Data Mining - SVM

Dr. Jean-Michel RICHER

■ FACULTÉ DES SCIENCES

Unité de formation et de recherche DÉPARTEMENT INFORMATIQUE

2018

jean-michel.richer@univ-angers.fr

Outline

- 1. Introduction
- 2. Linear regression
- 3. Support Vector Machine
- 4. Principle
- 5. Mathematical point of view
- 6. Primal and Dual formulation
- 7. Example

What we will cover

What we will cover

- remainder of linear regression
- Support Vector Machine
 - principle
 - primal and dual formulation
 - soft margin and slack variables
 - kernel
 - iris dataset in python

Linear regression principle

Principle

Given a set of individuals $X = \{x_1, x_2, ..., x_n\}$ where each $x_i = (x_i^1, ..., x_i^d)$ and a vector y of size n:

■ find a function $f(x) = w.x + w_0 = y + \epsilon$ such that the y_i are close to f(x)

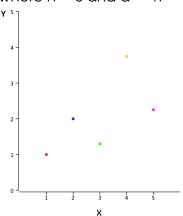
	Χ		У	$f(x_i)$
X_1^1		x_1^d	<i>y</i> ₁	y_i'
:	4.	:	:	:
x_n^1		x_n^d	Уn	y'n

input data

Linear regression principle - Example

Consider the following example where n = 5 and d = 1:

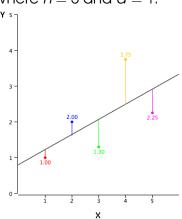
Χ	У
1.00	1.00
2.00	2.00
3.00	1.30
4.00	3.75
5.00	2.25



Linear regression principle - Example

Consider the following example where n = 5 and d = 1:

In linear regression, the observations (color points) are assumed to be the result of random deviations (green) from an underlying relationship (black)



Linear regression principle

Formula

Ordinary least squares (OLS) is the simplest and most common estimator that minimizes the sum of squared residuals

$$RSS = \sum_{i=1}^{n} (y_i - f(x_i))^2$$

we can obtain w:

$$w = (X^T.X)^{-1})X^Ty = (\sum (x_ix_i^T))^{-1}(\sum x_iy_i)$$

Linear regression principle

Formula

If d = 1, given

- $\blacksquare \overline{X}$ the mean of X, \overline{y} the mean of y,
- σ_X , σ_Y the standard deviation of X and y
- R the correlation between X and Y

we can compute

- the slope $w_1 = R \times \frac{\sigma_Y}{\sigma_X}$
- the intercept $w_0 = \overline{y} w_1 \times \overline{X}$

Linear regression - slope and intercept

With our example:

\overline{X}	ν	σ_X	σ_{Y}	R
3	2.06	1.581	1.072	0.627

- $\mathbf{w}_1 = (0.627)(1.072)/1.581 = 0.425$
- $w_0 = 2.06 (0.425)(3) = 0.785$

Linear regression - prediction

$$y' = f(x_i) = 0.425 \times x_i + 0.785$$

X	У	У′	y-y'	$(y - y')^2$
1.00	1.00	1.210	-0.210	0.044
2.00	2.00	1.635	0.365	0.133
3.00	1.30	2.060	-0.760	0.578
4.00	3.75	2.485	1.265	1.600
5.00	2.25	2.910	-0.660	0.436

So the total sum of errors is 2.791

Linear regression - but

So linear regression is good, but, see Anscombe's quartet

Linear regression principle

Anscombe's quartet (Francis Anscombe, 1973)

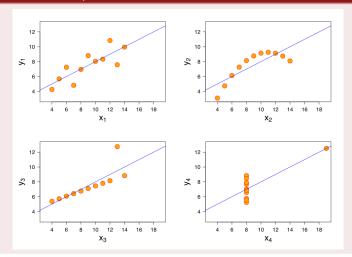
four datasets that have nearly identical simple descriptive statistics, yet appear very different when graphed

Mean of x	9
variance of x	11
Mean of y	7.50
variance of y	4.125
Correlation	0.816
Linear regression line	y = 3.00 + 0.500x
Coefficient of determination	0.67

often used to illustrate the importance of looking at a set of data graphically before starting to analyze it

Linear regression principle

Anscombe's quartet



SVM principle

SVM Principle

SVM are called large-margin classifier:

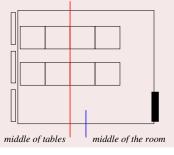
- separate two classes or more
- they look for an hyperplane with a large (wide) margin in order to make it:
 - less sensitive to perturbations
 - more stable for prediction
- the initial primal formulation is transformed into a dual formulation easier to solve
- slack variables help for misclassified elements
- non linear examples can be transformed into linear examples using a kernel function

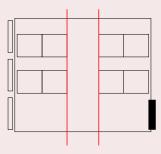
SVM principle

Large margin principle

Separate students in a classroom:

- class 1: students close to the window
- class 2: students close to the door





Principle

Given a set of individuals $X = \{x_1, x_2, ..., x_n\}$ where each $x_i = (x_i^1, ..., x_i^d)$ and a vector y of size n of classes $\{-1, +1\}$:

find a function $f(x) = w.x + w_0$ such that

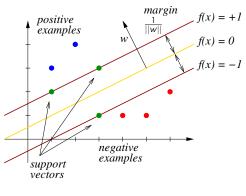
$$\begin{cases} \text{ if } y_i = +1, f(x_i) \ge +1 \\ \text{ if } y_i = -1, f(x_i) \le -1 \end{cases}$$

or simply:

$$y_i \times f(x_i) > 1$$

f(x) = 0 is the hyperplane (or separation line)

SVM - Graphically explained



$$d(x_i) = \frac{w x_i + w_0}{||w||}$$

SVM

Important!

Support Vectors

- individuals (objects) closest to the separating hyperplane
- very few compared to n

Aim of SVM

orientate the hyperplane in order it is as far as possible from the **SV** of both classes

Formulation

$$\begin{cases} Max & \frac{2}{||w||} \\ \text{subject to} & y_i(w x_i + w_0) \ge 1, \ \forall i \end{cases}$$
 (1)

or

$$\begin{cases} Min & \frac{1}{2}||w||^2 \\ \text{subject to} & y_i(wx_i + w_0) - 1 \ge 0, \ \forall i \end{cases}$$
 (2)

Minimizing ||w|| is equivalent to minimizing $1/2||w||^2$ but in this case we can perform **Quadratic Programming** (QP) optimization

Quadratic programming (QP)

- is the process of solving a special type of mathematical optimization problem
- optimize (minimize or maximize) a quadratic function (x^2)
- subject to linear constraints

how to solve the problem?

- the problem of finding the optimal hyper plane is an optimization problem and can be solved by optimization techniques
- the problem is difficult to solve this way but we can rewrite it
- we use Lagrange multipliers to get this problem into a form that can be solved analytically.

Joseph-Louis Lagrange

- born Guiseppe Lodovico **Lagrangia** (1736 - 1813) was a franco-italian mathematician and astronomer
- made significant contributions to the fields of analysis, number theory, and both classical and celestial mechanics
- in 1787, at age 51, moved from Berlin to Paris and became a member of the French Academy of Sciences
- remained in France until the end of his life

Lagrangian multipliers

Principle

- you want to minimize or maximize f(x) subject to g(x) = 0
- under certain conditions (quadratic, linear constraints)
- define the function

$$\mathcal{L}(\mathbf{X}, \alpha) = f(\mathbf{X}) + \alpha g(\mathbf{X})$$

where $\alpha \geq 0 \in \mathbb{R}$ is called the **lagrangian multiplier**

Lagrangian multipliers

Resolution

- \blacksquare a solution of $\mathcal{L}(x,\alpha)$ is a point of gradient 0
- so compute and solve

$$\frac{\partial \mathcal{L}(x,\alpha)}{\partial x} = 0$$

$$\frac{\partial \mathcal{L}(x,\alpha)}{\partial \alpha} = g(x) = 0$$

 \blacksquare or reuse in $\mathcal{L}(\mathbf{X}, \alpha)$

Method of Lagrange - example

Statement of the example

Suppose you want to put a fence around some field which as a form of a rectangle (x, y) and you want to maximize the area knowing that you have P meters of fence:

$$\begin{cases} Max & x \times y \\ \text{such that} & P = 2x + 2y \end{cases}$$
then $f(x, y) = xy$ and $g(x) = P - 2x - 2y = 0$

$$\begin{cases} Max & xy \\ \text{such that} & P - 2x - 2y = 0 \end{cases}$$

Method of Lagrange - example

Lagrange formulation

$$\mathcal{L}(x, y, \alpha) = xy + \alpha(P - 2x - 2y)$$

the derivatives give us

$$\frac{\partial \mathcal{L}(x, y, \alpha)}{\partial x} = y - 2\alpha = 0$$
$$\frac{\partial \mathcal{L}(x, y, \alpha)}{\partial y} = x - 2\alpha = 0$$
$$\frac{\partial \mathcal{L}(x, y, \alpha)}{\partial \alpha} = P - 2x - 2y = 0$$

Method of Lagrange - example

Resolution

- the first two constraints give us $y = 2\alpha = x$, so x = y
- in other words, the area is a square
- \blacksquare and the last one that P=4x=4y
- consequently $\alpha = P/8$ because $\alpha = x/2 = y/2$

Primal formulation

$$\begin{array}{cc} \textit{Min} & \frac{1}{2}||w||^2\\ \textit{such that} & \textit{y}_i(\textit{wx}_i + \textit{w}_0) - 1 \geq 0, \ \forall i \end{array}$$

Lagrangian of the primal

$$\mathcal{L}_{P}(w, w_{0}, \alpha) = \frac{1}{2}||w||^{2} - \alpha \left[\sum_{i} y_{i}(wx_{i} + w_{0}) - 1\right]$$

with $\alpha > 0$

Lagrangian of the primal

$$\mathcal{L}_{P}(w, w_{0}, \alpha) = \frac{1}{2}||w||^{2} - \alpha \left[\sum_{i} y_{i}(wx_{i} + w_{0}) - 1\right]$$

$$\mathcal{L}_{P}(w, w_{0}, \alpha) = \frac{1}{2}||w||^{2} - \sum_{j} \alpha_{j} \left[\sum_{i} y_{i}(wx_{i} + w_{0}) - 1\right]$$

$$\mathcal{L}_{P}(w, w_{0}, \alpha) = \frac{1}{2}||w||^{2} - \sum_{i} \sum_{j} \alpha_{i} y_{j}(wx_{i} + w_{0}) + \sum_{j} \alpha_{j} \quad (3)$$

Lagrangian of the primal

we want to find w and w_0 which minimizes and α that maximizes (3):

$$\frac{\partial \mathcal{L}_{P}(w, w_{0}, \alpha)}{\partial w} = w - \sum_{i} \alpha_{i} y_{i} x_{i} = 0$$
 (4)

$$\frac{\partial \mathcal{L}_{P}(w, w_{0}, \alpha)}{\partial w_{0}} = \sum_{i} \alpha_{i} y_{i} = 0$$
 (5)

Dual formulation

By substituting (4) and (5) into (3), we get:

$$\begin{cases} & \underset{\alpha}{\text{Max}} \quad \mathcal{L}_{D}(\alpha) = \sum_{j} \alpha_{j} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i} x_{j} \\ & \text{such that} \quad \alpha_{i} \geq 0, \ \forall i \\ & \sum_{i} \alpha_{i} y_{i} = 0 \end{cases}$$

or

$$\begin{cases} & \underset{\alpha}{\text{Max}} \quad \mathcal{L}_{D}(\alpha) = \sum_{j} \alpha_{j} - \frac{1}{2} \sum_{i,j} \alpha_{i} H_{ij} \alpha_{j} \\ & \text{such that} \quad \alpha_{i} \geq 0, \ \forall i \\ & \sum_{i} \alpha_{i} y_{i} = 0 \\ & \text{with} \quad H_{ij} = y_{i} y_{j} x_{i} x_{j} \end{cases}$$
 (6)

Need only the dot product of x

Dual resolution

- from (6) with a QP solver we can find α and thus w
- \blacksquare w_0 can be obtained from the Support Vectors

$$w_0 = y_s - \sum_{m \in S} \alpha_m y_m x_m x_s$$

where S is the set of indices of SV, such that $\alpha_i > 0$

Extension of SVMs

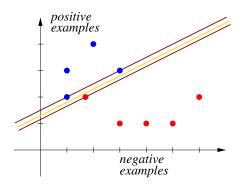
What if

- the data are not classified to be linearly separable?
 - we use slack variables
- we don't have a linear support?
 - we use a kernel function

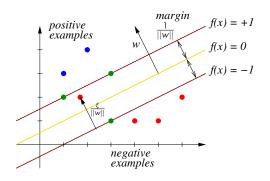
Not fully linearly separable

- we need to relax the constraints
- introduce slack variables to keep a wide margin

$$\begin{cases} w x_i + w_0 \ge +1 - \xi_i & \text{for } y_i = +1 \\ w x_i + w_0 \le -1 + \xi_i & \text{for } y_i = -1 \\ \xi_i \ge 0, \ \forall i \end{cases}$$



Violates the large margin principle!



Formulation with slack variables

We have a **soft margin**:

$$\begin{cases} Min & \frac{1}{2}||w||^2 + C\sum_{i=1}^n \xi_i \\ \text{subject to} & y_i(w x_i + w_0) - 1 + \xi_i \ge 0, \ \forall i \end{cases}$$
 (7)

The parameter C controls the trade-off between the slack variable penalty and the size of the margin

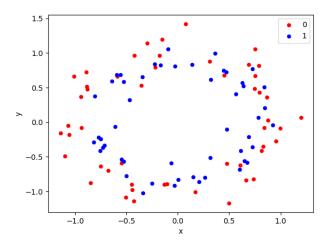
Kernels

Why a kernel?

- Many problems are not linearly separable in the space of the input X
- $k(x_i, x_j) = \phi(x_i)\phi(x_j)$

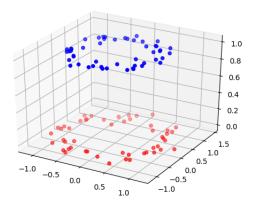
Kernel

A problem where individuals are not linearly separable in X with d=2



Kernel

But individuals are linearly separable in X + y (consider that 0 on z represents the class of the negative individuals)



or use polar coordinates (r, θ)

SVM in Python

Import svm from sklearn package:

```
{\tt from \ sklearn \ import \ svm}
```

You can choose different kernels: linear, poly, rbf, sigmoid

SVM in Python

Kernel functions

- linear: $\langle x, x' \rangle$
- polynomial: $(\gamma \langle x, x' \rangle + r)^d$
 - ▶ d is specified by keyword degree
 - ▶ and *r* by coef0
- rbf (Radial Basis Function): $exp(-\gamma||x-x'||^2)$
 - > γ is specified by keyword gamma, must be greater than 0.
- sigmoid: $tanh(\gamma\langle x, x'\rangle + r))$
 - ▶ where r is specified by coef0

Example in python

IRIS

- we use the IRIS example of sklearn
- 150 individuals (50 Setosa, 50 Versicolour, 50 Virginica)
- use the SVC or SVR implementation

Example in python

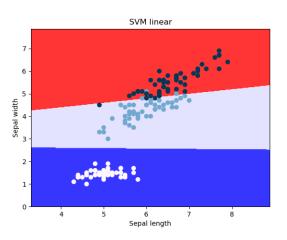
IRIS

```
from sklearn import svm

svc = svm.SVC(kernel='linear', C=1, gamma='auto')
# svc = svm.SVC(kernel='rbf', C=100, gamma=100)
# svc = svm.SVR(kernel='rbf', C=1, gamma=1)
svc.fit(X, y)
y_predict = svc.predict(X)
```

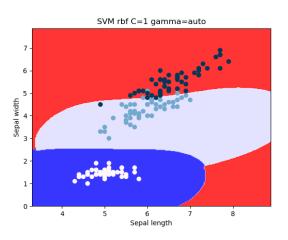

Example in python - Linear SVM

Linear svm, C = 1



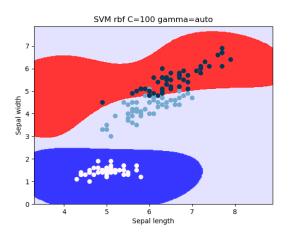
Example in python - RBF SVM

RBF C = 1



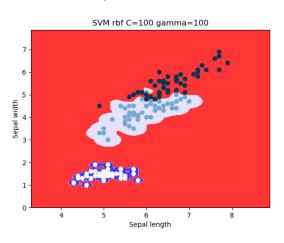
Example in python - RBF SVM

RBF C = 100



Example in python - RBF SVM

RBF
$$C = 100$$
, $\gamma = 100$



Example in python - WEKA

WEKA

- use LibSVM (install it using package manager in Tools)
- use default parameters (C-SVC, rbf)
- set C (cost) to 10 and gamma to 10
- in order to get 150 correctly classified instances

University of Angers - Faculty of Sciences

FACULTÉ
DES SCIENCES
Unité de formation
et de recherche
DÉPARTEMENT
INFORMATIQUE

UA - Angers

2 Boulevard Lavoisier 49045 Angers Cedex 01

Tel: (+33) (0)2-41-73-50-72

