jean-michel.richer@univ-angers.fr

Département Informatique L3 Mention Informatique Jean-Michel Richer Architecture des Ordinateurs 2022/2023

Travaux Dirigés

1 Représentation de l'information

1.1 Représentation binaire naturelle

En informatique les nombres sont codés en base :

- 2 (binaire) _b
- 8 (octal) ₋o
- 10 (décimal) _d
- 16 (héxadécimal) _h

Un nombre N exprimé en base B a pour valeur décimale :

$$N = \sum_{i=k_1}^{k_2} x_i * B^i$$

où les x_i sont des coefficients prenant leurs valeurs dans l'intervalle $0, 1, \dots, B-1$ et k_1 et k_2 étant des entiers relatifs.

Exercice 1 - Trouvez l'équivalent décimal des nombres suivants :

- 101010_b, 10011_b
- 201_3, 1111_3
- 421_o, 732_o
- A0_h, FF_h

Exercice 2 - Convertir les nombres décimaux suivants

- 11 et 10 en base 2
- 26 et 210 en base 8
- 250 et 49 en base 16

Exercice 3 - Utilisez la méthode par complémentation afin de coder en notation binaire naturelle non signée, les nombres suivants :

- 249
- 1011
- 16373

Exercice 4 - Définir un procédé permettant de passer rapidement du binaire à l'hexadécimal. Prendre par exemple le nombre suivant : 1011_1001_1101_0001_b

Exercice 5 - Calculer la somme des nombres naturels suivants en base 2 sur 8 bits. Que remarquez-vous?

- \bullet 0000_0010_b + 0000_0011_b
- \bullet 0000_1010_b + 0000_1111_b

Exercice 6 - Quels sont les plus grands entiers naturels que l'on peut représenter avec 8, 16 ou 32 bits?

1.2 Représentation signée

En représentation **binaire signée** le bit de poids le plus fort (c'est à dire, le bit le plus à gauche) indique le signe du nombre. On utilise 0 pour indiquer que le nombre est positif et 1 pour un nombre négatif. Par exemple

```
0111\_1111\_b représente 127\_d 1111\_1111\_b représente -127\_d
```

Exercice 7 - Calculer la somme des nombres signés suivants sur 8 bits. Que remarquez vous?

- \bullet 0000_0111_b + 0000_0101_b
- \bullet 0000_0111_b + 1000_0101_b

1.3 Représentation en complément à deux

La représentation en complément à deux représente les nombres négatifs différemment (les nombres positifs ne changent pas). Pour convertir un nombre négatif, on procède comme suit :

- représenter le nombre sous forme positive en binaire,
- complémenter chaque bit (0 est transformé en 1 et 1 en 0),
- ajouter 1 au résultat précédent.

Exercice 8 - Donner la représentation en complément à deux des nombres décimaux suivants : -1, -2, -127, -128, -129. Combien de nombres peut-on représenter avec 8 bits en notation en complément à deux?

Exercice 9 - Calculer la somme des nombres en complément à deux suivants sur 8 bits. Que remarquez vous?

- $0000_0111_\bar{b} + 0000_0101_\bar{b}$
- $0000_0111_\bar{b} + 1000_0101_\bar{b}$
- $0000_0011_\bar{b} + 1111_1011_\bar{b}$

• $0100_0000_\bar{b} + 0100_0001_\bar{b}$

Exercice 10 - Calculer le **produit** des nombres en complément à deux suivants sur 8 bits. Que remarquez vous?

- 7 × 5
- 7×-5
- 48×-2
- 48×-3

Exercice 11 -

- comment multiplier simplement un nombre binaire par 2, 4, 8 ou 2^n ?
- comment diviser simplement un nombre binaire par 2, 4, 8 ou 2^n ?

1.4 Représentation en virgule flottante

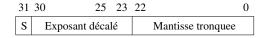


FIGURE 1 – Norme IEEE 754

Exercice 12 - Représentez en norme IEEE 754, les nombres suivants :

- 133,875₁₀
- \bullet -14, 6875₁₀
- $5,59375_{10}$
- $0,66_{10}$

Exercice 13 - Trouvez à quels nombres réels correspondent les représentations IEEE 754 :

- 42_C8_40_00₁₆
- 48_92_F5_40₁₆
- C2_92_F0_00₁₆
- C3_B0_30_00₁₆

2 Assembleur

Exercice 14 -

1. traduire en assembleur x86 le code C suivant où i1 et i2 représentent des séries d'instructions quelconques (on supposera que les variables a et b sont des variables entières.

N	2^N	N	2^N
0	1	8	256
1	2	9	512
2	4	10	1_024
3	8	11	2_048
4	16	12	4_096
5	32	13	8_192
6	64	14	16_384
7	128	15	32_768

N	2^N
16	65_536
20	1_048_576
31	2_147_483_648
32	4_294_967_296
63	$9,22 \times 10^{18}$
64	$18,44 \times 10^{18}$

TABLE 1 – Puissances de 2

Unité	Symbole	Puissance	Nombre
kilo octet	ko	2^{10}	1_024
méga octet	Mo	2^{20}	1_048_576
giga octet	Go	2^{30}	1_073_741_824
téra octet	То	2^{40}	$1,09951162810^{12}$
péta octet	Po	2^{50}	$1,12589990710^{15}$
exa octet	Eo	2^{60}	$1,15292150510^{18}$
zetta octet	Zo	2^{70}	$1,18059162110^{21}$

TABLE 2 – Unités utilisées en Informatique - Zak Etait Petit Trés Gros, Maousse Kosto

2. traduire en assembleur x86 le code C suivant :

```
1  || int sum = 0;
2  || for (int i = 1; i < n; i++) {
3  || sum = sum + i;
4  || }
```

3. traduire en assembleur x86 le code C suivant :

```
1  || int sum = 0, n = ...;
2  || int i = ...;
3  || while ((i > 10) && (i <= n)) {
4  || sum = sum + i;
5  || ++i;
6  || }</pre>
```

4. traduire en assembleur x86 le code C suivant :

```
1  | int prod = 1, n = ...;
2  | int i = ...;
3  | while ((i % n) == 0) || (i == 3)) {
4  | prod = prod * i;
5  | ++i;
6  | }
7  | printf("%d", prod);
```

Exercice 15 - Traduire la procédure suivante en assembleur x86.

- donner une traduction assembleur de la procédure
- donner des versions optimisées en utilisant loop, puis stosb

Exercice 16 - Traduire la procédure suivante en assembleur x86.

```
1  || void init( int t[], int n) {
2   | for (int i = 0; i < n; i++) {
3   | t[i] = 0;
4   | }
5   | }</pre>
```

- donner une traduction mot à mot de la procédure
- donner des versions optimisées en utilisant loop, puis stosd

Exercice 17 - Traduire la fonction suivante en assembleur x86 :

```
1  | int f(int X, int Y, int Z ) {
2      if (Z ==0) {
3         return ((X+Y)*(X-Y))/((X/Y)*3+(X+Y)*(X-Y));
4      } else {
5         return (X-Z+Y)*(X+Z+Y)*(1-Z*Z);
6      }
7         }
```

Exercice 18 - Comment multiplier efficacement sur un 8086 (cf. Table 3), la valeur contenue dans le registre ax par 10 sans utiliser l'instruction mul? On rappelle que mul r16 utilise 118 à 133 cycles sur un 8086. On pensera au fait que $10 = 5 \times 2$ ou encore 10 = 8 + 2.

Exercice 19 - Écrire le code assembleur x86 de la fonction de Fibonacci :

Instruction	Cycles
add r16, r16	3
div r16	144-162
mov r16, r16	2
mov r16, imm	4
mul r16	118-133
pop r16	8
push r16	11
shl r16, CL	8 + 4/bit

TABLE 3 – Intel 8086 : nombre de cycles pour exécuter une instruction

Exercice 20 - Écrire le code assembleur x86 de la fonction de Fibonacci optimisée :

L'appel de la fonction se fait par : fib_iter(1,0,n). Implanter et tester ces 2 sous-programmes et notez les résultats comparatifs entre les 2 versions pour n=40 à 60.

Exercice 21 - Ecrire un programme assembleur nasm pour processeur x86 et interfacé avec le langage C qui récupère les arguments en ligne de commande du programme et les affiche en utilisant la fonction printf du langage C.

Exercice 22 - Ecrire un programme en langage C qui étant donné un tableau de MAX entiers, réalise l'initialisation du tableau par des valeurs aléatoires comprises entre 0 et 20, puis affiche à l'écran la somme des valeurs par appel à une fonction assembleur :

```
int sum(int nbr,int tab[])
```

La fonction sum prend en paramètres le nombre de valeurs du tableau et l'adresse du tableau.

Exercice 23 - On désire écrire en assembleur la fonction suivante sans utiliser d'instruction de branchement. Traduire dans un premier temps cette fonction en plaçant p dans **ecx** et q dans **edx**.

Afin de supprimer le ou les branchements, on va utiliser une variable temporaire r telle que :

 $r = (p-q) >> 31 = \left\{ \begin{array}{ll} \texttt{0x00000000}, \ \text{si} & p > q \\ \texttt{0xFFFFFFF}, \ \text{si} & p < q \end{array} \right.$

on soustrait q à p et on garde le bit le plus significatif que l'on propage (bit 31 = bit de signe, utiliser l'instruction SAR r32, imm8 Shift Arithmetic Right). A partir de ce moment, il suffit de calculer : $(p \wedge r) \vee (q \wedge \neg r)$.

Exercice 24 - Implanter la fonction POPCNT (Population Count) qui compte le nombre de bits à 1 dans un registre. Par exemple popont ebx, eax met dans ebx le nombre de bits à 1 dans eax. En ce qui concerne l'implantation, on utilisera une table de conversion et on travaillera sur chaque octet du registre eax.

Exercice 25 - Réaliser le dépliage de boucle par 4 (loop unrolling) sur le code C suivant :

```
1  | void f(int *v, int *w, int k, int n) {
2  | for (int i = 0; i < n; ++i) {
     v[i] += w[i] * k;
4  | }
5  | }</pre>
```

Traduire en assembleur, puis donner une version en utilisant les instructions SSE suivantes dont on aura pris soin de consulter la documentation afin de comprendre leur comportement :

- movd
- pshufd
- pmulld
- paddd
- movdqu
- movdqa

Exercice 26 - Traduire en assembleur x86 version *64 bits* le code C suivant qui correspond au produit de deux matrices carrées de dimension N (constante) :

```
1
     void prod(int a[N][N], int b[N][N], int c[N][N]) {
2
       int i,j,k;
3
       for (i = 0; i < N; i++) {
4
         for (j = 0; j < N; j++) {
5
 6
           for (k = 0; k < N; k++) sum += a[i][k] * b[k][j];
 7
           c[i][j] = sum;
8
9
10
```

Exercice 27 - Donner le code assembleur du calcul suivant :

$$\frac{\sqrt{X+Y}+Y^2+tan(\frac{1}{X-Y})}{(X+Y)\times sin(X-Y)}$$

Exercice 28 - Ecrire une version SSE du calcul de la suite de Fibonacci.

Exercice 29 - Coder la fonction suivante en assembleur classique puis donner une version qui utilise les registres SSE.

```
|| int chr_replace(char *src, char *dst, int n, char c, char d) {
 2
       int changes = 0;
 3
       for (int i = 0; i < n; ++i) {
 4
         if (src[i] == c) {
 5
          dst[i] = d;
 6
           ++changes;
 7
         } else {
 8
           dst[i] = src[i];
 9
10
11
       return changes;
12
```

Exercice 30 - Imaginer un moyen d'échanger deux variables A et B sans utiliser une troisième variable ou un registre intermédiaire (pensez à l'instruction xor).

Exercice 31 - Écrire une fonction en C qui permet de déterminer les nombres autodescriptifs tels que 1210, 2020, 21200, 3211000. Pour rappel, un nombre autodescriptif est un entier naturel dont le premier chiffre indique le nombre de 0 qu'il contient, le deuxième chiffre le nombre de 1, etc.

3 Logique, algèbre de Boole, Tableaux de Karnaugh

Exercice 32 - Démontrez à l'aide de tables de vérité, les équivalences suivantes :

(a)
$$\overline{XYZ} = \overline{X} + \overline{Y} + \overline{Z}$$

(b)
$$X + YZ = (X + Y)(X + Z)$$

(c)
$$X + \bar{X}Y = X + Y$$

Exercice 33 - Démontrez algébriquement les égalités suivantes :

(a)
$$\bar{Y}Z + Y\bar{Z} + YZ + \bar{Y}\bar{Z} = 1$$

(b)
$$AB + A\bar{B} + \bar{A}\bar{B} = A + \bar{B}$$

(c)
$$\bar{A} + AB + A\bar{C} + A\bar{B}\bar{C} = \bar{A} + B + \bar{C}$$

(d)
$$A\bar{B} + \bar{A}\bar{C}\bar{D} + \bar{A}\bar{B}D + \bar{A}\bar{B}C\bar{D} = \bar{A}\bar{C}\bar{D} + \bar{B}$$

(e)
$$XY + \bar{X}Z + YZ = XY + \bar{X}Z$$

(f)
$$X + \bar{X}Y = X + Y$$

Exercice 34 - Simplifiez les expressions suivantes :

(a)
$$ABC + AB\bar{C} + \bar{A}B$$

(b)
$$(\overline{A+B})(\bar{A}+\bar{B})$$

(c)
$$(A + \bar{B} + A\bar{B})(AB + \bar{A}C + BC)$$

(d)
$$X + Y(Z + \overline{X + Z})$$

(e)
$$\bar{W}X(\bar{Z} + \bar{Y}Z) + X(W + \bar{W}YZ)$$

Exercice 35 - Soient deux fonctions booléennes E et F de trois variables dont les tables de vérité sont données. Exprimez E et F en fonction de X,Y,Z et simplifiez ces expressions.

X	Y	Z	E(X,Y,Z)	F(X,Y,Z)
0	0	0	1	0
0	0	1	1	0
0	1	0	1	1
0	1	1	0	0
1	0	0	1	0
1	0	1	0	0
1	1	0	0	1
1	1	1	0	1

Exercice 36 - Simplifiez les fonctions suivantes à l'aide d'un tableau de Karnaugh

(a)
$$F(X,Y,Z) = (1,3,6,7)$$

(b)
$$G(X,Y,Z) = (0,3,4,5,7)$$

(c)
$$H(A, B, C, D) = (1, 5, 9, 12, 13, 15)$$

Exercice 37 - Implantez les circuits suivants avec des portes NAND. Peut-on les simplifier et pourquoi?

(a)
$$W\bar{X} + WXZ + \bar{W}\bar{Y}\bar{Z} + \bar{W}X\bar{Y} + WX\bar{Z}$$

(b)
$$XZ + XY\bar{Z} + W\bar{X}\bar{Y}$$