
Advanced CUDA
Optimizing to Get 20x Performance

Brent Oster

© NVIDIA Corporation 2008 2

Outline

Motivation for optimizing in CUDA

Demo performance increases

Tesla 10-series architecture details

Optimization case studies

Particle Simulation

Finite Difference

Summary

© NVIDIA Corporation 2008 3

Motivation for Optimization

20-50X performance over CPU-based code

Tesla 10-series chip has 1 TeraFLOPs compute

A Tesla workstation can outperform a CPU cluster

Demos

Particle Simulation

Finite Difference

Molecular Dynamics

Need to optimize code to get performance

Not too hard – 3 main rules

Tesla 10-series Architecture

© NVIDIA Corporation 2008

Tesla 10-Series Architecture

Massively parallel general computing architecture

30 Streaming multiprocessors @ 1.45 GHz with 4.0 GB of RAM

1 TFLOPS single precision (IEEE 754 floating point)

87 GFLOPS double precision

© NVIDIA Corporation 2008

10-Series Streaming Multiprocessor

8 SP Thread Processors
IEEE 754 32-bit floating point

32-bit float and 64-bit integer

16K 32-bit registers

2 SFU Special Function Units

1 Double Precision Unit (DP)
IEEE 754 64-bit floating point

Fused multiply-add

Scalar register-based ISA

Multithreaded Instruction Unit
1024 threads, hardware multithreaded

Independent thread execution

Hardware thread scheduling

16KB Shared Memory
Concurrent threads share data

Low latency load/store

© NVIDIA Corporation 2008

10-series DP 64-bit IEEE floating
point

IEEE 754 64-bit results for all DP instructions

DADD, DMUL, DFMA, DtoF, FtoD, DtoI, ItoD, DMAX, DMIN

Rounding, denorms, NaNs, +/- Infinity

Fused multiply-add (DFMA)

D = A*B + C; with no loss of precision in the add

DDIV and DSQRT software use FMA-based convergence

IEEE 754 rounding: nearest even, zero, +inf, -inf

Full-speed denormalized operands and results

No exception flags

Peak DP (DFMA) performance 87 GFLOPS at 1.45 GHz

Applications will almost always be bandwidth limited before
limited by double precision compute performance?

Optimizing CUDA Applications
For 10-series Architecture

© NVIDIA Corporation 2008 9

General Rules for Optimization

Optimize memory transfers
Minimize memory transfers from host to device

Use shared memory as a cache to device memory

Take advantage of coalesced memory access

Maximize processor occupancy
Optimize execution configuration

Maximize arithmetic intensity
More computation per memory access

Re-compute instead of loading data

© NVIDIA Corporation 2008 10

Data Movement in a CUDA Program

Host Memory

Device Memory

[Shared Memory]

COMPUTATION

[Shared Memory]

Device Memory

Host Memory

© NVIDIA Corporation 2008 11

Particle Simulation Example

Newtonian mechanics on point masses:

struct particleStruct{

float3 pos;

float3 vel;

float3 force;

};

pos = pos + vel*dt

vel = vel + force/mass*dt

© NVIDIA Corporation 2008 12

Particle Simulation Applications

Film Special Effects

Game Effects

Monte-Carlo Transport Simulation

Fluid Dynamics

Plasma Simulations

© NVIDIA Corporation 2008 13

1 million non-interacting particles
Radial (inward) and Vortex (tangent) force per particle

© NVIDIA Corporation 2008 14

Expected Performance

1 Million Particles

Pos, Vel = 36 bytes per particle = 36MB total

Host to device transfer (PCI-e Gen2)

2 * 36MB / 5.2 GB/s -> 13.8 ms

Device memory access

2 * 36MB / 80 GB/s -> 0.9 ms

1 TFLOPS / 1 million particles

Compute Euler Integration -> 0.02ms

© NVIDIA Corporation 2008 15

Visual Profiler

© NVIDIA Corporation 2008 16

Measured Performance

Host to device transfer (PCI-e Gen2)

15.3 ms (one-way)

Integration Kernel (including device memory
access)

1.32 ms

© NVIDIA Corporation 2008 17

Host to Device Memory Transfer

Host Memory

Device Memory

Shared Memory

COMPUTATION

Shared Memory

Device Memory

Host Memory

© NVIDIA Corporation 2008 18

Host to Device Memory Transfer

cudaMemcpy(dst, src, nBytes, direction)

Can only go as fast as the PCI-e bus

Use page-locked host memory

Instead of malloc(…), use cudaMallocHost(…)

Prevents OS from paging host memory

Allows PCI-e DMA to run at full speed

Use asynchronous data transfers

Requires page-locked host memory

Copy all data to device memory only once

Do all computation locally on T10 card

© NVIDIA Corporation 2008 19

Asynchronous Data Transfers

Use asynchronous data transfers

Requires page-locked host memory

cudaStreamCreate(&stream1);

cudaStreamCreate(&stream2);

cudaMemcpyAsync(dst1, src1, size, dir, stream1);

kernel<<<grid, block, 0, stream1>>>(…);

cudaMemcpyAsync(dst2, src2, size, dir, stream2);

kernel<<<grid, block, 0, stream2>>>(…);

© NVIDIA Corporation 2008

OpenGL Interoperability
Rendering directly from device memory

OpenGL buffer objects can be mapped into the
CUDA address space and then used as global
memory

Vertex buffer objects

Pixel buffer objects

Allows direct visualization of data from computation

No device to host transfer with Quadro or GeForce

Data stays in device memory – very fast compute / viz

Automatic DMA from Tesla to Quadro (via host for now)

Data can be accessed from the kernel like any other
global data (in device memory)

© NVIDIA Corporation 2008 21

Graphics Interoperability

Register a buffer object with CUDA
cudaGLRegisterBufferObject(GLuint buffObj);

OpenGL can use a registered buffer only as a source
Unregister the buffer prior to rendering to it by OpenGL

Map the buffer object to CUDA memory
cudaGLMapBufferObject(void **devPtr, GLuint buffObj);

Returns an address in global memory
Buffer must be registered prior to mapping

Launch a CUDA kernel to process the buffer

Unmap the buffer object prior to use by OpenGL
cudaGLUnmapBufferObject(GLuint buffObj);

Unregister the buffer object
cudaGLUnregisterBufferObject(GLuint buffObj);

Optional: needed if the buffer is a render target

Use the buffer object in OpenGL code

© NVIDIA Corporation 2008 22

Moving Data to/from Device Memory

Host Memory

Device Memory

Shared Memory

COMPUTATION

Shared Memory

Device Memory

Host Memory

© NVIDIA Corporation 2008

Device and Shared Memory Access

SM’s can access device memory at 80 GB/s

But, with hundreds of cycles of latency!

Pipelined execution hides latency

Each SM has 16KB of shared memory
Essentially a user managed cache

Latency comparable to registers

Reduces load/stores to device memory

Threads cooperatively use shared memory

Best case – multiple memory access per
thread, maximum use of shared memory

© NVIDIA Corporation 2008

Parallel Memory Sharing

Registers: per-thread

Private per thread

Auto variables, register spill

Shared Memory: per-block

Shared by threads of block

Inter-thread communication

Device Memory: per-application

Shared by all threads

Inter-Grid communication

Thread

Registers

Grid 0

. . .

Device/Global
Memory

. . .

Grid 1

Sequential
Grids
in Time

Block

Shared
Memory

© NVIDIA Corporation 2008 25

Shared memory as a cache

P[idx].pos = P[idx].pos + P[idx].vel * dt;

P[idx].vel = P[idx].vel + P[idx].force / mass;

Data is accessed directly from device
memory in this usage case

.vel is accessed twice (6 float accesses)

Hundreds of cycles of latency each time

Make use of shared memory?

© NVIDIA Corporation 2008 26

Shared memory as a cache

__shared__ float3 s_pos[N_THREADS];

__shared__ float3 s_vel[N_THREADS];

__shared__ float3 s_force[N_THREADS];

int tx = threadIdx.x;

idx = threadIdx.x + blockIdx.x*blockDim.x;

s_pos[tx] = P[idx].pos;

s_vel[tx] = P[idx].vel;

s_force[tx] = P[idx].force;

s_pos[tx] = s_pos[tx] + s_vel[tx] * dt;

s_vel[tx] = s_vel[tx] + s_force[tx]/mass * dt ;

P[idx].pos = s_pos[tx];

P[idx].vel = s_vel[tx];

© NVIDIA Corporation 2008 27

Coalesced Device Memory Access
on 10-series architecture

When half warp (16 threads) accesses

contiguous region of device memory

16 data elements loaded in one instruction

int, float: 64 bytes (fastest)

int2, float2: 128 bytes

int4, float4: 256 bytes (2 transactions)

Regions aligned to multiple of size

If un-coalesced, issues 16 sequential loads

© NVIDIA Corporation 2008

Thread 15

Thread 14

Thread 13

Thread 12

Thread 11

Thread 10

Thread 9

Thread 8

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Address 176

Address 180

Address 168

Address 172

Address 160

Address 164

Address 152

Address 156

Address 144

Address 148

Address 136

Address 140

Address 128

Address 132

Address 120

Address 124

Address 200

Address 204

Address 192

Address 196

Address 184

Address 188

...

Address 256

1
2
8
B
 s
e
g
m
e
n
t

Address 252

Thread 15

Thread 14

Thread 13

Thread 12

Thread 11

Thread 10

Thread 9

Thread 8

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Address 152

Address 156

Address 144

Address 148

Address 136

Address 140

Address 128

Address 132

Address 120

Address 124

Address 112

Address 116

Address 104

Address 108

Address 96

Address 100

Address 184

Address 176

Address 180

Address 168

Address 172

Address 160

Address 164

Address 188

Address 200

Address 192

Address 196

6
4
B
 s
e
g
m
e
n
t

3
2
B
 s
e
g
m
e
n
t

Thread 15

Thread 14

Thread 13

Thread 12

Thread 11

Thread 10

Thread 9

Thread 8

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Address 176

Address 180

Address 168

Address 172

Address 160

Address 164

Address 152

Address 156

Address 144

Address 148

Address 136

Address 140

Address 128

Address 132

Address 120

Address 124

Address 208

Address 200

Address 204

Address 192

Address 196

Address 184

Address 188

Address 212

Address 222

Address 214

Address 218

6
4
B
 s
e
g
m
e
n
t

© NVIDIA Corporation 2008 29

Particle Simulation Example
Worst Case for Coalescing!

struct particleStruct{

float3 pos;

float3 vel;

float3 force;

};

Thread 0 1 2 3 …15

Load pos.x 0 36 72 108 …540

Load pos.y 4 40 76 112 …544

Load pos.z 8 44 80 118 …548

© NVIDIA Corporation 2008 30

Coalesced Memory Access

Use structure of arrays instead

float3 pos[nParticles]

float3 vel[nParticles]

float3 force[nParticles]

Accesses coalesced within a few segments

Thread 0 1 2 3 …15

Load pos[idx].x 0 12 24 36 …180

Load pos[idx].y 4 16 28 40 …184

Load pos[idx].z 8 20 32 44 …188

Only using 1/3 bandwidth - Not ideal

© NVIDIA Corporation 2008 31

Better Coalesced Access
Option 1 – Structure of Arrays

Have separate arrays for pos.x, pos.y,…

float posx[nParticles];

float posy[nParticles];

float posz[nParticles];

Thread 0 1 2 3 …15

Load posx[idx] 0 4 8 12 …60

Load posy[idx] 64 68 72 76 …124

Load posz[idx] 128 132 136 140 …188

All threads of warp within 64byte region – 2x

© NVIDIA Corporation 2008 32

Better Coalesced Access
Option 2 - Typecasting

Load as array of floats (3x size), then

typecast to array of float3 for convenience

float fdata[16*3]

Thread 0 1 2 3 …15

Load fdata[i+0] 0 4 8 12 …60

Load fdata[i+16] 64 68 72 76 …124

Load fdata[i+32] 128 132 136 140 …188

float3* pos = (float3*)&fdata

© NVIDIA Corporation 2008 33

Shared Memory and Computation

Host Memory

Device Memory

Shared Memory

COMPUTATION

Shared Memory

Device Memory

Host Memory

© NVIDIA Corporation 2008 34

Details of Shared Memory

Many threads accessing memory

Therefore, memory is divided into banks

Essential to achieve high bandwidth

Each bank can service one address per cycle

A memory can service as many simultaneous
accesses as it has banks

Multiple simultaneous accesses to a bank
result in a bank conflict

Conflicting accesses are serialized

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

© NVIDIA Corporation 2008 35

Bank Addressing Examples

No Bank Conflicts

Linear addressing
stride == 1

No Bank Conflicts

Random 1:1 Permutation

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

© NVIDIA Corporation 2008 36

Bank Addressing Examples

2-way Bank Conflicts

Linear addressing
stride == 2

8-way Bank Conflicts

Linear addressing
stride == 8

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

Bank 1
Bank 0

x8

x8

© NVIDIA Corporation 2008 37

Shared memory bank conflicts

Shared memory access is comparable to registers if
there are no bank conflicts

Use the visual profiler to check for conflicts
warp_serialize signal can usually be used to check for conflicts

The fast case:
If all threads of a half-warp access different banks, there is
no bank conflict

If all threads of a half-warp read the identical address,
there is no bank conflict (broadcast)

The slow case:
Bank Conflict: multiple threads in the same half-warp
access the same bank

Must serialize the accesses

Cost = max # of simultaneous accesses to a single bank

© NVIDIA Corporation 2008 38

Shared Memory Access - Particles

Arrays of float3 in shared memory
float3 s_pos[N_THREADS]

Do any threads of a half-warp access same bank?

Thread 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

s_pos.x 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45

bank 0 3 6 9 12 15 2 5 8 11 14 1 4 7 10 13

No bank conflicts ☺☺☺☺

Always true when stride is a prime of 16

© NVIDIA Corporation 2008 39

Optimizing Computation

Execution Model Details

SIMT Multithread Execution

Register and Shared Memory Usage

Optimizing for Execution Model

10-series Architecture Details

Single and Double Precision Floating Point

Optimizing Instruction Throughput

© NVIDIA Corporation 2008

NVIDIA Parallel Execution Model

Thread:

Runs a kernel program
and performs the
computation for 1 data
item.

Thread Index is a built-in
variable

Has a set of registers
containing it’s program
context

© NVIDIA Corporation 2008

NVIDIA multi-tier data parallel model

Warp:

32 Threads executed together

Processed in SIMT on SM

All threads execute all
branches

Half Warp:

16 Threads

Coordinated memory access

Can coalesce load/stores in
batches of 16 elements

© NVIDIA Corporation 2008

NVIDIA multi-tier data parallel model

Block:

1 or more warps running on
the same SM

Different warps can take
different branches

Can synchronize all warps
within a block

Have common shared
memory for extremely fast
data sharing

Thread

Block of Threads

...

...

...

...

Warp = 32 Threads

© NVIDIA Corporation 2008

SIMT Multithreaded Execution

SIMT: Single-Instruction Multi-Thread

Warp: the set of 32 parallel threads
that execute a SIMT instruction

Hardware implements zero-overhead
warp and thread scheduling

Deeply pipelined to hide memory and
instruction latency

SIMT warp diverges and converges
when threads branch independently

Best efficiency and performance when
threads of a warp execute together

warp 8 instruction 11

Single-Instruction Multi-Thread
instruction scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

...

time

warp 3 instruction 96

© NVIDIA Corporation 2008

Register and Shared Memory Usage

Registers
Each block has access to a set of
registers on the SM

8-series has 8192 32-bit registers

10-series has 16384 32-bit registers

Registers are partitioned among
threads

Total threads * registers/thread

should be < number registers

Shared Memory

16KB of shared memory on SM

If blocks use <8KB, multiple
blocks may run on one SM

Warps from multiple blocks

© NVIDIA Corporation 2008 45

Optimizing Execution Configuration

Use maximum number of threads per block

Should be multiple of warp size (32)

More warps per block, deeper pipeline

Hides latency, gives better processor occupancy

Limited by available registers

Maximize concurrent blocks on SM

Use less than 8KB shared memory per block

Allows more than one block to run on an SM

Can be a tradeoff for shared memory usage

© NVIDIA Corporation 2008 46

Maximize Arithmetic Intensity

Particle simulation is still memory bound

How much more computation can we do?

Answer is almost unbelievable – 100x!

DEMO: 500+ GFLOPS!

Can use a higher-order integrator?

More complex computationally

Can take much larger time-steps

Computation vs memory access is worth it!

© NVIDIA Corporation 2008 47

1M particles x 100 fields
Executes in 8ms on GTX280

© NVIDIA Corporation 2008 48

1M particles x 100 collision spheres
executes in 20ms on GTX280

© NVIDIA Corporation 2008

Particle Simulation
Optimization Summary

Page-lock host memory

Asynchronous host-device transfer

Data stays in device memory

Using shared memory vs. registers

Coalesced data access

Optimize execution configuration

Higher arithmetic intensity

© NVIDIA Corporation 2008 50

Finite Differences Example

Solving Poisson equation in 2D on fixed grid

∆u = f
u = u(x,y)

f = f(x,y)

Gauss-Seidel relaxation

5 – point stencil

© NVIDIA Corporation 2008 51

Usual Method

Solve sparse matrix problem:

A*u = -f (use –f so A is pos-def)

| 4 -1 0 -1 … 0 0 0 |

| -1 4 -1 0 -1 … 0 0 |

| 0 -1 4 -1 0 -1 … 0 | |u| = |-f|

…

| 0 0 0 -1 … 0 -1 4 |

© NVIDIA Corporation 2008 52

Bottlenecked by Memory Throughput

Matrix is N*N, where N is Nx*Ny

Even a sparse representation is N*M

u and f are of size N

Memory throughput = N * (M + 2) per frame

For a 1024x1024 grid, N = 1 million

For a 2nd order stencil, M = 5

For double precision: 1M * 8 * (5+2) = 56MB

Host to device memory transfer takes 10.7ms

Device memory load/store time 0.7ms?

© NVIDIA Corporation 2008 53

Improving Performance

Transfer data host to device once at start

56MB easily fits on a 10-series card

Iterate to convergence in device memory

Use shared memory to buffer u

4x duplicated accesses per block

Use constant memory for stencil? (no
matrix)

Use texture memory for ρ? (read-only)

© NVIDIA Corporation 2008 54

Using Shared Memory
Finite Difference Example

Load sub-blocks into shared memory

16x16 = 256 threads

16x16x8 = 2048 KB shared memory

Each thread loads one double

Need to synchronize block boundaries

Only compute stencil on 14x14 center of cell

Load ghost cells on edges

Overlap onto neighbor blocks

Only 2/3 of threads computing?

© NVIDIA Corporation 2008 55

512x512 grid, Gauss-Seidel
Executes in 0.23ms on GTX280

© NVIDIA Corporation 2008 56

Constant Memory

Special section of device memory

Read only

Cached

Whole warp, same address - one load

Additional load for each different address

Constant memory declared at file scope

Set by cudaMemcpyToSymbol(…)

© NVIDIA Corporation 2008 57

Using Constant Memory
Finite Difference Example

Declare the stencil as constant memory

__constant__ double stencil[5]

={4,-1,-1,-1,-1};

© NVIDIA Corporation 2008 58

Texture Memory

Special section of device memory

Read only

Cached by spatial location (1D, 2D, 3D)

Best performance

All threads of a warp hit same cache locale

High spatial coherency in algorithm

Useful when coalescing methods are

impractical

© NVIDIA Corporation 2008 59

Using Texture Memory
Finite Difference Example

Declare a texture ref
texture<float, 1, …> fTex;

Bind f to texture ref via an array
cudaMallocArray(fArray,…)

cudaMemcpy2DToArray(fArray, f, …);

cudaBindTextureToArray(fTex, fArray …);

Access with array texture functions

f[x,y] = tex2D(fTex, x,y);

© NVIDIA Corporation 2008 60

Finite Difference
Performance Improvement

Maximize execution configuration

256 threads, each loads one double

16 registers * 256 threads = 4096 registers

Ok for both 10-series, 8-series ☺☺☺☺

Maximize arithmetic intensity for 3D

27-point, 4th order stencil

Same memory bandwidth

More compute

Can use fewer grid points

Faster convergence

© NVIDIA Corporation 2008 61

General Rules for Optimization
Recap

Optimize memory transfers
Minimize memory transfers from host to device

Use shared memory as a cache to device memory

Take advantage of coalesced memory access

Maximize processor occupancy
Use appropriate numbers of threads and blocks

Maximize arithmetic intensity
More computation per memory access

Re-compute instead of loading data

