
Joint HP-SEE/LinkSCEEM/PRACE
HPC Summer Training

Software & Services Group

HPC Summer Training
Optimization and Benchmarking

Chris Dahnken

Intel SSG EMEA HPCTC

Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY
APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR
DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on
the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes

Software & Services Group

future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes
to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product
order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be
obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Optimization Notice

Optimization Notice

Intel® compilers, associated libraries and associated development tools may include or utilize options
that optimize for instruction sets that are available in both Intel® and non-Intel microprocessors (for
example SIMD instruction sets), but do not optimize equally for non-Intel microprocessors. In
addition, certain compiler options for Intel compilers, including some that are not specific to Intel
micro-architecture, are reserved for Intel microprocessors. For a detailed description of Intel
compiler options, including the instruction sets and specific microprocessors they implicate, please
refer to the “Intel® Compiler User and Reference Guides” under “Compiler Options." Many library
routines that are part of Intel® compiler products are more highly optimized for Intel microprocessors
than for other microprocessors. While the compilers and libraries in Intel® compiler products offer
optimizations for both Intel and Intel-compatible microprocessors, depending on the options you
select, your code and other factors, you likely will get extra performance on Intel microprocessors.

Intel® compilers, associated libraries and associated development tools may or may not optimize to
the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include Intel Streaming SIMD Extensions 2 (Intel SSE2),

Software & Services Group

microprocessors. These optimizations include Intel® Streaming SIMD Extensions 2 (Intel® SSE2),
Intel® Streaming SIMD Extensions 3 (Intel® SSE3), and Supplemental Streaming SIMD Extensions 3
(Intel® SSSE3) instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best
performance on Intel® and non-Intel microprocessors, Intel recommends that you evaluate other
compilers and libraries to determine which best meet your requirements. We hope to win your
business by striving to offer the best performance of any compiler or library; please let us know if
you find we do not.

Notice revision #20101101

Agenda

IntroductionIntroductionIntroductionIntroduction

Processor technologyProcessor technologyProcessor technologyProcessor technology
• Processor Core Technologies

• Memory Subsystem

Measuring performance and finding bottlenecksMeasuring performance and finding bottlenecksMeasuring performance and finding bottlenecksMeasuring performance and finding bottlenecks
Performance Monitoring Unit

Software & Services Group

• Performance Monitoring Unit

• Performance Events

Optimization with the compilerOptimization with the compilerOptimization with the compilerOptimization with the compiler
• Vectorization with the compiler

• Overcomming vectorization problems

Optimization and Benchmarking

Optimization

Compiler optimization

Code augmentation

Algorithmic changes

Benchmark optimization

Will be covered

Will not be covered

Software & Services Group

Code augmentation
Not allowed in benchmarks

Will be covered

Generally, in benchmarking code changes are not
accepted. Improvements can only be reached
through compilers and libraries

Understanding the Platform

Software & Services Group

Processor Technology Crash Course
(Very simplified)

Core i7 Block Diagram

Branch Target
Buffer

Microcode

32 KB
Instruction Cache

Next IP

Instruction
Decode

Fetch / Decode
To L2 Cache

P
o
r
t

P
o
r
t

P
o
r
t

Bus Unit

R
e
s
e
r
v
a
ti
o
n
 S
ta

ti
o
n
s
 (
R
S
)

3
2
 e
n
tr
y

S
c
h
e
d
u
le
r
 /
 D

is
p
a
tc
h
 P
o
r
ts

32 KB
Data Cache

Execute

FP
Add

FP
Div/MulInteger

Shift/Rotate
SIMD

SIMD

Integer
Arithmetic

Integer
Arithmetic

Software & Services Group

Microcode
Sequencer

Register Allocation
Table (RAT)

Decode
(4 issue)

Retire

Re-Order Buffer
(ROB) – 128 entry

IA Register Set

P
o
r
t

P
o
r
t

R
e
s
e
r
v
a
ti
o
n
 S
ta

ti
o
n
s
 (
R
S
)

3
2
 e
n
tr
y

S
c
h
e
d
u
le
r
 /
 D

is
p
a
tc
h
 P
o
r
ts

P
o
r
t

SIMDInteger
Arithmetic

Memory
Order
Buffer
(MOB)

Load

Store
Addr

P
o
r
t

Store
Data

Core i7 / Sandy Bridge implement

• Pipelining

• Branch prediction

• Out-of-order execution

• Super-Scalarity

• SIMD execution

Software & Services Group

• SIMD execution

The optimal execution of a program depends on
all of these technologies and their interplay
working properly with a given code.

Pipelining

One bunch of circuits and wires

Patterson/Hennessy
“Computer Organization and Design – The Hardware/Software Interface”

In
s
tr
u
c
ti
o
n
s
/

d
a
ta

D
a
ta

(r
e
s
u
lt
s
)

No pipelining

Software & Services Group

Fetch

Instruct.

Decode

Instruct.

Execute

Instruct.

Memory

access

Write

back

In
s
tr
u
c
ti
o
n
s
/

d
a
ta

D
a
ta

(r
e
s
u
lt
s
)

Pipelining

Nstages

Pipelining

One bunch of circuits and wires

In
s
tr
u
c
ti
o
n
s
/

d
a
ta

D
a
ta

(r
e
s
u
lt
s
)

T = Tinst * Ninst

Software & Services Group

Fetch

Instruct.

Decode

Instruct.

Execute

Instruct.

Memory

access

Write

back

In
s
tr
u
c
ti
o
n
s
/

d
a
ta

D
a
ta

(r
e
s
u
lt
s
)

T = Tinst * Ninst / Nstages (ideally)

Pipelining

• Pipelining is a great method to improve
performance

• All following techniques are designed to further
improve the performance, but will also interact
with the pipeline functionality

Software & Services Group

with the pipeline functionality

• All analysis and optimization methods hereafter
are centered around keeping up or re-
establishing the pipeline flow

Pipeline Stalls

• Pipeline stalls appear when one stage waits for
the previous or next to finish, e.g.

Don’t know
which

instruction to
fetch (“if”)

Can’t forward to
execution since

still busy

Can’t execute
since no data
from mem
available

Data not in
cache

Software & Services Group

Fetch

Instruct.

Decode

Instruct.

Execute

Instruct.

Memory

access

Write

back

Don’t have
anything to

decode since not
fetched (“if”)

Can’t execute
since instruction

decoded

Can’t load data
into register

since still in use

Branch Prediction

• When the code branches conditionally (at an “if”
condition), the “fetch instruction” does not
know which code path to fetch

Write depends on
computation here

Software & Services Group

Fetch

Instruct.

Decode

Instruct.

Execute

Instruct.

Memory

access

Write

back

Instruction fetch depends on
result written here

Branch Prediction

• The processor has a buffer storing the last
branches and will “guess” and speculatively
execute this path, e.g.

jump no jump

no jump jumpjump

Software & Services Group

00
No jump
predicted

01
2. No
jump

predicted

10
2. Jump
predicted

11
Jump

predicted

jump

no jump jump

no jump

no jump

Branch Prediction

What happens if the prediction is wrong?

• The CPU will notice when the branch it
predicted was wrong by watching the condition
on which the branch depends

• If the wrong codepath was executed, the

Software & Services Group

• If the wrong codepath was executed, the
pipeline is cleared out (“pipeline flush”) and the
computation begins again at the point of the
branch, now with the right codepath.

Out of order execution

• While one (decoded) instruction still executes,
another independent instruction can be
executed in a different pipeline stage, e.g.

Blocked,
busy

Software & Services Group

Fetch

Instruct.

Decode

Instruct.

Execute

Instruct.

Memory

access

Write

back
Dispatch Retire

Memory access
can “bypass”
ALU execution

Dispatcher
decides if

instructions are
independent

Retirement
restores

instructions in
original order

SuperScalar execution

• No reason why some out-order execution can’t
be done simultaneously, e.g.

Execute

Instruct.

Software & Services Group

Fetch

Instruct.

Decode

Instruct.

Execute

Instruct.

Memory

access

Write

back
Dispatch Retire

SIMD instructions

• A simple method to get more (arithmetic)
operations done in the same timeframe using
SIMD (Single Instruction, Multiple Data)

• SIMDization is done with a special type of
registers that can execute N-many identical

Software & Services Group

registers that can execute N-many identical
operations on all elements, e.g.

for(int i=0;i<4;i++){
a[i]=b[i]+c[i]

}

a[0]a[1]a[2]a[3]

b[0]b[1]b[2]b[3]

a[0]+b[0]a[1]+b[1]a[2]+b[2]a[3]+b[3]

=

+

SIMD Instructions

• When talking about Peak Performance, this is
always packed SIMD performance!

• In order to reach a considerable fraction of peak
performance, your algorithms must vectorize!

• Current Intel SIMD instruction sets are

Software & Services Group

• Current Intel SIMD instruction sets are
– SSE (128bit, Streaming SIMD Instructions)

– AVX (256bit, Advanced Vector Instructions)

Core i7 Block Diagram

Branch Target
Buffer

Microcode

32 KB
Instruction Cache

Next IP

Instruction
Decode

Fetch / Decode
To L2 Cache

P
o
r
t

P
o
r
t

P
o
r
t

Bus Unit

R
e
s
e
r
v
a
ti
o
n
 S
ta

ti
o
n
s
 (
R
S
)

3
2
 e
n
tr
y

S
c
h
e
d
u
le
r
 /
 D

is
p
a
tc
h
 P
o
r
ts

32 KB
Data Cache

Execute

FP
Add

FP
Div/MulInteger

Shift/Rotate
SIMD

SIMD

Integer
Arithmetic

Integer
Arithmetic

Software & Services Group

Microcode
Sequencer

Register Allocation
Table (RAT)

Decode
(4 issue)

Retire

Re-Order Buffer
(ROB) – 128 entry

IA Register Set

P
o
r
t

P
o
r
t

R
e
s
e
r
v
a
ti
o
n
 S
ta

ti
o
n
s
 (
R
S
)

3
2
 e
n
tr
y

S
c
h
e
d
u
le
r
 /
 D

is
p
a
tc
h
 P
o
r
ts

P
o
r
t

SIMDInteger
Arithmetic

Memory
Order
Buffer
(MOB)

Load

Store
Addr

P
o
r
t

Store
Data

Core i7 Block Diagram

Branch Target
Buffer

Microcode

32 KB
Instruction Cache

Next IP

Instruction
Decode

Fetch / Decode
To L2 Cache

P
o
r
t

P
o
r
t

P
o
r
t

Bus Unit

R
e
s
e
r
v
a
ti
o
n
 S
ta

ti
o
n
s
 (
R
S
)

3
2
 e
n
tr
y

S
c
h
e
d
u
le
r
 /
 D

is
p
a
tc
h
 P
o
r
ts

32 KB
Data Cache

Execute/Out-of-order

FP
Add

FP
Div/MulInteger

Shift/Rotate
SIMD

SIMD

Integer
Arithmetic

Integer
Arithmetic

Software & Services Group

Microcode
Sequencer

Register Allocation
Table (RAT)

Decode
(4 issue)

Retire/Write
back

Re-Order Buffer
(ROB) – 128 entry

IA Register Set

P
o
r
t

P
o
r
t

R
e
s
e
r
v
a
ti
o
n
 S
ta

ti
o
n
s
 (
R
S
)

3
2
 e
n
tr
y

S
c
h
e
d
u
le
r
 /
 D

is
p
a
tc
h
 P
o
r
ts

P
o
r
t

SIMDInteger
Arithmetic

Memory
Order
Buffer
(MOB)

Load

Store
Addr

P
o
r
t

Store
Data

SuperScalar

SIMD

SuperScalar

Processor Technology Crash Course
Summary

• The central element of a CPU is the pipeline

• Focal point of optimization is to keep the
pipeline busy!

• Important concepts to understand
– Superscalar pipeline

Software & Services Group

– Superscalar pipeline

– Out-Of-Order execution

– SIMD

– Branch prediction

Understanding the Platform

Software & Services Group

Memory Subsystem

Understanding the memory subsystem

•Caches

•Cache lines

•Cache levels

•Main Memory

Software & Services Group

So far we know …

• … the main technologies a modern processing core is
constructed with.

• Based on this knowledge, we could write a program that
uses the core efficiently if all necessary data would be
available there.

• But most programs mainly process data that is stored in

Software & Services Group

• But most programs mainly process data that is stored in
main memory.

• For such programs it is likely that the bottleneck of the
computation is found in the memory accesses, not in the
actual computation.

Principle of locality

•Programmers want an unlimited amount of fast memory! Impossible!

•But: Not all data is accessed uniformly

•Principle of localityPrinciple of localityPrinciple of localityPrinciple of locality: Data that is closer together (spatial locality) is
more often access at the same time (temporal locality).

•This, plus the fact that smaller hardware can be constructed faster,
leads to the idea of a memory hierarchy based of different sizes and memory hierarchy based of different sizes and memory hierarchy based of different sizes and memory hierarchy based of different sizes and
speeds.speeds.speeds.speeds.

Software & Services Group

speeds.speeds.speeds.speeds.

Small Large

Fast Slow

Cache types
Caches store memory in contiguous chunks called

Cache LineCache LineCache LineCache Line
On Intel64 the cache line is 64 byte

Two general strategies

Software & Services Group

Fully AssociativeFully AssociativeFully AssociativeFully Associative
Any memory address can
be stored in any cache

line

Direct MappedDirect MappedDirect MappedDirect Mapped
Each memory

address can stored
in only one cache

line

Direct Mapped Cache

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

Memory Index

Software & Services Group

Set 0, L0 Set 1, L0 Set 2, L0 Set 3, L0

Set number = Memory index % Number of sets

Each line in a set will be immediatelly replace

Fully Associative

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

Memory Index

Software & Services Group

Set 0, L0

Set 0, L1

Set 0, L2

Set 0, L3

Replacement policy! Usually LRU (last recently used)!

Pros and cons of direct and fully accoiative
caches

• Direct mappedDirect mappedDirect mappedDirect mapped
- Less chip space

- Fast

- Lower hit rates due to conflicts

• Fully associativeFully associativeFully associativeFully associative
- More chip space

Software & Services Group

- More chip space

- Slow

- High hit rates

• Need a compromise here!Need a compromise here!Need a compromise here!Need a compromise here!

Set Associative (2 Way)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

Memory Index

Software & Services Group

Set 0, L0

Set 0, L1

Set 1, L0

Set 1, L1

Multi Level Cache

• In order keep memory access up with the increases in
CPU speed, modern CPUs feature multi-level caches.

• Caches are number after their levels L1 (Closest to the
core, fastest, smallest) to LN (furthest away, slowest
access, largest).

• In current Intel CPUs three caches levels can be found

Software & Services Group

• In current Intel CPUs three caches levels can be found

- L1 or Data Cache Unit (DCU) 8 way set associative

- L2 or Mid Level cache (MLC) 8 way set associative

- L3 or Last Level Cache (LLC) 16 way associative

Multi-Core Caches

• In multi-core chip designs the cache also needs
to serve as a communication layer

Core 0 Core 1 Core 2 Core 3

Software & Services Group

L2 Cache L2 Cache L2 Cache L2 Cache

L3 Cache

• This ensures fast data exchange, but introduces
more complications

Cache sizes and access time on Nehalem

Register

DCU

4444

10101010

>35>35>35>35

Access time in
CPU cycles

64 bit64 bit64 bit64 bit

32 kB32 kB32 kB32 kB

Size

Software & Services Group

LLC

MLC

>35>35>35>35

256 kB256 kB256 kB256 kB

8 MB8 MB8 MB8 MB

RAM

>160>160>160>160

X GBX GBX GBX GB

Data Prefetching

• The Nehalem architecture features a number of
data prefetchers that attempt to have the data
readily in cache when the user needs it

• Most importantly:
– Adjacent cache lines are prefetched

Software & Services Group

– Adjacent cache lines are prefetched

– Equal strides are prefetched

Cache Issues
Compulsory Misses

Let’s identify a number of standard cache issues

First of all, an initial access to a data element can
never be cached will lead to a cache miss

Software & Services Group

Cache Issues
Compulsory Misses

Compulsory Cache MissCompulsory Cache MissCompulsory Cache MissCompulsory Cache Miss

• Issue: An initial access to a data element can
never be cached will lead to a cache miss

• Reason: Program touches data elements only
once

Software & Services Group

once

• Remedy: Data prefetching, either by software
(intrinsics) or HW eases the pain. Organize data
in a way that will allow the prefetcher to work
efficiently. Don’t access data randomly.

Cache Issues
Capacity Misses

Capacity Cache MissCapacity Cache MissCapacity Cache MissCapacity Cache Miss

• Issue: a data element is evicted before it can be
reused

• Reason: data set too large for the cache

• Remedy: Reduce working set size. Implement

Software & Services Group

• Remedy: Reduce working set size. Implement
cache blocking. Organize data linearly to help
the prefetcher.

Cache Issues
Conflict Misses

Conflict Cache MissConflict Cache MissConflict Cache MissConflict Cache Miss

• Issue: Data elements are evicted from the cache
although the cache capacity is not evicted.

• Reason: Mapping strategy or access pattern
conflicts with cache organization, e.g. the

Software & Services Group

conflicts with cache organization, e.g. the
associativity (remember Set number = Memory
index % Number of sets).

• Remedy: Change the data access pattern.
Change the memory allignement

Cache Issues
Coherency Misses

Coherency Cache MissCoherency Cache MissCoherency Cache MissCoherency Cache Miss

• Issue: Coherency misses only appear in multi-
core and multi-processor systems. When a data
element is present in multiple caches a
modification of the data in one cache will

Software & Services Group

modification of the data in one cache will
invalidate the data in the other cache.

• Reason: Two many threads working on the
same data, e.g. a sum or reduction

• Remedy: store data thread-localy (separate
valariable) as long as possible

Cache Misses
Summary

• CompulsoryCompulsoryCompulsoryCompulsory – The very first access to a block cannot be in cache

• CapacityCapacityCapacityCapacity – If the number of blocks loaded is larger than the number
of blocks that can be stored in the cache.

• ConflictConflictConflictConflict – if a mapping strategy evicts blocks in a set that will be
retrieved in a following step, e.g. if data maps only to one set in a

Software & Services Group

retrieved in a following step, e.g. if data maps only to one set in a
set associative cache and the set capacity is exceeded.

• CoherencyCoherencyCoherencyCoherency – if to concurrent processes on different cores evict
mutually cache lines from the respective core, e.g. by writing to the
same value or a value in the same cache line

NUMA Systems

• In multi-processor systems with integtrated
memory controllers an additional complication
appears:

0
M

e
mQPI

NUMA Node 0 NUMA Node 1

Software & Services Group

CPU 0 CPU 1

M
e

m
M

e
m

0

50ns 50ns

100ns

100ns

QPI

NUMA Systems

• Generally memory is placed at a particular
NUMA node at “first touch”

• the allocation (via new or malloc) doesn’t result
in the creation of a memory page

• Only the first write of the memory area under

Software & Services Group

• Only the first write of the memory area under
consideration will result in the placement of one
particular NUMA node

Thread-local or thread-private memory allocation is important

here. Use processor pinning!

Performance Monitoring

Software & Services Group

The Performance Monitoring Unit (PMU)

Ways to measure performance

• time – the ultimate measure!

• gprof – break down execution time on a
functional level. Careful, changes execution
time!

• counter monitoring – hardware supported

Software & Services Group

• counter monitoring – hardware supported
measurement that allows to determine which
hardware component or functional unit is under
stress or starves. Doesn’t change exec time!

Performance Counter Monitoring

• Performance counter monitoring is a HW
supported method count events appearing in
the hardware

• Events are situations the HW designers allow us
to see. E.g. the CPU could experience “I tried to

Software & Services Group

to see. E.g. the CPU could experience “I tried to
load data, but it was not in the last level cache”
(aka a LLC cache miss). This is an event that can
be measured.

Command line perf monitoring
Architectural perf events

Software & Services Group

47

There are another ~1000 non-architectural performance

events!

Performance Counter Monitoring

• There are
– 4 freely programmable

– 3 fix function

performance counter registers on current Intel CPUs

• There are 4 configuration registers, that let us

Software & Services Group

• There are 4 configuration registers, that let us
specify which events are counted in the
programmable counters

• There is 1 configuration register that lets us
enable and disable performance monitoring.

Performance Counter Monitoring

Just in case: What is a register?

• A register is a series of latches (HW bits) with
64 bit width (some might differ, e.g. SSE) the
CPU can access very quickly

Software & Services Group

• A Model Specific Register (MSR) is a register
that is not guaranteed to be there in the next
CPU!

Performance Counter Monitoring

How can I influence/change/write/read MSRs?

• MSRs can only be written in Ring 0 (supervisor
mode). You can read MSRs as user.

You need to be

• root/sudoer to write

Software & Services Group

• root/sudoer to write

or

• a driver that does the access for you

Performance Counter Monitoring

Software to read and write MSRs (linux)

• msr-tools package: rdmsr, wrmsr, msr.ko

• perf (linux system tool)

• Intel Vtune, Amplifier XE, PTU
(http://software.intel.com/en-us/articles/intel-

Software & Services Group

(http://software.intel.com/en-us/articles/intel-
vtune-amplifier-xe/)

• Oprofile (http://oprofile.sourceforge.net/news/)

• Likwid (http://code.google.com/p/likwid/)

PMU MSRs
Control Registers

� IA32_PERF_GLOBAL_CTRL (0x38F/911)

Software & Services Group

wrmsr 911 –d 30064771087

PMU MSRs
General purpose performance counters

IA32_PERF_GLOBAL_CTRL

IA32_PERFEVTSEL0 IA32_PMC0

IA32_PERFEVTSEL1 IA32_PMC1

if bit0

if bit1

Increment

Increment

Software & Services Group

53

IA32_PERFEVTSEL2 IA32_PMC2

IA32_PERFEVTSEL3 IA32_PMC3

if bit2

if bit3

Increment

Increment

IA32_PERFEVTSELx specifies the number of the event to
be obeserved (and a number of modifiers)

PMU MSRs
Selecting events

Software & Services Group

54

PMU MSRs
Selecting general purpose events

Intel® 64 and IA-32 Architectures Software Developer’s Manual
Volume 3B: System Programming Guide, Part 2

Software & Services Group

55

0x2e0x4f
0 1 0 0 0 0 1 1

0x43

0x434f2eSet IA32_PERFEVTSELx to this value

PMU MSRs
Fixed function performance counters

Additionally to the 4 freely programmable

performance counters Nehalem (and later CPUs)

offer three fixed function performance counters

that will observe

• Instructions Retired

Software & Services Group

• Instructions Retired

• CPU Cycles

• Reference CPU Cycles

56

PMU MSRs
Fixed function performance counters

Software & Services Group

57

PMU MSRs
Fixed function performance counters

• Event counts can now be seen in

• IA32_FIXED_CTR0: Instructions Retired

• IA32_FIXED_CTR1: Unhalted CPU Cycles

• IA32_FIXED_CTR2: Reference CPU Cycles

Software & Services Group

58

PMU MSRs
Summary

• Intel CPUs can monitor particular events during
execution

• 4 freely programmable counters and 3 fixed function
counters measure the occurrence of the given events at
the same time

• In order observe event counts

Software & Services Group

• In order observe event counts
– Enable event monitoring in the control register

– Program the event into the event select register

– Reset/Read the count from the counter register

• READ: 253669 - Intel 64 and IA-32 Architectures
Software Developers Manual Volume 3B System
Programming Guide Part 2

59

Performance Monitoring

Software & Services Group

Events to measure – a minimal set

Core i7 Block Diagram

Branch Target
Buffer

Microcode

32 KB
Instruction Cache

Next IP

Instruction
Decode

Fetch / Decode
To L2 Cache

P
o
r
t

P
o
r
t

P
o
r
t

Bus Unit

R
e
s
e
r
v
a
ti
o
n
 S
ta

ti
o
n
s
 (
R
S
)

3
2
 e
n
tr
y

S
c
h
e
d
u
le
r
 /
 D

is
p
a
tc
h
 P
o
r
ts

32 KB
Data Cache

Execute

FP
Add

FP
Div/MulInteger

Shift/Rotate
SIMD

SIMD

Integer
Arithmetic

Integer
Arithmetic

Software & Services Group

Microcode
Sequencer

Register Allocation
Table (RAT)

Decode
(4 issue)

Retire

Re-Order Buffer
(ROB) – 128 entry

IA Register Set

P
o
r
t

P
o
r
t

R
e
s
e
r
v
a
ti
o
n
 S
ta

ti
o
n
s
 (
R
S
)

3
2
 e
n
tr
y

S
c
h
e
d
u
le
r
 /
 D

is
p
a
tc
h
 P
o
r
ts

P
o
r
t

SIMDInteger
Arithmetic

Memory
Order
Buffer
(MOB)

Load

Store
Addr

P
o
r
t

Store
Data

Core i7 Block Diagram

Branch Target
Buffer

Microcode

32 KB
Instruction Cache

Next IP

Instruction
Decode

Fetch / Decode
To L2 Cache

P
o
r
t

P
o
r
t

P
o
r
t

Bus Unit

R
e
s
e
r
v
a
ti
o
n
 S
ta

ti
o
n
s
 (
R
S
)

3
2
 e
n
tr
y

S
c
h
e
d
u
le
r
 /
 D

is
p
a
tc
h
 P
o
r
ts

32 KB
Data Cache

Execute

FP
Add

FP
Div/MulInteger

Shift/Rotate
SIMD

SIMD

Integer
Arithmetic

Integer
Arithmetic

Few Instructions/clockcycle retire

Measure:

IPC: Instruction Retired / UnHalted Core Cycles

(IPC: <1 is bad, around 2 is really good)

Branch Misses Retired / Branch Instruction Retired

Reason:

Software & Services Group

Microcode
Sequencer

Register Allocation
Table (RAT)

Decode
(4 issue)

Retire

Re-Order Buffer
(ROB) – 128 entry

IA Register Set

P
o
r
t

P
o
r
t

R
e
s
e
r
v
a
ti
o
n
 S
ta

ti
o
n
s
 (
R
S
)

3
2
 e
n
tr
y

S
c
h
e
d
u
le
r
 /
 D

is
p
a
tc
h
 P
o
r
ts

P
o
r
t

SIMDInteger
Arithmetic

Memory
Order
Buffer
(MOB)

Load

Store
Addr

P
o
r
t

Store
Data

Reason:

Brach misspredictions! Instructions executed are

flushed!

Remedy:

Get rid of “if”s. Make “if“ conditions more

predictable

Core i7 Block Diagram

Branch Target
Buffer

Microcode

32 KB
Instruction Cache

Next IP

Instruction
Decode

Fetch / Decode
To L2 Cache

P
o
r
t

P
o
r
t

P
o
r
t

Bus Unit

R
e
s
e
r
v
a
ti
o
n
 S
ta

ti
o
n
s
 (
R
S
)

3
2
 e
n
tr
y

S
c
h
e
d
u
le
r
 /
 D

is
p
a
tc
h
 P
o
r
ts

32 KB
Data Cache

Execute

FP
Add

FP
Div/MulInteger

Shift/Rotate
SIMD

SIMD

Integer
Arithmetic

Integer
Arithmetic

Instructions don’t retire

Measure:

RESOURCE_STALLS.ROB_FULL

Branch Misses Retired / Branch Instruction Retired

Reason:

Long latency instructions in the pipeline. Loads

Software & Services Group

Microcode
Sequencer

Register Allocation
Table (RAT)

Decode
(4 issue)

Retire

Re-Order Buffer
(ROB) – 128 entry

IA Register Set

P
o
r
t

P
o
r
t

R
e
s
e
r
v
a
ti
o
n
 S
ta

ti
o
n
s
 (
R
S
)

3
2
 e
n
tr
y

S
c
h
e
d
u
le
r
 /
 D

is
p
a
tc
h
 P
o
r
ts

P
o
r
t

SIMDInteger
Arithmetic

Memory
Order
Buffer
(MOB)

Load

Store
Addr

P
o
r
t

Store
Data

Long latency instructions in the pipeline. Loads

that miss caches (check). Dependencies between

instructions.

Remedy:

Remove dependency chains in the code. Block

data in cache. Mix instructions better (mem/arith).

Vectorize

Core i7 Block Diagram

Branch Target
Buffer

Microcode

32 KB
Instruction Cache

Next IP

Instruction
Decode

Fetch / Decode
To L2 Cache

P
o
r
t

P
o
r
t

P
o
r
t

Bus Unit

R
e
s
e
r
v
a
ti
o
n
 S
ta

ti
o
n
s
 (
R
S
)

3
2
 e
n
tr
y

S
c
h
e
d
u
le
r
 /
 D

is
p
a
tc
h
 P
o
r
ts

32 KB
Data Cache

Execute

FP
Add

FP
Div/MulInteger

Shift/Rotate
SIMD

SIMD

Integer
Arithmetic

Integer
Arithmetic

Data not ready in L2$/LLC

Measure:

LLC Misses/LLC Reference

(between 0 and 1, better

get close to 0)

Reason:

Software & Services Group

Microcode
Sequencer

Register Allocation
Table (RAT)

Decode
(4 issue)

Retire

Re-Order Buffer
(ROB) – 128 entry

IA Register Set

P
o
r
t

P
o
r
t

R
e
s
e
r
v
a
ti
o
n
 S
ta

ti
o
n
s
 (
R
S
)

3
2
 e
n
tr
y

S
c
h
e
d
u
le
r
 /
 D

is
p
a
tc
h
 P
o
r
ts

P
o
r
t

SIMDInteger
Arithmetic

Memory
Order
Buffer
(MOB)

Load

Store
Addr

P
o
r
t

Store
Data

Reason:

Data set to big, data

evicted before it can be

reused.

Remedy:

Cache blocking

Core i7 Block Diagram

Branch Target
Buffer

Microcode

32 KB
Instruction Cache

Next IP

Instruction
Decode

Fetch / Decode
To L2 Cache

P
o
r
t

P
o
r
t

P
o
r
t

Bus Unit

R
e
s
e
r
v
a
ti
o
n
 S
ta

ti
o
n
s
 (
R
S
)

3
2
 e
n
tr
y

S
c
h
e
d
u
le
r
 /
 D

is
p
a
tc
h
 P
o
r
ts

32 KB
Data Cache

Execute

FP
Add

FP
Div/MulInteger

Shift/Rotate
SIMD

SIMD

Integer
Arithmetic

Integer
Arithmetic

Problem hereProblem hereProblem hereProblem here

Software & Services Group

Microcode
Sequencer

Register Allocation
Table (RAT)

Decode
(4 issue)

Retire

Re-Order Buffer
(ROB) – 128 entry

IA Register Set

P
o
r
t

P
o
r
t

R
e
s
e
r
v
a
ti
o
n
 S
ta

ti
o
n
s
 (
R
S
)

3
2
 e
n
tr
y

S
c
h
e
d
u
le
r
 /
 D

is
p
a
tc
h
 P
o
r
ts

P
o
r
t

SIMDInteger
Arithmetic

Memory
Order
Buffer
(MOB)

Load

Store
Addr

P
o
r
t

Store
Data

Too many instructions waiting/ Execution to slow

Measure:

RESOURCE_STALLS.RS_FULL

Reason:

No vectorization, Instruction mix

Remedy:

Vectorize, mix instructions better (mem, integer, FP)

Others to measure
How do we actually know what fraction of the
peak performance we are running at?

Software & Services Group

This is specific for Nehalem/Westmere
(X55xx/X56xx). Can be done similarly on
Sandy Bridge.

Bash script to measure FLOPS

enable all general and fixed counters - can't hurt

IA32_PERF_GLOBAL_CTRL_VAL=`echo 2^34+2^33+2^32+2^3+2^2+2^1+1|bc -l`

check presence of the msr module

modprobemsr

see how many processors we have

procnum=`grep CPU /proc/cpuinfo | wc -l`

let procnum=$procnum-1

sacc=0;

dacc=0;

for every processor (core)

for i in `seq 0 $procnum `; do

while [1]; do

for all processors

for i in `seq 0 $procnum `; do

... read out the counters

spflop=`rdmsr -p$i -d $IA32_PMC0`;

ssflop=`rdmsr -p$i -d $IA32_PMC1`;

dpflop=`rdmsr -p$i -d $IA32_PMC2`;

dsflop=`rdmsr -p$i -d $IA32_PMC3`;

... calculated MFLOP/s with bc

sflops=`echo "scale=2; (4 * $spflop + $ssflop) /1000000.0 /
$SAMPLE_TIME" | bc -l`

dflops=`echo "scale=2; (2 * $dpflop + $dsflop) /1000000.0 /
$SAMPLE_TIME" | bc -l`

sacc=`echo "scale=2; $sacc+$sflops" | bc -l`

dacc=`echo "scale=2; $dacc+$dflops" | bc -l`

Software & Services Group

enable counters

wrmsr -p$i $IA32_PERF_GLOBAL_CTRL $IA32_PERF_GLOBAL_CTRL_VAL

single precision packed SSE uops

wrmsr -p$i $IA32_PERFEVTSEL0 0x4101c7

single precision scalar SSE uops

wrmsr -p$i $IA32_PERFEVTSEL1 0x4102c7

double precision packed SSE uops

wrmsr -p$i $IA32_PERFEVTSEL2 0x4104c7

double precision scalar SSE uops

wrmsr -p$i $IA32_PERFEVTSEL3 0x4108c7

set all counters to to zero

wrmsr -p$i $IA32_PMC0 0

wrmsr -p$i $IA32_PMC1 0

wrmsr -p$i $IA32_PMC2 0

wrmsr -p$i $IA32_PMC3 0

done

... and reset the counters again

wrmsr -p$i $IA32_PMC0 0 ;

wrmsr -p$i $IA32_PMC1 0 ;

wrmsr -p$i $IA32_PMC2 0 ;

wrmsr -p$i $IA32_PMC3 0 ;

echo proc $i $sflops $dflops

done;

... print the results

clear ;

echo $spflop $ssflop $dpflop $dsflop

echo "SP MFLOPS : "$sacc

echo "DP MFLOPS : "$dacc

sacc=0;

dacc=0;

sleep $SAMPLE_TIME;

done

VTune™ Amplifier XE
GUI Layout

Software & Services Group

Summary

• Performance counters allow you to measure
almost any aspect of an Intel CPU

• IPC, Cache Miss Ratio and Branch Miss Ratio are
the most important indicators (architectural
events)

Software & Services Group

events)

• Most often the problem is found in the
execution, particularly in the vectorization!

Compiler Vectorization

Software & Services Group

Vectorization

for (i=0;i<MAX;i++)

c[i]=a[i]+b[i];

Transforming sequential code to exploit the vector (SIMD,
SSE) processing capabilities

• Manually by explicit source code modification
• Automatically by tools like a compiler

Software & Services Group

128-bit Registers

A[3] A[2]

B[3] B[2]

C[3] C[2]

+ +

A[1] A[0]

B[1] B[0]

C[1] C[0]

+ +

Core i7 Block Diagram

Branch Target
Buffer

Microcode

32 KB
Instruction Cache

Next IP

Instruction
Decode

Fetch / Decode
To L2 Cache

P
o
r
t

P
o
r
t

P
o
r
t

Bus Unit

R
e
s
e
r
v
a
ti
o
n
 S
ta

ti
o
n
s
 (
R
S
)

3
2
 e
n
tr
y

S
c
h
e
d
u
le
r
 /
 D

is
p
a
tc
h
 P
o
r
ts

32 KB
Data Cache

Execute

FP
Add

FP
Div/MulInteger

Shift/Rotate
SIMD

SIMD

Integer
Arithmetic

Integer
Arithmetic

Core2

Software & Services Group

Microcode
Sequencer

Register Allocation
Table (RAT)

Decode
(4 issue)

Retire

Re-Order Buffer
(ROB) – 128 entry

IA Register Set

P
o
r
t

P
o
r
t

R
e
s
e
r
v
a
ti
o
n
 S
ta

ti
o
n
s
 (
R
S
)

3
2
 e
n
tr
y

S
c
h
e
d
u
le
r
 /
 D

is
p
a
tc
h
 P
o
r
ts

P
o
r
t

SIMDInteger
Arithmetic

Memory
Order
Buffer
(MOB)

Load

Store
Addr

P
o
r
t

Store
Data

Many Ways for SSE Vectorization

Compiler: Auto vectorization hints Compiler: Auto vectorization hints Compiler: Auto vectorization hints Compiler: Auto vectorization hints
(#pragma ivdep, …)(#pragma ivdep, …)(#pragma ivdep, …)(#pragma ivdep, …)

Ease of useEase of useEase of useEase of useCompiler: Fully automatic vectorizationCompiler: Fully automatic vectorizationCompiler: Fully automatic vectorizationCompiler: Fully automatic vectorization

Software & Services Group

Assembler code (addps)Assembler code (addps)Assembler code (addps)Assembler code (addps)

Vector intrinsic (mm_add_ps())Vector intrinsic (mm_add_ps())Vector intrinsic (mm_add_ps())Vector intrinsic (mm_add_ps())

SIMD intrinsic class (F32vec4 add)SIMD intrinsic class (F32vec4 add)SIMD intrinsic class (F32vec4 add)SIMD intrinsic class (F32vec4 add)

Programmer controlProgrammer controlProgrammer controlProgrammer control

Vectorization

• We don’t want to deal with code changes here.
Programming SIMD intrinsics or assembly is a
full day course.

• Let’s focus on what can be achieved with the
compiler without code changes or only with

Software & Services Group

compiler without code changes or only with
hints in the code (like pragmas)

Compiler Based Vectorization
Extension Specification

Feature Extension

Intel® Streaming SIMD Extensions 2 (Intel® SSE2) as available

in initial Pentium® 4 or compatible non-Intel processors
SSE2

Intel® Streaming SIMD Extensions 3 (Intel® SSE3) as available

in Pentium® 4 or compatible non-Intel processors
SSE3

Intel® Supplemental Streaming SIMD Extensions 3 (Intel®

SSSE3) as available in Intel® Core™2 Duo processors

SSSE3

Software & Services Group

Intel® SSE4.1 as first introduced in Intel® 45nm Hi-K next

generation Intel Core™ micro-architecture
SSE4.1

Intel® SSE4.2 Accelerated String and Text Processing

instructions supported first by by Intel® Core™ i7 processors

SSE4.2

Extensions offered by Intel® ATOM™ processor : Intel® SSSE3

(!!) and MOVBE instruction
SSE3_ATOM

Intel® Advanced Vector Extensions (Intel® AVX) as available in

2nd generation Intel Core processor family
AVX

Basic Vectorization – Switches [1]
-x<extension>
• Targeting Intel® processors - specific optimizations for Intel® processors

• Compiler will try to make use of all instruction set extensions up to and including
<extension>; for Intel® processors only !

• Processor-check added to main-program

• Application will not start (will display message), in case feature is not available

-m<extension>
• No Intel processor check

• Does not perform Intel-specific optimizations

Software & Services Group

• Does not perform Intel-specific optimizations

• Application is optimized for and will run on both Intel and non-Intel processors

• Missing check can cause application to fail in case extension not available

-ax<extension>
• Dual-code paths – a ‘generic’ and ‘optimized’ path

• ‘processor-specific’ path for Intel® processors defined by <extension>

• ‘default’ code path defaults to –msse2 (Windows: /arch:SSE2)
– The ‘default’ code path can be modified by –m or –x (/Qx or /arch) switches

Basic Vectorization – Switches [2]

The default now is –msse2

• Activated implicitly for –O2 or higher

• Implies the need for a target processor with Intel® SSE2

• Use –mia32 (Windows /arch:IA32) in case target processor misses SSE2 (
Intel® Pentium™ 3 processor for example)

Special switch -xHost

• Compiler checks host processor and makes use of ‘latest’ instruction set
extension available

Software & Services Group

extension available

• Avoid for builds being executed on multiple, unknown platforms

Some support for combination of -x<ext1> and -ax<ext2> switches

• Can result in more than 2 code paths

• Use ext1 = ia32 in case ‘generic’ code path should support too very early
processors not supporting SSE2 (e.g. Intel® Pentium™ 3)

Vectorization – More Switches and Directives

Disable vectorization
• Globally via switch: -no-vec

• For a single loop: directive #pragma novector

– Disabling vectorization here means not using packed SSE/AVX
instructions. The compiler still might make use of the corresponding
instruction set extensions

Enforcing vectorization for a loop - overwriting the compiler heuristics :

#pragma vector always

Software & Services Group

#pragma vector always
– will enforce vectorization even if the compiler thinks it is not profitable

to do so (e.g due to non-unit strides or alignment issues)

– Will not enforce vectorization if the compiler fails to recognize this as a
semantically correct transformation

– Using directive #pragma vector alwaysassert will
print error message in case the loop cannot be vectorized and will abort
compilation

Validating Vectorization Success

• Assembler code inspection
– Assembler listing: {L&M}: –S and {W}: /Fa
– Most reliable way and gives all details of course
– Check for scalar or packed instructions

• Assembler listing contains source line numbers mapping generated code to
loops in source code

• Optimization report of “High-Performance-Optimizer” (HPO) phase
– -opt-report<N> -opt-report-phasehpo

N=1,2,3 specifies level of detail, N=2 is default

Software & Services Group

• N=1,2,3 specifies level of detail, N=2 is default

– We will come back to the opt-report switch later again

• Vectorization report: -vec-report<N>
• Dynamically counting the number of executed packedpackedpackedpacked SSE

instructions using tools like Intel® VTune Amplifier™ profiler
– E.g. using performance monitoring event

FP_COMP_OPS_EXE.SSE_FP_PACKED on Intel® Core™ i7 processors

Vectorization Report

• Provides details on vectorization success
& failure
-vec-report<n> ,n=0,1,2,3,4,5

35: subroutine fd(y)

36: integer :: i

37: real, dimension(10), intent(inout) :: y

38: do i=2,10

Software & Services Group

novec.f90(38): (col. 3) remark: loop was not vectorized: existence of

vector dependence.

novec.f90(39): (col. 5) remark: vector dependence: proven FLOW

dependence between y line 39, and y line 39.

novec.f90(38:3-38:3):VEC:MAIN_: loop was not vectorized: existence of

vector dependence

38: do i=2,10

39: y(i) = y(i-1) + 1

40: end do

41: end subroutine fd

C o m p ile r Vectorization

Software & Services Group

Why vectorization fails – and workarounds …

Why Vectorization Fails …

• Most frequent reason: Dependence
– Simplified: Loop iterations must be independent

• Many other potential reasons
– Alignment
– Function calls in loop block
– Complex control flow / conditional branches
– Loop not “countable”

• E.g. upper bound no run time constant

Software & Services Group

• E.g. upper bound no run time constant

– Not inner loop
• Outer loop of nest cannot be vectorized

– Mixed data types (many cases now handled successfully)
– Non-unit stride between elements
– Loop body too complex– register pressure
– Vectorization seems inefficient
– Many more … but less likely too occur

Dealing with Dependencies #1
Hints to the Compiler

• Many dependencies assumed by compiler are false
dependencies caused by unresolved memory
disambiguation
– The compiler has to be conservative and has to assume the
worst case regarding “aliasing”

// Sample: Without additional information (like inter-procedural

// knowledge) compiler has to assume ‘a’ and ‘b’ to alias

void scale(int *a, int *b)

Software & Services Group

{

for (int i=0; i<10000; i++) b[i] = z*a[i];

}

• Many directives, switches and attributes to pass “disambiguation
hints” to compiler
– Programming language and operating system specific
– Use with care: The compiler might generate incorrect code in
case the hints are not fulfilled !

Disambiguation Hints [C/C++]
A few Selected Directives and Switches

IVDEP directive (#pragma ivdep)
– “Ignore Vector Dependencies” - compiler will ignore assumed but not
proven dependencies for loop following directive

– In case used together with switch –ivdep-parallel (/Qivdep-parallel), only
loop-carried dependencies are ignored

Assume no aliasing at all
-fno-alias

Assume ISO C Standard aliasing rules

Software & Services Group

Assume ISO C Standard aliasing rules
-ansi-alias

– A pointer can be de-referenced only to an object of the same type or
compatible type

No aliasing for function arguments
-fargument-noalias

– For each given function, the arguments of this function don’t refer to a
common memory object

Dealing with Dependencies #2

• Dynamic data dependency analysis

– The compiler can (!) use run-time checks to test for aliasing

• E.g. Array A[La:Ua], B[Lb:Ub] overlap � La<Ub && Lb<Ua

– The outcome of test is used to execute a vectorized or scalar version of the
loop (“Loop Versioning”)

– The heuristic of compiler implements a balance between overhead of testing
and performance gains

• E.g. for an assignment

A[..] = B1[…] + B2[…]+ … + BN[…]

Software & Services Group

1 2 N

the versioning might be done for N=2 but not for N=5

• Use switch -opt-multi-version-aggressive to change heuristic

• Inter-procedural Dependency Analysis
– Can improve dependence analysis accuracy considerably

– Activated by “inter-procedural optimization”: -ipo
• For optimization level 2, 3, file-local IPO is on by default

– Definitions & allocation of function arguments might become visible

– In case loop body has function call, references in the called function to global variables
and actual arguments can be analyzed

Alignment
• In general, the memory accesses in packed SSE instructions require

the data to be aligned to 16 byte boundaries
• For packed AVX instructions, it has to be 32 byte alignement
• Unaligned data can be moved to XMM(YMM) registers using

“unaligned load/store” instructions
– However these instruction are very slow except for SSE memory

operations on Intel® Core™ i7 processors or processors based on future
Sandy Bridge architecture

• The compiler splits expensive unaligned memory operations into 2
partial loads/stores (e.g. two 64byte loads for one 128byte

Software & Services Group

partial loads/stores (e.g. two 64byte loads for one 128byte
unaligned load) since this is faster – but still much more expensive
than the aligned moves

• The compiler can use ‘versioning’ in case alignment is unclear
– A run time check tests for alignment controls execution of a fast version

of the loop assuming required alignment or a slower one assuming
unaligned data

Alignment Hints to Compiler [C/C++]

• Aligned heap memory allocation by intrinsic / library call

void* _mm_malloc (int size, int base)

• Directive to assert to compiler, that aligned memory operations can be used
for all data accesses in loop following directive
#pragma vector aligned | unaligned

– Use with care: The assertion must be satisfied not only by start addresses of all
arrays used in loop but for all (!!) data accesses

Software & Services Group

• Align attribute for variable declarations

__declspec(align(base)) <array_decl>

<array_decl> __attribute__((aligned(base)))

• Assertion to compiler that in the loop following the start address of an
array can be assumed to be aligned

– A language extension (not a directive) for C/C++

__assume_aligned(<variable>,base)

Alignment can be tricky …

void matvec(double a[][COLWIDTH], double b[], double x[])

{

int i, j;

for (i = 0; i < size1; i++) {

b[i] = 0;

#pragma vector aligned
for (j = 0;j < size2; j=j++)

b[i] += a[i][j] * x[j];

}

Software & Services Group

• Let us assume, a, b, c would be declared 16-byte aligned in calling routine
• Would this be correct when compiled for SSE2 ?
• Depends on COLWIDTH

– In case it is even : All ok !
– In case it is odd: The generated, vectorized code would fail by alignment error !

• Using __assume_aligned(a,n) is legal since this refers to the start address only. It
wouldn’t change much for the vectorization however

}

}

Unsupported Loop Structure
• Unsupported loop structure frequently means, the compiler can’t

construct a runtime expression for the trip-count

– E.g. a while-loop where the number of iterations cannot be
determined at (run-time) start of loop

– Upper/lower bound of a for-loop cannot be a determined to be
loop-invariant

• Frequently this can fixed by minor modifications:

Software & Services Group

struct _x { int d; int bound;};

doit1(int *a, struct _x *x)

{

for (int i=0; I < x->bound; i++)

a[i] = 0;

}

struct _x { int d; int bound;};

doit1(int *a, struct _x *x)

{

int local_ub = x->bound;

for (int i=0; I < local_ub; i++)

a[i] = 0;

}

Non-Unit Stride Access

Non-unit stride access: Nonconsecutive memory locations are being
accessed in the loop

• Vectorization might still be possible (e.g. in case access is
regular/linear), the data arrangement operations might be too
expensive
– Vector report: “Loop was not vectorized: vectorization

possible but seems inefficient”

Samples:

Software & Services Group

for (I=0;I<=MAX;I++)

for (J=0;J<=MAX;J++)
{

D[I][J]+=1; // Unit Stride

D[J][I]+=1; // Non-Unit but linear

A[J*J]+=1; // Non-unit

A[B[J]]+=1; // Non-Unit

if (A[MAX-J])==1) last=J; // Non-Unit

}

Avoiding Non-Unit Stride Access
Code transformations like loop interchange can avoid non-unit access
frequently in case access is linear

Compiler does this automatically in many cases; popular sample: matrix
multiplication loop
– The compiler will swap inner loops to get unit-stride access

for(i=0;i<N;i++)

for(j=0;j<N;j++)

for(k=0;k<N;k++)

Software & Services Group

// Non-unit access

for (j = 0; j < N; j++)

for (i = 0; i <= j; i++)

c[i][j] = a[i][j]+b[i][j];

// Unit access

for (i = 0; i < N; i++)

for (j = i; i <= N; j++)

c[i][j] = a[i][j]+b[i][j];

for(k=0;k<N;k++)

c[i][j] = c[i][j] + a[i][k]*b[k][j];

But in other cases, the exchange has to be done manually: The
following loops are not interchanged implicitly:

Function Calls / In-lining

• Function calls prevent vectorization in general
– Exception #1 : Call of “intrinsic” functions like math routines
– Exception #2 : Successful in-lining of called routine

• Inter-procedural optimization enables in-lining of routines defined
even in separate source files

for (i=1;i<nx;i++) {

x = x0 + i*h;

Software & Services Group

sumx = sumx + func(x,y,xp,yp);

}

float func(float x, float y, float xp, float yp)

{

float denom;

denom = (x-xp)*(x-xp) + (y-yp)*(y-yp);

denom = 1./sqrt(denom);

return denom;

}

Intel Compiler:

15 times

faster by

using –ipo!*

*: Intel® C++ Compiler 12.0 U1 for Linux, Redhat Enterprise Linux 64bit 6.0, Intel XEON® X5560 processor, 2.8GHz

Function Calls / In-lining [2]

• Success of in-lining can be verified using the optimization report
-opt-report –opt-report-phaseipo_inl

• Intel compilers offer a large set of switches, directives and language
extensions to control in-lining globally or locally
– E.g #pragma forceinline which instructs the compiler to ignore the

heuristic for in-lining and to inline all calls in the following
statements/block (C/C++ only)

– See compiler manual for details

• Inter-procedural optimization offers additional advantages to

Software & Services Group

• Inter-procedural optimization offers additional advantages to
vectorization
– Inter-procedural alignment analysis
– Improved (more precise) dependence analysis

Vectorizable Mathematical Functions

acos ceil fabs round

acosh cos floor sin

Calls to most mathematical function in a loop body are
“vectorized” too by calling vector versions of the function
provided by the “Short Vector Math Library” – libsvml
– Libsvml is optimized for latency compared to the VML library component
of Intel® MKL which realizes same functionality but which is optimized for
throughput

– Routines in libsvml can be called explicitly too (see manual)

This is the set of
mathematical routines

Software & Services Group

acosh cos floor sin

asin cosh fmax sinh

asinh erf fmin sqrt

atan erfc log tan

atan2 erfinv log10 tanh

atanh exp log2 trunc

cbrt exp2 pow

mathematical routines
which have a vector
implementation in
libsvml
(Intel® Composer XE
2011)

Software & Services Group

Appendix

Software & Services Group

Command line performance monitoring

Command line perf monitoring

• With rdmsr and wrmsr we can now easily do
performance monitoring in a lightweight way.

• Before going on to feature burden apps like
Vtune, let’s now do a quick performance
analysis directly from the command line

Software & Services Group

analysis directly from the command line

99

Command line perf monitoring
Architectural perf events

• Intel doesn’t guarantee the consistency of the
performance monitoring unit

• Events can change with each model

• There are a number of events that Intel
guarantees always to be present

Software & Services Group

guarantees always to be present

• These are called Architectural performance
events

100

Command line perf monitoring
Architectural perf events

Software & Services Group

101

Command line perf monitoring
Architectural perf events

for c in 0 1 2 3; do

#Enable perf mon in IA32_PERF_GLOBAL_CTRL

wrmsr –p $c 911 30064771087

#Enable fixed perf m. in IA32_FIXED_CTR_CTRL

wrmsr –p $c 909 819

#IA32_PERFEVTSEL0(390 dec) for total branches

Software & Services Group

#IA32_PERFEVTSEL0(390 dec) for total branches

wrmsr –p $c 390 0x4700c4

#IA32_PERFEVTSEL1 (391 dec) for branch miss.

wrmsr –p $c 391 0x4700c5

done

102

Command line perf monitoring
Architectural perf events

while[1]; do

for c in 0 1 2 3; do

wrmsr –p $c 193 0 #reset counter 0

wrmsr –p $c 194 0 #reset counter 1

done

sleep 5

Software & Services Group

sleep 5

for c in 0 1 2 3; do

BRREF=`rdmsr –p $c 193` #read counter 0

BRMISS=`rdmsr –p $c 194` #read counter 1

echo $c `echo $BRMISS/$BRREF | bc -l`

done

done

103

Command line perf monitoring
Advanced Example

proc CPI LLC misses Branch misspred

0 1.35079 .30312 .00057
1 1.36037 .29671 .00082
2 1.35890 .30145 .00090
3 1.36869 .29146 .00049
4 1.36068 .29906 .00107
5 1.36653 .29260 .00047
6 1.35879 .30083 .00096
7 1.37438 .29364 .00044

app with cache
blocking

Software & Services Group

104

proc CPI LLC misses Branch misspred

0 .49865 .99099 .01582
1 .46621 .99247 .01260
2 .49805 .99210 .01281
3 .46907 .98990 .01363
4 .49935 .99038 .01508
5 .46850 .99154 .01374
6 .49610 .99049 .01602
7 .46863 .99231 .01207

app without cache
blocking

Command line perf monitoring
Summary

• You can do this for all kind of events you are
interested in

• Provides immediate feedback

• Ideal for first view assessments

• Ideal for command line work

Software & Services Group

• Ideal for command line work

105

Software & Services Group

