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1. Introduction
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What we will cover

What we will cover
remainder of linear regression
Support Vector Machine

I principle
I primal and dual formulation
I soft margin and slack variables
I kernel
I iris dataset in python
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2. Linear regression - a
remainder
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Linear regression principle

Principle
Given a set of individuals X = {x1, x2, . . . , xn} where each
xi = (x1

i , . . . , x
d
i ) and a vector y of size n:

find a function f (x) = w .x + w0 = y + ε such that the yi
are close to f (x)

X y f (xi)

x1
1 . . . xd

1 y1 y ′i
...

. . .
...

...
...

x1
n . . . xd

n yn y ′n︸ ︷︷ ︸
input data
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Linear regression principle - Example

Consider the following example where n = 5 and d = 1:

X y
1.00 1.00
2.00 2.00
3.00 1.30
4.00 3.75
5.00 2.25
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Linear regression principle - Example

Consider the following example where n = 5 and d = 1:

In linear regression, the
observations (color points)
are assumed to be the
result of random deviations
(green) from an underlying
relationship (black)
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Linear regression principle

Formula
Ordinary least squares (OLS) is the simplest and most com-
mon estimator that minimizes the sum of squared residuals

RSS =
n∑

i=1

(yi − f (xi))2

we can obtain w :

w = (X T .X)−1)X T y = (
∑

(xix
T
i ))−1(

∑
xiyi)
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Linear regression principle

Formula
If d = 1, given

X the mean of X , y the mean of y ,
σX , σY the standard deviation of X and y

R the correlation between X and Y
we can compute

the slope w1 = R × σY
σX

the intercept w0 = y −w1 × X

Dr. Jean-Michel RICHER Data Mining - SVM 10 / 55



Linear regression - slope and intercept

With our example:

X ȳ σX σY R

3 2.06 1.581 1.072 0.627

w1 = (0.627)(1.072)/1.581 = 0.425
w0 = 2.06− (0.425)(3) = 0.785
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Linear regression - prediction

y ′ = f (xi) = 0.425× xi + 0.785

X y y ′ y − y ′ (y − y ′)2

1.00 1.00 1.210 -0.210 0.044
2.00 2.00 1.635 0.365 0.133
3.00 1.30 2.060 -0.760 0.578
4.00 3.75 2.485 1.265 1.600
5.00 2.25 2.910 -0.660 0.436

So the total sum of errors is 2.791
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Linear regression - but

So linear regression is good, but, see Anscombe’s quartet
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Linear regression principle

Anscombe’s quartet (Francis Anscombe, 1973)
four datasets that have nearly identical simple descriptive
statistics, yet appear very different when graphed

Mean of x 9
variance of x 11

Mean of y 7.50
variance of y 4.125
Correlation 0.816

Linear regression line y = 3.00 + 0.500x
Coefficient of determination 0.67

often used to illustrate the importance of looking at a set
of data graphically before starting to analyze it
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Linear regression principle

Anscombe’s quartet
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3. Support Vector Machine
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SVM principle

SVM Principle
SVM are called large-margin classifier:

separate two classes or more
they look for an hyperplane with a large (wide)
margin in order to make it:

I less sensitive to perturbations
I more stable for prediction

the initial primal formulation is transformed into a dual
formulation easier to solve
slack variables help for misclassified elements
non linear examples can be transformed into linear
examples using a kernel function
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SVM principle

Large margin principle
Separate students in a classroom:

class 1: students close to the window
class 2: students close to the door

middle of tables middle of the room
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SVM

Principle
Given a set of individuals X = {x1, x2, . . . , xn} where each
xi = (x1

i , . . . , x
d
i ) and a vector y of size n of classes {−1,+1}:

find a function f (x) = w .x + w0 such that{
if yi = +1, f (xi) ≥ +1
if yi = −1, f (xi) ≤ −1

or simply:
yi × f (xi) ≥ 1

f (x) = 0 is the hyperplane (or separation line)
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SVM - Graphically explained

w

f(x) = +1

f(x) = 0

f(x) = −1

positive
examples

negative
examples

margin

support
vectors

1
||w ||

d(xi) =
w xi + w0

||w ||
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SVM

Important !

Support Vectors
individuals (objects) closest to the separating
hyperplane
very few compared to n

Aim of SVM
orientate the hyperplane in order it is as far as possible from
the SV of both classes
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SVM on a mathematical point of view

Formulation
Max 2

||w ||

subject to yi(w xi + w0) ≥ 1, ∀i
(1)

or  Min 1
2 ||w ||

2

subject to yi(w xi + w0)− 1 ≥ 0, ∀i
(2)

Minimizing ||w || is equivalent to minimizing 1/2||w ||2 but in
this case we can perform Quadratic Programming (QP)
optimization
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SVM on a mathematical point of view

Quadratic programming (QP)
is the process of solving a special type of
mathematical optimization problem
optimize (minimize or maximize) a quadratic function
(x2)
subject to linear constraints
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SVM on a mathematical point of view

how to solve the problem ?
the problem of finding the optimal hyper plane is an
optimization problem and can be solved by
optimization techniques
the problem is difficult to solve this way but we can
rewrite it
we use Lagrange multipliers to get this problem into a
form that can be solved analytically.
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SVM on a mathematical point of view

Joseph-Louis Lagrange
born Guiseppe Lodovico
Lagrangia (1736 - 1813) was a
franco-italian mathematician and
astronomer
made significant contributions to
the fields of analysis, number
theory, and both classical and
celestial mechanics
in 1787, at age 51, moved from
Berlin to Paris and became a
member of the French Academy
of Sciences
remained in France until the end of
his life
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Lagrangian multipliers

Principle
you want to minimize or maximize f (x) subject to
g(x) = 0
under certain conditions (quadratic, linear
constraints)
define the function

L(x , α) = f (x) + αg(x)

where α ≥ 0 ∈ R is called the lagrangian multiplier
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Lagrangian multipliers

Resolution
a solution of L(x , α) is a point of gradient 0
so compute and solve

∂L(x ,α)
∂x = 0

∂L(x ,α)
∂α = g(x) = 0

or reuse in L(x , α)
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Method of Lagrange - example

Statement of the example
Suppose you want to put a fence around some field
which as a form of a rectangle (x , y) and you want to
maximize the area knowing that you have P meters of
fence: {

Max x × y
such that P = 2x + 2y

then f (x , y) = xy and g(x) = P − 2x − 2y = 0{
Max xy

such that P − 2x − 2y = 0
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Method of Lagrange - example

Lagrange formulation

L(x , y , α) = xy + α(P − 2x − 2y)

the derivatives give us

∂L(x , y , α)

∂x
= y − 2α = 0

∂L(x , y , α)

∂y
= x − 2α = 0

∂L(x , y , α)

∂α
= P − 2x − 2y = 0
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Method of Lagrange - example

Resolution
the first two constraints give us y = 2α = x , so x = y

in other words, the area is a square
and the last one that P = 4x = 4y

consequently α = P/8 because α = x/2 = y/2
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Back to the SVM formulation

Primal formulation

Min 1
2 ||w ||

2

such that yi(wxi + w0)− 1 ≥ 0, ∀i

Lagrangian of the primal

LP(w ,w0, α) =
1
2
||w ||2 − α

[∑
i

yi(wxi + w0)− 1

]
with α ≥ 0
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Back to the SVM formulation

Lagrangian of the primal

LP(w ,w0, α) =
1
2
||w ||2 − α

[∑
i

yi(wxi + w0)− 1

]

LP(w ,w0, α) =
1
2
||w ||2 −

∑
j

αj

[∑
i

yi(wxi + w0)− 1

]

LP(w ,w0, α) =
1
2
||w ||2 −

∑
i

∑
j

αiyi(wxi + w0) +
n∑
j

αj (3)
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Back to the SVM formulation

Lagrangian of the primal
we want to find w and w0 which minimizes and α that max-
imizes (3):

∂LP(w ,w0, α)

∂w
= w −

∑
i

αiyixi = 0 (4)

∂LP(w ,w0, α)

∂w0
=
∑

i

αiyi = 0 (5)
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Back to the SVM formulation

Dual formulation
By substituting (4) and (5) into (3), we get:

Max
α

LD(α) =
∑

j αj − 1
2
∑

i,j αiαjyiyjxixj

such that αi ≥ 0, ∀i∑
i αiyi = 0

or 
Max
α

LD(α) =
∑

j αj − 1
2
∑

i,j αiHijαj

such that αi ≥ 0, ∀i∑
i αiyi = 0

with Hij = yiyjxixj

(6)

Need only the dot product of x
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Back to the SVM formulation

Dual resolution
from (6) with a QP solver we can find α and thus w

w0 can be obtained from the Support Vectors

w0 = ys −
∑
m∈S

αmymxmxs

where S is the set of indices of SV, such that αi > 0
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Extension of SVMs

What if
the data are not classified to be linearly separable ?

I we use slack variables
we don’t have a linear support ?

I we use a kernel function
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Slack variable

Not fully linearly separable
we need to relax the constraints
introduce slack variables to keep a wide margin

w xi + w0 ≥ +1− ξi for yi = +1
w xi + w0 ≤ −1 + ξi for yi = −1
ξi ≥ 0, ∀i
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Slack variable

positive
examples

negative
examples

Violates the large margin principle !
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Slack variable

w

f(x) = +1

f(x) = 0

f(x) = −1

positive
examples

negative
examples

margin
1
||w ||

ξ
||w ||
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Slack variable

Formulation with slack variables
We have a soft margin: Min 1

2 ||w ||
2 + C

∑n
i=1 ξi

subject to yi(w xi + w0)− 1 + ξi ≥ 0, ∀i
(7)

The parameter C controls the trade-off between the slack
variable penalty and the size of the margin

Dr. Jean-Michel RICHER Data Mining - SVM 40 / 55



Kernels

Why a kernel ?
Many problems are not linearly separable in the
space of the input X

k(xi , xj) = φ(xi)φ(xj)
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Kernel

A problem where individuals are not linearly separable in
X with d = 2
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Kernel

But individuals are linearly separable in X + y (consider that
0 on z represents the class of the negative individuals)

or use polar coordinates (r , θ)

Dr. Jean-Michel RICHER Data Mining - SVM 43 / 55



SVM in Python

Import svm from sklearn package:

from sklearn import svm

svc = svm.SVC(kernel='linear', C=1,

gamma='auto').fit(X, y)

You can choose different kernels : linear, poly, rbf, sigmoid
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SVM in Python

Kernel functions
linear: 〈x , x ′〉
polynomial: (γ〈x , x ′〉+ r)d

I d is specified by keyword degree
I and r by coef0

rbf (Radial Basis Function): exp(−γ||x − x ′||2)
I γ is specified by keyword gamma, must be greater than

0.
sigmoid: tanh(γ〈x , x ′〉+ r))

I where r is specified by coef0
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7. Example
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Example in python

IRIS
we use the IRIS example of sklearn
150 individuals (50 Setosa, 50 Versicolour, 50 Virginica)
use the SVC or SVR implementation
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Example in python

IRIS
from sklearn import svm

svc = svm.SVC(kernel='linear', C=1, gamma='auto')

# svc = svm.SVC(kernel='rbf', C=100, gamma=100)

# svc = svm.SVR(kernel='rbf', C=1, gamma=1)

svc.fit(X, y)

y_predict = svc.predict(X)
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Example in python - Linear SVM

Linear svm, C = 1

7 mispredicted
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Example in python - RBF SVM

RBF C = 1

6 mispredicted
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Example in python - RBF SVM

RBF C = 100

6 mispredicted
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Example in python - RBF SVM

RBF C = 100, γ = 100

1 mispredicted
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Example in python - WEKA

WEKA
use LibSVM (install it using package manager in Tools)
use default parameters (C-SVC, rbf)
set C (cost) to 10 and gamma to 10
in order to get 150 correctly classified instances
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7. End
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