# Data Mining - SVM

Dr. Jean-Michel RICHER



# ■ FACULTÉ DES SCIENCES

Unité de formation et de recherche DÉPARTEMENT INFORMATIQUE

2018

jean-michel.richer@univ-angers.fr



#### **Outline**

- 1. Introduction
- 2. Linear regression
- 3. Support Vector Machine
- 4. Principle
- 5. Mathematical point of view
- 6. Primal and Dual formulation
- 7. Example







#### What we will cover

#### What we will cover

- remainder of linear regression
- Support Vector Machine
  - principle
  - primal and dual formulation
  - soft margin and slack variables
  - kernel
  - iris dataset in python







## Linear regression principle

#### **Principle**

Given a set of individuals  $X = \{x_1, x_2, ..., x_n\}$  where each  $x_i = (x_i^1, ..., x_i^d)$  and a vector y of size n:

■ find a function  $f(x) = w.x + w_0 = y + \epsilon$  such that the  $y_i$  are close to f(x)

|         | Χ  |         | У                     | $f(x_i)$ |
|---------|----|---------|-----------------------|----------|
| $X_1^1$ |    | $x_1^d$ | <i>y</i> <sub>1</sub> | $y_i'$   |
| :       | 4. | :       | :                     | :        |
| $x_n^1$ |    | $x_n^d$ | Уn                    | y'n      |
|         |    |         |                       |          |

input data



# Linear regression principle - Example

Consider the following example where n = 5 and d = 1:

| Χ    | У    |
|------|------|
| 1.00 | 1.00 |
| 2.00 | 2.00 |
| 3.00 | 1.30 |
| 4.00 | 3.75 |
| 5.00 | 2.25 |





# Linear regression principle - Example

Consider the following example where n = 5 and d = 1:

In linear regression, the observations (color points) are assumed to be the result of random deviations (green) from an underlying relationship (black)





# Linear regression principle

#### **Formula**

Ordinary least squares (OLS) is the simplest and most common estimator that minimizes the sum of squared residuals

$$RSS = \sum_{i=1}^{n} (y_i - f(x_i))^2$$

we can obtain w:

$$w = (X^T.X)^{-1})X^Ty = (\sum (x_ix_i^T))^{-1}(\sum x_iy_i)$$



# Linear regression principle

#### **Formula**

If d = 1, given

- $\blacksquare \overline{X}$  the mean of X,  $\overline{y}$  the mean of y,
- $\sigma_X$ ,  $\sigma_Y$  the standard deviation of X and y
- R the correlation between X and Y

we can compute

- the slope  $w_1 = R \times \frac{\sigma_Y}{\sigma_X}$
- the intercept  $w_0 = \overline{y} w_1 \times \overline{X}$



# Linear regression - slope and intercept

#### With our example:

| $\overline{X}$ | ν    | $\sigma_X$ | $\sigma_{Y}$ | R     |
|----------------|------|------------|--------------|-------|
| 3              | 2.06 | 1.581      | 1.072        | 0.627 |

- $\mathbf{w}_1 = (0.627)(1.072)/1.581 = 0.425$
- $w_0 = 2.06 (0.425)(3) = 0.785$



# **Linear regression - prediction**

$$y' = f(x_i) = 0.425 \times x_i + 0.785$$

| X    | У    | У′    | y-y'   | $(y - y')^2$ |
|------|------|-------|--------|--------------|
| 1.00 | 1.00 | 1.210 | -0.210 | 0.044        |
| 2.00 | 2.00 | 1.635 | 0.365  | 0.133        |
| 3.00 | 1.30 | 2.060 | -0.760 | 0.578        |
| 4.00 | 3.75 | 2.485 | 1.265  | 1.600        |
| 5.00 | 2.25 | 2.910 | -0.660 | 0.436        |

So the total sum of errors is 2.791



# Linear regression - but

So linear regression is good, but, see Anscombe's quartet



## Linear regression principle

## Anscombe's quartet (Francis Anscombe, 1973)

four datasets that have nearly identical simple descriptive statistics, yet appear very different when graphed

| Mean of x                    | 9                 |
|------------------------------|-------------------|
| variance of x                | 11                |
| Mean of y                    | 7.50              |
| variance of y                | 4.125             |
| Correlation                  | 0.816             |
| Linear regression line       | y = 3.00 + 0.500x |
| Coefficient of determination | 0.67              |

often used to illustrate the importance of looking at a set of data graphically before starting to analyze it



# Linear regression principle

## Anscombe's quartet









# SVM principle

## **SVM Principle**

SVM are called large-margin classifier:

- separate two classes or more
- they look for an hyperplane with a large (wide) margin in order to make it:
  - less sensitive to perturbations
  - more stable for prediction
- the initial primal formulation is transformed into a dual formulation easier to solve
- slack variables help for misclassified elements
- non linear examples can be transformed into linear examples using a kernel function



# **SVM** principle

## Large margin principle

Separate students in a classroom:

- class 1: students close to the window
- class 2: students close to the door







#### Principle

Given a set of individuals  $X = \{x_1, x_2, ..., x_n\}$  where each  $x_i = (x_i^1, ..., x_i^d)$  and a vector y of size n of classes  $\{-1, +1\}$ :

find a function  $f(x) = w.x + w_0$  such that

$$\begin{cases} \text{ if } y_i = +1, f(x_i) \ge +1 \\ \text{ if } y_i = -1, f(x_i) \le -1 \end{cases}$$

or simply:

$$y_i \times f(x_i) > 1$$

f(x) = 0 is the hyperplane (or separation line)



# **SVM** - Graphically explained



$$d(x_i) = \frac{w x_i + w_0}{||w||}$$



## **SVM**

#### Important!

#### Support Vectors

- individuals (objects) closest to the separating hyperplane
- very few compared to n

#### Aim of SVM

orientate the hyperplane in order it is as far as possible from the **SV** of both classes



#### **Formulation**

$$\begin{cases} Max & \frac{2}{||w||} \\ \text{subject to} & y_i(w x_i + w_0) \ge 1, \ \forall i \end{cases}$$
 (1)

or

$$\begin{cases} Min & \frac{1}{2}||w||^2 \\ \text{subject to} & y_i(wx_i + w_0) - 1 \ge 0, \ \forall i \end{cases}$$
 (2)

Minimizing ||w|| is equivalent to minimizing  $1/2||w||^2$  but in this case we can perform **Quadratic Programming** (QP) optimization



## Quadratic programming (QP)

- is the process of solving a special type of mathematical optimization problem
- optimize (minimize or maximize) a quadratic function  $(x^2)$
- subject to linear constraints



## how to solve the problem?

- the problem of finding the optimal hyper plane is an optimization problem and can be solved by optimization techniques
- the problem is difficult to solve this way but we can rewrite it
- we use Lagrange multipliers to get this problem into a form that can be solved analytically.



## Joseph-Louis Lagrange

- born Guiseppe Lodovico **Lagrangia** (1736 - 1813) was a franco-italian mathematician and astronomer
- made significant contributions to the fields of analysis, number theory, and both classical and celestial mechanics
- in 1787, at age 51, moved from Berlin to Paris and became a member of the French Academy of Sciences
- remained in France until the end of his life





# Lagrangian multipliers

#### Principle

- you want to minimize or maximize f(x) subject to g(x) = 0
- under certain conditions (quadratic, linear constraints)
- define the function

$$\mathcal{L}(\mathbf{X}, \alpha) = f(\mathbf{X}) + \alpha g(\mathbf{X})$$

where  $\alpha \geq 0 \in \mathbb{R}$  is called the **lagrangian multiplier** 



# Lagrangian multipliers

#### Resolution

- $\blacksquare$  a solution of  $\mathcal{L}(x,\alpha)$  is a point of gradient 0
- so compute and solve

$$\frac{\partial \mathcal{L}(x,\alpha)}{\partial x} = 0$$

$$\frac{\partial \mathcal{L}(x,\alpha)}{\partial \alpha} = g(x) = 0$$

 $\blacksquare$  or reuse in  $\mathcal{L}(\mathbf{X}, \alpha)$ 



## Method of Lagrange - example

#### Statement of the example

Suppose you want to put a fence around some field which as a form of a rectangle (x, y) and you want to maximize the area knowing that you have P meters of fence:

$$\begin{cases} Max & x \times y \\ \text{such that} & P = 2x + 2y \end{cases}$$
then  $f(x, y) = xy$  and  $g(x) = P - 2x - 2y = 0$ 

$$\begin{cases} Max & xy \\ \text{such that} & P - 2x - 2y = 0 \end{cases}$$



## Method of Lagrange - example

#### Lagrange formulation

$$\mathcal{L}(x, y, \alpha) = xy + \alpha(P - 2x - 2y)$$

the derivatives give us

$$\frac{\partial \mathcal{L}(x, y, \alpha)}{\partial x} = y - 2\alpha = 0$$
$$\frac{\partial \mathcal{L}(x, y, \alpha)}{\partial y} = x - 2\alpha = 0$$
$$\frac{\partial \mathcal{L}(x, y, \alpha)}{\partial \alpha} = P - 2x - 2y = 0$$



## Method of Lagrange - example

#### Resolution

- the first two constraints give us  $y = 2\alpha = x$ , so x = y
- in other words, the area is a square
- $\blacksquare$  and the last one that P=4x=4y
- consequently  $\alpha = P/8$  because  $\alpha = x/2 = y/2$



#### Primal formulation

$$\begin{array}{cc} \textit{Min} & \frac{1}{2}||w||^2\\ \textit{such that} & \textit{y}_i(\textit{wx}_i + \textit{w}_0) - 1 \geq 0, \ \forall i \end{array}$$

## Lagrangian of the primal

$$\mathcal{L}_{P}(w, w_{0}, \alpha) = \frac{1}{2}||w||^{2} - \alpha \left[\sum_{i} y_{i}(wx_{i} + w_{0}) - 1\right]$$

with  $\alpha > 0$ 



## Lagrangian of the primal

$$\mathcal{L}_{P}(w, w_{0}, \alpha) = \frac{1}{2}||w||^{2} - \alpha \left[\sum_{i} y_{i}(wx_{i} + w_{0}) - 1\right]$$

$$\mathcal{L}_{P}(w, w_{0}, \alpha) = \frac{1}{2}||w||^{2} - \sum_{j} \alpha_{j} \left[\sum_{i} y_{i}(wx_{i} + w_{0}) - 1\right]$$

$$\mathcal{L}_{P}(w, w_{0}, \alpha) = \frac{1}{2}||w||^{2} - \sum_{i} \sum_{j} \alpha_{i} y_{j}(wx_{i} + w_{0}) + \sum_{j} \alpha_{j} \quad (3)$$



## Lagrangian of the primal

we want to find w and  $w_0$  which minimizes and  $\alpha$  that maximizes (3):

$$\frac{\partial \mathcal{L}_{P}(w, w_{0}, \alpha)}{\partial w} = w - \sum_{i} \alpha_{i} y_{i} x_{i} = 0$$
 (4)

$$\frac{\partial \mathcal{L}_{P}(w, w_{0}, \alpha)}{\partial w_{0}} = \sum_{i} \alpha_{i} y_{i} = 0$$
 (5)



#### **Dual formulation**

By substituting (4) and (5) into (3), we get:

$$\begin{cases} & \underset{\alpha}{\text{Max}} \quad \mathcal{L}_{D}(\alpha) = \sum_{j} \alpha_{j} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i} x_{j} \\ & \text{such that} \quad \alpha_{i} \geq 0, \ \forall i \\ & \sum_{i} \alpha_{i} y_{i} = 0 \end{cases}$$

or

$$\begin{cases} & \underset{\alpha}{\text{Max}} \quad \mathcal{L}_{D}(\alpha) = \sum_{j} \alpha_{j} - \frac{1}{2} \sum_{i,j} \alpha_{i} H_{ij} \alpha_{j} \\ & \text{such that} \quad \alpha_{i} \geq 0, \ \forall i \\ & \sum_{i} \alpha_{i} y_{i} = 0 \\ & \text{with} \quad H_{ij} = y_{i} y_{j} x_{i} x_{j} \end{cases}$$
 (6)

Need only the dot product of x



#### **Dual resolution**

- from (6) with a QP solver we can find  $\alpha$  and thus w
- $\blacksquare$   $w_0$  can be obtained from the Support Vectors

$$w_0 = y_s - \sum_{m \in S} \alpha_m y_m x_m x_s$$

where S is the set of indices of SV, such that  $\alpha_i > 0$ 



## Extension of SVMs

#### What if

- the data are not classified to be linearly separable?
  - we use slack variables
- we don't have a linear support?
  - we use a kernel function



#### Not fully linearly separable

- we need to relax the constraints
- introduce slack variables to keep a wide margin

$$\begin{cases} w x_i + w_0 \ge +1 - \xi_i & \text{for } y_i = +1 \\ w x_i + w_0 \le -1 + \xi_i & \text{for } y_i = -1 \\ \xi_i \ge 0, \ \forall i \end{cases}$$



Violates the large margin principle!







#### Formulation with slack variables

We have a **soft margin**:

$$\begin{cases} Min & \frac{1}{2}||w||^2 + C\sum_{i=1}^n \xi_i \\ \text{subject to} & y_i(w x_i + w_0) - 1 + \xi_i \ge 0, \ \forall i \end{cases}$$
 (7)

The parameter C controls the trade-off between the slack variable penalty and the size of the margin



### Kernels

### Why a kernel?

- Many problems are not linearly separable in the space of the input X
- $k(x_i, x_j) = \phi(x_i)\phi(x_j)$



## Kernel

A problem where individuals are not linearly separable in X with d=2





### Kernel

But individuals are linearly separable in X + y (consider that 0 on z represents the class of the negative individuals)



or use polar coordinates  $(r, \theta)$ 



## SVM in Python

Import svm from sklearn package:

```
{\tt from \ sklearn \ import \ svm}
```

You can choose different kernels: linear, poly, rbf, sigmoid



# **SVM** in Python

#### Kernel functions

- linear:  $\langle x, x' \rangle$
- polynomial:  $(\gamma \langle x, x' \rangle + r)^d$ 
  - ▶ d is specified by keyword degree
  - ▶ and *r* by coef0
- rbf (Radial Basis Function):  $exp(-\gamma||x-x'||^2)$ 
  - >  $\gamma$  is specified by keyword gamma, must be greater than 0.
- sigmoid:  $tanh(\gamma\langle x, x'\rangle + r))$ 
  - ▶ where r is specified by coef0







## Example in python

#### **IRIS**

- we use the IRIS example of sklearn
- 150 individuals (50 Setosa, 50 Versicolour, 50 Virginica)
- use the SVC or SVR implementation



## Example in python

#### **IRIS**

```
from sklearn import svm

svc = svm.SVC(kernel='linear', C=1, gamma='auto')
# svc = svm.SVC(kernel='rbf', C=100, gamma=100)
# svc = svm.SVR(kernel='rbf', C=1, gamma=1)
svc.fit(X, y)
y_predict = svc.predict(X)
```



# Example in python - Linear SVM

Linear svm, C = 1





## Example in python - RBF SVM

RBF C = 1





# Example in python - RBF SVM

RBF C = 100





## Example in python - RBF SVM

RBF 
$$C = 100$$
,  $\gamma = 100$ 





## **Example in python - WEKA**

#### **WEKA**

- use LibSVM (install it using package manager in Tools)
- use default parameters (C-SVC, rbf)
- set C (cost) to 10 and gamma to 10
- in order to get 150 correctly classified instances







# University of Angers - Faculty of Sciences



FACULTÉ
DES SCIENCES
Unité de formation
et de recherche
DÉPARTEMENT
INFORMATIQUE

#### **UA - Angers**

2 Boulevard Lavoisier 49045 Angers Cedex 01

Tel: (+33) (0)2-41-73-50-72

