

 /**/

}

void foo_st16(__int64 lo, __int64 hi, void* addr)

{

 /**/

 // first set the highest 64-bits into CSD register. Then call

 // __st16 with the lowest 64-bits as argument

Intel(R) C++ Intrinsics Reference

170

 //

 __setReg(_IA64_REG_AR_CSD, hi);

 __st16(__sttype_none, __sthint_none, addr, lo);

 /**/

}

__int64 foo_cmp8xchg16(__int64 xchg_lo, __int64 xchg_hi, __int64 cmpnd,
void* addr)

{

 __int64 old_value;

 /**/

 // set the highest bits of the exchange value and the comperand
value

 // respectively in CSD and CCV. Then, call the exchange intrinsic

 //

 __setReg(_IA64_REG_AR_CSD, xchg_hi);

 __setReg(_IA64_REG_AR_CCV, cmpnd);

 old_value = __cmp8xchg16(__semtype_acq, __ldhint_none, addr,
xchg_lo);

 /**/

 return old_value;

}

// end foo.c

Microsoft-compatible Intrinsics for Dual-Core Intel® Itanium® 2
processor 9000 series

The Dual-Core Intel® Itanium® 2 processor 9000 series supports the intrinsics listed
in the table below. These intrinsics are also compatible with the Microsoft compiler.
These intrinsics each generate IA-64 instructions. The second alpha-numerical chain
in the intrinsic name represents the IA-64 instruction the intrinsic generates. For
example, the intrinsic _int64_cmp8xchg generates the cmp8xchg IA-64 instruction.

Intel(R) C++ Intrinsics Reference

171

For more information about the instructions these intrinsics generate, please see the
documentation area of the Itanium 2 processor website at
http://developer.intel.com/products/processor/itanium2/index.htm.

Detailed information about each intrinsic follows the table.

Intrinsic Name Operation Corresponding IA-64
Instruction

_InterlockedCompare64Exchange128 Compare and
exchange

_InterlockedCompare64Exchange128_acq Compare and
Exchange

_InterlockedCompare64Exchange128_rel Compare and
Exchange

__load128 Read

__load128_acq Read

__store128 Store

__store128_rel Store

__int64 _InterlockedCompare64Exchange128(__int64 volatile *
<Destination>, __int64 <ExchangeHigh>, __int64 <ExchangeLow>, __int64
<Comperand>)

Generates a compare and exchange IA-64 instruction.

Returns the lowest 64-bit value of the destination.

The following table describes each argument for this intrinsic.

Destination ExchangeHigh ExchangeLow Comperand

Pointer to the 128-
bit Destination
value

Highest 64 bits of
the Exchange value

Lowest 64 bits of
the Exchange value

Value to compare
with Destination

__int64 _InterlockedCompare64Exchange128_acq(__int64 volatile *
<Destination>, __int64 <ExchangeHigh>, __int64 <ExchangeLow>, __int64
<Comperand>)

Generates a compare and exchange IA-64 instruction. Same as
_InterlockedCompare64Exchange128, but this intrinsic uses acquire semantics.

Returns the lowest 64-bit value of the destination.

The following table describes each argument for this intrinsic.

Intel(R) C++ Intrinsics Reference

172

Destination ExchangeHigh ExchangeLow Comperand

Pointer to the 128-
bit Destination
value

Highest 64 bits of
the Exchange value

Lowest 64 bits of
the Exchange value

Value to compare
with Destination

__int64 _InterlockedCompare64Exchange128_rel(__int64 volatile *
<Destination>, __int64 <ExchangeHigh>, __int64 <ExchangeLow>, __int64
<Comperand>

Generates a compare and exchange IA-64 instruction. Same as
_InterlockedCompare64Exchange128, but this intrinsic uses release semantics.

Returns the lowest 64-bit value of the destination.

The following table describes each argument for this intrinsic.

Destination ExchangeHigh ExchangeLow Comperand

Pointer to the 128-
bit Destination
value

Highest 64 bits of
the Exchange value

Lowest 64 bits of
the Exchange value

Value to compare
with Destination

__int64 __load128(__int64 volatile * Source, __int64
*<DestinationHigh>)

Generates the IA-64 instruction that atomically reads 128 bits from the memory
location.

Returns the lowest 64-bit value of the 128-bit loaded value.

The following table describes each argument for this intrinsic.

Source DestinationHigh

Pointer to the 128-bit
Source value

Pointer to the location in memory that stores the highest
64 bits of the 128-bit loaded value

__int64 __load128_acq(__int64 volatile * <Source>, __int64
*<DestinationHigh>

Generates the IA-64 instruction that atomically reads 128 bits from the memory
location. Same as __load128, but the this intrinsic uses acquire semantics.

Returns the lowest 64-bit value of the 128-bit loaded value.

Intel(R) C++ Intrinsics Reference

173

The following table describes each argument for this intrinsic.

Source DestinationHigh

Pointer to the 128-bit
Source value

Pointer to the location in memory that stores the highest
64 bits of the 128-bit loaded value

void __store128(__int64 volatile * <Destination>, __int64 <SourceHigh>
__int64 <SourceLow>)

Generates the IA-64 instruction that atomically stores 128 bits at the destination
memory location.

No returns.

Destination SourceHigh SourceLow

Pointer to the 128-bit
Destination value

The highest 64 bits of the
value to be stored

The lowest 64 bits of the
value to be stored

void __store128_rel(__int64 volatile * <Destination>, __int64
<SourceHigh> __int64 <SourceLow>)

Generates the IA-64 instruction that atomically stores 128 bits at the destination
memory location. Same as __store128, but this intrinsic uses release semantics.

No returns.

Destination SourceHigh SourceLow

Pointer to the 128-bit
Destination value

The highest 64 bits of the
value to be stored

The lowest 64 bits of the
value to be stored

Intel(R) C++ Intrinsics Reference

174

Data Alignment, Memory Allocation Intrinsics, and Inline
Assembly

Overview: Data Alignment, Memory Allocation Intrinsics, and
Inline Assembly

This section describes features that support usage of the intrinsics. The following
topics are described:

• Alignment Support
• Allocating and Freeing Aligned Memory Blocks
• Inline Assembly

Alignment Support

Aligning data improves the performance of intrinsics. When using the Streaming
SIMD Extensions, you should align data to 16 bytes in memory operations.
Specifically, you must align __m128 objects as addresses passed to the _mm_load
and _mm_store intrinsics. If you want to declare arrays of floats and treat them as
__m128 objects by casting, you need to ensure that the float arrays are properly
aligned.

Use __declspec(align) to direct the compiler to align data more strictly than it
otherwise would. For example, a data object of type int is allocated at a byte address
which is a multiple of 4 by default. However, by using __declspec(align), you can
direct the compiler to instead use an address which is a multiple of 8, 16, or 32 with
the following restriction on IA-32:

• 16-byte addresses can be locally or statically allocated

You can use this data alignment support as an advantage in optimizing cache line
usage. By clustering small objects that are commonly used together into a struct,
and forcing the struct to be allocated at the beginning of a cache line, you can
effectively guarantee that each object is loaded into the cache as soon as any one is
accessed, resulting in a significant performance benefit.

The syntax of this extended-attribute is as follows:

align(n)

where n is an integral power of 2, up to 4096. The value specified is the requested
alignment.

Caution

In this release, __declspec(align(8)) does not function correctly. Use
__declspec(align(16)) instead.

Intel(R) C++ Intrinsics Reference

175

Note

If a value is specified that is less than the alignment of the affected data type, it
has no effect. In other words, data is aligned to the maximum of its own
alignment or the alignment specified with __declspec(align).

You can request alignments for individual variables, whether of static or automatic
storage duration. (Global and static variables have static storage duration; local
variables have automatic storage duration by default.) You cannot adjust the
alignment of a parameter, nor a field of a struct or class. You can, however,
increase the alignment of a struct (or union or class), in which case every object
of that type is affected.

As an example, suppose that a function uses local variables i and j as subscripts
into a 2-dimensional array. They might be declared as follows:

int i, j;

These variables are commonly used together. But they can fall in different cache
lines, which could be detrimental to performance. You can instead declare them as
follows:

__declspec(align(16)) struct { int i, j; } sub;

The compiler now ensures that they are allocated in the same cache line. In C++,
you can omit the struct variable name (written as sub in the previous example). In
C, however, it is required, and you must write references to i and j as sub.i and
sub.j.

If you use many functions with such subscript pairs, it is more convenient to declare
and use a struct type for them, as in the following example:

typedef struct __declspec(align(16)) { int i, j; } Sub;

By placing the __declspec(align) after the keyword struct, you are requesting the
appropriate alignment for all objects of that type. Note that allocation of parameters
is unaffected by __declspec(align). (If necessary, you can assign the value of a
parameter to a local variable with the appropriate alignment.)

You can also force alignment of global variables, such as arrays:

__declspec(align(16)) float array[1000];

Allocating and Freeing Aligned Memory Blocks

Use the _mm_malloc and _mm_free intrinsics to allocate and free aligned blocks of
memory. These intrinsics are based on malloc and free, which are in the libirc.a
library. You need to include malloc.h. The syntax for these intrinsics is as follows:

void* _mm_malloc (int size, int align)

Intel(R) C++ Intrinsics Reference

176

void _mm_free (void *p)

The _mm_malloc routine takes an extra parameter, which is the alignment constraint.
This constraint must be a power of two. The pointer that is returned from
_mm_malloc is guaranteed to be aligned on the specified boundary.

Note

Memory that is allocated using _mm_malloc must be freed using _mm_free .
Calling free on memory allocated with _mm_malloc or calling _mm_free on
memory allocated with malloc will cause unpredictable behavior.

Inline Assembly

Microsoft Style Inline Assembly

The Intel® C++ Compiler supports Microsoft-style inline assembly with the -use-
msasm compiler option. See your Microsoft documentation for the proper syntax.

GNU*-like Style Inline Assembly (IA-32 architecture and Intel® 64
architecture only)

The Intel® C++ Compiler supports GNU-like style inline assembly. The syntax is as
follows:

asm-keyword [volatile-keyword] (asm-template [asm-interface]) ;

The Intel C++ Compiler also supports mixing UNIX and Microsoft style asms. Use the
__asm__ keyword for GNU-style ASM when using the -use_msasm switch.

Note

The Intel C++ Compiler supports gcc-style inline ASM if the assembler code uses
AT&T* System V/386 syntax.

Syntax
Element

Description

asm-
keyword

asm statements begin with the keyword asm. Alternatively, either
__asm or __asm__ may be used for compatibility. When mixing UNIX
and Microsoft style asm, use the __asm__ keyword. The compiler only
accepts the __asm__ keyword. The asm and __asm keywords are
reserved for Microsoft style assembly statements.

volatile-
keyword

If the optional keyword volatile is given, the asm is volatile. Two
volatile asm statements will never be moved past each other, and a
reference to a volatile variable will not be moved relative to a
volatile asm. Alternate keywords __volatile and __volatile__ may
be used for compatibility.

asm-
template

The asm-template is a C language ASCII string which specifies how to
output the assembly code for an instruction. Most of the template is a

Intel(R) C++ Intrinsics Reference

177

fixed string; everything but the substitution-directives, if any, is
passed through to the assembler. The syntax for a substitution
directive is a % followed by one or two characters.

asm-
interface

The asm-interface consists of three parts:
1. an optional output-list
2. an optional input-list
3. an optional clobber-list
These are separated by colon (:) characters. If the output-list is
missing, but an input-list is given, the input list may be preceded
by two colons (::)to take the place of the missing output-list. If the
asm-interface is omitted altogether, the asm statement is considered
volatile regardless of whether a volatile-keyword was specified.

output-
list

An output-list consists of one or more output-specs separated by
commas. For the purposes of substitution in the asm-template, each
output-spec is numbered. The first operand in the output-list is
numbered 0, the second is 1, and so on. Numbering is continuous
through the output-list and into the input-list. The total number
of operands is limited to 30 (i.e. 0-29).

input-list Similar to an output-list, an input-list consists of one or more
input-specs separated by commas. For the purposes of substitution
in the asm-template, each input-spec is numbered, with the
numbers continuing from those in the output-list.

clobber-
list

A clobber-list tells the compiler that the asm uses or changes a
specific machine register that is either coded directly into the asm or is
changed implicitly by the assembly instruction. The clobber-list is a
comma-separated list of clobber-specs.

input-spec The input-specs tell the compiler about expressions whose values
may be needed by the inserted assembly instruction. In order to
describe fully the input requirements of the asm, you can list input-
specs that are not actually referenced in the asm-template.

clobber-
spec

Each clobber-spec specifies the name of a single machine register
that is clobbered. The register name may optionally be preceded by
a %. You can specify any valid machine register name. It is also legal
to specify "memory" in a clobber-spec. This prevents the compiler
from keeping data cached in registers across the asm statement.

When compiling an assembly statement on Linux, the compiler simply emits the
asm-template to the assembly file after making any necessary operand substitutions.
The compiler then calls the GNU assembler to generate machine code. In contrast,
on Windows the compiler itself must assemble the text contained in the asm-
template string into machine code. In essence, the compiler contains a built-in
assembler.

The compiler’s built-in assembler does not support the full functionality of the GNU
assembler, so there are limitations in the contents of the asm-template. In particular,
the following assembler features are not currently supported.

• Directives

Intel(R) C++ Intrinsics Reference

178

• Labels
• Symbols*

Note

* Direct symbol references in the asm-template are not supported. To access a
C++ object, use the asm-interface with a substitution directive.

Example

Incorrect method for accessing a C++ object:

__asm__("addl $5, _x");

Proper method for accessing a C++ object

__asm__("addl $5, %0" : "+rm" (x));

GNU-style inline assembly statements on Windows use the same assembly
instruction format as on Linux. This means that destination operands are on the right
and source operands are on the left. This operand order is the reverse of Intel
assembly syntax.

Due to the limitations of the compiler’s built-in assembler, many assembly
statements that compile and run on Linux will not compile on Windows. On the other
hand, assembly statements that compile and run on Windows should also compile
and run on Linux.

This feature provides a high-performance alternative to Microsoft-style inline
assembly statements when portability between Windows, Linux, and Mac OS is
important. Its intended use is in small primitives where high-performance integration
with the surrounding C++ code is essential.

Example

#ifdef _WIN64
#define INT64_PRINTF_FORMAT "I64"
#else
#define __int64 long long
#define INT64_PRINTF_FORMAT "L"
#endif
#include <stdio.h>
typedef struct {
 __int64 lo64;
 __int64 hi64;
} my_i128;
#define ADD128(out, in1, in2) \
 __asm__("addq %2, %0; adcq %3, %1" : \
 "=r"(out.lo64), "=r"(out.hi64) : \
 "emr" (in2.lo64), "emr"(in2.hi64), \

Intel(R) C++ Intrinsics Reference

179

 "0" (in1.lo64), "1" (in1.hi64));
extern int
main()
{
 my_i128 val1, val2, result;
 val1.lo64 = ~0;
 val1.hi64 = 0;
 val2.lo64 = 1;
 val2.hi64 = 65;
 ADD128(result, val1, val2);
 printf(" 0x%016" INT64_PRINTF_FORMAT
"x%016" INT64_PRINTF_FORMAT "x\n",
 val1.hi64, val1.lo64);
 printf("+ 0x%016" INT64_PRINTF_FORMAT "x%016" INT64_PRINTF_FORMAT
"x\n",
 val2.hi64, val2.lo64);
 printf("------------------------------------\n");
 printf(" 0x%016" INT64_PRINTF_FORMAT "x%016" INT64_PRINTF_FORMAT
"x\n",
 result.hi64, result.lo64);
 return 0;
}

This example, written for Intel® 64 architecture, shows how to use a GNU-style
inline assembly statement to add two 128-bit integers. In this example, a 128-bit
integer is represented as two __int64 objects in the my_i128 structure. The inline
assembly statement used to implement the addition is contained in the ADD128
macro, which takes 3 my_i128 arguments representing 3 128-bit integers. The first
argument is the output. The next two arguments are the inputs. The example
compiles and runs using the Intel Compiler on Linux or Windows, producing the
following output.

 0x0000000000000000ffffffffffffffff

+ 0x00000000000000410000000000000001

+ 0x00000000000000420000000000000000

In the GNU-style inline assembly implementation, the asm interface specifies all the
inputs, outputs, and side effects of the asm statement, enabling the compiler to
generate very efficient code.

mov r13, 0xffffffffffffffff

mov r12, 0x000000000

add r13, 1

adc r12, 65

It is worth noting that when the compiler generates an assembly file on Windows, it
uses Intel syntax even though the assembly statement was written using Linux
assembly syntax.

Intel(R) C++ Intrinsics Reference

180

The compiler moves in1.lo64 into a register to match the constraint of operand 4.
Operand 4’s constraint of "0" indicates that it must be assigned the same location as
output operand 0. And operand 0’s constraint is "=r", indicating that it must be
assigned an integer register. In this case, the compiler chooses r13. In the same way,
the compiler moves in1.hi64 into register r12.

The constraints for input operands 2 and 3 allow the operands to be assigned a
register location ("r"), a memory location ("m"), or a constant signed 32-bit integer
value ("e"). In this case, the compiler chooses to match operands 2 and 3 with the
constant values 1 and 65, enabling the add and adc instructions to utilize the
"register-immediate" forms.

The same operation is much more expensive using a Microsoft-style inline assembly
statement, because the interface between the assembly statement and the
surrounding C++ code is entirely through memory. Using Microsoft assembly, the
ADD128 macro might be written as follows.

#define ADD128(out, in1, in2) \

 { \

 __asm mov rax, in1.lo64 \

 __asm mov rdx, in1.hi64 \

 __asm add rax, in2.lo64 \

 __asm adc rdx, in2.hi64 \

 __asm mov out.lo64, rax \

 __asm mov out.hi64, rdx \

 }

The compiler must add code before the assembly statement to move the inputs into
memory, and it must add code after the assembly statement to retrieve the outputs
from memory. This prevents the compiler from exploiting some optimization
opportunities. Thus, the following assembly code is produced.

 mov QWORD PTR [rsp+32], -1

 mov QWORD PTR [rsp+40], 0

 mov QWORD PTR [rsp+48], 1

 mov QWORD PTR [rsp+56], 65

; Begin ASM

 mov rax, QWORD PTR [rsp+32]

 mov rdx, QWORD PTR [rsp+40]

Intel(R) C++ Intrinsics Reference

181

 add rax, QWORD PTR [rsp+48]

 adc rdx, QWORD PTR [rsp+56]

 mov QWORD PTR [rsp+64], rax

 mov QWORD PTR [rsp+72], rdx

; End ASM

 mov rdx, QWORD PTR [rsp+72]

 mov r8, QWORD PTR [rsp+64]

The operation that took only 4 instructions and 0 memory references using GNU-
style inline assembly takes 12 instructions with 12 memory references using
Microsoft-style inline assembly.

Intel(R) C++ Intrinsics Reference

182

Intrinsics Cross-processor Implementation

Overview: Intrinsics Cross-processor Implementation

This section provides a series of tables that compare intrinsics performance across
architectures. Before implementing intrinsics across architectures, please note the
following.

• Instrinsics may generate code that does not run on all IA processors. You
should therefore use CPUID to detect the processor and generate the
appropriate code.

• Implement intrinsics by processor family, not by specific processor. The
guiding principle for which family -- IA-32 or Itanium® processors -- the
intrinsic is implemented on is performance, not compatibility. Where there is
added performance on both families, the intrinsic will be identical.

Intrinsics For Implementation Across All IA

The following intrinsics provide significant performance gain over a non-intrinsic-
based code equivalent.

int abs(int)

long labs(long)

unsigned long _lrotl(unsigned long value, int shift)

unsigned long _lrotr(unsigned long value, int shift)

unsigned int _rotl(unsigned int value, int shift)

unsigned int _rotr(unsigned int value, int shift)

__int64 __i64_rotl(__int64 value, int shift)

__int64 __i64_rotr(__int64 value, int shift)

double fabs(double)

double log(double)

float logf(float)

double log10(double)

float log10f(float)

double exp(double)

float expf(float)

double pow(double, double)

float powf(float, float)

double sin(double)

float sinf(float)

double cos(double)

Intel(R) C++ Intrinsics Reference

183

float cosf(float)

double tan(double)

float tanf(float)

double acos(double)

float acosf(float)

double acosh(double)

float acoshf(float)

double asin(double)

float asinf(float)

double asinh(double)

float asinhf(float)

double atan(double)

float atanf(float)

double atanh(double)

float atanhf(float)

float cabs(double)*

double ceil(double)

float ceilf(float)

double cosh(double)

float coshf(float)

float fabsf(float)

double floor(double)

float floorf(float)

double fmod(double)

float fmodf(float)

double hypot(double, double)

float hypotf(float)

double rint(double)

float rintf(float)

double sinh(double)

float sinhf(float)

float sqrtf(float)

double tanh(double)

float tanhf(float)

char *_strset(char *, _int32)

Intel(R) C++ Intrinsics Reference

184

void *memcmp(const void *cs, const void *ct, size_t n)

void *memcpy(void *s, const void *ct, size_t n)

void *memset(void * s, int c, size_t n)

char *Strcat(char * s, const char * ct)

int *strcmp(const char *, const char *)

char *strcpy(char * s, const char * ct)

size_t strlen(const char * cs)

int strncmp(char *, char *, int)

int strncpy(char *, char *, int)

void *__alloca(int)

int _setjmp(jmp_buf)

_exception_code(void)

_exception_info(void)

_abnormal_termination(void)

void _enable()

void _disable()

int _bswap(int)

int _in_byte(int)

int _in_dword(int)

int _in_word(int)

int _inp(int)

int _inpd(int)

int _inpw(int)

int _out_byte(int, int)

int _out_dword(int, int)

int _out_word(int, int)

int _outp(int, int)

int _outpd(int, int)

int _outpw(int, int)

unsigned short _rotwl(unsigned short val, int count)

unsigned short _rotwr(unsigned short val, int count)

Intel(R) C++ Intrinsics Reference

185

MMX(TM) Technology Intrinsics Implementation

Key to the table entries

• A = Expected to give significant performance gain over non-intrinsic-based
code equivalent.

• B = Non-intrinsic-based source code would be better; the intrinsic's
implementation may map directly to native instructions, but they offer no
significant performance gain.

• C = Requires contorted implementation for particular microarchitecture. Will
result in very poor performance if used.

Intrinsic Name MMX(TM)
Technology

SSE

SSE2

IA-64
Architecture

_mm_empty A B

_mm_cvtsi32_si64 A A

_mm_cvtsi64_si32 A A

_mm_packs_pi16 A A

_mm_packs_pi32 A A

_mm_packs_pu16 A A

_mm_unpackhi_pi8 A A

_mm_unpackhi_pi16 A A

_mm_unpackhi_pi32 A A

_mm_unpacklo_pi8 A A

_mm_unpacklo_pi16 A A

_mm_unpacklo_pi32 A A

_mm_add_pi8 A A

_mm_add_pi16 A A

_mm_add_pi32 A A

_mm_adds_pi8 A A

_mm_adds_pi16 A A

_mm_adds_pu8 A A

_mm_adds_pu16 A A

_mm_sub_pi8 A A

Intel(R) C++ Intrinsics Reference

186

_mm_sub_pi16 A A

_mm_sub_pi32 A A

_mm_subs_pi8 A A

_mm_subs_pi16 A A

_mm_subs_pu8 A A

_mm_subs_pu16 A A

_mm_madd_pi16 A C

_mm_mulhi_pi16 A A

_mm_mullo_pi16 A A

_mm_sll_pi16 A A

_mm_slli_pi16 A A

_mm_sll_pi32 A A

_mm_slli_pi32 A A

_mm_sll_pi64 A A

_mm_slli_pi64 A A

_mm_sra_pi16 A A

_mm_srai_pi16 A A

_mm_sra_pi32 A A

_mm_srai_pi32 A A

_mm_srl_pi16 A A

_mm_srli_pi16 A A

_mm_srl_pi32 A A

_mm_srli_pi32 A A

_mm_srl_si64 A A

_mm_srli_si64 A A

_mm_and_si64 A A

_mm_andnot_si64 A A

_mm_or_si64 A A

_mm_xor_si64 A A

_mm_cmpeq_pi8 A A

_mm_cmpeq_pi16 A A

_mm_cmpeq_pi32 A A

Intel(R) C++ Intrinsics Reference

187

_mm_cmpgt_pi8 A A

_mm_cmpgt_pi16 A A

_mm_cmpgt_pi32 A A

_mm_setzero_si64 A A

_mm_set_pi32 A A

_mm_set_pi16 A C

_mm_set_pi8 A C

_mm_set1_pi32 A A

_mm_set1_pi16 A A

_mm_set1_pi8 A A

_mm_setr_pi32 A A

_mm_setr_pi16 A C

_mm_setr_pi8 A C

_mm_empty is implemented in IA-64 instructions as a NOP for source compatibility
only.

Streaming SIMD Extensions Intrinsics Implementation

Regular Streaming SIMD Extensions (SSE) intrinsics work on 4 32-bit single precision
values. On IA-64 architecture-based systems, basic operations like add and compare
require two SIMD instructions. All can be executed in the same cycle so the
throughput is one basic SSE operation per cycle or 4 32-bit single precision
operations per cycle.

Key to the table entries

• A = Expected to give significant performance gain over non-intrinsic-based
code equivalent.

• B = Non-intrinsic-based source code would be better; the intrinsic's
implementation may map directly to native instructions but they offer no
significant performance gain.

• C = Requires contorted implementation for particular microarchitecture. Will
result in very poor performance if used.

Intrinsic
Name

MMX(TM
Technology

SSE

SSE2

IA-64
Architecture

_mm_add_ss N/A B B

_mm_add_ps N/A A A

_mm_sub_ss N/A B B

Intel(R) C++ Intrinsics Reference

188

_mm_sub_ps N/A A A

_mm_mul_ss N/A B B

_mm_mul_ps N/A A A

_mm_div_ss N/A B B

_mm_div_ps N/A A A

_mm_sqrt_ss N/A B B

_mm_sqrt_ps N/A A A

_mm_rcp_ss N/A B B

_mm_rcp_ps N/A A A

_mm_rsqrt_ss N/A B B

_mm_rsqrt_ps N/A A A

_mm_min_ss N/A B B

_mm_min_ps N/A A A

_mm_max_ss N/A B B

_mm_max_ps N/A A A

_mm_and_ps N/A A A

_mm_andnot_ps N/A A A

_mm_or_ps N/A A A

_mm_xor_ps N/A A A

_mm_cmpeq_ss N/A B B

_mm_cmpeq_ps N/A A A

_mm_cmplt_ss N/A B B

_mm_cmplt_ps N/A A A

_mm_cmple_ss N/A B B

_mm_cmple_ps N/A A A

_mm_cmpgt_ss N/A B B

_mm_cmpgt_ps N/A A A

_mm_cmpge_ss N/A B B

_mm_cmpge_ps N/A A A

_mm_cmpneq_ss N/A B B

_mm_cmpneq_ps N/A A A

_mm_cmpnlt_ss N/A B B

Intel(R) C++ Intrinsics Reference

189

_mm_cmpnlt_ps N/A A A

_mm_cmpnle_ss N/A B B

_mm_cmpnle_ps N/A A A

_mm_cmpngt_ss N/A B B

_mm_cmpngt_ps N/A A A

_mm_cmpnge_ss N/A B B

_mm_cmpnge_ps N/A A A

_mm_cmpord_ss N/A B B

_mm_cmpord_ps N/A A A

_mm_cmpunord_ss N/A B B

_mm_cmpunord_ps N/A A A

_mm_comieq_ss N/A B B

_mm_comilt_ss N/A B B

_mm_comile_ss N/A B B

_mm_comigt_ss N/A B B

_mm_comige_ss N/A B B

_mm_comineq_ss N/A B B

_mm_ucomieq_ss N/A B B

_mm_ucomilt_ss N/A B B

_mm_ucomile_ss N/A B B

_mm_ucomigt_ss N/A B B

_mm_ucomige_ss N/A B B

_mm_ucomineq_ss N/A B B

_mm_cvtss_si32 N/A A B

_mm_cvtps_pi32 N/A A A

_mm_cvttss_si32 N/A A B

_mm_cvttps_pi32 N/A A A

_mm_cvtsi32_ss N/A A B

_mm_cvtpi32_ps N/A A C

_mm_cvtpi16_ps N/A A C

_mm_cvtpu16_ps N/A A C

_mm_cvtpi8_ps N/A A C

Intel(R) C++ Intrinsics Reference

190

_mm_cvtpu8_ps N/A A C

_mm_cvtpi32x2_ps N/A A C

_mm_cvtps_pi16 N/A A C

_mm_cvtps_pi8 N/A A C

_mm_move_ss N/A A A

_mm_shuffle_ps N/A A A

_mm_unpackhi_ps N/A A A

_mm_unpacklo_ps N/A A A

_mm_movehl_ps N/A A A

_mm_movelh_ps N/A A A

_mm_movemask_ps N/A A C

_mm_getcsr N/A A A

_mm_setcsr N/A A A

_mm_loadh_pi N/A A A

_mm_loadl_pi N/A A A

_mm_load_ss N/A A B

_mm_load1_ps N/A A A

_mm_load_ps N/A A A

_mm_loadu_ps N/A A A

_mm_loadr_ps N/A A A

_mm_storeh_pi N/A A A

_mm_storel_pi N/A A A

_mm_store_ss N/A A A

_mm_store_ps N/A A A

_mm_store1_ps N/A A A

_mm_storeu_ps N/A A A

_mm_storer_ps N/A A A

_mm_set_ss N/A A A

_mm_set1_ps N/A A A

_mm_set_ps N/A A A

_mm_setr_ps N/A A A

_mm_setzero_ps N/A A A

Intel(R) C++ Intrinsics Reference

191

_mm_prefetch N/A A A

_mm_stream_pi N/A A A

_mm_stream_ps N/A A A

_mm_sfence N/A A A

_mm_extract_pi16 N/A A A

_mm_insert_pi16 N/A A A

_mm_max_pi16 N/A A A

_mm_max_pu8 N/A A A

_mm_min_pi16 N/A A A

_mm_min_pu8 N/A A A

_mm_movemask_pi8 N/A A C

_mm_mulhi_pu16 N/A A A

_mm_shuffle_pi16 N/A A A

_mm_maskmove_si64 N/A A C

_mm_avg_pu8 N/A A A

_mm_avg_pu16 N/A A A

_mm_sad_pu8 N/A A A

Streaming SIMD Extensions 2 Intrinsics Implementation

On processors that do not support SSE2 instructions but do support MMX Technology,
you can use the sse2mmx.h emulation pack to enable support for SSE2 instructions.
You can use the sse2mmx.h header file for the following processors:

• Intel® Itanium® processor
• Intel® Pentium® III processor
• Intel® Pentium® II processor
• Intel® Pentium® processors with MMX™ Technology

 Intel(R) C++ Intrinsic Reference

193

Index

E

EMMS Instruction

about14

using..15

EMMS Instruction..........................15

I

intrinsics

about .. 1

arithmetic intrinsics 6, 20, 32, 70, 94

data alignment...........194, 195, 196

data types.................................. 1

floating point .. 7, 31, 70, 73, 75, 84,
87, 90, 92, 130, 132

inline assembly197

memory allocation....................196

registers 1

using ... 4

M

macros

for SSE3133

matrix transposition....................68

read and write control registers66

shuffle for SSE...........................66

shuffle for SSE2129

S

Streaming SIMD Extensions............31

Streaming SIMD Extensions 269

Streaming SIMD Extensions 3129

Streaming SIMD Extensions 4146

Supplemental Streaming SIMD
Extensions 3............................134

	Intel(R) C++ Intrinsic Reference
	Disclaimer
	Overview: Intrinsics Reference
	Intrinsics for Intel(R) C++ Compilers
	Availability of Intrinsics on Intel Processors

	Details about Intrinsics
	Registers
	Data Types
	New Data Types Available
	__m64 Data Type
	__m128 Data Types
	Data Types Usage Guidelines
	Accessing __m128i Data

	Naming and Usage Syntax
	References
	Intrinsics for Use across All IA
	Overview: Intrinsics for All IA
	Integer Arithmetic Intrinsics
	Floating-point Intrinsics
	String and Block Copy Intrinsics
	Miscellaneous Intrinsics

	MMX(TM) Technology Intrinsics
	Overview: MMX(TM) Technology Intrinsics
	The EMMS Instruction: Why You Need It
	Why You Need EMMS to Reset After an MMX(TM) Instruction

	EMMS Usage Guidelines
	MMX(TM) Technology General Support Intrinsics
	MMX(TM) Technology Packed Arithmetic Intrinsics
	MMX(TM) Technology Shift Intrinsics
	MMX(TM) Technology Logical Intrinsics
	MMX(TM) Technology Compare Intrinsics
	MMX(TM) Technology Set Intrinsics
	MMX(TM) Technology Intrinsics on IA-64 Architecture
	Data Types

	Streaming SIMD Extensions
	Overview: Streaming SIMD Extensions
	Floating-point Intrinsics for Streaming SIMD Extensions
	Arithmetic Operations for Streaming SIMD Extensions
	Logical Operations for Streaming SIMD Extensions
	Comparisons for Streaming SIMD Extensions
	Conversion Operations for Streaming SIMD Extensions
	Load Operations for Streaming SIMD Extensions
	Set Operations for Streaming SIMD Extensions
	Store Operations for Streaming SIMD Extensions
	Cacheability Support Using Streaming SIMD Extensions
	Integer Intrinsics Using Streaming SIMD Extensions
	Intrinsics to Read and Write Registers for Streaming SIMD Extensions
	Miscellaneous Intrinsics Using Streaming SIMD Extensions
	Using Streaming SIMD Extensions on IA-64 Architecture
	Data Types
	Compatibility versus Performance

	Macro Functions
	Macro Function for Shuffle Using Streaming SIMD Extensions
	Shuffle Function Macro
	View of Original and Result Words with Shuffle Function Macro

	Macro Functions to Read and Write the Control Registers
	Exception State Macros with _MM_EXCEPT_DIV_ZERO

	Macro Function for Matrix Transposition
	Matrix Transposition Using _MM_TRANSPOSE4_PS Macro

	Streaming SIMD Extensions 2
	Overview: Streaming SIMD Extensions 2
	Floating-point Intrinsics
	Floating-point Arithmetic Operations for Streaming SIMD Extensions 2
	Floating-point Logical Operations for Streaming SIMD Extensions 2
	Floating-point Comparison Operations for Streaming SIMD Extensions 2
	Floating-point Conversion Operations for Streaming SIMD Extensions 2
	Floating-point Load Operations for Streaming SIMD Extensions 2
	Floating-point Set Operations for Streaming SIMD Extensions 2
	Floating-point Store Operations for Streaming SIMD Extensions 2

	Integer Intrinsics
	Integer Arithmetic Operations for Streaming SIMD Extensions 2
	Integer Logical Operations for Streaming SIMD Extensions 2
	Integer Shift Operations for Streaming SIMD Extensions 2
	Integer Comparison Operations for Streaming SIMD Extensions 2
	Integer Conversion Operations for Streaming SIMD Extensions 2
	Integer Move Operations for Streaming SIMD Extensions 2
	Integer Load Operations for Streaming SIMD Extensions 2
	Integer Set Operations for SSE2
	Integer Store Operations for Streaming SIMD Extensions 2

	Miscellaneous Functions and Intrinsics
	Cacheability Support Operations for Streaming SIMD Extensions 2
	Miscellaneous Operations for Streaming SIMD Extensions 2
	Intrinsics for Casting Support
	Pause Intrinsic for Streaming SIMD Extensions 2
	Macro Function for Shuffle
	Shuffle Function Macro
	View of Original and Result Words with Shuffle Function Macro

	Streaming SIMD Extensions 3
	Overview: Streaming SIMD Extensions 3
	Integer Vector Intrinsics for Streaming SIMD Extensions 3
	Single-precision Floating-point Vector Intrinsics for Streaming SIMD Extensions 3
	Double-precision Floating-point Vector Intrinsics for Streaming SIMD Extensions 3
	Macro Functions for Streaming SIMD Extensions 3
	Miscellaneous Intrinsics for Streaming SIMD Extensions 3

	Supplemental Streaming SIMD Extensions 3
	Overview: Supplemental Streaming SIMD Extensions 3
	Addition Intrinsics
	Subtraction Intrinsics
	Multiplication Intrinsics
	Absolute Value Intrinsics
	Shuffle Intrinsics for Streaming SIMD Extensions 3
	Concatenate Intrinsics
	Negation Intrinsics

	Streaming SIMD Extensions 4
	Overview: Streaming SIMD Extensions 4
	Streaming SIMD Extensions 4 Vectorizing Compiler and Media Accelerators
	Overview: Streaming SIMD Extensions 4 Vectorizing Compiler and Media Accelerators
	Packed Blending Intrinsics for Streaming SIMD Extensions 4
	Floating Point Dot Product Intrinsics for Streaming SIMD Extensions 4
	Packed Format Conversion Intrinsics for Streaming SIMD Extensions 4
	Packed Integer Min/Max Intrinsics for Streaming SIMD Extensions 4
	Floating Point Rounding Intrinsics for Streaming SIMD Extensions 4
	DWORD Multiply Intrinsics for Streaming SIMD Extensions 4
	Register Insertion/Extraction Intrinsics for Streaming SIMD Extensions 4
	Test Intrinsics for Streaming SIMD Extensions 4
	Packed DWORD to Unsigned WORD Intrinsic for Streaming SIMD Extensions 4
	Packed Compare for Equal for Streaming SIMD Extensions 4
	Cacheability Support Intrinsic for Streaming SIMD Extensions 4

	Streaming SIMD Extensions 4 Efficient Accelerated String and Text Processing
	Overview: Streaming SIMD Extensions 4 Efficient Accelerated String and Text Processing
	Packed Comparison Intrinsics for Streaming SIMD Extensions 4
	Application Targeted Accelerators Intrinsics

	Intrinsics for IA-64 Instructions
	Overview: Intrinsics for IA-64 Instructions
	Native Intrinsics for IA-64 Instructions
	Integer Operations
	FSR Operations

	Lock and Atomic Operation Related Intrinsics
	Lock and Atomic Operation Related Intrinsics
	Load and Store
	Operating System Related Intrinsics
	Conversion Intrinsics
	Register Names for getReg() and setReg()
	General Integer Registers
	Application Registers
	Control Registers
	Indirect Registers for getIndReg() and setIndReg()

	Multimedia Additions
	Table 1. Values of n for m64_mux1 Operation

	Synchronization Primitives
	Atomic Fetch-and-op Operations
	Atomic Op-and-fetch Operations
	Atomic Compare-and-swap Operations
	Atomic Synchronize Operation
	Atomic Lock-test-and-set Operation
	Atomic Lock-release Operation

	Miscellaneous Intrinsics
	Intrinsics for Dual-Core Intel(R) Itanium(R) 2 processor 9000 series
	Examples
	Microsoft-compatible Intrinsics for Dual-Core Intel® Itanium® 2 processor 9000 series

	Data Alignment, Memory Allocation Intrinsics, and Inline Assembly
	Overview: Data Alignment, Memory Allocation Intrinsics, and Inline Assembly
	Alignment Support
	Allocating and Freeing Aligned Memory Blocks
	Inline Assembly
	Microsoft Style Inline Assembly
	GNU*-like Style Inline Assembly (IA-32 architecture and Intel(R) 64 architecture only)

	Example
	Example

	Intrinsics Cross-processor Implementation
	Overview: Intrinsics Cross-processor Implementation
	Intrinsics For Implementation Across All IA
	MMX(TM) Technology Intrinsics Implementation
	Key to the table entries

	Streaming SIMD Extensions Intrinsics Implementation
	Key to the table entries

	Streaming SIMD Extensions 2 Intrinsics Implementation

	Index

